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Purpose: White matter hyperintensities (WMHs) are key neuroimaging markers 
of cerebral small vessel disease (cSVD), associated with cognitive decline and 
increased stroke risk. We  aimed to investigate whether carotid time-of-flight 
(TOF) magnetic resonance angiography (MRA), a routinely acquired and non-
invasive vascular imaging modality, can be  utilized to independently predict 
WMH burden using deep learning.
Methods: We developed a deep learning-based framework to predict WMH 
presence and severity using only 3D carotid TOF MRA. Two classification 
tasks were defined: binary (grade 0 vs. grades 1–3) and three-class (grade 0, 
1, 2–3) classification. Four model architectures— simple fully convolutional 
network (SFCN), ResNet10, MedicalNet, and Medical Slice Transformer—were 
evaluated. To enhance model interpretability, we performed saliency mapping 
and occlusion analysis.
Results: SFCN performed the best, achieving an accuracy of 76.5% and an 
area under the receiver operating characteristic curve (AUC) of 0.874 in binary 
classification, along with a 63.5% accuracy and a 0.827 AUC in WMH severity 
classification. Interpretability analyses confirmed that models predominantly 
focused on carotid vessel regions, which supports known vascular associations 
with WMH burden.
Conclusion: Carotid TOF MRA alone can serve as a predictive marker for 
WMH burden when analyzed using deep learning. This approach highlights the 
potential utility of extracranial carotid imaging as a non-invasive surrogate for 
early and accessible assessment of cerebrovascular risk.
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1 Introduction

Cerebral small vessel disease (cSVD), an umbrella term for brain 
lesions attributed to small cerebral vessels, is a major contributor to 
stroke and dementia, in addition to being associated with 
neurobehavioral symptoms or functional impairment (1, 2). cSVD is 
characterized by several neuroimaging markers including lacunes, 
cerebral microbleeds and white matter hyperintensities (WMHs) (3). 
Among them, WMHs, appearing as high signal intensities in 
periventricular and deep subcortical white matter on T2-weighted – 
and preferably with fluid attenuated inversion recovery (FLAIR) – 
magnetic resonance imaging (MRI), represent the most commonly 
encountered radiological features in cSVD (4). WMH burden, 
typically assessed using visual rating scales, is correlated with 
neurological outcomes, including cognitive impairment, gait 
disturbances, and an increased risk of stroke and dementia (5–7). 
Early detection and quantification of WMHs may help identify 
individuals at risk and contribute to preventing or delaying the 
progression of cSVD.

The clinical significance of WMHs has prompted investigations 
into alternative screening approaches beyond conventional brain 
MRI. Fundus photography has been proposed as a surrogate approach 
due to the anatomical and physiological parallels between retinal and 
cerebral microvasculature (8). Studies have progressed from utilizing 
automatic retinal image analysis with machine learning (9, 10) to 
employing convolutional neural networks (CNNs) for direct WMH 
severity classification (here referring to the semi-quantitative ordinal 
grading of WMH burden) in an end-to-end manner (11, 12). These 
efforts underscore a growing interest in using extracranial imaging 
— particularly from anatomically distinct but physiologically related 
systems — to develop accessible and cost-effective tools for 
WMH screening.

The cervical internal carotid artery, which can be assessed through 
MR angiography (MRA) as well as more accessible modalities, such 
as ultrasound or computed tomography (CT) angiography, has drawn 
attention as an extracranial vasculature linked to WMH burden. Since 
the internal carotid arteries supply up to 75% of the cerebral blood 
flow, their structural and hemodynamic characteristics are critical for 
cerebral perfusion (13). Several studies have reported associations 
between carotid abnormalities and WMH burden, including larger 
carotid diameters and increased carotid intima-media thickness being 
linked to greater WMH burden (14, 15). Morphological features such 
as increased tortuosity have also been proposed as independent 
predictors of WMH severity in patients with acute ischemic stroke 
(16), while advanced multimodal imaging techniques including MRA, 
ultrasound, and 4D flow MRI have revealed potential links between 
altered flow patterns and cSVD progression (17). However, research 
thus far has focused predominantly on statistical associations rather 
than predictive modeling. To the best of our knowledge, WMH 
severity has yet to be directly predicted based on carotid MRA alone, 
while deep learning applications also remain unexplored in 
this context.

