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Background: Early identification of seizures in children is important for safety,
intervention success, and quality of life improvement, because many children are
unable to reliably communicate sensed pre-ictal warning features. Recognition
of pre-ictal EEG microstates is a path toward wearable and bedside monitors that
may deliver actionable alerts to caregivers. However, most existing approaches
remain constrained by manual labels, expert calibration, or computationally
expensive models with limited clinical utility.

Methods: The study developed an unsupervised clustering pipeline for pediatric
pre-ictal EEG using PCA, UMAP, and K-Means, without the need for manual
annotations or GPU resources. The CPU-based and open-source design
makes the workflow accessible and potentially adaptable for future real-time
neurodiagnostic applications.

Results: PCA retained >95% variance, confirming stable feature extraction. ICA
reduced blink and line-noise artifacts by 85 and 34%, respectively, improving
signal quality. Optimal cluster number (k = 4) was identified via Elbow and
Silhouette methods, revealing distinct and physiologically meaningful EEG
microstates preceding seizure onset. UMAP embeddings showed well-separated
clusters with a high initial Silhouette Score (0.779), indicating robust internal
structure. Noise removal improved interpretability without compromising
cluster validity.

Conclusion: The unsupervised nature of the study approach provides
experimental evidence for the demarcation of a number of distinct pre-ictal
states. These are associated with changes in cortical excitability and network
synchrony, consistent with the predicted dynamics of a model of epilepsy. This
study should be regarded as a proof-of-concept that advances methodological
aspects of unsupervised EEG clustering within this specific dataset. The findings
are hypothesis-generating rather than conclusive, providing a preliminary
platform for exploring automatic pre-ictal state monitoring without expert input.
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1 Introduction

Epilepsy is a chronic neurological disease. It is demonstrated by
repeated and unprovoked seizures, with a projected prevalence of 1%
in the general population worldwide. It is a severe condition, especially
in children. Early identification of seizures and the ability to predict
them can have a great influence on the prognosis and treatment,
reduce the risk of injury, and improve quality of life (1). But the
significant between-interval and the age-dependent mixing nature of
pediatric EEG make it very difficult to predict seizures. Seizures are
preceded by subtle and complicated neurophysiological changes—
denoted the pre-ictal state—that can be detected in the scalp EEG (2).

Harnessing these changes could enable anticipatory interventions.
Most current detection systems require seizure-specific labels and rely
on supervised learning models that are not readily generalizable (3).
Conventional seizure prediction pipelines rely on large manual
annotations, which are time-consuming, expensive, and suffer from
inter-rater differences (4). Furthermore, many current approaches
hinge on heavyweight models, which require GPU resources. These
constraints limit widespread real-time clinical deployment,
particularly in pediatric EEG, which shows high variability due to
developmental changes and frequent artifacts (5).

Unsupervised learning methods have become increasingly
attractive alternatives in recent years (35, 36). They allow for
automated learning of informative EEG patterns without the need for
labeled seizures. Clustering techniques, in particular, aim to identify
latent microstates or physiological regimes that may be predictive of
seizures (6, 7). However, these efforts face critical limitations. First,
many studies optimize clustering parameters (e.g., DBSCAN epsilon,
k in K-Means, or t-SNE perplexity) heuristically or per subject,
limiting reproducibility and cross-subject generalization (8, 9).
Second, the lack of standardized metrics to evaluate cluster quality—
such as Silhouette Score or Davies-Bouldin Index—impedes objective
comparison of methods. Third, unsupervised pipelines often exclude
broader EEG states, focusing narrowly on seizure detection, thus
overlooking potentially informative pre-ictal microstates (10). Finally,
much of the literature is based on adult or small homogeneous
datasets, undermining ecological validity and limiting clinical
applicability in pediatrics (11). Recent studies have also emphasized
integrating EEG preprocessing and biosignal coherence to enhance
neurophysiological interpretability (32-34).

To address these critical gaps, this study presents a reproducible,
lightweight, CPU-based pipeline for unsupervised clustering of
pre-ictal EEG in children. They are using the widely used CHB-MIT
Scalp EEG database (12). The pipeline is designed to uncover latent
structure in pre-seizure brain activity without any seizure-specific
labels, expert tuning, or GPU resources.

