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This study aimed to construct and validate a prognostic model for glioma
based on epilepsy-related genes (ERGs) and to investigate the functional
role of PAX3 in glioma progression and drug response. Transcriptomic and
clinical data from TCGA, GEO, and CGGA databases were used to identify
differentially expressed ERGs between glioma patients with and without epilepsy.
Univariate Cox regression, LASSO regression, and multivariate Cox analysis were
employed to establish a four-gene prognostic model comprising PAX3, RETN,
VEPH1, and HTR1A. Patients were stratified into high- and low-risk groups
based on the median risk score, which was calculated using gene expression
levels and corresponding regression coefficients. The model showed robust
prognostic performance, with AUC values exceeding 0.85 in the training set
and remaining above 0.73 in internal and external validation cohorts. Kaplan–
Meier survival analysis demonstrated significantly longer overall survival in the
low-risk group. The risk score was also validated as an independent prognostic
factor across multiple datasets. A nomogram integrating clinical features and
risk score further improved prediction accuracy, with C-index values up to
0.843 and high calibration concordance. Among the ERGs, PAX3 showed the
strongest correlation with the risk score and was overexpressed in glioma, where
it promoted proliferation, migration, epithelial–mesenchymal transition, and
resistance to vorinostat through regulation of HDAC1/2/3 targets, as confirmed
by functional assays showing that PAX3 knockdown suppressed proliferation and
migration, while overexpression enhanced these effects. In conclusion, this study
developed and validated a four-gene ERG-based prognostic model with high
clinical utility and identified PAX3 as a potential therapeutic target that drives
glioma cell migration and vorinostat sensitivity.
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1 Introduction

Glioma, the most prevalent primary tumor of the central
nervous system, exhibits characteristics of infiltrative growth, high
invasiveness, and a propensity for recurrence (1). According to
the 2021 World Health Organization Classification of Tumors of
the Central Nervous System, gliomas are categorized as grade
IV and are further subdivided into low-grade glioma (LGG)
and high-grade glioma (HGG) (2). Patients with LGG typically
have a 5-year survival rate of 30% to 70% (3), while those
with HGG face a much poorer prognosis, with a median overall
survival of ∼15 months (4). Despite advancements in conventional
therapies like surgical resection, radiotherapy, chemotherapy, and
bevacizumab (5), prognosis remains limited for glioma patients,
emphasizing the critical need for identifying novel molecular
targets to enhance personalized treatment and clinical outcomes.
The pursuit of innovative diagnostic approaches, predictive models,
and therapeutic targets for glioma stands as a prominent focus of
current research endeavors.

Epilepsy, characterized by synchronous abnormal neuronal
discharges in the brain, is a common manifestation in various
neurological disorders, notably in LGG where seizures may
present as the sole clinical symptom associated with glioma.
Glioma-associated epilepsy (GRE) affects roughly 30% to 90%
of patients (6, 7). While its exact mechanisms are not yet
fully understood, GRE is largely believed to result from tumor-
intrinsic factors, alterations in the tumor microenvironment,
and associated inflammatory processes. GRE typically presents
as medically refractory epilepsy, with maximal resection of the
tumor and surrounding epileptogenic cortex being pivotal for
efficacy, achieving successful seizure control in about 60% to
70% of cases post-surgery. Nevertheless, 30% to 40% of patients
continue to experience inadequate seizure control post-surgery (8).
Studies indicate that LGG patients presenting solely with epileptic
manifestations exhibit higher survival rates compared to those
with other clinical symptoms, and individuals with a preoperative
epilepsy history generally fare better clinically than those without
such a history (9).

Moreover, epilepsy-associated genes may contribute to glioma
progression through neuroinflammation, synaptic remodeling,
and epigenetic regulation (1). For example, IDH1, NOTCH1,
and ERBB2 promote proliferation, angiogenesis, and migration
by inducing inflammatory mediators such as IL-1β, TNF-α,
VEGF, and TGF-β, which activate NF-κB and Notch signaling.
BDNF and SYNGAP1 influence neuron–tumor interactions by
modulating synaptic transmission, thereby affecting tumor cell
migration. In addition, epigenetic silencing of TP53 through
DNA methylation reduces its tumor-suppressor activity, leading to
impaired apoptosis and increased proliferation in glioma cells (10).

