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Background: Spinocerebellar ataxias (SCAs) exhibit substantial clinical and 
genetic heterogeneity. SCAs primarily present with progressive ataxia as the 
cardinal clinical feature. However, they may co-occur with non-ataxic motor 
symptoms, including various movement disorders. Notably, certain SCA subtypes 
may present with movement disorders as their primary manifestation. This 
phenotypic complexity poses significant diagnostic challenges, particularly in 
distinguishing SCAs from other neurodegenerative conditions with overlapping 
presentations.
Methods: This study enrolled 35 probands initially diagnosed with movement 
disorders. Participants were stratified into hypokinetic movement disorders 
and hyperkinetic movement disorders groups. After excluding known genetic 
causes of movement disorders through targeted next-generation sequencing 
(NGS) panel, negative cases received SCA repeat expansion testing. Genetically 
confirmed SCA cases received comprehensive clinical-genetic characterization.
Results: Four SCA cases were identified in the hypokinetic movement disorders 
group (n = 28), accounting for 14.29% (4/28). Notably, an SCA8-associated 
familial parkinsonism pedigree manifested a novel clinical constellation: 
Parkinson’s disease -like phenotype with spastic paraplegia and levodopa 
responsive parkinsonism with dystonia. Additionally, we  observed: (i) An 
SCA2 pedigree demonstrating intrafamilial phenotypic heterogeneity; (ii) Two 
sporadic early-onset parkinsonism cases harboring pathogenic expansions 
in SCA8 (CTA/CTG 55 repeats) and SCA3, respectively. Two SCA cases were 
detected in the hyperkinetic movement disorders group (n = 7), representing 
28.57% (2/7). We observed: (i) an SCA3 preataxic carrier presenting with Tourette 
syndrome; (ii) an SCA17 case (CAG/CAA 41 repeats) manifesting dystonia and 
spastic paraplegia.
Conclusion: We characterized a novel clinical constellation in an SCA8-
associated familial parkinsonism pedigree: Parkinson’s disease -like phenotype 
with spastic paraplegia and levodopa responsive parkinsonism with dystonia. 
We  report the first documented occurrence of Tourette syndrome in the 
pre-ataxic stage of SCA3, though it is more likely a coincidental comorbidity 
independent of SCA3 progression. Furthermore, our findings indicate that SCA 
subtypes presenting with movement disorder-dominant phenotypes are likely 
underestimated in clinical practice.
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Introduction

Spinocerebellar ataxias (SCAs) demonstrate substantial clinical 
and genetic heterogeneity (1). SCAs primarily present with progressive 
ataxia as the cardinal clinical feature. However, they may co-occur 
with movement disorders, including parkinsonism, dystonia, chorea, 
and myoclonus, etc. (2–5). According to the statistics of a systematic 
review, parkinsonism is the most common isolated movement 
disorder in SCAs, whereas the most frequent combinations were 
parkinsonism and dystonia (3). Therefore, SCA subtypes manifesting 
predominantly or exclusively with movement disorders present 
significant diagnostic challenges due to phenotypic overlap with 
idiopathic movement disorders (6, 7).

Parkinsonian phenotypes are frequently observed in SCA2, SCA3, 
and SCA17 subtypes worldwide (2, 5, 8–13). The manifestation of 
parkinsonian phenotypes in SCAs is influenced by multifactorial 
determinants, including genetic and ethnic variables. Shorter 
polyglutamine expansions in ATXN2 (SCA2), ATXN3 (SCA3), and 
TBP (SCA17) correlate with parkinsonian dominance (12–14). In 
addition, the influence of ethnic variables on the phenotypic expression 
is also obvious, for example, SCA3-related parkinsonism shows higher 
prevalence in African populations (2, 15). SCA2 -related parkinsonism 
are enriched in Asian cohorts (16, 17). SCA8 accounts for a relatively 
small proportion of SCA in mainland China. A 2019 cohort study 
identified SCA8 in 0.46% (6/1294) of unrelated SCA cases (18). In a 
2021 investigation, SCA8 accounted for 1.2% of 166 cases of familial 
ataxia and 1.75% of 57 cases sporadic ataxia in mainland China (19). 
At present, the reports of SCA8 with Parkinsonian phenotypes are 
mainly concentrated in Taiwan, South Korea, Japan and other Asian 
regions (20–24). Reports of SCA8-associated parkinsonian phenotypes 
remain limited in Mainland China, and the contributing factors 
underlying these manifestations are critically underexplored.

