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Background: Early identification of seizures in children is important for safety, 
intervention success, and quality of life improvement, because many children are 
unable to reliably communicate sensed pre-ictal warning features. Recognition 
of pre-ictal EEG microstates is a path toward wearable and bedside monitors that 
may deliver actionable alerts to caregivers. However, most existing approaches 
remain constrained by manual labels, expert calibration, or computationally 
expensive models with limited clinical utility.
Methods: The study developed an unsupervised clustering pipeline for pediatric 
pre-ictal EEG using PCA, UMAP, and K-Means, without the need for manual 
annotations or GPU resources. The CPU-based and open-source design 
makes the workflow accessible and potentially adaptable for future real-time 
neurodiagnostic applications.
Results: PCA retained >95% variance, confirming stable feature extraction. ICA 
reduced blink and line-noise artifacts by 85 and 34%, respectively, improving 
signal quality. Optimal cluster number (k = 4) was identified via Elbow and 
Silhouette methods, revealing distinct and physiologically meaningful EEG 
microstates preceding seizure onset. UMAP embeddings showed well-separated 
clusters with a high initial Silhouette Score (0.779), indicating robust internal 
structure. Noise removal improved interpretability without compromising 
cluster validity.
Conclusion: The unsupervised nature of the study approach provides 
experimental evidence for the demarcation of a number of distinct pre-ictal 
states. These are associated with changes in cortical excitability and network 
synchrony, consistent with the predicted dynamics of a model of epilepsy. This 
study should be regarded as a proof-of-concept that advances methodological 
aspects of unsupervised EEG clustering within this specific dataset. The findings 
are hypothesis-generating rather than conclusive, providing a preliminary 
platform for exploring automatic pre-ictal state monitoring without expert input.
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1 Introduction

Epilepsy is a chronic neurological disease. It is demonstrated by 
repeated and unprovoked seizures, with a projected prevalence of 1% 
in the general population worldwide. It is a severe condition, especially 
in children. Early identification of seizures and the ability to predict 
them can have a great influence on the prognosis and treatment, 
reduce the risk of injury, and improve quality of life (1). But the 
significant between-interval and the age-dependent mixing nature of 
pediatric EEG make it very difficult to predict seizures. Seizures are 
preceded by subtle and complicated neurophysiological changes—
denoted the pre-ictal state—that can be detected in the scalp EEG (2).

Harnessing these changes could enable anticipatory interventions. 
Most current detection systems require seizure-specific labels and rely 
on supervised learning models that are not readily generalizable (3). 
Conventional seizure prediction pipelines rely on large manual 
annotations, which are time-consuming, expensive, and suffer from 
inter-rater differences (4). Furthermore, many current approaches 
hinge on heavyweight models, which require GPU resources. These 
constraints limit widespread real-time clinical deployment, 
particularly in pediatric EEG, which shows high variability due to 
developmental changes and frequent artifacts (5).

Unsupervised learning methods have become increasingly 
attractive alternatives in recent years (35, 36). They allow for 
automated learning of informative EEG patterns without the need for 
labeled seizures. Clustering techniques, in particular, aim to identify 
latent microstates or physiological regimes that may be predictive of 
seizures (6, 7). However, these efforts face critical limitations. First, 
many studies optimize clustering parameters (e.g., DBSCAN epsilon, 
k in K-Means, or t-SNE perplexity) heuristically or per subject, 
limiting reproducibility and cross-subject generalization (8, 9). 
Second, the lack of standardized metrics to evaluate cluster quality—
such as Silhouette Score or Davies–Bouldin Index—impedes objective 
comparison of methods. Third, unsupervised pipelines often exclude 
broader EEG states, focusing narrowly on seizure detection, thus 
overlooking potentially informative pre-ictal microstates (10). Finally, 
much of the literature is based on adult or small homogeneous 
datasets, undermining ecological validity and limiting clinical 
applicability in pediatrics (11). Recent studies have also emphasized 
integrating EEG preprocessing and biosignal coherence to enhance 
neurophysiological interpretability (32–34).

To address these critical gaps, this study presents a reproducible, 
lightweight, CPU-based pipeline for unsupervised clustering of 
pre-ictal EEG in children. They are using the widely used CHB-MIT 
Scalp EEG database (12). The pipeline is designed to uncover latent 
structure in pre-seizure brain activity without any seizure-specific 
labels, expert tuning, or GPU resources.