Hence, elucidating the determinants and pathogenesis of GRE
holds significance for enhancing post-surgical seizure control and
glioma prognosis. Notably, there have been no reports on the
construction of a glioma prognostic model based on epilepsy-
related genes (ERGs).

To assess the predictive value of ERGs in glioma prognosis,
this study utilized publicly available glioma transcriptome data
and clinical information to develop a prognostic prediction model

utilizing ERGs. Subsequent validation aimed to explore novel drugs
and potential therapeutic targets.

2 Materials and methods

2.1 Data collection and ERG identification

RNA sequencing data and corresponding clinical information
for low-grade glioma (LGG) and glioblastoma (GBM) patients
were retrieved from the Cancer Genome Atlas (TCGA) via the
UCSC Xena platform (https://xenabrowser.net/). To identify gene
expression profiles associated with glioma-related epilepsy, we
accessed the Gene Expression Omnibus (GEO) dataset GSE199759.
Additionally, two independent glioma cohorts—mRNA-array_301
and mRNAseq_325—were obtained from the Chinese Glioma
Genome Atlas (CGGA) database to support external validation.

In this study, ERGs were defined as tumor gene expression
patterns significantly associated with the glioma-related epilepsy
(GRE) phenotype, rather than genes derived from common
epilepsy or non-tumor brain tissue. In two independent discovery
cohorts, samples were classified into epilepsy and non-epilepsy
groups based on clinical annotations (presence of epilepsy or pre-
surgical history of epilepsy). Differential expression analyses were
then performed separately, and genes consistently significant in
both cohorts were retained as ERGs.

Within the TCGA dataset, only the LGG dataset contained
information regarding a patient’s epilepsy history. Consequently,
we divided the TCGA-LGG dataset into two distinct groups based
on seizure history: one consisting of 311 samples with a history
of seizures and the other comprising 183 samples without such
history. Similarly, we segmented the GSE19985 dataset into two
groups, with nine samples displaying a history of seizures and 16
samples without. Utilizing the R package “limma,” we performed
differential expression analysis of both datasets, with a focus on
identifying ERGs.

2.1.1 Batch effect handling and platform
differences

To reduce the impact of platform variation and batch effects,
all datasets were standardized before analysis. RNA sequencing
data were processed using RSEM or FPKM normalization
followed by log2 transformation, while the microarray dataset
(mRNA_array_301) was quantile normalized and log2 transformed
to ensure cross-platform comparability (Supplementary Table S1).

2.2 Prognostic model construction and
validation based on ERGs

Following the removal of samples lacking survival information,
we utilized the “care” package to randomly partition the TCGA-
LGG and GBM dataset into two sets in a 6:4 ratio based on
survival status, designating them as the training and internal test
sets, respectively. The other two datasets obtained from the CGGA
database served as independent validation sets.

Frontiers in Neurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2025.1665835
https://xenabrowser.net/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2025.1665835

Survival-associated epilepsy-related genes (ERGs) were first
identified using univariate Cox regression analysis. Overall survival
was the outcome of interest. Each ERG was first assessed
using univariate Cox regression (Wald test), with multiple
testing corrected by the Benjamini–Hochberg method (FDR
< 0.05). Twenty-five genes were identified as significant. To
address multicollinearity and reduce overfitting, these genes
were then subjected to LASSO-penalized Cox regression with
10-fold cross-validation, using the λ1-se criterion to favor a
simpler and more generalizable model. Four genes with non-
zero coefficients were retained and entered into multivariable
modeling. Forward stepwise selection based on the likelihood
ratio test and Akaike information criterion (AIC) yielded a final
four-gene signature (PAX3, RETN, VEPH1, and HTR1A). All
four remained statistically significant and directionally consistent
with the univariate results, and Schoenfeld residuals confirmed no
violation of the proportional hazards assumption.