The proposed method consists of five core stages. First,
segmentation by extracting 30-s pre-ictal windows and dividing them
into 5-s EEG segments to balance temporal resolution and
computational efficiency (13). Second, preprocessing by applying
Z-score normalization and ICA-based artifact removal to clean the
signal and standardize features across subjects (14, 15). Third, feature
extraction by generating a comprehensive 1,440-dimensional feature
vector per segment, integrating time-domain statistics, spectral
features across EEG bands, entropy measures, Hjorth parameters, and
wavelet coefficients (16-18). Fourth, dimensionality reduction by
using Principal Component Analysis (PCA) followed by Uniform
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Manifold Approximation and Projection (UMAP) to reduce
redundancy and preserve the underlying data structure for effective
clustering (19, 20). Finally, clustering and validation by employing
K-Means to identify EEG microstates and evaluating cluster quality
using Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz
Score (21, 22).

The main contributions of this work include the development of
a fully reproducible, open-source pipeline for EEG pattern discovery
using only CPU-based computations, supporting real-time and large-
scale deployment. Also, the elimination of the need for manual labels
or subject-specific tuning enhances generalizability and usability in
clinical research. Furthermore, the combination of the multimodal
EEG features reflecting the time and frequency domain dynamics
appears to be altered during pre-ictal states. Secondly, strict
quantitative validation of the clusters leads to robust, interpretable,
and clinically meaningful patterns. Last, a comparison with previous
EEG clustering studies demonstrates how this pipeline overcomes
empowerment constraints in scalability, reproducibility, and
validation. Overall, the present study provides a reliable and cost-
effective approach to EEG microstate analysis in pediatric epilepsy. By
automatically identifying hidden structure in pre-ictal EEG without
any expert feature engineering. It can enable additional opportunities
in large-scale seizure prediction, neurophysiological experimentation,
and clinical intervention developments.

2 Methods
2.1 Participants

EEG data were obtained from the publicly available CHB-MIT
Scalp EEG Database on PhysioNet (12, 23). The dataset includes long-
term scalp EEG recordings from pediatric patients with intractable
epilepsy, recorded at the Children’s Hospital Boston. Clinical
annotations of seizure onset and offset were provided for each subject.
They were facilitating reproducible research in seizure prediction and
detection. Twelve pediatric patients (mean age = 5.79 + 2.75 years;
range = 1.5-10 years) were selected from the CHB-MIT Scalp EEG
Database. The cohort included 10 females and 2 males.

A total of 96 pre-ictal 30-s EEG windows (8.00 + 1.87 per subject)
were extracted, corresponding to 576 non-overlapping 5-s segments
(48.00 + 10.42 per subject). The full demographic and data distribution
are summarized in Table 1.

TABLE 1 Demographic and data distribution of pediatric subjects
included in EEG clustering analysis.

Variable Mean + SD Range
Age (years) 5.79£2.75 1.5-10
Number of pre-ictal 8.00 + 1.87 5-11
windows

Number of 5-s segments 48.00 + 10.42 30-66
Gender (F/M) 10/2 —

Summary of age, gender, and number of extracted pre-ictal EEG segments for each of the 12
pediatric patients chosen from the CHB-MIT Scalp EEG Database. Each 30-s pre-ictal
window was divided into six 5-s non-overlapping segments, resulting in a total of 576
segments.
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2.2 Overview of the workflow

This study introduces our pipeline for unsupervised clustering of
pediatric pre-ictal EEG using only CPU-based computations. The
pipeline consists of five major stages: data segmentation, signal
preprocessing, feature extraction, dimensionality reduction, and
clustering. Each component was selected based on prior validated
practices to ensure scalability, reproducibility, and clinical relevance (2, 4).

2.3 Dataset and segmentation

The CHB-MIT Scalp EEG Database was used, a widely accepted
resource for pediatric epilepsy research (12). The study selected 12
patients and extracted 30-s pre-ictal windows before seizure onset, as
annotated by clinical experts. Each window was divided into six
non-overlapping 5-s segments with 576 samples. This segmentation
strategy balances temporal resolution and computational tractability,
consistent with earlier studies in seizure prediction (13, 24).

