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frontotemporal dementia: 
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Familial frontotemporal dementia (FTD) is a genetically heterogeneous disease 
with various clinical manifestations, making it difficult to diagnose. There are 
three main gene mutations in familial FTD: repeat expansion in chromosome 9 
open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and 
progranulin (GRN). These mutations can produce corresponding changes in fluid 
biomarkers years before symptoms appear. Therefore, biomarkers play a vital role 
in the diagnosis and treatment of familial FTD. In this review, we highlight fluid 
biomarkers in the blood and cerebrospinal fluid (CSF) that contribute to the clinical 
diagnosis of familial FTD, the study of disease pathophysiological mechanisms, 
and possibly be used as outcome endpoints in future clinical trials.
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1 Introduction

Frontotemporal dementia (FTD) is a common form of early-onset dementia that 
predominantly impacts the frontal and temporal lobes, exhibiting diverse clinical and 
pathological characteristics (1, 2). It is characterized by significant personality, behavioral 
changes, and cognitive impairment (3). Approximately 10–30% of FTD are hereditary, 
exhibiting a distinct autosomal dominant inheritance pattern (4). An autosomal dominant 
inheritance pattern has been reported in 10–25% of families with FTD (5, 6). For clarity, 
we define familial FTD as cases with an identifiable autosomal dominant mutation. In contrast, 
sporadic FTD refers to phenotypically similar but genetically unconfirmed cases without a 
clear family history. The most common genetic mutations that cause familial FTD include 
repeat expansions in chromosome 9 open reading frame 72 (C9orf72), microtubule-associated 
protein tau (MAPT), and progranulin (GRN) (7). Less common genetic reasons include 
mutations in TBK1, TARDBP, VCP, FUS, CHMP2B, SQSTM1, and UBQLN2 (8). The 
pathological proteins generated by different genes display considerable heterogeneity, and the 
clinical manifestations arising from identical gene mutations and harmful protein deposits 
vary significantly depending on their deposition locations, posing a considerable challenge for 
clinical diagnosis (4, 9).

C9orf72 is the most common genetic cause of familial FTD (10). FTD associated with 
C9orf72 was caused by the amplification of the GGGGCC hexanucleotide repeat in the 
non-coding region of the gene. The length of this pathogenic repeat sequence may vary from 
30 to several 1,000, whereas healthy individuals often possess fewer than 30 repetitions (11). 
The repeat sequences in C9orf72 can be transcribed into abnormal RNA transcripts. The RNA 
transcripts can be subsequently translated into dipeptide repeat proteins (DPRs), such as poly 
(GA), poly(GR), poly(PR), poly(PA), and poly(GP), which have toxic effects on neurons (12). 
C9orf72-associated FTD is predominantly linked to TDP-43 type B pathology, characterized 
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by cytoplasmic inclusions of TDP-43 protein in neurons and glial cells, 
especially in the frontal and temporal lobes (13).

The gene encoding the progranulin (GRN) was also found on 
chromosome 17 (14). This mutation produces an aberrantly shortened 
progranulin mRNA transcript, resulting in diminished quantities of 
full-length functional progranulin proteins. The haploinsufficiency of 
progranulin disrupts normal lysosomal and neuronal functioning, 
thereby contributing to the pathophysiology of FTD-TDP (15).

The MAPT gene is located on chromosome 17q21.3, contains 16 
exons, spans approximately 150 kb, encodes tau protein, and 
significantly influences neuronal integrity. Mutations in MAPT result 
in abnormal aggregation of tau proteins, ultimately leading to 
degeneration of glutamatergic neurons (16). The most prevalent 
MAPT mutations were P301L, V337M, R406W, and N27. The P301 
mutation decreases tau affinity for microtubules while enhancing its 
aggregation and phosphorylation, thereby increasing the pathological 
accumulation of tau protein and resulting in neurodegeneration 
(17, 18).

Although the clinical manifestations and pathological 
characteristics can be linked, their association is typically limited (19). 
Therefore, sensitive biomarkers for familial FTD are necessary due to 
the heterogeneity of the disorder. Fluid biomarkers are molecules or 
chemicals present in physiological fluids that can fluctuate and 
indicate the presence of a disease (Table 1).

Research has shown that biomarkers in the blood and 
cerebrospinal fluid (CSF) have potential for investigating 
FTD. However, sporadic FTD accounts for more than 70% of all 
clinical cases, and its complicated etiology includes environmental 
factors, somatic mutations, genetic mosaicism, and challenging 
biomarker research (20). In contrast, familial FTD offers a more 
genetically defined framework, facilitating mechanistic investigation 
and reliable biomarker confirmation. Additionally, developing 
findings indicate that over 60% of sporadic FTD individuals exhibit 
overlapping endosomal-lysosomal biomarker profiles with familial 
subtypes, suggesting shared downstream pathogenic pathways (21). 
Thus, the familial FTD biomarker framework also serves as a potential 
reference for the classification, stratification, and therapeutic targeting 
of sporadic FTD (22).

Biomarkers can be classified into several functional categories. 
Diagnostic biomarkers help confirm the presence of disease, while 
predictive biomarkers identify individuals at risk of developing 
symptoms. Prognostic biomarkers provide information on disease 
progression, and monitoring biomarkers track treatment response or 
disease severity over time. Different biomarkers may serve distinct 
roles depending on genetic subtype, disease stage, and 
clinical presentation.

Overall, identifying fluid biomarkers of familial FTD is crucial for 
tracking disease development, anticipating treatment outcomes, and 
investigating potential pathophysiological alterations associated with 
the condition. In this review, we  describe the most recent 
developments in fluid biomarkers associated with familial FTD.

2 Methods

We conducted an electronic search of the MEDLINE, PubMed, 
and Embase databases using a combination of several keywords. The 
following search terms were used as keywords to identify all relevant 
studies: (“FTD” OR “FTD” OR “frontotemporal dementia” OR “lobar 
degeneration” OR “frontotemporal lobar degeneration”) AND 
(“microtubule associated protein tau” OR “MAPT” OR “Progranulin” 
OR “GRN” OR “Progranulin” OR “GRN”) AND (“biomarker”). 
Related studies that contained these keywords from the references 
were also searched for potentially qualified studies. Studies were 
excluded if they were (1) reviews without original data; (2) unrelated 
to familial FTD; or (3) not written in English. We also excluded studies 
that did not differentiate between genetic subtypes of FTD.