The purpose of this study was to develop and evaluate a deep 
learning-based framework for predicting the presence and severity of 
WMH using clinical carotid time-of-flight (TOF) MRA images. 
Specifically, we focused on binary classification (absence vs. presence 
of WMH) and three-class severity classification (Fazekas grade 0, 
grade 1, and grades 2–3) for WMH. We evaluated both convolutional 

neural networks, e.g., simple fully convolutional networks (SFCNs) 
and ResNet variants, along with a transformer-based model, i.e., 
Medical Slice Transformer (MST), while analyzing the spatial 
contributions of vascular structures to enhance model interpretability. 
This approach represents a non-invasive and generalizable strategy for 
WMH screening and may facilitate the early detection of 
cerebrovascular changes in individuals at risk of cSVD.

2 Materials and methods

2.1 Data acquisition and WMH grading

This study utilized non-contrast brain MRI and carotid 3D TOF 
MRA data acquired as part of a comprehensive health check-up 
program at Seoul National University Hospital, between 2016 and 
2023. All images were obtained using a 3.0 Tesla MR scanner 
(Discovery 750w, GE Healthcare, Milwaukee, WI) with a head and 
neck coil. To focus on vascular features without major cerebral 
pathology, patients with overt brain lesions, significant stenosis in 
extra-cranial or intra-cranial cerebral arteries, or clinically diagnosed 
cerebrovascular disease were excluded based on imaging reports and 
medical records. Accordingly, a total of 1,105 patients were included 
in the final dataset, comprising 504 females and 601 males. The ages 
ranged from 20 to 91 years, with the mean being 63.9 ± 11.1 years. The 
brain MRI included fast spin-echo axial T2-weighted FLAIR images 
with the following parameters: repetition time (TR), 8,000 ms; echo 
time (TE), 90.7 ms; inversion time, 2,347 ms; echo train length, 26; flip 
angle (FA), 142°; field-of-view (FOV), 220 mm × 220 mm; acquisition 
matrix, 288 × 288; slice thickness, 5 mm; interslice gap, 1 mm; and 
number of excitations, 1. Three-dimensional carotid TOF MRA were 
obtained with the following parameters: TR, 18 ms; TE, 3.4 ms; FA, 
18°; FOV, 300 mm × 300 mm; acquisition matrix, 320 × 192; 
reconstruction matrix (applying zero-interpolation filling), 512 × 512; 
slice thickness/slice interval 2 mm/1 mm; and multiple overlapping 
thin slab acquisition (MOTSA) with 4 slabs. The reconstructed voxel 
resolution was 0.586 × 0.586 × 1.0 mm.

Based on the FLAIR images, WMH severity was visually graded 
by two investigator (I. H. and K. S. C, with 13 and 11 years of 
experience in neuroradiology) on a modified Fazekas scale (18, 19), a 
four-point scale (0–3) where 0 indicates no WMHs, including 
symmetrical, well-defined caps/bands or occasional punctate lesions; 
1 represents multiple punctate foci; 2 indicates the beginning 
confluence of lesions; and 3 reflects large confluent areas. The inter-
observer reliability was evaluated using weighted kappa, yielding a 
value of 0.879 (95% CI: 0.863–0.895), indicating almost perfect 
agreement. Any discrepancies were resolved by the consensus. The 
grade distribution within the dataset was as follows: grade 0, 461 
patients; grade 1, 372 patients; grade 2, 194 patients; and grade 3, 
77 patients.