In addition to common movement disorders, rare non-ataxic 
motor manifestations have been documented across spinocerebellar 
ataxia (SCA) subtypes, including paroxysmal nonkinesigenic 
dyskinesia (PNKD) in SCA27, tics in SCA17, SCA25, and 
dentatorubral-pallidoluysian atrophy (DRPLA), stuttering and 
akathisia in SCA3, palatal tremor or myoclonus and spasmodic-like 
dysphonia in SCA20, stiff-person-like syndrome in SCA1 and SCA3, 
paroxysmal Kinesigenic Dyskinesia (PKD) in SCA8 (3, 18). Growing 
evidence indicates that non-ataxic motor manifestations in SCAs may 
predict disease progression and clinical outcomes (25, 26). These 
observations underscore the need to characterize rare movement 
disorder phenotypes within SCAs.

However, few studies in Mainland China have specifically focused 
on movement disorders in SCAs. Therefore, this study aims to conduct 
SCA gene panel sequencing in patients initially diagnosed with 
movement disorders to expand the clinical spectrum of SCAs and 
investigate potential mechanisms underlying these manifestations.

Materials and methods

Subjects

Patients visiting the Department of Neurology at Hebei Medical 
University’s Third Hospital between January 2014 and January 2025 
with an initial diagnosis of movement disorders were recruited, and 

their clinical and genetic data were collected. Participants were 
stratified into two groups: hypokinetic movement disorders 
(parkinsonian phenotypes) and hyperkinetic movement 
disorders groups.

Inclusion criteria for hypokinetic movement disorders group: 
early-onset parkinsonian syndromes (age of onset ≤50 years), 
including idiopathic Parkinson’s disease, or ≥1 cardinal parkinsonian 
feature (bradykinesia, resting tremor, rigidity, or postural instability); 
inclusion criteria for hyperkinetic movement disorders group: early-
onset hyperkinetic disorders (age of onset ≤50 years), including 
dystonia, chorea, tic disorders, myoclonus. Exclusion Criteria: (1). 
Secondary causes of parkinsonism or involuntary movements (e.g., 
infections, neoplasms, stroke, inflammatory demyelination, metabolic 
disorders); (2). Individuals with probable or possible multiple 
system atrophy.

Positive familial history: ≥1 first- or second-degree relative 
with ataxia or movement disorders; sporadic cases: no affected first- 
or second-degree relatives. Asymptomatic family members 
underwent genetic testing when DNA was available. The study 
protocol was approved by the Ethics Committee of the Hebei 
Medical University Third Hospital. All participants provided 
written informed consent. Genomic DNA was extracted from 
peripheral blood using the QIAAmp DNA Blood Mini Kit 
(QIAGEN, Germany).

Clinical investigation and data collection

Demographic and clinical characteristics of probands were 
comprehensively analyzed, including gender, family history, age of 
onset, disease duration, initial symptoms, clinical manifestations and 
signs (all patients underwent systematic clinical examinations and 
evaluations by at least two experienced neurologists), and available 
genetic test results (including existing familial genetic data). Clinical 
neurological and cognitive function assessments were performed, 
encompassing brain magnetic resonance imaging (MRI), 
electromyography (EMG), somatosensory evoked potentials (SEP), 
the International Cooperative Ataxia Rating Scale (ICARS), the 
Unified Parkinson’s Disease Rating Scale (UPDRS), the Yale Global 
Tic Severity Scale (YGTSS), the Mini-Mental State Examination 
(MMSE), and the Montreal Cognitive Assessment (MoCA).

Targeted NGS panel

All patients initially underwent targeted next-generation 
sequencing (NGS) panel testing (MyGenotics Co., Ltd., Beijing, China), 
which included genes associated with various movement disorders 
such as Parkinson’s disease, dystonia, hereditary spastic paraplegia, 
chorea, and Wilson’s disease. The complete list of genes covered by the 
targeted NGS panel is s shown in the Supplementary Table S1. The 
sequence data were mapped using the BWA1 and SAMTOOLS 
software2,3 onto the hg19 human genome as a reference. The variants 

1  https://bio-bwa.sourceforge.net/

2  http://samtools.sourceforge.net

3  https://pmc.ncbi.nlm.nih.gov/articles/PMC2723002/
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were identified using the wANNOVAR tool,4 and their potential 
pathogenicity was predicted via the REVEL tool.5 Pathogenicity 
classifications were determined according to the American College of 
Medical Genetics and Genomics (ACMG) guidelines (27). This 
targeted NGS panel analysis enabled systematic exclusion of hereditary 
movement disorders, such as hereditary Parkinson’s disease, hereditary 
spastic paraplegia, Wilson’s disease, and other movement disorders.