3 Discussion

3.1 Biomarkers in the blood

Current research on familial FTD in the blood mainly involves 
three environments: serum, plasma, and small extracellular vesicles 
(sEVs). We reviewed and summarized these biomarkers in the blood 
(Table 2).

3.1.1 Progranulin
Progranulin serves as a significant biomarker for detecting GRN 

mutations in FTD (23). Many studies have shown that a considerable 
reduction in progranulin levels is typical of individuals with GRN 
mutations and is not linked to other forms of familial FTD (14, 15, 
24–27). Progranulin levels assessed by enzyme-linked immunosorbent 
assay (ELISA) accurately distinguished between GRN mutation 
carriers and healthy individuals, demonstrating a specificity of 99.6% 
and a sensitivity of 95.8% (28). Dols-Icardo et al. further demonstrated 
that progranulin levels remained unaffected by the C9orf72 mutation, 
indicating that progranulin serves as a specific biomarker for GRN-
related FTD (29). Meeter et al. found that progranulin levels in the 
blood of a considerable cohort of presymptomatic GRN mutation 
carriers were significantly lower than those of age-matched healthy 

TABLE 1  Clinical phenotypes and differential diagnoses of familial FTD subtypes.

Genetic mutation Chromosomal localization Main clinical phenotypes Common differential diagnoses

MAPT 17q21.1 bvFTD, PPA, Parkinsonism PSP, AD, DLB

GRN 17q.21.32 bvFTD, nfvPPA Corticobasal syndrome, stroke-related aphasia

C9orf72 9p21.2 bvFTD, nfvPPA, svPPA, Amyotrophic lateral sclerosis, schizophrenia, 

bipolar disorder

MAPT, microtubule-associated protein tau gene; GRN, progranulin gene; C9orf72, hexanucleotide expansion in chromosome 9; bv-FTD, behavioral variant frontotemporal dementia; PPA, 
primary progressive aphasia; PSP, Progressive supranuclear palsy; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; nfv-PPA, nonfluent variant primary progressive aphasia; sv-PPA, 
semantic variant primary progressive aphasia; ALS, amyotrophic lateral sclerosis; CBS, corticobasal syndrom.
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TABLE 2  Biomarkers in the blood.

No. References No. of subjects Measurement Biosamples Biomarker Main findings

1 Dols-Icardo et al. (29) 7 C9 vs. 62 NC Elisa Plasma Progranulin

Progranulin levels in C9 carriers did not 

differ from those in patients who did not 

carry the amplification mutation.

2 Carecchio et al. (92) 1 GRN Elisa Plasma Progranulin
Progranulin levels are lower in carriers of 

GRN mutations.

3 Sleegers et al. (28)
9 GRN vs. 9 NC vs. 22 

HC
Elisa Plasma Progranulin

Progranulin levels were reduced in both 

affected and unaffected null mutation 

carriers compared with NC, and allowed 

perfect discrimination between carriers 

and noncarriers

4 Meeter et al. (30)
7 GRN vs. 28 PS GRN 

vs. 29 NC
Elisa Plasma Progranulin

GRN mutation carriers had lower plasma 

progranulin levels than controls, without 

any overlap between the groups.

5 Galimberti et al. (27)
19 GRN vs. 64 PS vs. 

77 NC
Elisa Plasma Progranulin

Progranulin levels in patients and 

asymptomatic carriers were significantly 

decreased compared with NC.

6 Sellami et al. (32)
129 GRN vs. 31 PS 

GRN vs. 133 HC
Elisa Plasma Progranulin

Progranulin expression in plasma predicts 

GRN mutation status, independently of 

symptom onset proximity,but is not 

predictive of phenotype or age at onset.

7 Benussi et al. (31) 79 GRN vs. 50 NC Elisa Plasma Progranulin

In mutation carriers, progranulin levels 

were already reduced at more than 

30 years before expected symptom onset 

compared with NC.

8 Ghidoni R et al. (26)

309 HC vs. 72 GRN 

null mutation carriers 

vs. 3 GRN missense 

mutation carriers

Elisa Plasma Progranulin

Plasma progranulin protein cutoff level of 

61.55 ng/mL that identifies, with a 

specificity of 99.6% and a sensitivity of 

95.8%, null mutation carriers among 

subjects attending to a memory clinic.

9 Panman et al. (93)
35GRN vs. 56 PS GRN 

vs. 35 HC
Simoa Serum Nfl

Nfl as an early biomarker for disease onset 

in FTD-GRN

10 Saracino et al. (37)

165 HC vs. (54 C9 + 48 

GRN) vs. (48 PS 

C9 + 37 PS GRN)

Simoa Plasma Nfl
GRN patients had higher levels than C9 

and greater progression rates.

11 Meeter et al. (36)

71 HC vs. 62 PS (34 

GRN vs. 14 C9 vs. 14 

MAPT) vs. 101 

patients (53 GRN vs. 

29 C9 vs. 19 MAPT)

Elisa Serum Nfl

	(1)	 higher levels in patients than in PS 

and HC without a difference between 

the latter two groups.

	(2)	 GRN patients had higher Serum Nfl 

levels than MAPT patients, both did 

not differ from C9 patients. Serum Nfl 

did not differ between the three 

presymptomatic groups.

12 Rohrer et al. (94)

28HC vs. 74 FTD (9 

C9 vs11 MAPT vs. 4 

GRN)

Simoa Serum Nfl

Concentrations were significantly higher 

than HC in both the C9 and MAPT 

subgroups with a trend to a higher level in 

the GRN subgroup.

13
Van Der Ende et al. 

(35)

59 patient (25 GRN vs. 

24 vs. C9 vs. 10 

MAPT) vs. 149 PS (79 

PS GRN vs. 46 PS C9 

vs. 24 PS MAPT) vs. 

127 NC

Simoa Plasma Nfl
Baseline Nfl was elevated in symptomatic 

carriers compared with PS and NC.