2.4 EEG preprocessing

All EEG signals were preprocessed using the MNE-Python
toolbox (15). Z-score normalization was applied across channels to
standardize amplitude scales and support cross-subject comparability
(14). The signals were then bandpass filtered between 0.5-45 Hz to
retain relevant brain rhythms while eliminating low-frequency drifts
and high-frequency artifacts (25). To further improve signal quality,
Independent Component Analysis (ICA) was employed to remove
ocular and line-noise artifacts. ICA is effective for blind source
separation in EEG (26), particularly in pediatric populations (5).

2.5 Feature extraction

Each 5-s segment was converted into a 1,440-dimensional feature
vector. This included time-domain statistics (mean, variance,
skewness, kurtosis), Hjorth parameters (mobility and complexity), and
entropy-based descriptors. They have been shown to capture seizure-
related EEG dynamics (16). Each feature group was selected to capture
complementary neurophysiological information. Statistical features
summarize global signal properties and asymmetry, which may reflect
shifts in cortical excitability (17). Spectral power across canonical
bands (6, 6, @, p, y) is known to change systematically in pre-ictal
states, with increases in 8/6 and decreases in o/ reported in pediatric
epilepsy. Entropy measures quantify signal irregularity and complexity,
which may index loss of normal neural variability preceding seizures.
Wavelet coeflicients provide joint time-frequency resolution, enabling
detection of transient bursts and evolving rhythms that static spectra
may miss. This multimodal feature design aimed to maximize
sensitivity to diverse pre-ictal EEG signatures (18, 27).

2.6 Dimensionality reduction

To reduce the computational burden and enhance cluster
separability, a two-step dimensionality reduction strategy was
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adopted. First, Principal Component Analysis (PCA) was applied to
capture over 95% of the variance while minimizing redundancy
(19). Next, Uniform Manifold Approximation and Projection
(UMAP) was used to project the data into a two-dimensional space.
UMAP maintains local and global structure in nonlinear data and
has been successfully utilized in biomedical visualization (20). The
parameters min_dist=0.1, and

were n_neighbors = 15,

metric Euclidean.

2.7 Clustering method

To provide context for the chosen method, we also implemented
baseline clustering algorithms commonly used in EEG research,
including DBSCAN and agglomerative hierarchical clustering. These
methods were applied to the same UMAP-reduced features, and their
cluster quality was evaluated using Silhouette Score and Davies—
Bouldin Index. This comparative analysis allows for assessment of
whether K-Means offers advantages over alternative approaches in this
dataset (6, 7). The number of clusters was determined by the Elbow
Method and Silhouette Score method, which both suggested four as
the optimal cluster. This resulted in clusters fit for discerning relevant
latent patterns in pre-ictal EEG segments.

2.8 Cluster validation

To guarantee the robustness of the clustering results without being
influenced by the noise. The study calculated three classical metrics:
Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Score.
These measures assess internal cluster cohesion, external cluster
separation, and overall dispersion shape (21, 22). Clusters with fewer
than 20 points were removed, while stability across runs hardly
deteriorated, underlying the reliability of the clustered assignments.

2.9 Minimal temporal transition analysis

To explore whether the identified clusters reflect sequential
dynamics rather than isolated categories, we conducted a minimal
temporal analysis. Cluster assignments for consecutive 5-s segments
within each 30-s pre-ictal window were examined. Transition
probability matrices were computed to quantify how often each cluster
was followed by another across time. In addition, a simple moving-
average smoothing (window length = 2 segments) was applied to the
cluster sequence to reduce spurious fluctuations. These exploratory
analyses were intended to provide initial evidence that the
unsupervised clustering framework can be extended toward
temporal modeling.

2.10 Comparison with prior work

The proposed pipeline addresses key limitations observed in
recent EEG clustering literature. Many prior works rely on extensive
manual labeling (4), subject-specific tuning (9), or arbitrary
parameter selection (8). In contrast, our approach minimizes manual
intervention, generalizes across subjects, and systematically reports
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cluster quality. This makes the pipeline well-suited for large-scale,

multi-center studies on EEG pattern discovery and

seizure forecasting.