SCA repeat expansion panel

Patients with negative findings on targeted NGS panel testing 
underwent SCA repeat expansion panel sequencing. This panel 
included 12 genes: ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, 
ATXN8OS/ATXN8, PPP2R2B, TBP, ATN1, FXN, C9orf72, and 
HTT. The analysis employed fluorescence-labeled PCR followed by 
capillary electrophoresis (Applied Biosystems™ 3130xl DNA 
Analyzers, Thermo Fisher Scientific) to detect pathogenic nucleotide 
repeat expansions, and molecular weights were determined using 
GeneMarker software (Promega).

Results

Four cases of SCA were identified in the 28 cases of hypokinetic 
movement disorder group, accounting for 14.29% (4/28), which were 
SCA8, SCA2, and SCA3 subtypes, respectively; two SCA cases were 
detected in the hyperkinetic movement disorders group (n = 7), 
accounting for 28.57% (2/7), comprising one SCA3 case and one 
SCA17 case. The study comprised six pedigrees with a total of 14 

4  https://annovar.openbioinformatics.org/en/latest/

5  https://pmc.ncbi.nlm.nih.gov/articles/PMC5065685/

affected individuals. Clinical and genetic characteristics of these 
families are systematically summarized in Table  1 and Figure  1. 
Detailed clinical manifestations and neurological examination 
findings of the probands are presented in Table 2.

SCA pedigrees presenting with 
parkinsonian phenotypes

Four probands presenting with parkinsonian phenotypes were 
identified, including two cases of SCA8, one case of SCA2, and one case 
of SCA3. The age at onset ranged from 36 to 50 years. All probands 
exhibited bradykinesia and limb rigidity as initial symptoms, with two 
cases manifesting unilateral rigidity and the remaining two 
demonstrating bilateral lower limb rigidity. Proband 1 (F1: II-4), 
diagnosed with SCA2, harbored a repeat number of 35. She developed 
parkinsonian symptoms at age 37, followed by cerebellar ataxia 14 years 
later. Brain MRI revealed mild cerebellar atrophy. Her mother (F1: I-2) 
and brother exhibited cerebellar ataxia without parkinsonism: the 
mother developed gait instability around age 30, became wheelchair-
bound in her 50s, demonstrated cerebellar atrophy on Brain MRI, and 
died at 73. This SCA2 pedigree exhibited phenotypic heterogeneity 
(Table 1; Figure 1B). To date, the remaining three probands (F2: II-1, 
F4: II-5, F5: II-4) have not developed cerebellar ataxia during follow-up, 
including one individual with a disease duration of 10 years. Probands 
(F4: II-5) exhibited gaze-evoked horizontal nystagmus. Three probands 
(F1: II-4, F4: II-5, F5: II-4) underwent levodopa therapy, with two 
demonstrating response to levodopa treatment while one showing no 
significant clinical response to levodopa treatment (Table 2).

Family 4 (F4) represents an SCA8-associated familial 
parkinsonism pedigree. Affected members exhibited limb rigidity, 
bradykinesia, and absence of cerebellar ataxia or symptom 
fluctuations. Besides the proband, two additional affected individuals 
displayed resting hand tremor. Intriguingly, while proband 4 (F4: 
II-5) and his elder brother (F4: II-1) harbored similar (CTA/CTG)n 

TABLE 1  Overview of key clinical features in six SCA pedigrees.