(Continued)

https://doi.org/10.3389/fneur.2025.1663609
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Guo et al.� 10.3389/fneur.2025.1663609

Frontiers in Neurology 04 frontiersin.org

TABLE 2  (Continued)

No. References No. of subjects Measurement Biosamples Biomarker Main findings

14 Wilke et al. (39)
117 C9 vs. 104 GRN vs. 

49 MAPT vs. 174 NC
Simoa Serum

	(1)	 Nfl

	(2)	

pNfH

Nfl increase preceded the hypothetical 

clinical onset by 15 years and concurred 

with brain atrophy onset, whereas pNfH 

increase started close to clinical onset.

15 Silva-Spínola et al. (65)

(20 GRN vs. 13 C9 vs. 

30 sporadic-FTD) vs. 

37 AD vs. 37 HC

Elisa Serum Nfl

FTD patients had significantly higher 

serum Nfl levels than both AD patients 

and HCs

16 Linnemann et al. (24)

66 PS (22 C9 vs. 29 

GRN vs. 15MAPT) vs. 

4 converter (3C9 vs. 

1GRN) vs. patient 

(7C9 vs. 8GRN vs. 9 

MAPT) vs. 60 NC

Simoa Serum Nfl

Nfl revealed an excellent consistency and 

high reliability Serum and plasma Nfl 

were largely comparable.

17 Heller et al. (45)

114 C9 carriers (74PS 

vs. 40C9) vs. 119 GRN 

carriers (88PS vs. 

31GRN) vs. 53 MAPT 

carriers (34PS vs. 19 

MAPT) vs. 183 NC

Simoa Plasma
(1) GFAP

(2) Nfl

(1) Plasma GFAP concentration was 

significantly increased in symptomatic 

GRN mutation carriers, but not in those 

with C9 expansions, MAPT mutations or 

the presymptomatic groups.

(2) GFAP concentration was significantly 

positively correlated with age both in 

controls and in the majority of the disease 

groups, as well as with Nfl concentration.

18 Katisko et al. (43)

26 C9 vs. 31 GRN vs. 3 

MAPT vs. 105 HC vs. 

170 NC

Simoa Serum total TDP-43

Total levels of TDP-43 in the serum are 

decreased especially in FTD patients with 

the C9 repeat expansion.

19
Suárez-Calvet et al. 

(41)

10 C9 vs. 5GRN vs. 51 

NC vs22 HC
Elisa Plasma

(1) total TDP-43 

(2) pTDP-43

(1) Subjects carrying a C9 repeat 

expansion or GRN mutations had 

significantly increased levels of plasma 

pTDP-43 compared with subjects with 

FTD without a mutation and with HC. (2) 

Total TDP-43 levels were slightly 

decreased in the C9 and the GRN groups 

compared with the FTD group, Subjects 

with GRN mutations also showed 

decreased levels of plasma total TDP-43 

levels compared with controls. (3) Plasma 

pTDP-43 levels correlated inversely with 

plasma total TDP-43 levels in the entire 

group

20 Bellini et al. (55)

40 sporadic FTD vs. 33 

C9 vs. 45 GRN vs. 43 

HC

Elisa

	(1)	

Plasma

	(2)	

sEVs

Cathepsin D

A progressive reduction in plasma 

cathepsin D moving from the 

intermediate to C9orf72 pathological 

expansion carriers. The diagnostic 

performance of t plasma small 

extracellular vesicles (sEVs) was fairly 

high in GRN/C9orf72 and Sporadic FTD.

21 Heikkinen et al. (56)

82 HC vs. 89 NC vs. 

(21 C9 vs. 31 GRN vs. 

3 MAPT)

Simoa Serum Cathepsin S

There was no difference in serum 

cathepsin S levels between GRN and HC 

or NC. Comparing C9 HRE-carrying FTD 

patients to HC or to C9 HRE-non-

carrying FTD patients did not reveal any 

statistically significant differences in the 

serum cathepsin S levels.

(Continued)
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controls. This suggests that progranulin can be employed not only in 
symptomatic individuals but also in identifying mutation carriers 
before symptom manifestation, thus functioning as an effective early 
diagnostic tool (30). Benussi et al. also found that progranulin, as a 
“status” biomarker for GRN mutations, may serve as an early warning 
indicator prior to symptom manifestation, although exhibits minimal 
correlation with the rate of illness development (31). Sellami et al. 
suggested that this detection method is economically viable and 
appropriate for screening, allowing for patient selection without the 
need for costly genetic testing (32). In summary, measurement of 
progranulin in the blood can identify carriers of GRN mutations and 
can be used as an early diagnosis and cost-effective screening method. 
However, the presence of progranulin indicates only a possible gene 
mutation and has no correlation with the degree of neurodegeneration 
in the brain.

3.1.2 Neurofilament light chain protein
The neurofilament light chain (Nfl) is a subunit of neurofilaments 

(Nfs), which are cylindrical proteins located in the cytoplasm of 
neurons (33). Nfl is found in dendrites, neuronal bodies, and axons, 
contributing to the structural stability of neurons (34). Although Nfl 
is not a disease-specific biomarker, its elevated levels have been 
consistently observed in a range of neurodegenerative disorders, 
including FTD. Van Der Ende et al. found that serum Nfl levels were 
significantly elevated in symptomatic carriers relative to 
presymptomatic carriers and non-carriers, indicating clinical 
progression and highlights the potential value of serum Nfl as a 
candidate selection tool for disease progression (35). In GRN-
associated FTD, serum Nfl levels are elevated two–three times 2–4 
years prior to the onset of clinical symptoms, enabling dynamic 
monitoring of neuronal axonal damage and disease progression 
through regular blood tests (36). Saracino et al. further discovered that 
the concentration of Nfl in individuals with the GRN mutation was 
markedly elevated compared to those with the symptomatic C9orf72 
mutation, indicating that Nfl may represent varying rates of 
pathological disease progression (37). Moreover, while Nfl levels are 
elevated in MAPT mutation carriers compared to healthy controls, the 
magnitude of elevation is typically lower than that observed in GRN 
and C9orf72 carriers, which is consistent with the relatively slower 
disease progression associated with MAPT-related pathology (38). 
Wilke et al. indicated that Nfl levels progressively increased over the 

15 years preceding symptom manifestation, implying its potential as 
an early prognostic marker for familial FTD development (39). 
Linnemann et al. observed that the robust constancy of Nfl across 
multicenter investigations renders it a suitable biomarker for clinical 
trials, particularly for assessing disease progression and treatment 
response (24). Overall, Nfl levels in the blood indicate the underlying 
clinical burden of familial FTD and demonstrate the potential for 
differentiating genetic subtypes, particularly with high sensitivity and 
predictive value in GRN mutation carriers. Its levels progressively 
elevate years prior to the onset of symptoms and thus could be used 
to predict early diagnosis.