2.11 Ethical considerations

This study utilized the publicly available, de-identified CHB-MIT
Scalp EEG Database, collected by the Children’s Hospital Boston and
hosted on PhysioNet (12, 23). Recordings include no personal
identifying information, and all protected health data were replaced
with surrogate data to ensure participant anonymity. Data collection
complied with ethical standards and regulatory protocols overseen by
Boston Children’s Hospital, which operates under Federal-Wide
Assurance (FWA 00002071, IRB 00000352) in accordance with the
Belmont Report and US Department of Health and Human Services
policies. Because our work employs only retrospective, fully
anonymized secondary data, it is exempt from additional Institutional
Review Board (IRB) review. Nonetheless, it adheres to the principles
of the Declaration of Helsinki and aligns with the original data
custodians’ ethical guidelines.

3 Results

We applied the proposed workflow to pre-ictal EEG data. The
workflow, illustrated in Figure 1, outlines the complete procedure,
beginning with segmentation and feature extraction, followed by
dimensionality reduction using UMAP, and final clustering using
K-Means.

3.1 Dataset characteristics

The CHB-MIT pediatric dataset was used to evaluate the proposed
unsupervised clustering approach. We analyzed 576 five-second EEG
segments extracted from 96 pre-ictal windows across 12 pediatric
patients. The demographic information of the 12 patients included is
presented in Table 2, and their ages ranged from 1.5 to 10 years. 96
pre-ictal windows (with a duration of 30 s each) were extracted, and
further split into 576 non-overlapping segments of 5 s for analysis.

3.2 Preprocessing and signal normalization

The EEG signals underwent standard preprocessing, including
Z-score normalization. As shown in Figure 2, the distribution of
normalized channel means confirmed successful centering and scaling
across all segments, ensuring comparability across channels
and patients.

3.3 Feature reduction using PCA

To manage the high dimensionality of extracted EEG features
(1,440 features per segment), Principal Component Analysis (PCA)
was applied. Figure 3 displays the cumulative variance explained by
the principal components, demonstrating that a small number of
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Silhouette / DB / CH

FIGURE 1
Schematic summary description of the pipeline stages of the
proposed clustering potential.

TABLE 2 Demographic and segment distribution across CHB-MIT
pediatric patients.

Patient Age Gender  30-s pre- 5-s
ID (years) ictal segments
windows (=
windows X
6)
chb05 7 F 7 42
chbo6 15 F 7 42
chb08 3.5 M 5 30
chb09 10 F 5 30
chb10 3 M 9 54
chb12 2 F 9 54
chb13 3 F 8 48
chb14 9 F 9 54
chb16 7 F 9 54
chb20 6 F 7 42
chb22 9 F 10 60
chb23 6 F 11 66
Total - — 96 576
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FIGURE 2
Distribution of normalized channel means after Z-score scaling.
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components captured the majority of the variance. This supported the
feasibility of dimensionality reduction before clustering.

3.4 Artifact removal via ICA

Independent Component Analysis (ICA) was applied to reduce
physiological and environmental artifacts. Table 3 quantifies the
impact of ICA, with a 34% reduction in median line-noise amplitude
and an 85% reduction in blink artifact frequency. Figure 4 provides a
visual comparison of EEG traces before and after ICA cleaning,
illustrating significant improvements in signal quality.

3.5 Cluster number optimization

The Elbow Method and Silhouette Score analysis were employed
to identify the best number of EEG clusters. Figure 4 shows both
measures, and overall k = 4 results in the best clustering in terms of
simultaneously its compactness and separation between clusters.

3.6 EEG feature space visualization and
cluster structure

Nonlinear dimensionality reduction with UMAP was used to map
the high-dimensional EEG features into a 2D space. Figure 5 illustrates
the resulting embedding, with clusters obtained using K-Means
clustering (k = 4), on which we observe that the four clusters are well-
separated and internally consistent, that is, meaningful latent structure
characterizes the pre-ictal EEG signals.

3.7 Cluster quality evaluation before and
after noise filtering

Table 4 provides cluster quality statistics before and after
removing small clusters (i.e., <20 points). Although there was a slight
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05

decrease in the Silhouette Score (from 0.779 to 0.573). The Davies—
Bouldin and the Calinski-Harabasz values did not change,
suggesting that core cluster stability was preserved following removal

-

of noisy outliers. Table 5 is summarizing cluster quality

across methods.