The proposed method consists of five core stages. First, 
segmentation by extracting 30-s pre-ictal windows and dividing them 
into 5-s EEG segments to balance temporal resolution and 
computational efficiency (13). Second, preprocessing by applying 
Z-score normalization and ICA-based artifact removal to clean the 
signal and standardize features across subjects (14, 15). Third, feature 
extraction by generating a comprehensive 1,440-dimensional feature 
vector per segment, integrating time-domain statistics, spectral 
features across EEG bands, entropy measures, Hjorth parameters, and 
wavelet coefficients (16–18). Fourth, dimensionality reduction by 
using Principal Component Analysis (PCA) followed by Uniform 

Manifold Approximation and Projection (UMAP) to reduce 
redundancy and preserve the underlying data structure for effective 
clustering (19, 20). Finally, clustering and validation by employing 
K-Means to identify EEG microstates and evaluating cluster quality 
using Silhouette Score, Davies–Bouldin Index, and Calinski–Harabasz 
Score (21, 22).

The main contributions of this work include the development of 
a fully reproducible, open-source pipeline for EEG pattern discovery 
using only CPU-based computations, supporting real-time and large-
scale deployment. Also, the elimination of the need for manual labels 
or subject-specific tuning enhances generalizability and usability in 
clinical research. Furthermore, the combination of the multimodal 
EEG features reflecting the time and frequency domain dynamics 
appears to be  altered during pre-ictal states. Secondly, strict 
quantitative validation of the clusters leads to robust, interpretable, 
and clinically meaningful patterns. Last, a comparison with previous 
EEG clustering studies demonstrates how this pipeline overcomes 
empowerment constraints in scalability, reproducibility, and 
validation. Overall, the present study provides a reliable and cost-
effective approach to EEG microstate analysis in pediatric epilepsy. By 
automatically identifying hidden structure in pre-ictal EEG without 
any expert feature engineering. It can enable additional opportunities 
in large-scale seizure prediction, neurophysiological experimentation, 
and clinical intervention developments.

2 Methods

2.1 Participants

EEG data were obtained from the publicly available CHB-MIT 
Scalp EEG Database on PhysioNet (12, 23). The dataset includes long-
term scalp EEG recordings from pediatric patients with intractable 
epilepsy, recorded at the Children’s Hospital Boston. Clinical 
annotations of seizure onset and offset were provided for each subject. 
They were facilitating reproducible research in seizure prediction and 
detection. Twelve pediatric patients (mean age = 5.79 ± 2.75 years; 
range = 1.5–10 years) were selected from the CHB-MIT Scalp EEG 
Database. The cohort included 10 females and 2 males.

A total of 96 pre-ictal 30-s EEG windows (8.00 ± 1.87 per subject) 
were extracted, corresponding to 576 non-overlapping 5-s segments 
(48.00 ± 10.42 per subject). The full demographic and data distribution 
are summarized in Table 1.

TABLE 1  Demographic and data distribution of pediatric subjects 
included in EEG clustering analysis.

Variable Mean ± SD Range

Age (years) 5.79 ± 2.75 1.5–10

Number of pre-ictal 

windows

8.00 ± 1.87 5–11

Number of 5-s segments 48.00 ± 10.42 30–66

Gender (F/M) 10 / 2 —

Summary of age, gender, and number of extracted pre-ictal EEG segments for each of the 12 
pediatric patients chosen from the CHB-MIT Scalp EEG Database. Each 30-s pre-ictal 
window was divided into six 5-s non-overlapping segments, resulting in a total of 576 
segments.
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2.2 Overview of the workflow

This study introduces our pipeline for unsupervised clustering of 
pediatric pre-ictal EEG using only CPU-based computations. The 
pipeline consists of five major stages: data segmentation, signal 
preprocessing, feature extraction, dimensionality reduction, and 
clustering. Each component was selected based on prior validated 
practices to ensure scalability, reproducibility, and clinical relevance (2, 4).

2.3 Dataset and segmentation

The CHB-MIT Scalp EEG Database was used, a widely accepted 
resource for pediatric epilepsy research (12). The study selected 12 
patients and extracted 30-s pre-ictal windows before seizure onset, as 
annotated by clinical experts. Each window was divided into six 
non-overlapping 5-s segments with 576 samples. This segmentation 
strategy balances temporal resolution and computational tractability, 
consistent with earlier studies in seizure prediction (13, 24).