Pedigree ID Sex AO SCA types Repeat length Main clinical features

F1(I-2) F 30 NA NA Cerebellar ataxia

F1(II-1) M 35 NA NA Cerebellar ataxia

F1(II-4) F 37 SCA2 19/35 Levodopa-responsive parkinsonism, 

cerebellar ataxia

F2(II-1) M 40 SCA3 18/58 Parkinsonism

F3(II-4) F 50 SCA3 9/58 Cerebellar ataxia

F3(II-5) M 46 SCA3 9/64 Cerebellar ataxia

F3(II-8) F 45 NA NA Somatic symptom disorder, anxiety

F3(III-3) M 10 SCA3 9/62 Preataxic carriers, tourette syndrome

F4(I-1) M 50 NA NA Levodopa-responsive parkinsonism

F4(II-1) M 50 SCA8 18/98 Levodopa-responsive parkinsonism 

with dystonia

F4(II-5) M 36 SCA8 18/91 PD-like phenotype, spasticity

F5(II-4) F 50 SCA8 24/55 Levodopa-responsive parkinsonism

F6(II-1) M 27 SCA17 35/41 Dystonia, spasticity

AO, age at onset; F, female; M, male; NA, not available/not applicable.
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repeat expansions (91 vs. 98 repeats), their clinical manifestations 
diverged. The proband’s brother and father manifested later-onset 
(post-50 years), levodopa-responsive parkinsonism. The father (F4: 
I-1) remained ambulatory until his death at age 70. The brother 
developed involuntary movements in the right upper limb during 
gait, which resolved with levodopa therapy. In contrast to other 
family members, the proband exhibited earlier disease onset at age 
36, with significantly more severe bradykinesia and limb rigidity. 
Beyond parkinsonian features, he developed spastic paraparesis of 
the lower limbs, there are no autonomic dysfunction manifestations 
(e.g., lower urinary tract dysfunction, orthostatic hypotension). 
Neurological examination revealed masked facies, marked axial and 
appendicular bradykinesia, and a combined festinating and spastic 
gait characterized by forward-flexed posture. Hypertonia with ankle 
clonus and bilateral positive Chaddock signs were observed in the 
lower extremities. Although cerebellar ataxia was absent, gaze-
evoked horizontal nystagmus was noted. By 10 years post-onset, 
he experienced profound gait impairment with frequent falls. Brain 
MRI demonstrated mild cortical atrophy (Figure 1B). Levodopa 
therapy failed to ameliorate motor symptoms.

Proband 5 (F5: II-4) was diagnosed with a sporadic case of SCA8, 
the number of (CTA/CTG)n repeat expansion was 55. The patient 
presented with parkinsonism at age 50, characterized by unilateral 
bradykinesia and rigidity as initial symptoms, in the absence of tremor 
or pyramidal signs. Levodopa therapy demonstrated symptomatic  
improvement.

An SCA3 preataxic carrier presenting with 
Tourette syndrome

Proband 3 (F3: III-3) presented at age 35 with multifocal motor 
and phonic tics, including intermittent facial grimacing, eye blinking, 
head jerking, arm elevation, chest thrusting, and abdominal 
contractions, accompanied by repetitive throat-clearing sounds. Each 
tic lasted several seconds, occurring multiple times daily with 
exacerbation during emotional arousal and complete resolution 
during sleep, presenting with obsessions and compulsions, diagnosed 
with Tourette syndrome with comorbid obsessive-compulsive disorder 
(OCD). Proband 3 (F3: III-3) developed the aforementioned 
symptoms at age 10, with progressive worsening over time. Although 
cerebellar ataxia was absent, the patient had a family history of 
autosomal dominant cerebellar ataxia: her maternal uncle (F3: II-5) 
was genetically confirmed with SCA3, and her mother (F3: II-4) had 
previously presented to our institution with limb ataxia and was 
diagnosed with SCA3. Given this SCA3-positive familial background, 
genetic testing was performed, revealing a pathogenic ATXN3 CAG 
repeat expansion of 62 units. Notably, the proband’s maternal aunt 
(F3: II-8) presented to our clinic at age 45 with an abnormal crouch-
based gait requiring squatting for ambulation, in the absence of 
cerebellar ataxia or other cerebellar signs, she was diagnosed with 
somatic symptom disorder (SSD) and anxiety. However, her genetic 
status remains uncertain as she declined ATXN3 testing (Figure 1; 
Table 1).

FIGURE 1

Pedigree charts and imaging findings of six SCA families. (A) SCA pedigrees. Squares: males; circles: females; arrow: proband; filled symbols: affected; 
symbols with a dot: unaffected gene mutation carriers. (B) Brain MRI of patient F4: II-5. The fluid attenuated inversion recovery (FLAIR) image showing 
mild cortical atrophy; T2-weighted image showing mild cerebellar atrophy.
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An SCA17 phenotype with intermediate 
triplet repeat expansions presents dystonia 
and spastic paraplegia

Proband 6 (F6: II-1) developed lower limb spasticity at age 27, 
predominantly affecting the right leg, manifesting as mild gait 
disturbance and difficulty flexing the lower limbs. Symptoms 
remained stable until age 36, when gait impairment progressed with 
new-onset involuntary movements of both feet. Neurological 
examination demonstrated a spastic gait in the right lower extremity 

during ambulation, involuntary right foot inversion during 
ambulation, bilateral Achilles tendon contractures and pes cavus, and 
preserved muscle strength (grade 5/5). Hypertonia was observed in 
both lower limbs (right > left), accompanied by dystonic foot 
posturing. Bilateral Babinski signs and left Hoffmann sign 
were present.