The risk score for each patient was calculated based on the
expression levels of ERGs (Expi) and their corresponding Cox
regression coefficients (coefi), using the formula: Risk score =
∑

(Expi × coefi). LASSO regression was implemented with the
“glmnet” package (11). Based on the median risk score, patients in
both the training and testing cohorts were stratified into high-risk
and low-risk groups.

Univariate and multivariate Cox regression analyses were
performed using the “survival” and “survminer” packages to assess
whether the risk score independently predicted survival, and
Kaplan–Meier survival curves were generated accordingly.

To evaluate the predictive performance of the model, time-
dependent receiver operating characteristic (ROC) curve analysis
was conducted using the “survivalROC” package (12) and the
“timeROC” package (13). The area under the ROC curve (AUC)
was calculated to quantify the model’s discriminative power at
different time points.

Additionally, a nomogram integrating the risk score and
clinical features was constructed using the “rms” package. The
model’s predictive accuracy was assessed by the concordance index
(C-index) and calibration plots. External validation of the ERG-
based prognostic model was performed using glioma cases from the
CGGA dataset to confirm its robustness.

2.3 Correlation analysis

To investigate the biological and clinical relevance of the ERG-
based risk score, we conducted correlation analyses between the
risk score and multiple factors, including oncogene expression,
anti-cancer drug sensitivity, immune checkpoint markers, and
immune cell infiltration. Spearman correlation analysis was
performed using the “psych” R package.

Oncogene expression data were retrieved from the ONGene
database (http://www.ongene.bioinfo-minzhao.org) (14). Drug
sensitivity profiles were obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) database (15). Drug response
prediction for individual glioma samples was performed using the
“oncoPredict” package based on the GDSC V2.0 reference set (16).
Predicted sensitivity scores were inferred from IC50 values derived

from gene expression data, where higher scores corresponded to
reduced drug sensitivity, due to a positive correlation with IC50.

This multi-level correlation analysis aimed to uncover
potential links between the ERG signature and oncogenic
pathways, therapeutic vulnerabilities, and the tumor
immune microenvironment.

2.4 Differential expression and enrichment
analysis

Differentially expressed genes (DEGs) between the high-
and low-risk groups were identified using the “limma” package
in R, applying stringent thresholds of |log2(fold change)| >

1 and P < 0.05. To investigate the biological functions and
pathways associated with these DEGs, functional enrichment
analysis was performed using the DAVID online tool (https://
davidbioinformatics.nih.gov/summary.jsp).

To further explore the biological processes and signaling
pathways associated with the ERG-based risk score, we performed
gene set enrichment analysis (GSEA). The analysis focused on
genes ranked by their correlation with the risk score and was
conducted using curated gene sets from the Molecular Signatures
Database (MSigDB), including Gene Ontology (GO) biological
processes and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. Gene set collections were obtained from the MSigDB
portal (https://www.gsea-msigdb.org/gsea/downloads.jsp).

2.5 Plasmid construction and transfection

To silence the expression of PAX3, we designed specific
shRNA sequences using the BLOCK-iTTM RNAi Designer tool
(https://rnaidesigner.thermofisher.com/rnaiexpress). After careful
selection and testing of various candidate shRNAs, we identified
the sequence 5’-GGGCATGTTCAGCTGGGAAAT-3’ as the most
effective for targeting PAX3 for knockdown. This selected sequence
was then cloned into the pGreen vector. A scrambled, non-specific
shRNA (shNC), sequence: 5-CAACAAGATGAAGAGCACCAA-3
was cloned into the pGreen vector and used as a negative control to
validate the specificity of gene silencing. For overexpression studies,
we amplified the full coding sequence of PAX3 and inserted it
into the pCDH vector. This approach allowed us to investigate the
effects of PAX3 overexpression on cellular processes.

2.6 Cell culture and transfection

Human glioblastoma (GBM) cell lines U87 and U251 were
obtained from the American Type Culture Collection (ATCC)
and maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS). Cells were
cultured at 37 ◦C in a humidified incubator with 5% CO2.