3.1.3 TAR DNA binding protein 43
TAR DNA-binding protein 43 (TDP-43) is an RNA-binding 

protein that induces aberrant protein aggregation in the cytoplasm 
during pathological conditions (40). The TDP-43 protein assay 
typically has two forms: (1) total TDP-43 levels and (2) phosphorylated 
TDP-43 (pTDP-43), which exhibit distinct alterations across several 
genetic subtypes of FTD. Suarez-Calvet et al. found that pTDP-43 
levels increased in C9orf72 and GRN mutation carriers, whereas total 
TDP-43 levels decreased, indicating an inverse relationship between 
pTDP-43 and total TDP-43 (41). Changes in TDP-43 levels may 
indicate abnormalities in protein metabolism and disease mechanisms, 
particularly in processes related to protein aggregation and 
neurodegeneration. Under pathological conditions, TDP-43 
undergoes post-translational modifications, primarily 
phosphorylation, resulting in cytoplasmic mislocalization and 
aggregation. Unlike total TDP-43, which includes both functional and 
diseased forms, pTDP-43 is disease-specific and serves as a hallmark 
of TDP-43 proteinopathies (42). Katisko et al. further observed that 
total TDP-43 levels were markedly diminished in individuals with the 
C9orf72 mutation, indicating that TDP-43 may possess diagnostic 
significance in C9orf72-associated FTD (43). Thus, TDP-43 and its 
phosphorylated form may function as biomarkers for the future 
diagnosis of familial FTD, especially in individuals carrying C9orf72 
and GRN mutations.

3.1.4 Glial fibrillary acidic protein
Glial fibrillary acidic protein (GFAP) is considered a marker of 

astrocyte activation and may significantly contribute to the 
pathophysiology of GRN-associated FTD (44–46). GRN mutations 

TABLE 2  (Continued)

No. References No. of subjects Measurement Biosamples Biomarker Main findings

22
Van Der Ende et al. 

(58)

74NC vs. 104 PS 

(46GRN vs. 42 C9 vs. 

16 MAPT) vs. patient 

(11 GRN vs. 28 C9 vs. 

7 MAPT)

Elisa Serum C2, C3

The elevated complement protein levels in 

plasma remained statistically significant 

only in C9.

23 Esteras et al. (57)

7 GRN vs. 33HC vs. 

8MCI vs. 35 AD vs. 

4DLB vs. 20 PD vs. 

10ALS vs. 5 PSP

MS

Peripheral blood 

mononuclear 

cells

CaM
CaM levels were not increased in the other 

neurodegenerative disorders.

HC, healthy control individuals, no sign of neurological disease; NC, non-carriers; PS, presymptomatic carriers; FTD, frontotemporal dementia; GRN, FTD with progranulin; MAPT, FTD 
with microtubule-associated protein tau; C9orf72, FTD with the chromosome 9 open reading frame 72 repeat expansion; MCI, patients with a diagnosis of mild cognitive impairment; AD, 
patients with probable Alzheimer’s disease; DLB, patients diagnosed with dementia with Lewy bodies; PD, patients with probable Parkinson’s disease; ALS, patients diagnosed with 
amyotrophic lateral sclerosis; PSP, patients diagnosed with progressive supranuclear palsy; Nfl, neurofibrillary light chain; pNfH, neurofibrillary high chain; GFAP, glial fibrillary acidic protein; 
TDP-43, TAR DNA-binding protein 43; pTDP-43, phosphorylated TAR DNA-binding protein 43; small extracellular vesicles, sEVs.
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result in diminished quantities of functional progranulin protein, 
thereby compromising lysosomal function and exacerbating neuro-
inflammation. This failure in astrocytes induces a reactive state 
marked by increased cytokine release and modified homeostatic 
support, thereby facilitating disease development (47).

Activated astrocytes release inflammatory mediators that 
compromise neuronal connections and disrupt lysosomal function, 
hence exacerbating neurodegeneration (48, 49). Heller et al. showed 
that GFAP levels are significantly elevated in GRN mutations, 
particularly prior to symptom onset, implying that GFAP could serve 
as a valuable early biomarker for identifying the risk in these patients 
(45). More importantly, GFAP levels were found to be  positively 
correlated with neurofilament light chain (Nfl) levels, which indicates 
the potential for employing both as dynamic surveillance indicators, 
which could improve the accuracy of disease classification (50) To 
summary, the GRN mutation is strongly associated with an intensified 
inflammatory response, and the increase in GFAP may indicate 
pathogenic activation of astrocytes in the early stages of the disease. 
Consequently, GFAP may serve as a possible biomarker for the early 
detection of GRN-associated FTD, and could elucidate the 
neuroinflammatory mechanisms underlying the disease. Nevertheless, 
existing research on GFAP expression in other genetic subgroups of 
FTD is limited. This gap highlights the need for further research.