2.4 EEG preprocessing

All EEG signals were preprocessed using the MNE-Python 
toolbox (15). Z-score normalization was applied across channels to 
standardize amplitude scales and support cross-subject comparability 
(14). The signals were then bandpass filtered between 0.5–45 Hz to 
retain relevant brain rhythms while eliminating low-frequency drifts 
and high-frequency artifacts (25). To further improve signal quality, 
Independent Component Analysis (ICA) was employed to remove 
ocular and line-noise artifacts. ICA is effective for blind source 
separation in EEG (26), particularly in pediatric populations (5).

2.5 Feature extraction

Each 5-s segment was converted into a 1,440-dimensional feature 
vector. This included time-domain statistics (mean, variance, 
skewness, kurtosis), Hjorth parameters (mobility and complexity), and 
entropy-based descriptors. They have been shown to capture seizure-
related EEG dynamics (16). Each feature group was selected to capture 
complementary neurophysiological information. Statistical features 
summarize global signal properties and asymmetry, which may reflect 
shifts in cortical excitability (17). Spectral power across canonical 
bands (δ, θ, α, β, γ) is known to change systematically in pre-ictal 
states, with increases in δ/θ and decreases in α/β reported in pediatric 
epilepsy. Entropy measures quantify signal irregularity and complexity, 
which may index loss of normal neural variability preceding seizures. 
Wavelet coefficients provide joint time–frequency resolution, enabling 
detection of transient bursts and evolving rhythms that static spectra 
may miss. This multimodal feature design aimed to maximize 
sensitivity to diverse pre-ictal EEG signatures (18, 27).

2.6 Dimensionality reduction

To reduce the computational burden and enhance cluster 
separability, a two-step dimensionality reduction strategy was 

adopted. First, Principal Component Analysis (PCA) was applied to 
capture over 95% of the variance while minimizing redundancy 
(19). Next, Uniform Manifold Approximation and Projection 
(UMAP) was used to project the data into a two-dimensional space. 
UMAP maintains local and global structure in nonlinear data and 
has been successfully utilized in biomedical visualization (20). The 
parameters were n_neighbors = 15, min_dist = 0.1, and 
metric Euclidean.

2.7 Clustering method

To provide context for the chosen method, we also implemented 
baseline clustering algorithms commonly used in EEG research, 
including DBSCAN and agglomerative hierarchical clustering. These 
methods were applied to the same UMAP-reduced features, and their 
cluster quality was evaluated using Silhouette Score and Davies–
Bouldin Index. This comparative analysis allows for assessment of 
whether K-Means offers advantages over alternative approaches in this 
dataset (6, 7). The number of clusters was determined by the Elbow 
Method and Silhouette Score method, which both suggested four as 
the optimal cluster. This resulted in clusters fit for discerning relevant 
latent patterns in pre-ictal EEG segments.

2.8 Cluster validation

To guarantee the robustness of the clustering results without being 
influenced by the noise. The study calculated three classical metrics: 
Silhouette Score, Davies-Bouldin Index, and Calinski–Harabasz Score. 
These measures assess internal cluster cohesion, external cluster 
separation, and overall dispersion shape (21, 22). Clusters with fewer 
than 20 points were removed, while stability across runs hardly 
deteriorated, underlying the reliability of the clustered assignments.

2.9 Minimal temporal transition analysis

To explore whether the identified clusters reflect sequential 
dynamics rather than isolated categories, we conducted a minimal 
temporal analysis. Cluster assignments for consecutive 5-s segments 
within each 30-s pre-ictal window were examined. Transition 
probability matrices were computed to quantify how often each cluster 
was followed by another across time. In addition, a simple moving-
average smoothing (window length = 2 segments) was applied to the 
cluster sequence to reduce spurious fluctuations. These exploratory 
analyses were intended to provide initial evidence that the 
unsupervised clustering framework can be  extended toward 
temporal modeling.

2.10 Comparison with prior work

The proposed pipeline addresses key limitations observed in 
recent EEG clustering literature. Many prior works rely on extensive 
manual labeling (4), subject-specific tuning (9), or arbitrary 
parameter selection (8). In contrast, our approach minimizes manual 
intervention, generalizes across subjects, and systematically reports 
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cluster quality. This makes the pipeline well-suited for large-scale, 
multi-center studies on EEG pattern discovery and 
seizure forecasting.