For transfection experiments, cells were seeded into 6-well
plates and allowed to adhere for 24 h. Transfection was performed
using Lipofectamine 6,000 reagent (Beyotime, China) following the
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manufacturer’s instructions. Each well was transfected with 2.5 μg
of either shPAX3 plasmid or a PAX3 overexpression construct.

2.7 Cell proliferation assays

To assess cell proliferation, we performed both CCK-8 and EdU
incorporation assays.

For the CCK-8 assay, cells were seeded into 96-well plates at a
density of 5 × 103 cells per well. After 24 h of incubation, 10 μl of
Cell Counting Kit-8 (CCK-8; Beyotime, China) reagent was added
to each well, followed by a 2-h incubation at 37 ◦C. Absorbance was
measured at 450 nm using a microplate spectrophotometer. Each
condition was tested in triplicate to ensure reproducibility.

For the EdU assay, cells were plated in 6-well plates and
incubated with 10 μM 5-ethynyl-2’-deoxyuridine (EdU) for 2 h.
Following incubation, cells were fixed with 4% paraformaldehyde
and permeabilized with 0.3% Triton X-100 in PBS. EdU
staining was performed using a commercial kit (Beyotime
Institute of Biotechnology, China) according to the manufacturer’s
protocol. Images were captured within 24 h using an inverted
fluorescence microscope, and EdU-positive cells were quantified
using NIH ImageJ software (version 1.8.0), providing a measure of
proliferative activity.

2.8 Cell migration assays

To perform a wound healing assay, cells were cultured in 6-well
plates waiting for full confluency. Subsequently, a uniform scratch
was created across the cell monolayer using a sterile pipette tip,
under condition of serum-free medium.

For the wound healing assay, GBM cells were seeded into 6-
well plates and cultured until a confluent monolayer was formed.
A straight scratch was then introduced across the cell monolayer
using a sterile 200-μl pipette tip. To minimize cell proliferation
and focus on migratory behavior, the medium was replaced with
serum-free DMEM. Time-lapse images were captured at designated
intervals using an inverted microscope to track the closure of
the scratch and wound closure was quantified by measuring the
remaining gap area using ImageJ software.

To conduct the Transwell migration assay, cells were seeded
into the upper chamber of the Transwell inserts (Corning, Inc.,
USA) with a serum-free medium (1 ml), while the lower chamber
contained 2 ml of complete medium. After incubation for 24 h at 37
◦C, non-migrated cells on the upper surface of the membrane were
removed, and migrated cells on the lower surface were fixed (4%
paraformaldehyde), stained with crystal violet (0.5% solution), and
imaged. The extent of cell migration was quantified by analyzing
the stained cells with ImageJ software.

2.9 Western blotting

For western blotting, cellular proteins were extracted using
RIPA lysis buffer (Beyotime, China), and their concentrations were
determined with the Enhanced BCA Protein Assay Kit (Beyotime,

China). Equal amounts of protein (30 μg per sample) were resolved
by SDS-PAGE and transferred onto polyvinylidene fluoride
(PVDF) membranes (MilliporeSigma, Billerica, MA, USA). After
blocking with 5% bovine serum albumin, the PVDF membranes
were incubated overnight at 4 ◦C with primary antibodies (diluted
1:1,000) against GAPDH (Cell Signaling Technology, USA), N-
cadherin (CDH2, ProteinTech, USA), and E-cadherin (CDH1,
ProteinTech, USA).

After primary antibody incubation, membranes were
probed with horseradish peroxidase-conjugated secondary
antibodies. The protein bands were visualized utilizing enhanced
chemiluminescence reagent (GeneTools GBox system, Syngene).
Subsequently, the band intensity was quantified using ImageJ
software (National Institutes of Health), with GAPDH serving as a
reference for normalization.