3.1.5 Lysosomal proteases
Recent investigations on lysosomal proteins in familial FTD have 

predominantly concentrated on cathepsin D and S. Cathepsin D, an 
aspartic protease found in lysosomes that participates in proteolytic 
metabolism and regulates the digestion of hormones and antigens. It 
has been shown to be correlated with neurodegenerative alterations 
(51, 52). Animal models carrying GRN and C9orf72 mutations have 
shown a marked reduction in plasma Cathepsin D activity, suggesting 
a role in disease pathogenesis (53, 54). Consistent with these findings, 
human studies have reported a notable decrease in Cathepsin D levels 
in individuals with GRN and C9orf72 mutations along with a 
progressive decline in cathepsin D plasma levels from C9orf72 
intermediate expansion carriers to C9orf72 pathological expansion 
carriers. Pathogenic expansions are characterized by hexanucleotide 
repeats exceeding 30 G4C2 repetitions, whereas intermediate 
expansions are defined as consisting of 12–30 hexanucleotide repeats. 
This suggests a dose-dependent influence of C9orf72 expansion on 
cathepsin D plasma levels (55). The decrease in Cathepsin D did not 
occur after the onset of symptoms but was already apparent during the 
asymptomatic phase. Thus, cathepsin D may serve as a presymptomatic 
biomarker. Furthermore, the diagnostic efficacy of cathepsin D 
concentration in extracellular vesicles as a criterion for distinguishing 
FTD patients from healthy controls was notably high (AUC = 0.85), 
exhibiting a sensitivity of 75.4% and a specificity of 76.7%. This 
indicates that extracellular vesicle-associated Cathepsin D may serve 
as a diagnostic biomarker, especially for identifying patients with 
pathogenic GRN or C9orf72 mutations.

Although Cathepsin D is an aspartic protease localized within 
lysosomes, Cathepsin S is a cysteine protease that is predominantly 
expressed by microglia and is involved in antigen presentation and 
immune regulation. In contrast to Cathepsin D, Heikkinen et al. found 
that serum Cathepsin S levels were not significantly different between 
patients with familial FTD and healthy controls. No significant 
differences were observed among FTD subtypes, including GRN and 

C9orf72 mutant carriers, MAPT mutation carriers, or sporadic cases, 
indicating that Cathepsin S is not a reliable biomarker for 
differentiating clinical, genetic, or pathological groupings (56).

Overall, Cathepsin D showed a notable decrease in GRN and 
C9orf72 carriers associated with disease progression and elevated copy 
number in C9orf72, thus signifying mutant gene carriers and 
pathological conditions, thereby functioning as a potential biomarker 
for screening and early detection of familial FTD. Further investigation 
of additional lysosomal protein types may uncover novel biologically 
significant biomarkers of familial FTD.

3.1.6 Other biomarkers in the blood
Calmodulin (CaM) in peripheral cells used as a potential 

biomarker to investigate the association between familial FTD and 
other degenerative disorders. Elevated CaM levels have been 
specifically observed in peripheral blood mononuclear cells in patients 
with AD but not in those with other neurodegenerative disorders. 
Consequently, CaM could aid in differential diagnosis in the 
differential diagnosis of familial FTD, providing complementary value 
to established core AD biomarkers, such as phosphorylated tau 
species, MTBR-tau isoforms, and Aβ42/40 ratio (57).

The complement system plays an important role in 
neuroinflammation and synaptic clearance and its activation may 
facilitate neurodegeneration. Van Der Ende et al. identified markedly 
increased concentrations of the complement proteins C2 and C3 in 
the plasma of C9orf72 mutant carriers, indicating a potential 
association between complement system overactivation and illness 
development (58). As these alterations manifest before symptom 
onset, testing for C2 and C3 may facilitate the early identification of 
illness risk in carriers of the C9orf72 mutation. Increased levels of 
complement proteins in various neurological illnesses suggest a 
generalized overexpression of the complement system rather than 
gene-or disease-specific upregulation (59–61). Thus, although 
complement proteins may assist in identifying a higher disease risk in 
C9orf72 carriers, their diagnostic specificity across other FTD 
genotypes remains unclear. Future research comparing complement 
levels in genetically related subtypes of FTD may further clarify 
potential gene-specific effects.

3.2 Biomarkers in the CSF

CSF biomarkers can accurately indicate disease progression with 
minimal interference. We  reviewed and summarized the CSF 
biomarkers of familial FTD (Table 3).

3.2.1 Progranulin
Progranulin has been examined in the CSF less extensively 

than in the blood, and the correlation between CSF and blood 
levels is relatively weak (62, 63). Unlike the blood test, which has 
a clear cut-off value, the evaluation of progranulin in CSF studies 
is uncertain. Research conducted by Meeter et al. indicated that 
individuals with GRN mutations exhibited markedly diminished 
progranulin levels, even prior to the onset of symptoms (30). 
Morenas-Rodríguez et al. found that CSF progranulin levels were 
strictly regulated and possessed no diagnostic utility except in 
cases of primary neurodegenerative dementia associated with 
GRN mutations (64). Thus, progranulin in CSF may serve as a 
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TABLE 3  Biomarkers in the CSF.

No. Reference No. of subjects Measurement Biosamples Biomarker Findings

1 Meeter et al. (30)
7 GRN vs. 16 PS GRN vs. 

12 NC
Elisa CSF Progranulin

CSF progranulin in carriers was 39% 

of that in NC, without overlap of the 

levels between the groups.

2
Morenas-Rodríguez 

et al. (64)

74 HC vs. 90 MCI vs. 

73 AD vs. 32FTD (non-

GRN) vs. 11(PSP + CBS) 

vs. 23 DLB

Elisa CSF Progranulin

Polymorphism rs5848 in GRN 

iNfluenced CSF progranulin levels, but 

APOEɛ4 allele did not.

3 Meeter et al. (36)

71 HC vs. 62 PS (34GRN 

vs. 14C9 vs. 14 MAPT) vs. 

101 patients (53 GRN vs. 

29 C9 vs. 19 MAPT)

Elisa CSF Nfl

CSF Nfl levels in patients were more 

than eight times higher than in PS and 

HC, without a difference between the 

latter two groups. GRN patients had 

higher CSF Nfl levels than C9 and 

MAPT patients.

4 Silva-Spínola et al. (65)
20 GRN vs. 13 C9 vs. 30 

sporadic-FTD
Elisa CSF Nfl

FTD patients had significantly higher 

CSF levels than both AD patients, NC 

and HC.

5 Carecchio et al. (66)

145 AD vs. 120 FTD 

(non-GRN) vs. 20 GRN vs. 

38 HC

Elisa CSF

	(1)	 Aβ42

	(2)	 total tau

	(3)	 p-tau-181

GRN mutation carriers and HC did not 

differ significantly for any biomarker, 

whereas GRN negative FTD patients had 

higher tau levels than controls and GRN 

Thr272fs mutation.