2.11 Ethical considerations

This study utilized the publicly available, de-identified CHB-MIT 
Scalp EEG Database, collected by the Children’s Hospital Boston and 
hosted on PhysioNet (12, 23). Recordings include no personal 
identifying information, and all protected health data were replaced 
with surrogate data to ensure participant anonymity. Data collection 
complied with ethical standards and regulatory protocols overseen by 
Boston Children’s Hospital, which operates under Federal-Wide 
Assurance (FWA 00002071, IRB 00000352) in accordance with the 
Belmont Report and US Department of Health and Human Services 
policies. Because our work employs only retrospective, fully 
anonymized secondary data, it is exempt from additional Institutional 
Review Board (IRB) review. Nonetheless, it adheres to the principles 
of the Declaration of Helsinki and aligns with the original data 
custodians’ ethical guidelines.

3 Results

We applied the proposed workflow to pre-ictal EEG data. The 
workflow, illustrated in Figure 1, outlines the complete procedure, 
beginning with segmentation and feature extraction, followed by 
dimensionality reduction using UMAP, and final clustering using 
K-Means.

3.1 Dataset characteristics

The CHB-MIT pediatric dataset was used to evaluate the proposed 
unsupervised clustering approach. We analyzed 576 five-second EEG 
segments extracted from 96 pre-ictal windows across 12 pediatric 
patients. The demographic information of the 12 patients included is 
presented in Table 2, and their ages ranged from 1.5 to 10 years. 96 
pre-ictal windows (with a duration of 30 s each) were extracted, and 
further split into 576 non-overlapping segments of 5 s for analysis.

3.2 Preprocessing and signal normalization

The EEG signals underwent standard preprocessing, including 
Z-score normalization. As shown in Figure  2, the distribution of 
normalized channel means confirmed successful centering and scaling 
across all segments, ensuring comparability across channels 
and patients.

3.3 Feature reduction using PCA

To manage the high dimensionality of extracted EEG features 
(1,440 features per segment), Principal Component Analysis (PCA) 
was applied. Figure 3 displays the cumulative variance explained by 
the principal components, demonstrating that a small number of 

FIGURE 1

Schematic summary description of the pipeline stages of the 
proposed clustering potential.

TABLE 2  Demographic and segment distribution across CHB-MIT 
pediatric patients.

Patient 
ID

Age 
(years)

Gender 30-s pre-
ictal 

windows

5-s 
segments 

(= 
windows × 

6)

chb05 7 F 7 42

chb06 1.5 F 7 42

chb08 3.5 M 5 30

chb09 10 F 5 30

chb10 3 M 9 54

chb12 2 F 9 54

chb13 3 F 8 48

chb14 9 F 9 54

chb16 7 F 9 54

chb20 6 F 7 42

chb22 9 F 10 60

chb23 6 F 11 66

Total — — 96 576
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components captured the majority of the variance. This supported the 
feasibility of dimensionality reduction before clustering.

3.4 Artifact removal via ICA

Independent Component Analysis (ICA) was applied to reduce 
physiological and environmental artifacts. Table  3 quantifies the 
impact of ICA, with a 34% reduction in median line-noise amplitude 
and an 85% reduction in blink artifact frequency. Figure 4 provides a 
visual comparison of EEG traces before and after ICA cleaning, 
illustrating significant improvements in signal quality.

3.5 Cluster number optimization

The Elbow Method and Silhouette Score analysis were employed 
to identify the best number of EEG clusters. Figure 4 shows both 
measures, and overall k = 4 results in the best clustering in terms of 
simultaneously its compactness and separation between clusters.

3.6 EEG feature space visualization and 
cluster structure

Nonlinear dimensionality reduction with UMAP was used to map 
the high-dimensional EEG features into a 2D space. Figure 5 illustrates 
the resulting embedding, with clusters obtained using K-Means 
clustering (k = 4), on which we observe that the four clusters are well-
separated and internally consistent, that is, meaningful latent structure 
characterizes the pre-ictal EEG signals.

3.7 Cluster quality evaluation before and 
after noise filtering

Table  4 provides cluster quality statistics before and after 
removing small clusters (i.e., <20 points). Although there was a slight 

decrease in the Silhouette Score (from 0.779 to 0.573). The Davies–
Bouldin and the Calinski–Harabasz values did not change, 
suggesting that core cluster stability was preserved following removal 
of noisy outliers. Table  5 is summarizing cluster quality 
across methods.