3.8 Temporal transition patterns

Analysis of cluster sequences across consecutive 5-s segments
revealed structured, non-random transitions (Figure 6). For example,
clusters 1 and 2 frequently transitioned into cluster 3 (>40% of
observed transitions), whereas direct transitions from cluster 4 to
cluster 1 were rare (<5%). Smoothing the cluster labels across two
segments reduced noise-driven oscillations and yielded more
consistent trajectories within pre-ictal windows. These findings
suggest that the clusters do not occur in isolation but form preferred
temporal pathways, consistent with the hypothesis that seizure onset
involves progressive transitions across metastable states.

3.9 Comparison with prior work

Table 6 highlights key limitations of previous unsupervised EEG
studies and summarizes how the study’s proposed pipeline addresses
them. These include avoiding manual parameter tuning per subject,
eliminating the need for expert-labeled training data, and
systematically reporting clustering quality—factors that collectively
enhance reproducibility and scalability.

4 Discussion

The findings demonstrate that our method can uncover distinct
pre-ictal EEG microstates without manual labels or GPU resources.
By leveraging a high-dimensional feature space reduced through PCA
and UMAP, and applying K-Means clustering. The methods
successfully uncovered distinct and physiologically meaningful EEG
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PCA preserved more than 95% of the variance, confirming stable dimensionality reduction.

TABLE 3 Quantitative impact of ICA cleaning on EEG artifacts.

Metric Pre-clean Post-clean

Median line-noise 2.6 pV 1.7 pv —34%
amplitude (49—

51 Hz)

Blink artifact count 34 0.5 —85%
per30s

Pre- and post-cleaning comparison of EEG signal artifacts, including line noise amplitude
and blink artifact counts, demonstrating the efficacy of ICA.

patterns preceding seizure onset. Importantly, making it practical for
scalable deployment in pediatric neurodiagnostics.

This project analyzed 576 five-second EEG segments derived from
96 pre-ictal windows across 12 pediatric patients aged 1.5 to 10 years
(Table 1). This age range captures a critical developmental window
during which brain maturation and cortical rhythms are rapidly
evolving, influencing both baseline and pathological EEG dynamics.
Segmenting pre-ictal windows into smaller intervals preserved
temporal resolution while facilitating efficient computation. The
diversity in patient ages and segment distribution reflects validity,
improving generalizability beyond single-patient or single-age group
models often seen in prior works (11).

Standardization and artifact removal steps (Z-score normalization,
PCA, ICA) ensured signal comparability and stability, which was
particularly important given the variability of pediatric EEG. With this
foundation, the clustering revealed four distinct pre-ictal microstates,
supporting the view that seizure onset is preceded by transitions
through discrete brain states rather than a uniform pre-ictal condition.

UMAP embedding of EEG features into two dimensions
revealed well-separated and internally coherent clusters (Figure 7).
The existence of such separable structures in pre-ictal EEG supports
the hypothesis that there are physiologically distinct latent states
that precede seizure onset. These results are consistent with prior
reports of synchronization, spectral power, and entropy
modifications preceding seizure onset (16, 17). From a medical
point of view, identifying such states automatically might provide
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TABLE 4 Cluster quality metrics before and after noise filtering in UMAP
+ K-Means.

Metric Before noise- After filtering
filter clusters < 20 pts
Silhouette 0.779 0.573
Davies-Bouldin 0.481 0.481
Calinski-Harabasz 27657.5 27657.5

early warnings to caregivers and clinicians and better prepare them
for children’s seizures. While the pipeline integrated multiple
feature families, the relative contribution of each group to clustering
performance was not directly tested. Future studies should
incorporate systematic feature ablation or importance ranking
analyses to quantify which descriptors (e.g., spectral vs. entropy vs.
wavelet) are most predictive of pre-ictal microstates. The analyses
would not only refine the feature space but also improve clinical
interpretability by

linking EEG biomarkers to specific

neurophysiological mechanisms. The clustering solution
demonstrated high initial quality (Silhouette Score = 0.779), which
decreased moderately after removal of low-density noise clusters
(Score = 0.573), while Davies-Bouldin and Calinski-Harabasz
scores remained stable (Table 4). This suggests that identified
clusters were not driven by outliers but reflected robust internal
structure. Crucially, the interpretability of features was significantly
increased through systematic noise removal. It may be vital in
clinical settings where false positives are not only a nuisance but
could give rise to alarm fatigue or a premature diagnosis.