The proband’s father exhibited no neurological abnormalities, 
while his mother died of rectal cancer at age 39 without prior 
neurological symptoms. Serum ceruloplasmin and homocysteine 
levels were within normal ranges. Brain MRI showed no structural 

TABLE 2  Clinical data of SCA probands with movement disorders.

Pedigree ID F1 F2 F3 F4 F5 F6

II-4 II-1 III-3 II-5 II-4 II-1

Inheritance pattern AD Sporadic AD AD Sporadic Sporadic

SCA types SCA2 SCA3 SCA3 SCA8 SCA8 SCA17

Repeat length 19/35 18/58 9/62 18/91 24/55 35/41

AO (years) 37 40 10 36 50 27

Disease duration (years) 15 2 24 10 7 22

Initial symptom Akinetic-rigidity Akinetic-rigidity Tic disorder Akinetic-rigidity Akinetic-rigidity Spasticity

Parkinsonian 

characteristics

Asymmetric onset + − − − + −

Tremor − − − − − −

Rigidity + + − + + −

Bradykinesia + + − + − −

Speech disorders + + − + − −

Levodopa response + NA NA − + NA

Motor fluctuations + NA NA − + NA

Dystonia − − − − − +

Tic disorders − − + − − −

Cerebellar ataxia + − − − − −

Nystagmus + − − + − −

Slowed saccades + − − − − −

Dysphagia + + − + − −

Spasticity − − − + − +

Babinski sign − − − + − +

Hyperreflexia + + − + + +

Diagnostic 

examination

Brain MRI Cerebellar 

atrophy

Normal Normal Mild cortical and 

cerebellar 

atrophy

Normal Normal

EMG Normal Sensory 

neuronopathy

Normal Normal Normal Normal

SEP Normal NA NA Abnormal 

(central segment)

NA NA

ICARS scores 31 6 0 6 2 0

UPDRS (motor part) scores 32 31 NA 34 14 NA

YGTSS scores NA NA 30 NA NA NA

MMSE scores 29 28 30 25 29 30

MoCA scores 26 26 30 25 28 28

AO: age at onset; AD: autosomal dominant; EMG: electromyogram; SEP: somatosensory evoked potential; ICARS: international cooperative ataxia rating scale; UPDRS: unified Parkinson’s 
disease rating scale; YGTSS: Yale global tic severity scale; MMSE: minimum mental state examination; MoCA: Montreal cognitive assessment; NA, not available/not applicable.

https://doi.org/10.3389/fneur.2025.1661707
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wei et al.� 10.3389/fneur.2025.1661707

Frontiers in Neurology 06 frontiersin.org

abnormalities, and lower limb electromyography detected no 
neurogenic or myopathic changes. Genetic testing identified a TBP 
CAG/CAA repeat expansion of 41 repeats. Targeted NGS excluded 
other inherited disorders potentially causative for the clinical 
phenotype, and no pathogenic heterozygous variants were detected in 
STUB1. Oral baclofen therapy partially alleviated spasticity but had no 
effect on involuntary movements.

Discussion

Collectively, this study provides novel insights into the phenotypic 
spectrum of spinocerebellar ataxias (SCAs) through the lens of 
movement disorders. We identified rare non-ataxic phenotypes in 
SCA8. We documented the first occurrence of Tourette syndrome in 
the preataxic stage of SCA3. Notably, Intrafamilial phenotypic 
heterogeneity was identified in the SCA2 pedigree, characterized by 
the concurrent parkinsonism and cerebellar ataxia. In addition, 
we observed that intermediate repeat expansions in SCA8 and SCA17 
manifested fully penetrant clinical phenotypes.