3.8 Temporal transition patterns

Analysis of cluster sequences across consecutive 5-s segments 
revealed structured, non-random transitions (Figure 6). For example, 
clusters 1 and 2 frequently transitioned into cluster 3 (>40% of 
observed transitions), whereas direct transitions from cluster 4 to 
cluster 1 were rare (<5%). Smoothing the cluster labels across two 
segments reduced noise-driven oscillations and yielded more 
consistent trajectories within pre-ictal windows. These findings 
suggest that the clusters do not occur in isolation but form preferred 
temporal pathways, consistent with the hypothesis that seizure onset 
involves progressive transitions across metastable states.

3.9 Comparison with prior work

Table 6 highlights key limitations of previous unsupervised EEG 
studies and summarizes how the study’s proposed pipeline addresses 
them. These include avoiding manual parameter tuning per subject, 
eliminating the need for expert-labeled training data, and 
systematically reporting clustering quality—factors that collectively 
enhance reproducibility and scalability.

4 Discussion

The findings demonstrate that our method can uncover distinct 
pre-ictal EEG microstates without manual labels or GPU resources. 
By leveraging a high-dimensional feature space reduced through PCA 
and UMAP, and applying K-Means clustering. The methods 
successfully uncovered distinct and physiologically meaningful EEG 

FIGURE 2

Distribution of normalized channel means after Z-score scaling.
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patterns preceding seizure onset. Importantly, making it practical for 
scalable deployment in pediatric neurodiagnostics.

This project analyzed 576 five-second EEG segments derived from 
96 pre-ictal windows across 12 pediatric patients aged 1.5 to 10 years 
(Table 1). This age range captures a critical developmental window 
during which brain maturation and cortical rhythms are rapidly 
evolving, influencing both baseline and pathological EEG dynamics. 
Segmenting pre-ictal windows into smaller intervals preserved 
temporal resolution while facilitating efficient computation. The 
diversity in patient ages and segment distribution reflects validity, 
improving generalizability beyond single-patient or single-age group 
models often seen in prior works (11).

Standardization and artifact removal steps (Z-score normalization, 
PCA, ICA) ensured signal comparability and stability, which was 
particularly important given the variability of pediatric EEG. With this 
foundation, the clustering revealed four distinct pre-ictal microstates, 
supporting the view that seizure onset is preceded by transitions 
through discrete brain states rather than a uniform pre-ictal condition.

UMAP embedding of EEG features into two dimensions 
revealed well-separated and internally coherent clusters (Figure 7). 
The existence of such separable structures in pre-ictal EEG supports 
the hypothesis that there are physiologically distinct latent states 
that precede seizure onset. These results are consistent with prior 
reports of synchronization, spectral power, and entropy 
modifications preceding seizure onset (16, 17). From a medical 
point of view, identifying such states automatically might provide 

early warnings to caregivers and clinicians and better prepare them 
for children’s seizures. While the pipeline integrated multiple 
feature families, the relative contribution of each group to clustering 
performance was not directly tested. Future studies should 
incorporate systematic feature ablation or importance ranking 
analyses to quantify which descriptors (e.g., spectral vs. entropy vs. 
wavelet) are most predictive of pre-ictal microstates. The analyses 
would not only refine the feature space but also improve clinical 
interpretability by linking EEG biomarkers to specific 
neurophysiological mechanisms. The clustering solution 
demonstrated high initial quality (Silhouette Score = 0.779), which 
decreased moderately after removal of low-density noise clusters 
(Score = 0.573), while Davies–Bouldin and Calinski–Harabasz 
scores remained stable (Table  4). This suggests that identified 
clusters were not driven by outliers but reflected robust internal 
structure. Crucially, the interpretability of features was significantly 
increased through systematic noise removal. It may be  vital in 
clinical settings where false positives are not only a nuisance but 
could give rise to alarm fatigue or a premature diagnosis.

In addition to K-Means, we compared clustering outcomes with 
DBSCAN and hierarchical clustering. While these baseline methods 
produced lower Silhouette Scores and higher Davies–Bouldin Indices, 
the results provide important context, showing that K-Means achieved 
relatively more compact and separable clusters in this dataset. 
Nevertheless, further benchmarking across diverse datasets remains 
necessary to establish the robustness of this preference. Future work 
should incorporate such comparisons to establish relative advantages 

TABLE 4  Cluster quality metrics before and after noise filtering in UMAP 
+ K-Means.

Metric Before noise-
filter

After filtering 
clusters < 20 pts

Silhouette 0.779 0.573

Davies–Bouldin 0.481 0.481

Calinski–Harabasz 27657.5 27657.5

FIGURE 3

PCA preserved more than 95% of the variance, confirming stable dimensionality reduction.