2.2 Data preprocessing

All TOF MRA volumes were converted from DICOM to NIfTI 
format to facilitate downstream processing. Each volume was 
resampled to a voxel spacing of 1.0 × 1.0 × 1.0 mm using linear 
interpolation with SimpleITK (20), to ensure consistent spatial 
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resolution across subjects and enable uniform feature 
representation for model training. The resulting in-plane 
dimensions were 300 × 300 voxels, with the number of axial slices 
varying from 192 to 272 across subjects. The carotid bifurcation 
was manually identified on maximum intensity projection (MIP) 
images, and each volume was cropped to a fixed size of 
112 × 84 × 112 voxels (superior–inferior × anterior–posterior × 
right–left) centered at the bifurcation. This size was empirically 
found to exclude non-informative background regions while 
including all the relevant arteries. The voxel intensities were then 
normalized on a per-subject basis via z-score normalization, to 
reduces inter-subject intensity variability and improve 
training stability.

2.3 Deep learning networks

We implemented and compared several deep learning models 
for WMH prediction, including 3D CNNs and a transformer-
based model. Carotid TOF MRA is characterized by sparse 
vascular signal, low structural complexity, and large background 
regions of low signal. These conditions along with limited training 
samples encouraged us to select lightweight CNNs as over-
parameterized networks are often unnecessary and prone to 
overfitting (21, 22). We also chose a transformer-based model to 
enable learning of long-range dependencies between distance 
slices in 3D MRA data. Figure 1 presents an overview of the model 
architectures used.

2.3.1 Convolutional networks
We employed three 3D CNN architectures: a standard ResNet 

(23), a ResNet variant initialized with pretrained weights from 
MedicalNet (24), and an SFCN (22). ResNet10, the lightest variant of 
a commonly used CNN backbone, was adopted for its simplicity and 
proven effectiveness across numerous image analysis applications. 
We also evaluated the MedicalNet model, which was based on the 
ResNet10 architecture and pretrained on diverse public 3D medical 
image datasets (3DSeg-8) covering multiple organs (brain, heart, 
prostate, etc.) and imaging modalities (MRI and CT). We initialized 
the model with pretrained weights and replaced the last layer with a 
linear classifier to adapt it to our WMH classification task. This 
pretraining was expected to improve feature generalization and 
accelerate model convergence. SFCN is a streamlined 3D CNN 
architecture without fully connected layers, originally designed to 
predict biological age using brain MRI. Reducing the network depth 
and parameter count allowed SFCN to achieve competitive 
performance in its original brain age prediction task as well as other 
neuroimaging applications while maintaining high computational 
efficiency (25–27). In our implementation, we  simplified the 
architecture further by reducing the number of convolutional blocks, 
which empirically improved the model’s performance on our dataset.

2.3.2 Transformer model
In addition to CNNs, we employed a transformer-based model, 

namely MST (28), which leverages pretrained DINOv2 (29) features 
to process 3D MRA volumes as sequences of 2D slices. Specifically, 
we  used the DINOv2-small variant, a self-supervised vision 

FIGURE 1

Deep learning network architectures used for WMH classification: (A) SFCN, (B) MST.
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transformer (ViT) pretrained on large-scale 2D natural image datasets. 
In MST, each 2D axial slice was initially encoded by the DINOv2 
backbone, and further finetuned to adapt to the WMH classification 
task. The resulting slice-level embeddings were then processed 
through a transformer encoder, which incorporated a learnable class 
token and slice position embeddings to capture inter-slice 
dependencies. To obtain the final WMH grade prediction, a linear 
classification head was applied to the updated class token. Through 
this hybrid attention mechanism, MST integrates both global (inter-
slice) and local (intra-slice) contextual information. Whereas 3D 
CNNs are well suited for capturing local spatial features in volumetric 
data, transformer-based architectures can more explicitly model long-
range relationships across slices, which may help preserve vascular 
continuity in carotid TOF MRA. Its slice-wise 2D design provides a 
computationally efficient alternative to full 3D transformers while 
retaining the advantages of pretrained transformer representations.