In addition to K-Means, we compared clustering outcomes with
DBSCAN and hierarchical clustering. While these baseline methods
produced lower Silhouette Scores and higher Davies-Bouldin Indices,
the results provide important context, showing that K-Means achieved
relatively more compact and separable clusters in this dataset.
Nevertheless, further benchmarking across diverse datasets remains
necessary to establish the robustness of this preference. Future work

should incorporate such comparisons to establish relative advantages
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TABLE 5 Baseline comparison of clustering methods on pre-ictal EEG features.

Method Optimal clusters Silhouette score Davies—Bouldin index Calinski—Harabasz score
K-Means 4 0.573 0.481 27,657.5
DBSCAN 5 0.422 0.635 14,872.1
Hierarchical (Ward) 4 0.448 0.571 18,453.6

in scalability, interpretability, and clinical applicability. Benchmarking

against standard supervised approaches would also clarify whether the
unsupervised pipeline provides added value beyond conventional
predictive models.
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The outcomes provide significant data to the neurophysiological
knowledge of epilepsy as well as the clinical treatment of pediatric
seizure disorders. The detection of distinct pre-ictal EEG clusters is
consistent with the dynamical systems theory of epilepsy. The seizures
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FIGURE 6
Transition probability matrix of pre-ictal EEG clusters.
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are not mere instantaneous events but appear as a part of an ongoing
transition between several disjointed hidden brain states (28). These
four clusters may reflect latent pre-ictal EEG microstates, a concept
described in the EEG microstate literature (6). Microstates are
transient, quasi-stable patterns of whole-brain activity that have been
linked to functional brain networks, and alterations in their duration
or occurrence have been associated with neurological disorders. The
emergence of four distinct clusters in this study is consistent with the
hypothesis that seizure generation could involve transitions among
multiple metastable network states, rather than a simple linear
progression (29). Nonetheless, the interpretation remains speculative,
given that without further evidence from, e.g., cross-subject
reproducibility, behavioral correlates, or multimodal validation. The
physiologic meaning of the clusters cannot be established. In future
studies, these findings should be tested for their stability within
subjects and investigated to determine whether they actually relate to
pre-ictal microstates or other EEG phenomena. The results should
be considered hypothesis-generating rather than unequivocal support
for certain neurophysiological mechanisms.

From a clinical diagnosis perspective, the proposed clustering
pipeline enables unsupervised and scalable discovery of pre-ictal EEG
states in the absence of seizure-specific labels or expert annotations.
A major benefit of this fact in pediatric care is that younger patients
are often unable to describe their aura or prodromal symptoms
consistently. Also, the amount of data in an EEG recording means that
manual review would not be appropriate (4). The method introduces
a novel approach to the development of multistage seizure prediction
systems by automatically capturing informative pre-ictal states. The
systems may alert caregivers and providers when a child progresses
into a state of higher risk, allowing early intervention (e.g., giving
medication or safety proofing the environment) (24).

In terms of scalability and healthcare deployment, the design of
the pipeline—based solely on CPU-compatible and open-source
components—makes it suitable for integration into edge computing
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environments, including wearable devices and portable EEG monitors
(15, 20). Unlike supervised deep learning models, which require GPU
acceleration and retraining for each patient or site. The workflow
generalizes across patients without expert calibration, supporting
reproducibility (3, 9). This is valuable for real-time monitoring in
ambulatory settings, rural clinics, or home care environments, where
computing resources may be limited and consistent neurologist access
is not guaranteed.

Importantly, this study targets pediatric EEG, a population that
presents unique technical challenges due to high inter-subject
variability, developmental effects on EEG rhythms, and increased
artifact contamination (5). The successful application of preprocessing
techniques—such as ICA for artifact removal and Z-score
normalization—demonstrates the robustness of the pipeline in
managing noisy pediatric data (14). Furthermore, the consistent
clustering structure observed after dimensionality reduction and
quality validation (21, 22) suggests that the extracted patterns are not
only statistically sound but likely reflect real, underlying
neurophysiological states with clinical relevance.