TABLE 3  Quantitative impact of ICA cleaning on EEG artifacts.

Metric Pre-clean Post-clean Δ
Median line-noise 

amplitude (49–

51 Hz)

2.6 μV 1.7 μV −34%

Blink artifact count 

per 30 s

3.4 0.5 −85%

Pre- and post-cleaning comparison of EEG signal artifacts, including line noise amplitude 
and blink artifact counts, demonstrating the efficacy of ICA.
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in scalability, interpretability, and clinical applicability. Benchmarking 
against standard supervised approaches would also clarify whether the 
unsupervised pipeline provides added value beyond conventional 
predictive models.

The outcomes provide significant data to the neurophysiological 
knowledge of epilepsy as well as the clinical treatment of pediatric 
seizure disorders. The detection of distinct pre-ictal EEG clusters is 
consistent with the dynamical systems theory of epilepsy. The seizures 

FIGURE 4

Effectiveness of ICA-based artifact removal on EEG signal quality.

FIGURE 5

2D UMAP embedding of EEG feature space with K-Means clusters (k = 4).

TABLE 5  Baseline comparison of clustering methods on pre-ictal EEG features.

Method Optimal clusters Silhouette score Davies–Bouldin index Calinski–Harabasz score

K-Means 4 0.573 0.481 27,657.5

DBSCAN 5 0.422 0.635 14,872.1

Hierarchical (Ward) 4 0.448 0.571 18,453.6
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are not mere instantaneous events but appear as a part of an ongoing 
transition between several disjointed hidden brain states (28). These 
four clusters may reflect latent pre-ictal EEG microstates, a concept 
described in the EEG microstate literature (6). Microstates are 
transient, quasi-stable patterns of whole-brain activity that have been 
linked to functional brain networks, and alterations in their duration 
or occurrence have been associated with neurological disorders. The 
emergence of four distinct clusters in this study is consistent with the 
hypothesis that seizure generation could involve transitions among 
multiple metastable network states, rather than a simple linear 
progression (29). Nonetheless, the interpretation remains speculative, 
given that without further evidence from, e.g., cross-subject 
reproducibility, behavioral correlates, or multimodal validation. The 
physiologic meaning of the clusters cannot be established. In future 
studies, these findings should be  tested for their stability within 
subjects and investigated to determine whether they actually relate to 
pre-ictal microstates or other EEG phenomena. The results should 
be considered hypothesis-generating rather than unequivocal support 
for certain neurophysiological mechanisms.

From a clinical diagnosis perspective, the proposed clustering 
pipeline enables unsupervised and scalable discovery of pre-ictal EEG 
states in the absence of seizure-specific labels or expert annotations. 
A major benefit of this fact in pediatric care is that younger patients 
are often unable to describe their aura or prodromal symptoms 
consistently. Also, the amount of data in an EEG recording means that 
manual review would not be appropriate (4). The method introduces 
a novel approach to the development of multistage seizure prediction 
systems by automatically capturing informative pre-ictal states. The 
systems may alert caregivers and providers when a child progresses 
into a state of higher risk, allowing early intervention (e.g., giving 
medication or safety proofing the environment) (24).

In terms of scalability and healthcare deployment, the design of 
the pipeline—based solely on CPU-compatible and open-source 
components—makes it suitable for integration into edge computing 

environments, including wearable devices and portable EEG monitors 
(15, 20). Unlike supervised deep learning models, which require GPU 
acceleration and retraining for each patient or site. The workflow 
generalizes across patients without expert calibration, supporting 
reproducibility (3, 9). This is valuable for real-time monitoring in 
ambulatory settings, rural clinics, or home care environments, where 
computing resources may be limited and consistent neurologist access 
is not guaranteed.

Importantly, this study targets pediatric EEG, a population that 
presents unique technical challenges due to high inter-subject 
variability, developmental effects on EEG rhythms, and increased 
artifact contamination (5). The successful application of preprocessing 
techniques—such as ICA for artifact removal and Z-score 
normalization—demonstrates the robustness of the pipeline in 
managing noisy pediatric data (14). Furthermore, the consistent 
clustering structure observed after dimensionality reduction and 
quality validation (21, 22) suggests that the extracted patterns are not 
only statistically sound but likely reflect real, underlying 
neurophysiological states with clinical relevance.