2.4 Loss function

All model parameters were optimized using the cross-entropy loss 
function. For binary classification (i.e., WMH presence: 0 vs. 1–3), no 
class weighting was applied as the class distribution was relatively 
balanced. For the three-class classification (i.e., WMH severity: 0 vs. 
1 vs. 2–3), class weights were applied to compensate for more 
pronounced imbalance. The weighted cross-entropy loss function is 
defined as follows:

	
( )=

= −∑ 1 · ·logC
wCE i i ii w y yL

where C  is the number of classes, iy  is the ground truth label for 
class i, iy  is the predicted probability of class i, and iw  is the weight 
assigned to class i. The class weights iw  were computed based on the 
inverse frequency of each class and normalized as follows:
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where in  represents the number of samples in class i. This 
normalization ensured balanced contributions from all classes to the 
loss, thereby maintaining a consistent loss scale.

2.5 Experimental setup

This study involved two classification tasks: (1) binary classification 
of WMH presence (grade 0 vs. grades 1–3) and (2) three-class 
classification of WMH severity (grade 0 vs. grade 1 vs. grades 2–3). 
Grades 2 and 3 were merged due to the limited number of grade 3 
samples, to ensure sufficient representation and stable training. This 
grouping also reflects prior studies both those using retinal images as 
extracranial surrogates and various clinical studies, in which Fazekas 
grades 2 and 3 are combined into a single “moderate–severe WMH” 
category (9–11, 32, 33). The dataset was divided into training, validation, 
and test sets in an 8:1:1 ratio using stratified sampling based on a 
combined key of WMH grade and age group, with age binned in 
10-year intervals. This ensured balanced class distributions and 

demographic consistency across the subsets, with all splits performed 
at the subject level to prevent data leakage. Experiments were repeated 
with five different random seeds, with each seed producing a new 
stratified split of the dataset into training, validation, and test sets. 
Model performance is reported as the mean value with 95% confidence 
intervals across the five runs, capturing variability due to model 
initialization and data partitioning. To enhance model generalizability, 
data augmentation was performed during training, which included 
random affine transformations with rotations of up to 10°, translations 
of up to 4 voxels, and horizontal flipping based on a probabilistic 
strategy. All models were trained using the AdamW optimizer, with the 
ReduceLROnPlateau scheduler being employed to reduce the learning 
rate when the validation loss plateaued. The learning rates were tuned 
manually separately for each model to optimize performance: 1 × 10−5 
for ResNet10, 1 × 10−4 for MedicalNet, 5 × 10−4 for SFCN, and 1 × 10−6 
(binary) and 5 × 10−7 (three-class) for MST. All models were trained for 
up to 300 epochs, with early stopping based on the validation loss to 
prevent overfitting. The batch sizes ranged from 18 to 64, depending on 
the memory requirements of the models. All models were implemented 
in PyTorch 2.1.2 with CUDA 12.1 and trained on a single NVIDIA RTX 
A6000 GPU of 48 GB memory. Final performance was evaluated using 
standard classification metrics, including accuracy, precision, recall, F1 
score, and the area under the receiver operating characteristic curve 
(AUC). Confusion matrices and ROC curves were generated to provide 
a detailed view of the class-wise prediction performance.