SCA8 and parkinsonian phenotypes

The global prevalence of SCA8 is relatively low (18, 28–31), 
and its clinical characteristics have primarily been summarized 
from small-scale studies, likely attributable to its low disease 
frequency. Phenotypic heterogeneity among SCA8 patients has 
been documented across different regions. SCA8 predominantly 
manifests as slowly progressive cerebellar ataxia (28, 32), but it 
may also co-occur with or present as other non-ataxic disorders, 
including paroxysmal kinesigenic dyskinesia (PKD) (18), 
Parkinson’s disease (11, 20), progressive supranuclear palsy (PSP) 
(33), Alzheimer’s disease (34), and amyotrophic lateral sclerosis 
(ALS) (35). In mainland China, cases of SCA8 presenting as 
Parkinson’s disease are rare, with familial Parkinson’s disease 
manifestations being exceptionally uncommon. To date, only one 
such case has been reported by Wang et al. in 2025, describing a 
patient with SCA8 who exhibited parkinsonian features and 
responded favorably to levodopa therapy (36).

We identified a novel clinical constellation and significant 
intrafamilial heterogeneity in SCA8-associated parkinsonism: PD-like 
phenotype with spastic paraplegia, and levodopa-responsive 
parkinsonism with dystonia, with detailed discussions as follows:

Proband 4 (F4: II-5) exhibits a PD-like phenotype with spastic 
paraplegia. He harbored CTA/CTG repeat numbers comparable to his 
elder brother (91 vs. 98 repeats), yet exhibited distinct phenotypic 
features. First, the proband 4 exhibited earlier disease onset and more 
severe parkinsonism. Additionally, severe spastic paraparesis and 
gaze-evoked nystagmus were documented. Crucially, whereas the 
proband’s brother (F4: II-1) and father (F4: I-1) demonstrated 
significant levodopa responsiveness, the proband proved refractory to 
levodopa therapy. These findings indicate that in addition to repeat 
length, there may be other factors influencing the phenotype and age 
of onset of SCA8. Genetic anticipation was evident in proband 4, with 
disease onset occurring >10 years earlier than his father. Regrettably, 
ATXN8OS CTA/CTG repeat expansion data were unavailable for the 

deceased father, precluding confirmation of whether anticipation 
correlated with repeat length.

The elder brother of proband 4 (F4: II-1) presented with levodopa-
responsive parkinsonism and dystonia—a phenotypic combination 
previously unreported in SCA8;however, Parkinson’s disease with 
dystonia is relatively common in hereditary Parkinson’s disease. One 
study showed that foot dystonia is a common manifestation (40%) and 
occasionally the initial symptom in PD patients harboring Parkin 
mutations (24). Another study reported cervical dystonia in 9.3% of PD 
patients, with partial improvement after levodopa therapy (37). A 
Korean case described levodopa-responsive parkinsonism and mild 
cerebellar ataxia in SCA8; the proband’s sibling also developed lower-
limb dystonia superimposed on parkinsonism and ataxia, while 
dystonia showed no improvement with levodopa (23). Unlike the case 
in Korea, our case parallels hereditary PD with dystonia, as levodopa 
ameliorated both parkinsonism and dystonia. This observation suggests 
that dystonia in SCA8 presenting as levodopa-responsive parkinsonism 
may not be coincidental, suggesting shared pathogenic mechanisms.

These findings suggest that for patients with early-onset, familial, 
or levodopa-refractory parkinsonism—particularly after excluding 
secondary parkinsonism and negative genetic testing for hereditary 
PD—SCA8 screening should be considered alongside conventional 
SCA2/3/17 evaluations.