By addressing some limitations in prior EEG clustering literature, 
the proposed methodology offers a reproducible framework that 
future researchers can benchmark against. At this point, the present 
work should be  regarded as a methodological step in connecting 
theory with clinical work. As a proof of concept to guide interpretable 
seizure prediction, additional validation on larger and diverse patient 
cohorts is needed before clinical application. While this work offers a 
straightforward, replicable, and computationally-efficient pipeline for 
unsupervised detection of pre-ictal EEG microstates in pediatric 
subjects, several caveats should be discussed to guide future work and 
application. The restricted age range was from 1.5 to 10 years, and 
diagnosis may have ecological validity implications and may not well 
represent the entire range of pediatric epilepsy syndromes. Given that 
all data were acquired at a single institution—Boston Children’s 
Hospital, with sequential acquisition from a single scanner, there may 

FIGURE 6

Transition probability matrix of pre-ictal EEG clusters.
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also be site-specific biases limiting the generalizability. Future work 
will need to test the proposed pipeline on larger, multi-center datasets 
with ethnically diverse pediatric populations and a spectrum of 
clinical presentations to ensure generalization across recording 
conditions and epilepsy syndromes.

Although this study primarily treated clusters as static categories, 
a minimal temporal analysis of consecutive 5-s segments indicated that 
transitions between states were structured rather than random. Certain 
clusters, such as 1 and 2, were more likely to evolve into cluster 3, 
whereas others (e.g., cluster 4 to 1) were rarely observed (Figure 6). 
This pattern supports the construction that seizure onset may involve 
preferred trajectories through metastable EEG states. While 
preliminary, these observations strengthen the case for extending the 
pipeline with formal temporal modeling approaches such as Hidden 
Markov Models, recurrence plots, or state-space reconstructions in 
future work. The models would align with dynamical systems 
perspectives of epilepsy, where seizures are understood as transitions 
across metastable attractor states, and could improve prediction 
accuracy by detecting trajectories rather than isolated states.

The study demonstrated that seizures emerge from slow 
transitions across metastable brain states within a dynamical systems 
framework (28). Future extensions of this work should incorporate 
temporal modeling approaches—such as Hidden Markov Models, 
recurrence plots, or dynamic graph-based methods. To capture the 
evolving trajectory through microstates, thereby enriching the 
predictive value of the clustering outputs.

The present investigation was limited to pre-ictal EEG epochs and 
was not compared to inter-ictal or post-ictal epochs. Although this 
circumvents possible class imbalance, it restricts the capacity to 
establish whether the microstates identified are genuinely unique for 
the pre-ictal state. Incorporating control states in subsequent pipeline 
steps might give a framework to differentially label EEG states that are 
both discriminant and time-wise predictive of seizures.

The statically extracted features treat all 5 s independently and do 
not explicitly model the dynamics within the window. In the future, 

time-varying features (for example, phase-amplitude coupling, 
microstate duration, or spectral evolution) can be  introduced to 
capture the nonlinear temporal dynamics of seizure precursors 
more effectively.

The physiologic designation of each identified cluster is left to 
human interpretation. It is not possible to give an absolute 
identification of clusters with functional or clinical labels without the 
ground truth. Future investigation could conduct the post hoc 
annotation of cluster types using expert input, behavioral correlates to 
enhance interpretability, and clinical translation.

The proposed pipeline, while computationally inexpensive and 
CPU compatible, has not been evaluated in online clinical 
applications. Future studies using the pipeline will be possible with 
wearable EEG devices of the future or the early version of a bedside 
monitoring system in evaluating the pipeline’s latency and 
robustness. Integration with edge computing or mobile health 
platforms will require adaptation for streaming data and 
continuous analysis.

Children exhibit dynamic developmental changes in cortical 
rhythms, especially over months or years. Because the model does not 
account for developmental changes, future research should explore 
adaptive frameworks that recalibrate clustering as a child’s EEG 
matures, ensuring long-term reliability.

These sources of future research are consistent with the 
recently proposed dynamical systems framework for seizure 
generation (30). The paper posits that seizures occur through 
progression in high-dimensional state space via bifurcations 
and transitions. The unsupervised clustering pipeline provides 
a platform for empirically detecting these hidden microstates. 
However, it needs state-space reconstruction, attractor 
modeling, and bifurcation analysis to formally represent system 
dynamics leading up to ictal onset. This type of integration 
would connect theoretical models and empirical EEG data, and 
may result in more accurate and actionable seizure prediction 
systems (31).