2.6 Interpretability analysis

To gain insight into each model’s decision-making process and 
assess whether its predictions were grounded in clinically relevant 
features, we employed saliency-based visualization methods specific to 
each model architecture. For CNNs, we used gradient-weighted class 
activation mapping++ (Grad-CAM++) (30), which highlights spatially 
important regions by backpropagating gradients from the predicted 
output to convolutional feature maps. Grad-CAM++ was implemented 
using the MedCAM framework (31), targeting the final convolutional 
layer. For the MST model, self-attention maps were extracted from the 
final transformer layers. We utilized attention weights corresponding to 
the class token, averaged across all heads, to derive both the slice-level 
and in-plane saliency. The attention weights were then interpolated to 
the original image resolution for visualization. These transformer-
derived saliency maps provided complementary interpretability to 
Grad-CAM++ by revealing the model’s attention across both 
anatomical slices and within-slice features. All saliency maps, including 
the Grad-CAM++ and transformer attention outputs, were generated 
for representative test samples and subsequently normalized and 
visualized using Matplotlib in Python. Additionally, to examine how 
much each arterial region contributes to model prediction, 
we segmented the internal carotid artery (ICA) and external carotid 
artery (ECA) from the MRA volumes using ITK-SNAP, and quantified 
relative saliency values within each arterial region for different WMH 
grades. The relative saliency value was obtained by dividing a mean 
value whithin each region by a global mean across the entire volume.

To determine the regional contributions of the input features to the 
model predictions, we performed occlusion sensitivity analysis. A sliding 
occlusion cube of size 8 × 8 × 8 voxels was systematically applied across 
the input volume with a fixed stride. At each position, the occluded input 
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was re-evaluated, and the resulting change in the predicted class 
probability was recorded. The changes in probability across all occlusion 
positions were subsequently compiled into a heatmap reflecting model’s 
sensitivity to local perturbations. These occlusion heatmaps were also 
normalized and visualized using Matplotlib.

3 Results

3.1 Prediction of WMH presence

On the binary classification task, i.e., predicting the presence of 
WMH (grade 0 vs. grades 1–3), the SFCN model demonstrated the 
highest performance across all evaluation metrics. As summarized in 
Table 1, SFCN achieved an accuracy of 76.5%, recall of 0.765, and an 
AUC of 0.874 (averaged over multiple seeds), indicating strong 
classification capability with well-calibrated probabilistic predictions. The 
MST model exhibited comparable accuracy (76.5%) and recall (0.765), 
and achieved a slightly higher F1-score (0.764), although its AUC (0.839) 
was lower than that of SFCN. Among the remaining two models, 
MedicalNet demonstrated higher performance than ResNet10 across all 
reported metrics. The confusion matrices for all models (Figure  2) 
indicate balanced classification between normal and WMH grades, and 
the ROC curves (Figure 3) corroborate these findings. These results 
collectively indicate that all tested models are viable for WMH detection, 
with SFCN offering the most robust and generalizable performance.

3.2 Prediction of WMH severity

On the three-class WMH severity classification task (grade 0 
vs. grade 1 vs. grade 2+), the SFCN model again achieved the best 

performance (accuracy of 63.5% and AUC of 0.827) as seen in 
Table 2. The MST model followed with an accuracy of 61.8% and 
an AUC of 0.824, demonstrating competitive performance, 
particularly in capturing severity differences. MedicalNet achieved 
higher accuracy (60.0%) than ResNet10 (57.9%), but its AUC 
(0.786) was lower than that of ResNet10 (0.810). Figure 4 presents 
the confusion matrices for all models. Most misclassifications 
occurred between adjacent grades, such as grade 1 being 
misclassified as either grade 0 or grade 2+, which reflects the 
gradual and continuous nature of WMH progression. Despite these 
challenges, SFCN demonstrated reasonable discriminative 
capability across all severity levels.

3.3 Saliency map

Figure  5 shows the saliency maps for the two representative 
architectures—SFCN and MST— that achieved the highest 
performance in the WMH severity classification task. For each model, 
the saliency maps were generated from the same subject across the 
three WMH severity grades (grade 0, 1, and 2+). SFCN and MST 
highlighted similar anatomical regions despite the substantial 
differences between their architectures (based on convolution and 
self-attention operations, respectively). Across severity levels, both 
models consistently highlighted vascular regions, with particularly 
strong activation around the carotid bifurcation, including the 
common carotid artery and its division into the internal and external 
carotid arteries. For a representative test case, quantitative analysis of 
volume-normalized activation densities from both models showed 
ICA/ECA density ratios ranging from about 1.3 to 3.5, indicating a 
consistently greater focus on the ICA than on the ECA. Apart from 
supporting the hypothesis that carotid MRA contains vascular features 

TABLE 1  Quantitative performance metrics for prediction of WMH presence on test set.