By addressing some limitations in prior EEG clustering literature,
the proposed methodology offers a reproducible framework that
future researchers can benchmark against. At this point, the present
work should be regarded as a methodological step in connecting
theory with clinical work. As a proof of concept to guide interpretable
seizure prediction, additional validation on larger and diverse patient
cohorts is needed before clinical application. While this work offers a
straightforward, replicable, and computationally-efficient pipeline for
unsupervised detection of pre-ictal EEG microstates in pediatric
subjects, several caveats should be discussed to guide future work and
application. The restricted age range was from 1.5 to 10 years, and
diagnosis may have ecological validity implications and may not well
represent the entire range of pediatric epilepsy syndromes. Given that
all data were acquired at a single institution—Boston Children’s
Hospital, with sequential acquisition from a single scanner, there may
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TABLE 6 Summary of preprocessing pipeline stages for pediatric pre-ictal EEG.

Limitations observed across prior work

Typical consequence

Representative examples

Heavy dependence on expert labels—even “semi-/unsupervised”
pipelines generally require >100 gold-standard segments per class or

seizure-level labels.

Scalability is bounded by the neurologist’s annotation

time; cross-site deployment is slow.

Nejedly 2023 (4); Chakrabarti et al. (37);
Georgis-Yap 2023 (2)

Patient- or seizure-specific tuning only—most methods optimize

thresholds or cluster counts within each subject.

Poor generalization; labor-intensive recalibration for

every new cohort.

Quercia 2021 (9); von Wegner et al. (38);
Leal (8)

Fixed or hand-set hyper-hyperparameters in unsupervised
clustering—e.g., DBSCAN g, K-Means k, t-SNE perplexity are

chosen heuristically or searched once.

Results are sensitive to analyst bias; the stability of

discovered patterns is rarely reported.

Du 2024 (3, 8) (optimizes DBSCAN but
not manifold params); Ein Shoka et al. (39)

Narrow evaluation focus (seizure prediction/diagnosis only)—the
community largely ignores broader EEG pattern mining outside

ictal contexts.

Valuable non-seizure-related micro-states or artifact
sub-types remain uncharted, limiting downstream

reuse of EEG archives.

Liu 2024 (10); most seizure-centric studies

Small or homogeneous datasets—< 10 k segments, single hospital or

single acquisition system.

Statistical power and ecological validity are limited;

models risk over-fitting site-specific noise.

Nearly all cited works except Nejedly 2023
(4) iEEG cohort

Cluster-quality reporting is minimal—Silhouette, Davies-Bouldin

etc. are seldom provided, and noise clusters are not handled

systematically.

Readers cannot judge whether structures are

meaningful or artifactual.

Sparse across the corpus

Comparison of methodological limitations in previous literature and the corresponding improvements incorporated in the proposed workflow.

also be site-specific biases limiting the generalizability. Future work
will need to test the proposed pipeline on larger, multi-center datasets
with ethnically diverse pediatric populations and a spectrum of
clinical presentations to ensure generalization across recording
conditions and epilepsy syndromes.

Although this study primarily treated clusters as static categories,
a minimal temporal analysis of consecutive 5-s segments indicated that
transitions between states were structured rather than random. Certain
clusters, such as 1 and 2, were more likely to evolve into cluster 3,
whereas others (e.g., cluster 4 to 1) were rarely observed (Figure 6).
This pattern supports the construction that seizure onset may involve
preferred trajectories through metastable EEG states. While
preliminary, these observations strengthen the case for extending the
pipeline with formal temporal modeling approaches such as Hidden
Markov Models, recurrence plots, or state-space reconstructions in
future work. The models would align with dynamical systems
perspectives of epilepsy, where seizures are understood as transitions
across metastable attractor states, and could improve prediction
accuracy by detecting trajectories rather than isolated states.

The study demonstrated that seizures emerge from slow
transitions across metastable brain states within a dynamical systems
framework (28). Future extensions of this work should incorporate
temporal modeling approaches—such as Hidden Markov Models,
recurrence plots, or dynamic graph-based methods. To capture the
evolving trajectory through microstates, thereby enriching the
predictive value of the clustering outputs.