Potential determinants of parkinsonian 
phenotypes in spinocerebellar ataxias

In this study, the parkinsonian phenotypes observed in SCAs 
predominantly manifested as akinetic-rigidity type rather than 
tremor-predominant type, with minimal cerebellar ataxia, 
consistenting with previous reports (20, 38). The emergence of 
parkinsonian features in SCAs may involve multiple determinants. 
First, SCA2, SCA3, and SCA17 cases presenting with parkinsonism 
share a common characteristic: shorter CAG repeat expansions (5, 
12–14, 38). Prior studies indicate that SCA2 patients with parkinsonian 
phenotypes exhibit lower CAG repeats compared to those with ataxia-
predominant presentations [36.2 ± 1.1 vs. 43.1 ± 3.2], alongside later 
symptom onset [45.8 ± 13.9 vs. 26.9 ± 11.0 years] (12). In our study, 
the proband 1(F1: II-4) with parkinsonism harbored 35 CAG repeats 
in ATXN2 and developed symptoms at age 37, aligning with these 
observations. Wu et al. identified repeat expansions at the SCA8 locus 
in 4/264 patients (1.5%) diagnosed with typical late-onset, levodopa-
responsive Parkinson’s disease, with expansion sizes ranging from 75 
to 92 repeats (20), and the SCA8 repeat numbers associated with 
parkinsonian phenotypes were relatively low. However, the limited 
cohort size precludes definitive conclusions regarding potential 
correlations between SCA8-associated parkinsonism and repeat 
expansion length, necessitating validation in larger cohorts. Second, 
ethnic disparities significantly influence phenotypic expression. For 
instance, parkinsonian phenotypes in SCA3 are more prevalent 
among individuals of African ancestry (2, 15), whereas SCA2-
associated parkinsonism is more frequently observed in Asian 
populations (8, 16, 17). Current reports of SCA8 with parkinsonian 
manifestations are predominantly from Asian regions, including 
mainland China, Taiwan, South Korea, and Japan (20, 22–24, 36), 
these observations suggest that ethnic-specific factors may influence 
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phenotypic expression in SCA8, and parkinsonism may be a common 
presentation of SCA8  in East Asian populations. Furthermore, 
sequence interruptions within repeat expansions may modulate 
phenotypic outcomes. CAA interruptions within CAG repeat 
expansions have been identified in SCA2 patients exhibiting 
Parkinson’s disease (PD)-like phenotypes, while absent in those 
without PD manifestations. These interruptions are postulated to 
stabilize repeat sequences during genetic transmission, though their 
precise mechanistic role in phenotypic divergence remains unclear 
(39). A parallel phenomenon of CAA interruptions has been observed 
in SCA17 patients with concurrent PD (13). SCA8 presents a distinct 
pattern where neither disease onset age nor severity correlates with 
pure repeat length. Instead, CCG•CGG interruptions appear to 
enhance the disease penetrance, with increasing numbers of 
interruptions inversely correlating with age of onset (40). This study 
did not assess CAG repeat interruptions in ATXN2 for proband 1 (F1: 
II-4). The SCA2-confirmed Family 1 (F1) exhibited intrafamilial 
phenotypic heterogeneity: while the proband manifested both 
parkinsonism and cerebellar ataxia, her mother and brother presented 
with pure cerebellar ataxia. Regrettably, genetic-phenotypic 
correlation analysis was precluded due to the mother’s death and 
brother’s refusal of genetic testing. In the SCA8 parkinsonism 
pedigree, similar CTA/CTG repeat expansions coexisted with 
divergent clinical features. As CCG•CGG interruption analysis was 
not performed, the potential contribution of such interruptions to this 
intrafamilial heterogeneity remains undetermined. Systematic analysis 
of interruption patterns will be  prioritized in future 
mechanistic investigations.

SCA8 with intermediate repeat expansions

Proband 5 (F5: II-4), who manifested Parkinson’s disease, was 
found to carry an SCA8 CTA/CTG expansion of 55 repeats. Studies 
on the pathogenic expansion threshold of ATXN8OS indicate that the 
CTA/CTG repeat numbers in most healthy individuals range from 15 
to 50 in global populations. For affected individuals, the repeat length 
should be at least 50, while the number of pathogenic repeat length is 
more than 70 (41–43). However, studies in Chinese populations reveal 
distinct characteristics. Among 261 healthy controls, the CTA/CTG 
repeat numbers ranged from 12 to 43 (mean: 24.04 ± 4.53), with 18 
repeats being the most frequent (41). These findings suggest an overall 
lower distribution of ATXN8OS CTA/CTG repeat numbers in the 
Chinese population compared to other ethnic groups. A symptomatic 
SCA8 case with 51 repeats manifesting cerebellar ataxia has been 
previously reported in China (44). In our case, the CTA/CTG repeat 
expansion was identified as 55 repeats. In contrast to previous case 
reports, the proband in this study presented with sporadic early-onset 
Parkinson’s disease without cerebellar ataxia and exhibited a positive 
response to levodopa therapy. We will longitudinally monitor this 
patient for potential emergence of cerebellar symptoms. This case 
demonstrates that ATXN8OS CTA/CTG repeat expansions within the 
range of 50 to 70 repeats can exhibit full disease penetrance.