2.10 Analysis of vorinostat sensitivity

Cell viability was measured using the CCK-8 assay after
treatment with vorinostat across a concentration gradient of 0, 0.5,
1, 2, 4, 8, 16, and 32 μM. Absorbance at 450 nm was measured
to quantify viability. Utilizing GraphPad software, the IC50
values were determined, representing the vorinostat concentration
required for 50% cell inhibition. Comparative analysis between the
shNC and shPAX3 groups provided insights into the impact of
PAX3 knockdown on vorinostat sensitivity (17).

2.11 Statistics analysis

All statistical analyses were performed using GraphPad Prism
version 8.3.0 (GraphPad Software, LLC). Data are presented as
mean ± standard deviation (SD). Comparisons between two
groups were evaluated using Student’s t-test, while one-way
ANOVA was applied for analyses involving more than two groups.
A P value < 0.05 was considered statistically significant.

3 Results

3.1 Data collection and development of
prognostic models

To construct and validate prognostic models, we collected
data from three independent cohorts of lower-grade glioma
and glioblastoma (LGG-GBM) patients, integrating both genomic
and clinical information derived from the Cancer Genome
Atlas (TCGA) and the Gene Expression Omnibus (GEO), with
emphasis on the GSE39582 dataset. The clinical characteristics
and demographic information of patients included in the training,
internal testing, and external validation cohorts are detailed in
Supplementary Tables S2, S3. From the TCGA-LGGGBM dataset,
which originally contained 659 samples, cases lacking essential
clinical data were excluded. The remaining eligible cases were
randomly split into a training set (n = 496; 60%) and an internal
testing set (n = 263; 40%). Comparative analysis confirmed that
the key clinicopathological variables were well balanced across
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the training, internal testing, and full TCGA-LGGGBM cohort,
with no statistically significant differences observed (P > 0.05;
Supplementary Table S2).

Through comparative analysis of gene expression patterns
among patients with and without a seizure history, we identified
several down-regulated genes within both the GEO databases
(38 genes) and the TCGA-LGGGBM dataset (3,695 genes),
along with 188 up-regulated genes in the GEO databases and
3,904 in the TCGA-LGGGBM dataset. These findings adhered
to predefined criteria of |log2 fold change| > 1 and P-value <

0.05 (Supplementary Figures S1A, B). Subsequently, by intersecting
these datasets, we pinpointed 34 common prognostic-related genes
in glioma (Supplementary Figures S1C, D).

Utilizing univariate Cox regression analysis on the training
set, we identified 25 ERGs related to prognosis (Figure 1A).
Subsequently, employing LASSO-penalized Cox analysis, we
further narrowed these down to four ERGs for multivariate analysis
(Figures 1B, C). We constructed a multivariate Cox proportional
hazard model through step-wise implementation of the likelihood-
ratio forward method, yielding a risk model for assessing the
prognostic risk of glioma patients. The formula for the risk score
calculation was as follows: Risk score = (0.175×PAX3 Exp) +
(0.051×RETN Exp) + (−0.05×VEPH1 Exp) + (−0.077×HTR1A
Exp; Figure 1D).

Receiver operating characteristic (ROC) curve analysis
demonstrated strong prognostic performance of the risk score in
predicting overall survival (OS) among glioma patients, yielding
area under the curve (AUC) values exceeding 0.851 for 1- through
5-year survival intervals (Figure 1E). Kaplan–Meier curves
confirmed significantly longer OS in the low-risk group compared
to the high-risk group (Figure 1F). Patients in the training cohort
were categorized into high- and low-risk groups according to the
median risk score, allowing visualization of the distribution of risk
scores alongside survival outcomes and durations (Figure 1G).
Additionally, a heatmap illustrated the relative expression patterns
of the four ERGs across the cohort, offering further insight into
molecular differences between risk groups (Figure 1H).