The present investigation was limited to pre-ictal EEG epochs and
was not compared to inter-ictal or post-ictal epochs. Although this
circumvents possible class imbalance, it restricts the capacity to
establish whether the microstates identified are genuinely unique for
the pre-ictal state. Incorporating control states in subsequent pipeline
steps might give a framework to differentially label EEG states that are
both discriminant and time-wise predictive of seizures.

The statically extracted features treat all 5 s independently and do
not explicitly model the dynamics within the window. In the future,
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time-varying features (for example, phase-amplitude coupling,
microstate duration, or spectral evolution) can be introduced to
capture the nonlinear temporal dynamics of seizure precursors
more effectively.

The physiologic designation of each identified cluster is left to
human interpretation. It is not possible to give an absolute
identification of clusters with functional or clinical labels without the
ground truth. Future investigation could conduct the post hoc
annotation of cluster types using expert input, behavioral correlates to
enhance interpretability, and clinical translation.

The proposed pipeline, while computationally inexpensive and
CPU compatible, has not been evaluated in online clinical
applications. Future studies using the pipeline will be possible with
wearable EEG devices of the future or the early version of a bedside
monitoring system in evaluating the pipeline’s latency and
robustness. Integration with edge computing or mobile health
platforms will require adaptation for streaming data and
continuous analysis.

Children exhibit dynamic developmental changes in cortical
rhythms, especially over months or years. Because the model does not
account for developmental changes, future research should explore
adaptive frameworks that recalibrate clustering as a childs EEG
matures, ensuring long-term reliability.

These sources of future research are consistent with the
recently proposed dynamical systems framework for seizure
generation (30). The paper posits that seizures occur through
progression in high-dimensional state space via bifurcations
and transitions. The unsupervised clustering pipeline provides
a platform for empirically detecting these hidden microstates.
However, it needs state-space reconstruction, attractor
modeling, and bifurcation analysis to formally represent system
dynamics leading up to ictal onset. This type of integration
would connect theoretical models and empirical EEG data, and
may result in more accurate and actionable seizure prediction
systems (31).
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5 Conclusion

This work presented the proposed workflow for unsupervised
clustering of pre-ictal EEG data in pediatric epilepsy. Using a structured,
five-stage  workflow—comprising data segmentation, signal
preprocessing, multimodal feature extraction, dimensionality reduction,
and K-Means clustering—the work demonstrated the ability to uncover
robust and physiologically meaningful microstates that precede seizure
onset. Notably, the method operates entirely on CPU-based resources
and requires no expert-labeled data, making it highly suitable for real-
time deployment in diverse clinical and resource-limited environments.

The approach identified four distinct clusters of pre-ictal EEG
segments, which proved stable across multiple validation metrics. The
pipeline also addressed many common shortcomings of the EEG
clustering literature by not requiring patient-specific tuning,
consistently reporting clustering quality. Also, it was applied to a
homogeneous pediatric population.

The ictal EEG microstates discovered herein probably correspond
to transitional microshifts in cortical excitability and connectivity.
They are consistent with the dynamical systems model of ictogenesis.
In the clinical context, this model can support next-generation label-
free and generalizable seizure forecasting systems that can be integrated
into wearables or ambulatory EEG systems. The low computational
burden and generalizability of the method is especially appealing for
children who often impose compliance and signal quality issues.

One principal interpretation of these clusters is still reasonably
speculative. Post hoc expert annotation, behavioral correlates (e.g.,
reported pre-seizure symptoms) or multimodal biomarkers (e.g.,
fMRI, autonomic signals) could be used to validate the external
meaning of each cluster. Shaping into the model’s 3D shape in this way
would improve clinical interpretability and guarantee that the
detected microstates are related to functionally meaningful
brain states.

In conclusion, the study is a methodological step forward
under the constraint of clinical utility in EEG-based seizure
prediction. It forms the basis for future studies of unsupervised
EEG state discovery and paves the way for the design of
interpretable, scalable patient-centered neurotechnology in
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pediatric neurology. In resource-limited settings or for at-home
use, these tools would allow us to monitor the pre-ictal EEG state
over a prolonged period of time under general out-of-specialist
supervision. This type of system allows caregivers to give rescue
medication and ensure that the environment is safe. This possibility
of cheap real-time integration highlights the importance of this
pipeline in the context of pediatric epilepsy care, where safety and
quick intervention are critical.
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