6 Sato et al. (70)

80 AD vs. 74 4R tauopathy 

vs. 5 MAPT R406W vs. 98 

HC

MS CSF
p-tau217/t-tau217 × Aβ 

42/40

individuals with increased CSF pT217/

T217 and normal Aβ 42/40 ratio, most 

of whom were MAPT R406W mutation 

carriers.

7 Kapaki et al. (67) 3 C9 vs. 2 GRN vs. 1VCP Elisa CSF

	(1)	 TDP-43

	(2)	 TDP-43 × pT/

pT181

Genetic FTD is characterized by 

increased CSF TDP-43 and increased 

TDP-43 × pT/pT181 combination.

8 Woollacott et al. (76)
17HC vs. 64FTD (3 GRN 

vs. 4 MAPT vs. 3 C9)
Elisa, CSF sTREM2

CSF sTREM2 levels did not differ 

between FTD and HC or between 

clinical subgroups. However, GRN 

mutation carriers had higher levels than 

HC and MAPT or C9 mutation carriers.

9
E. L. van der Ende et al. 

(77)

(35 GRN +34 PS GRN) vs. 

(32 C9 + 6 PS C9) vs. 67 

NC

Elisa CSF sTREM2

No group differences in sTREM2 

levels were observed, and high levels 

were seen in a subset of GRN, but not 

C9, mutation carriers.

10 Woollacott et al. (78)

62 NC vs. 121 carriers (49 

C9 vs. 49 GRN vs. 23 

MAPT)

Elisa CSF

	(1)	 sTREM2

	(2)	 YKL-40

	(3)	 chitotriosidase

Only chitotriosidase in GRN had a 

concentration significantly higher 

than controls. No group had higher 

sTREM2 or YKL-40 concentrations 

than NC.

11 Horie et al. (72)

88 HC vs. 28 bvFTD vs. 16 

PSP vs. 15CBS vs. 80 AD 

vs. 8 MAPT

Immunoassay CSF
MTBR-tau275, 

MTBR-tau282

Their study demonstrated that the 

MTBR-tau275/t-tau and MTBR-

tau282/t-tau ratios were reduced in 

MAPT

12
Borrego-Écija et al. 

(79)

18 HC vs. 115 FTD (6 

MAPT vs. 5 PS MAPT vs. 

13 GRN vs. 13 C9)

Elisa CSF Gal-3

A significant elevation of Gal-3 levels 

in MAPT carrier samples compared to 

GRN carriers, C9, and HC samples. 

No statistically significant differences 

were found between GRN and C9 

groups.

(Continued)
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specific biomarker for GRN mutations. However, precise cut-off 
value thresholds for potential clinical use necessitate 
further clarification.

3.2.2 Neurofilament light chain (Nfl)
Consistent with findings in blood, CSF Nfl levels also exhibit a 

progressive increase during the presymptomatic phase and correlate 
with brain atrophy and clinical decline (65). Importantly, CSF and 
serum Nfl levels are strongly correlated (r = 0.87, p < 0.001), 
supporting the use of less invasive serum testing for longitudinal 
monitoring. Unlike blood-based measurements, CSF Nfl may offer 
slightly higher sensitivity in distinguishing symptomatic from 
presymptomatic carriers, particularly in early-stage MAPT or GRN 
associated cases (36). Nfl studies in both blood and CSF have shown 
similar results, suggesting that although non-specific, Nfl could 
be used as a predictive biomarker of disease progression.

3.2.3 Amyloid and tau-related biomarkers
Amyloid beta (Aβ) and tau proteins are characteristic markers of 

Alzheimer’s (66, 67). Aβ PET imaging showed a low positivity rate in 
individuals diagnosed with FTD, particularly in cohorts with 
autopsy-confirmed diagnoses. Reimand et al. found that only 11.1% 

of patients with FTD showed Aβ PET positivity, primarily linked to 
concurrent AD rather than isolated FTD pathology (68). This 
supports the use of AD-associated biomarkers, including Aβ-PET or 
CSF Aβ42, as exclusionary tools in the context of FTD. Elevated levels 
of total tau (t-tau) and phosphorylated tau (p-tau), along with 
decreased Aβ42 in patients with AD, could be used as biomarkers to 
differentiate AD from FTD (69). The ratio of p-tau217/t-tau217 to Aβ 
42/40  in CSF demonstrated efficacy as a composite biomarker to 
identify tau lesions in carriers of the MAPT R406W mutation, and 
could effectively distinguish them from cognitively normal 
individuals and those with other tauopathies (70). TDP-43 × p-tau/
p-tau18 has also demonstrated diagnostic significance in familial 
FTD, particularly in association with the pathology of TDP-43. 
Kapaki et al. found that CSF TDP-43 levels, especially when analyzed 
alongside tau-based ratios (TDP-43 × t-tau/p-tau), were increased in 
genetic FTD cases with GRN and C9orf72 mutations, highlighting 
their diagnostic relevance for TDP-43-driven subtypes (67). The 
microtubule-binding region (MTBR) of tau represents the central 
area of tau aggregates within the brain along with truncated 
C-terminal tau fragments found in the CSF (71). Horie et  al. 
demonstrated that the MTBR-tau275/t-tau and MTBR-tau282/t-tau 
ratios were significantly reduced in MAPT-associated FTD cases 

TABLE 3  (Continued)

No. Reference No. of subjects Measurement Biosamples Biomarker Findings

13 Schneider et al. (73)
(22 GRN vs. 11C9 vs. 5 

MAPT) vs. 11NC
qPCR CSF

miR-204-5p and 

miR-632

A significantly lower expression of 

miR-204-5p and miR-632 in 

symptomatic compared with PS in the 

genetic FTD cohort.

14
Van Der Ende et al. 

(80)

54 patient (15 GRN vs. 31 

C9 vs. 8 MAPT) vs. 106 PS 

(47 PS GRN vs. 42 PS C9 

vs. 17 MAPT) vs. 70 NC

Elisa CSF NPTX2

Symptomatic mutation carriers had 

lower NPTX2 concentrations than PS 

and NC.