Models Metrics (mean, 95% CI)

Accuracy Precision Recall F1 AUC

SFCN 0.765 (0.716–0.814) 0.774 (0.728–0.820) 0.765 (0.716–0.814) 0.762 (0.711–0.814) 0.874 (0.800–0.948)

ResNet10 0.738 (0.687–0.789) 0.737 (0.683–0.791) 0.738 (0.687–0.789) 0.736 (0.683–0.789) 0.819 (0.779–0.859)

MedicalNet 0.761 (0.735–0.787) 0.765 (0.740–0.790) 0.761 (0.735–0.787) 0.761 (0.735–0.787) 0.849 (0.798–0.901)

MST 0.765 (0.708–0.823) 0.764 (0.706–0.822) 0.765 (0.708–0.823) 0.764 (0.706–0.822) 0.839 (0.805–0.872)

FIGURE 2

Confusion matrices of all models for classification of WMH presence. Results are shown for the best-performing seed of each model. Each cell 
indicates the number of test samples per ground truth and predicted class.
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that may be informative for WMH assessment, these observations 
underscore the interpretability of both CNN-based and transformer-
based deep learning models in this context.

3.4 Occlusion sensitivity

Figure 6 illustrates the occlusion sensitivity maps for the two 
representative models. In subjects with WMH, occluding voxels 
corresponding to the carotid arteries consistently led to substantial 

drops in the predicted WMH probability, which suggests that the 
models place considerable emphasis on these vascular regions during 
classification. This effect was particularly pronounced in SFCN, 
which consistently highlighted the carotid artery along the slice axis, 
with high intensities around the carotid bifurcation. MST showed 
smaller changes overall, possibly due to its slice-wise attention 
mechanism; nevertheless, the most affected regions were still located 
around the carotid arteries. Together with the saliency maps, the 
occlusion sensitivity maps prove that both models attend to carotid 
vascular structures for WMH prediction.

4 Discussion

We investigated the feasibility of using carotid TOF MRA images 
to predict WMH with a deep learning-based framework. While 
previous studies have primarily reported statistical associations 
between carotid morphological features—such as vessel diameter and 
tortuosity—and WMH burden (14, 16), our focus was on direct 
image-based prediction. To the best of our knowledge, this study 
represents the first attempt to directly leverage raw carotid MRA 
images for WMH classification in an end-to-end manner.

To explore how WMH prediction can be achieved from carotid 
imaging, we designed two classification tasks: binary classification 
for WMH presence and three-class classification for WMH severity. 
In the binary task, all models—SFCN, ResNet10, MedicalNet, and 
MST—demonstrated comparable performance, suggesting that 
carotid TOF MRA provides sufficient information to detect the 
presence of WMH. Among the tested models, SFCN performed the 
best, achieving an AUC of 0.882 and a recall of 0.816. In the more 
challenging three-class severity classification task, SFCN again 

TABLE 2  Quantitative results for WMH severity classification.

Models Metrics (mean, 95% CI)

Accuracy Precision Recall F1 AUC

SFCN 0.635 (0.591–0.679) 0.634 (0.590–0.677) 0.635 (0.591–0.679) 0.629 (0.590–0.669) 0.827 (0.778–0.875)

ResNet10 0.579 (0.537–0.621) 0.574 (0.539–0.609) 0.579 (0.537–0.621) 0.572 (0.535–0.609) 0.810 (0.693–0.928)

MedicalNet 0.600 (0.574–0.627) 0.610 (0.586–0.634) 0.600 (0.574–0.627) 0.602 (0.577–0.627) 0.786 (0.752–0.819)

MST 0.618 (0.567–0.670) 0.627 (0.576–0.678) 0.618 (0.567–0.670) 0.620 (0.567–0.670) 0.824 (0.758–0.890)

The AUC values represent macro-averaged scores, computed as the unweighted means of the per-class AUCs based on a one-vs.-rest scheme.