SCA3 and Tourette syndrome

Proband 3 (F3: III-3) developed Tourette syndrome comorbid 
with OCD during the preataxic stage of SCA3. To our knowledge, this 

represents the first documented case of Tourette syndrome in SCA3. 
SCAs are frequently associated with movement disorders (e.g., 
parkinsonism, choreiform movements, dystonia) (4), and non-motor 
comorbidities such as anxiety and depression, the latter being 
particularly prevalent in SCA3 (45). Tic Disorders (TD), a 
neuropsychiatric condition characterized by involuntary motor/vocal 
tics with childhood onset (46). According to previous studies, SCA3 
typically exhibits inverse correlation between CAG repeat length and 
onset age (47, 48). Notably, in Family 3 (F3), affected members have 
similar CAG repeat lengths, and others developed ataxia around the 
age of 50. While proband 3 had an onset age much earlier than other 
affected members in the family. We hypothesize that proband 3 is 
most likely in the pre-ataxia stage, and Tourette syndrome is more 
likely a coincidental comorbidity that occurs independently of SCA3.

SCA17 with intermediate repeat expansions

Proband 6 (F6: II-1) presented with an SCA17 subtype characterized 
by dystonia (torsional spasm) and spastic paraplegia, carrying a TBP 
gene CAG/CAA repeat expansion of 41 repeats without concurrent 
STUB1 heterozygous mutations. Previous studies define fully penetrant 
TBP alleles as CAG/CAA repeats ≥49 (49), while intermediate repeats 
(41–48) exhibit incomplete penetrance, where carriers may or may not 
develop symptoms. Federico et al. (50) reviewed 85 SCA17 cases with 
smaller CAG/CAA expansions (41–49 repeats), reporting a mean 
symptom onset age of 45 years (±13). Gait ataxia was the most common 
feature, followed by cognitive decline, parkinsonism, hyperkinetic 
disorders, and non-ataxic cerebellar signs (e.g., dysarthria). Their 
findings suggest that CAG/CAA repeats within 41–49 may still exert 
pathogenic effects (50). Magri et  al. (51) proposed a digenic TBP/
STUB1-associated SCA17 (SCA17-DI) mechanism, wherein 
co-occurrence of 41–46 CAG/CAA repeats and STUB1 pathogenic 
variants leads to complete phenotypic penetrance. The present case 
carried a CAG/CAA repeat expansion of 41 in the TBP gene and no 
STUB1 heterozygous mutations confirmed by NGS testing. This finding 
suggests that SCA17 with intermediate CAG/CAA repeat expansions 
(41 repeats) may achieve complete phenotypic penetrance even in the 
absence of coexisting STUB1 mutations. Therefore, in cases with clinical 
manifestations associated with intermediate TBP-expanded alleles 
reported in the literature, further screening for coexisting STUB1 
heterozygous mutations is warranted to establish the minimum 
pathogenic repeat threshold for CAG/CAA expansions. Notably, 
previously reported cases with 41 CAG/CAA repeats predominantly 
manifested chorea with other movement disorders (52–56), whereas 
dystonia combined with spastic paraplegia, as observed here, has been 
infrequently documented. This case expands the clinical spectrum of 
SCA17 associated with 41 CAG/CAA repeat expansions.

Conclusion

Spinocerebellar ataxias exhibit marked clinical and genetic 
heterogeneity. In this study, we identified novel clinical features of SCA8 
within a single family, including PD-like phenotype with spastic 
paraplegia and levodopa responsive parkinsonism with dystonia, 
highlighting intrafamilial phenotypic variability in SCA8-associated 
parkinsonian manifestations. Through case analysis, we propose that 
ethnicity—particularly in East Asian populations—may contribute to 
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the higher prevalence of parkinsonian phenotypes in SCA8. We propose 
that SCA8 genetic testing should be considered in cases of early-onset 
parkinsonism, familial parkinsonism, or atypical parkinsonism with 
poor levodopa response, especially when conventional hereditary 
Parkinson’s disease-associated genes are negative. We documented the 
first occurrence of Tourette syndrome in the preataxic stage of SCA3. 
Additionally, our data indicate that SCA8 and SCA17 may have lower 
pathogenic repeat thresholds than previously recognized. In our study, 
the proportion of SCA in movement disorders phenotype is higher than 
previous studies, which may be  related to the fact that most of the 
patients we screened are young and middle-aged. However, the limited 
sample size of this study may introduce deviations from population-level 
epidemiological patterns. It should be  noted that SCA subtypes 
characterized by movement disorder-dominant phenotypes is likely 
underestimated. We therefore recommend considering SCA genetic 
testing for patients with movement disorders. Rational design of targeted 
gene panels could significantly enhance the diagnostic yield for SCAs in 
this patient population.
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