15
Van Der Ende et al. 

(58)

74 NC vs. 104 PS (46 GRN 

vs. 42 C9 vs. 16 MAPT) vs. 

patient (11 GRN vs. 28 C9 

vs. 7 MAPT)

Elisa CSF C1q, C3b

The elevated complement protein 

levels in CSF remained statistically 

significant only in C9 mutation 

carriers

16 Huang et al. (81)

3-month old GRN+/+ 

wild type (n = 4) and 

GRN−/− knock out 

(n = 4) mice and 

19-month old GRN+/+ 

wild type (n = 4) and 

GRN−/− knock out 

(n = 4) mice human 

brain samples (21 GRN 

vs. 23 con) human CSF 

samples (13 GRN vs. 13 

C9 vs. 12 MAPT vs. 14 

cognitively normal 

controls)

Elisa CSF GPNMB

GPNMB levels were significantly 

increased in the CSF of FTD-GRN 

patients, but not in MAPT or C9 

carriers.

HC, healthy control individuals, no sign of neurological disease; NC, non-carriers; PS, presymptomatic carriers; FTD, frontotemporal dementia; GRN, FTD with progranulin; MAPT, FTD 
with microtubule-associated protein tau; C9orf72, FTD with the chromosome 9 open reading frame 72 repeat expansion; bvFTD: behavioral variant frontotemporal dementia; MCI, patients 
with a diagnosis of mild cognitive impairment; AD, patients with a diagnosis of probable Alzheimer’s disease; DLB, patients diagnosed for dementia with Lewy bodies; PD, patients with 
probable Parkinson’s disease; ALS, patients with a diagnosis of amyotrophic lateral sclerosis; PSP, patients diagnosed of progressive supranuclear palsy; total tau, T; pT, the phosphorylated tau; 
amyloid β 42 (Aβ42); miR, MicroRNA; sTREM2, soluble TREM2; NPTX2, neuropentagramin 2; glycoprotein NMB, GPNMB.
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compared with cognitively normal controls and patients with AD 
(72). This reduction likely reflects distinct aggregation patterns and 
epitope accessibility of tau filaments in primary tauopathies versus 
AD, underscoring the diagnostic specificity of MTBR-based tau 
measurements. Given the substantial overlap in biomarker expression 
across neurodegenerative diseases and the genotypic heterogeneity 
inherent in FTD, diagnosis relies more on multimodal biomarker 
panels and personalized interpretations than on a single biomarker.

3.2.4 MicroRNA
MicroRNAs (miRNAs) within exosomes possess diagnostic 

potential for genetic FTD, and are gaining interest. Schneider et al. 
revealed a considerable reduction in the expression of miR-204-5p 
and miR-632 in symptomatic FTD, particularly among carriers of 
GRN mutations (73). In GRN-related FTD, downregulation of 
miR-204-5p and miR-632 leads to overexpression of the 
pro-apoptotic target HRK gene, which contributes to neuronal 
death in the frontal and temporal lobes (74, 75). However, because 
of the unique pathogenic mechanisms of different genotypes (such 
as C9orf72 and MAPT), the expression of the aforementioned 
miRNAs did not show significant changes; thus, detection efficacy 
was limited. These findings suggest that miR may be  an early 
detection method for the diagnosis of familial FTD; however, 
further evidence is needed.

3.2.5 Soluble TREM2
Soluble TREM2 (sTREM2) serves as a biomarker for 

neuroinflammation and microglial activation. Woollacott et  al. 
reported elevated sTREM2 levels in the CSF of symptomatic GRN 
mutation carriers, implying that sTREM2 may serve as a biomarker 
for neuronal damage in familial frontotemporal dementia (76). 
Conversely, Van der Ende et  al. demonstrated no significant 
disparities in CSF sTREM2 levels between presymptomatic and 
symptomatic carriers of GRN or C9orf72 mutations and noncarriers 
(77). Owing to the limited and contradictory evidence, it is currently 
difficult to determine the potential importance of this biomarker.

3.2.6 Other biomarkers in the CSF
It was found that levels of chitotriosidase and Galectin-3 (Gal-3) 

were elevated in MAPT mutation carriers, potentially serving as 
markers of neuroinflammation and glial cell activation (78). Borrego-
Écija et al. further showed that Gal-3 is significantly upregulated in 
MAPT-associated FTD, indicating its potential as a subtype-specific 
biomarker linked to neuroinflammation and glial cell activation (79). 
Van Der Ende et al. observed elevated levels of complement proteins 
in both CSF and plasma of genetic FTD cases through the GENFI 
study, further supporting the hypothesis that immune dysregulation 
is significant in disease pathology. These findings indicated that these 
proteins could function as biomarkers for MAPT-associated FTD 
subtypes. The observed heterogeneity among the various genetic 
forms of FTD, as noted by Van Der Ende et al., highlights the need 
for additional research to clarify the specific functions of these 
proteins in disease onset and progression.

Another potential biomarker is the decreased level of 
neuropentagramin 2 (NPTX2) in individuals with familial FTD, 
suggesting that NPTX2 may serve as a novel synaptic-derived 
biomarker of disease progression (80).

In animal experiments, glycoprotein non-metastatic melanoma 
protein B (GPNMB) levels were significantly elevated in the 
cerebrospinal fluid of FTD-GRN mice, whereas no such increase was 
observed in MAPT or C9orf72 mice. GPNMB may serve as a specific 
biomarker for GRN-associated FTD, facilitating monitoring of 
disease onset, progression, and response to treatment. Additionally, 
GPNMB expression was increased in brain tissue from human GRN-
associated FTD samples, consistent with the results from GRN-
deficient mouse models (81).

In C9orf72-associated FTD, five dipeptide repeats (DPR) are 
generated by this gene. However, only poly (GP) levels are quantifiable 
and may serve as diagnostic markers for patient screening, such as 
blood tests (82, 83). Poly (GP) levels may be used for early disease 
detection, stratification of mutation carriers, and evaluation of 
therapeutic efficacy in clinical trials.

Despite these promising findings, most candidate biomarkers 
remain at an exploratory stage. Extensive longitudinal and 
multicenter studies across diverse populations are required to 
confirm their diagnostic, prognostic, and therapeutic monitoring 
utility in familial FTD.