FIGURE 3

ROC curves and corresponding AUC values of all models for binary 
WMH classification. Results are presented for the best-performing 
seed of each model.

FIGURE 4

Confusion matrices of all models for WHM severity classification.
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achieved the highest performance, exhibiting a macro-averaged 
AUC of 0.847 and a recall of 0.670, followed by the transformer-
based MST model. These results indicate that both convolutional and 
transformer architectures can capture clinically relevant features for 
WMH severity prediction. Interpretability analyses based on saliency 
mapping and occlusion sensitivity suggested that the models 
consistently attended to carotid artery regions. This pattern concurs 
with previous reports of associations between carotid vascular 
characteristics and WMH burden. SFCN and MST both showed 
prominent attention to the carotid artery, including the bifurcation, 
which suggests that vascular features captured in TOF MRA may 
serve as informative imaging markers for cSVD. This implies that 

extracranial carotid vessels could reflect intracranial microvascular 
pathology, thus offering a non-invasive surrogate for brain health.

WMH burden demonstrates complex associations with cervical 
carotid artery imaging findings through interconnected morphological 
and hemodynamic pathways. Morphologically, abnormal arterial 
tortuosity correlates with severe WMH by creating disturbed flow 
patterns that increase endothelial shear stress and promote 
microvascular dysfunction (16). From a hemodynamic perspective, 
carotid diameter enlargement and enhanced pulsatile flow transmission 
expose small cerebral vessels to increased pressure fluctuations, 
contributing to periventricular WMH development by disrupting the 
blood–brain barrier (14). Although atherosclerosis further complicates 

FIGURE 5

Saliency visualizations for three-class WMH severity classification. In each group, the top row presents axial slices of TOF MRA, followed by the 
corresponding saliency maps from the SFCN and MST models. The red and yellow circles for grade 0 indicate the common carotid arteries and the 
internal/external carotid arteries, respectively.
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this relationship (34), our study only included individuals without 
hemodynamically significant stenosis. In such cases, non-stenotic 
carotid plaques may still contribute to WMH burden through 
mechanisms such as microembolic events, impaired cerebrovascular 
reactivity, or systemic vascular risk factors including hypertension and 
aging. The multifactorial nature of these effects—encompassing 
subclinical flow disturbances, embolic potential, and shared risk 
profiles—underscores the inexplicability of WMH burden by cervical 
carotid artery morphology alone. Nevertheless, our results demonstrate 
that deep learning–based techniques can successfully predict the 
presence and severity of WMH from cervical carotid artery images, 
particularly in the absence of significant stenosis; this indicates that our 
models could learn vascular features predictive of WMH burden from 
vessel morphology. If our deep learning-based approach can identify 
vascular morphological changes affecting WMH burden even in 
patients without stenosis, it has the potential to enable the discovery of 
novel imaging biomarkers serving as independent WMH risk factors.

While carotid MRA commonly coexists with brain MRI, the 
predictive model adds value particularly in settings where only MRA 
is performed in certain clinical scenarios—such as follow-up of known 
carotid pathology, screening in high-risk but asymptomatic individuals, 
or institutional workflow constraints. In these situations, carotid 
MRA-based prediction could inform targeted recommendations for 
subsequent brain MRI, ensuring timely detection of clinically 
significant WMH in patients who might otherwise not undergo brain 
imaging. In addition, while this study focused on carotid MRA data, 
the underlying principles suggest strong potential for extending these 
predictive capabilities to cross-sectional imaging modalities such as 
neck CT or CT angiography, with appropriate adaptation and 
validation. This could broaden the reach of WMH risk assessment and 
improve diagnostic efficiency across a wider range of clinical scenarios.