TABLE 6  Summary of preprocessing pipeline stages for pediatric pre-ictal EEG.

Limitations observed across prior work Typical consequence Representative examples

Heavy dependence on expert labels—even “semi-/unsupervised” 

pipelines generally require ≥100 gold-standard segments per class or 

seizure-level labels.

Scalability is bounded by the neurologist’s annotation 

time; cross-site deployment is slow.

Nejedly 2023 (4); Chakrabarti et al. (37); 

Georgis-Yap 2023 (2)

Patient- or seizure-specific tuning only—most methods optimize 

thresholds or cluster counts within each subject.

Poor generalization; labor-intensive recalibration for 

every new cohort.

Quercia 2021 (9); von Wegner et al. (38); 

Leal (8)

Fixed or hand-set hyper-hyperparameters in unsupervised 

clustering—e.g., DBSCAN ε, K-Means k, t-SNE perplexity are 

chosen heuristically or searched once.

Results are sensitive to analyst bias; the stability of 

discovered patterns is rarely reported.

Du 2024 (3, 8) (optimizes DBSCAN but 

not manifold params); Ein Shoka et al. (39)

Narrow evaluation focus (seizure prediction/diagnosis only)—the 

community largely ignores broader EEG pattern mining outside 

ictal contexts.

Valuable non-seizure-related micro-states or artifact 

sub-types remain uncharted, limiting downstream 

reuse of EEG archives.

Liu 2024 (10); most seizure-centric studies

Small or homogeneous datasets—< 10 k segments, single hospital or 

single acquisition system.

Statistical power and ecological validity are limited; 

models risk over-fitting site-specific noise.

Nearly all cited works except Nejedly 2023 

(4) iEEG cohort

Cluster-quality reporting is minimal—Silhouette, Davies–Bouldin 

etc. are seldom provided, and noise clusters are not handled 

systematically.

Readers cannot judge whether structures are 

meaningful or artifactual.
Sparse across the corpus

Comparison of methodological limitations in previous literature and the corresponding improvements incorporated in the proposed workflow.
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5 Conclusion

This work presented the proposed workflow for unsupervised 
clustering of pre-ictal EEG data in pediatric epilepsy. Using a structured, 
five-stage workflow—comprising data segmentation, signal 
preprocessing, multimodal feature extraction, dimensionality reduction, 
and K-Means clustering—the work demonstrated the ability to uncover 
robust and physiologically meaningful microstates that precede seizure 
onset. Notably, the method operates entirely on CPU-based resources 
and requires no expert-labeled data, making it highly suitable for real-
time deployment in diverse clinical and resource-limited environments.

The approach identified four distinct clusters of pre-ictal EEG 
segments, which proved stable across multiple validation metrics. The 
pipeline also addressed many common shortcomings of the EEG 
clustering literature by not requiring patient-specific tuning, 
consistently reporting clustering quality. Also, it was applied to a 
homogeneous pediatric population.

The ictal EEG microstates discovered herein probably correspond 
to transitional microshifts in cortical excitability and connectivity. 
They are consistent with the dynamical systems model of ictogenesis. 
In the clinical context, this model can support next-generation label-
free and generalizable seizure forecasting systems that can be integrated 
into wearables or ambulatory EEG systems. The low computational 
burden and generalizability of the method is especially appealing for 
children who often impose compliance and signal quality issues.

One principal interpretation of these clusters is still reasonably 
speculative. Post hoc expert annotation, behavioral correlates (e.g., 
reported pre-seizure symptoms) or multimodal biomarkers (e.g., 
fMRI, autonomic signals) could be  used to validate the external 
meaning of each cluster. Shaping into the model’s 3D shape in this way 
would improve clinical interpretability and guarantee that the 
detected microstates are related to functionally meaningful 
brain states.

In conclusion, the study is a methodological step forward 
under the constraint of clinical utility in EEG-based seizure 
prediction. It forms the basis for future studies of unsupervised 
EEG state discovery and paves the way for the design of 
interpretable, scalable patient-centered neurotechnology in 

pediatric neurology. In resource-limited settings or for at-home 
use, these tools would allow us to monitor the pre-ictal EEG state 
over a prolonged period of time under general out-of-specialist 
supervision. This type of system allows caregivers to give rescue 
medication and ensure that the environment is safe. This possibility 
of cheap real-time integration highlights the importance of this 
pipeline in the context of pediatric epilepsy care, where safety and 
quick intervention are critical.
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