3.3 Other biomarkers

In addition to the blood and CSF, there is a paucity of 
investigations on other fluid biomarkers for familial FTD. In a single 
longitudinal cohort investigation, salivary lactoferrin, which serves 
as a biomarker to differentiate AD from FTD, exhibited over 87% 
sensitivity and 91% specificity. Saliva is readily accessible, and 
sampling is straightforward and noninvasive. However, the quality of 
a specimen is affected by various factors that may hinder its 
development (84).

3.4 Measurement technique

Tremendous breakthroughs have been made in the assessment 
of fluid biomarkers of familial FTD. The predominant markers 
under investigation are proteins, and the three most frequently 
employed methods are ELISA, single-molecule array (Simoa), and 
mass spectrometry (MS). Elisa, while widely used, exhibits notable 
limitations. Its sensitivity is constrained, particularly in detecting 
markers during the early stages of the disease or at low 
concentrations, which may remain undetected due to insufficient 
levels. Additionally, its dynamic range is restricted, potentially 
limiting its ability to capture subtle changes in biomarker 
expression (85–87). The Simoa technique, which is widely utilized 
today, is an ultrasensitive method for detecting protein biomarkers 
through single-molecule counting. The detection limit of this 
technology can achieve levels on the order of FML (fg/mL) (88). 
Simoa demonstrates the capability to identify extremely low 
concentrations of neural markers in comparison to Elisa, which is 
especially significant for the early diagnosis of familial FTD. Simoa 
instruments are costly, kits are relatively expensive, and their 
application scope is somewhat restricted. MS can be  used to 
identify and measure biomarkers linked to familial frontotemporal 
dementia through analysis of proteins, metabolites, and peptides 
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(89). This method is appropriate for the concurrent detection of 
multiple related biomarkers in familial FTD, identifying markers 
present in very low quantities, and facilitating the observation of 
minor changes in the early stages of the disease (90). However, MS 
imposes stringent criteria for sample extraction and pretreatment, 
resulting in a relatively complex operational process (91). 
Quantitative polymerase chain reaction (qPCR) has emerged as a 
complementary tool, particularly for the detection of nucleic acid–
based biomarkers. The new techniques improve the sensitivity and 
specificity of the test, but they also require stricter procedures for 
processing specimens, which must be  carried out in a licensed 
laboratory to ensure the accuracy of the test and its potential use 
in clinical diagnosis (Table 4).

3.5 Challenges and limitations

Despite an increasing number of studies on fluid biomarkers of 
familial FTD, significant challenges and limitations remain. A 
significant number of the examined research are exploratory and 
utilize very small sample sizes, hence constraining statistical power 
and the generalizability. Diagnostic performance metrics are often 
unavailable, making it difficult to evaluate and compare biomarker 
efficacy in a clinically meaningful way.

The presence of significant clinicopathological variation among 
several genetic subgroups of familial FTD introduces further 
complexity. Biomarker expression may differ not only between 
genes but also among mutation carriers within the same family, and 
this heterogeneity is not generally acknowledged in the literature. 
Furthermore, the overlapping biomarker profiles among many 
neurodegenerative disorders, such as Alzheimer’s disease, 
amyotrophic lateral sclerosis, and atypical parkinsonian syndromes, 
may result in misinterpretation and diminish specificity.

A further limitation results from the prevalence of cross-sectional 
studies. In the absence of longitudinal data, evaluating the temporal 
dynamics of biomarker changes during the disease progression, 
particularly in the presymptomatic phase, is challenging. Variations 
in study design, inclusion criteria, comparison groups, and the 

utilization of diverse test platforms create further variability and 
confound inter-study comparisons.

Several biomarkers are not exclusive to familial FTD. Nfl and 
GFAP levels are elevated in various neurodegenerative diseases, 
including AD, to similar extents. Despite their variations across 
diseases, clinical cut-offs to differentiate between 
neurodegenerative diseases have not yet been established. The 
absence of specificity can result in diagnostic ambiguity, 
particularly in early or atypical cases.

In conclusion, fluid biomarkers present a significant potential for 
enhancing the diagnosis and monitoring of disease progression in 
familial FTD. However, their clinical application is currently 
constrained by challenges related to specificity, heterogeneity, sample 
availability, technological limitations, and economic viability. 
Addressing these limitations will require larger, multicenter, 
genotype-stratified longitudinal studies using harmonized protocols 
and standardized biomarker panels.

4 Conclusion

This review summarizes the recent fluid biomarker findings in 
familial frontotemporal dementia with respect to common genetic 
mutations. Several studies have been conducted in recent years on 
the fluid markers associated with familial FTD. In this review, 
we highlight fluid biomarkers in the blood and CSF that contribute 
to clinical diagnosis, disease progression surveillance, and 
pathophysiological mechanisms of familial FTD. Compared to 
expensive genetic tests, convenient and cost-effective fluid 
biomarkers are promising for use as screening tools and provide 
important information for disease prognosis. Future research 
should prioritize large-scale, multicenter longitudinal studies to 
validate candidate biomarkers across genetically stratified FTD 
cohorts. Moreover, integrating fluid biomarkers with advanced 
neuroimaging and multi-omics profiling could enhance diagnostic 
precision and therapeutic monitoring. The development of 
standardized, cost-effective, and scalable biomarker assays remains 
essential for clinical translation.

TABLE 4  Technique in familial FTD.

Technique Application in familial FTD Advantage Limitation

Elisa To detect relevant protein markers Cheap and easy to use
Different specifications, and the 

detection accuracy is weak

Simoa

Ultrasensitive detection of low 

concentrations of FTD markers in blood or 

cerebrospinal fluid

High sensitivity for early detection of 

low protein concentrations

Expensive, requiring specialized 

equipment, and not yet widely used in 

the clinic

MS

To identify FTD-associated protein 

modifications and mutations and identify 

potential biomarkers

To analyze unknown molecules, detect 

modified proteins, suitable for 

proteomics

Expensive and sample preparation is 

complicated

qPCR
To quantitatively analyze FTD related gene 

expression changes
To analyze DNA and RNA

Primer design is required, and RNA 

analysis requires additional reverse 

transcription steps. Not suitable for 

protein

Elisa, assay; Simoa, single molecule array; MS, Mass spectrometry; qPCR, quantitative PCR.
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