WMHs are typically assessed on brain MRI through visual rating 
scales, such as the Fazekas scale, which grade lesions based on size and 

confluence (35). Although widely used, this qualitative method is 
prone to inter-rater variability. To address these limitations, various 
automated segmentation tools, such as Lesion Segmentation Tool (36) 
and BIANCA (37), have been developed to improve objectivity and 
reproducibility, which has enabled quantitative assessment. Recent 
advances in deep learning have further enhanced WMH segmentation. 
Models based on CNNs have demonstrated notable capabilities in 
segmenting WMHs (38–40). However, certain challenges remain, 
particularly in terms of the accuracy in detecting small and subtle 
WMHs and the robustness of domain adaptation across different 
scanners and imaging protocols (39, 41). Consequently, despite 
advances in automated segmentation, visual grading remains a widely 
used method for WMH assessment (42). Therefore, we assessed WMH 
severity using the widely used modified Fazekas scale, achieving almost 
perfect inter-rater reliability (weighted kappa of 0.879).

Unlike traditional WMH assessment methods, our deep 
learning–based framework enables the prediction of WMH severity 
directly from carotid TOF MRA in a fully automated fashion. By 
removing the dependence on WMH lesion annotations and brain 
imaging availability, this approach can reduce processing time and 
costs while enabling risk assessment in settings where only carotid 
imaging is performed. In addition, it may capture subclinical 
carotid features linked to WMH pathophysiology beyond human-
observable morphological metrics, supporting earlier, non-invasive 
screening and potentially revealing new imaging biomarkers.

Despite our significant findings from this study, several limitations 
must be acknowledged. First, the progressive and continuous nature of 
WMH presents an inherent challenge in discrete classification, 
particularly under intermediate severity (e.g., grade 1), for which the 
models performed relatively poorly. Second, due to limited data on 
advanced cases, grades 2 and 3 had to be combined, which potentially 
reduced the classification granularity. Third, our study utilized single-
center dataset acquired with single scanner, which limits applicability to 

FIGURE 6

(A) Axial input slices of original TOF MRA from a subject with WMH (grade 2). Corresponding occlusion sensitivity maps from (B) SFCN and (C) MST 
models. Warmer regions indicate larger drops in predicted WMH probability.
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datasets acquired under different hardware settings or protocols, and 
therefore external validation is essential to demonstrate generalizability. 
Furthermore, no clinical validation was performed against clinical 
outcomes such as stroke risk or cognitive scores. This limits the ability to 
fully assess the clinical utility of the proposed method. In future work, 
we  plan to incorporate such clinical variables to enable quantitative 
validation and strengthen clinical utility. Studies involving multi-center 
data and larger and more diverse patient cohorts, particularly those with 
advanced WMH severity, will also be essential for improving model 
robustness and enabling finer-grained classification. To ensure 
applicability across different scanners and acquisition protocols, we will 
explore preprocessing and adaptation strategies, including MRI 
harmonization to standardize intensity scales and align feature 
representations, together with domain adaptation techniques to reduce 
inter-scanner variability (43, 44). Integrating these approaches with multi-
center validation will help achieve robust, generalizable performance and 
support consistent WMH risk assessment across varied clinical settings.

5 Conclusion

This study introduced a deep learning-based approach for 
predicting WMH in the brain using carotid TOF MRA as the sole 
imaging modality. Our findings demonstrate that both convolutional 
and transformer-based models can effectively extract vascular image 
features relevant to WMH detection and grading, without any 
reliance on brain MRI. Attention patterns observed in saliency-based 
interpretability analyses corroborate the association between carotid 
structure and WMH burden. The proposed framework provides 
WMH predictions based solely on extracranial carotid imaging, 
serving a practical basis for cerebrovascular risk assessment. 
Furthermore, it may offer complementary value alongside 
conventional brain MRI by capturing vascular morphological features 
associated with WMH burden, even without significant stenosis.
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