3.2 Evaluation of prognostic performance
of the ERG-based signature in training and
validation cohorts

To assess the prognostic relevance of the ERG model, patients
from both the internal testing cohort and the complete TCGA-
LGGGBM dataset were stratified into high- and low-risk groups
according to the median risk score. In both cohorts, individuals
within the low-risk group demonstrated markedly improved
overall survival (OS) relative to those in the high-risk group (P <

0.0001), with the corresponding AUC values surpassing 0.733 and
0.841, respectively (Supplementary Figures S2A, B, Figures 2A, B).
Mortality analysis showed a clear association between elevated risk
scores and increased death rates, as illustrated by the distribution
of survival status across risk groups (Supplementary Figure S2C,
Figure 2C). A heatmap further revealed distinct expression profiles
of the 20 seizure-associated genes, distinguishing low-risk from
high-risk patients (Supplementary Figure S2C, Figure 2C). To

confirm the robustness of this ERG signature, external validation
was performed using two independent CGGA datasets. In the
mRNAseq_325 dataset, the model achieved an AUC above
0.763 (Figures 2D–F), while in the mRNA-array_301 dataset,
it exceeded 0.774 (Figures 2G–I), collectively supporting the
predictive accuracy and generalizability of the four-gene signature.

3.3 ERGs risk score as an independent and
robust predictive indicator

The ERGs risk score emerges as a standalone and robust
predictor, as illustrated in Supplementary Table S4. It exhibits
correlations with various clinical–pathological features within the
TCGA-LGGGBM dataset, including age, Karnofsky Performance
Status score, IDH mutation, and grade. Similarly, it also
demonstrates associations with grade, age, and IDH mutation in
the mRNA_array_301 dataset (Supplementary Table S5), and with
grade, IDH mutation, and MGMTp methylation status in the
mRNAseq_325 dataset (Supplementary Table S6).

To assess whether the risk score serves as an independent
prognostic factor in glioma, we performed univariate Cox
regression analysis for each clinical and pathological variable
(Supplementary Figure S3). As illustrated in Figure 3A, the risk
score retained strong prognostic significance in the TCGA-
LGGGBM cohort even after adjusting for potential confounders
in the multivariate model. This independent predictive value
was further corroborated in two external datasets, mRNA-
array_301 (Supplementary Figure S4A) and mRNAseq_325
(Supplementary Figure S5A), reinforcing the model’s applicability
across diverse glioma populations.

To ensure the model’s robustness and applicability, we
developed a prognostic nomogram for predicting OS in glioma
patients. This nomogram was built using data from the TCGA-
LGGGBM dataset (Figure 3B) as well as other CGGA datasets
(Supplementary Figures S4B, S5B). It amalgamates major clinical–
pathological features and risk scores. Internal validation through
calibration plots and computation of the bootstrap C-index
in TCGA-LGGGBM (C-index = 0.843, Figure 3C), mRNA-
array_301 (C-index = 0.755, Supplementary Figure S4C), and
mRNAseq_325 (C-index = 0.688, Supplementary Figure S5C)
reaffirms its reliability.

The ROC curve confirms that the nomogram-derived score
effectively predicts OS, with AUC values of 0.921, 0.876, and
0.837 at 3-year intervals in TCGA-LGGGBM (Figure 3D), mRNA-
array_301 (Supplementary Figure S4D), and mRNAseq_325
(Supplementary Figure S5D), respectively. These findings
underscore the robust predictive capability of the prognostic
model based on the four EGRs.

3.4 Intriguing correlations of the ERGs risk
score with immune cell infiltration and the
expression of immune checkpoints

To quantify immune cell infiltration levels, we applied the
“XCELL” algorithm, which performs single-sample gene set
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FIGURE 1

Development of an ERG-based prognostic model for glioma. (A) OS-related ERGs identified in glioma patients by univariate Cox regression analysis.
(B, C) Four ERGs for OS identified by LASSO-penalized Cox analysis. (D) Forest plot of the results of multivariate Cox regression analysis of four ERGs.
(E) ROC curves depicting the predictive performance for 5-year OS in the training set. (F) Kaplan–Meier curve illustrating OS in the training group. (G)
Distribution of risk scores and survival status within the training group. (H) Heatmap visualizing the expression of four ERGs within the training group.
ERGs, epilepsy-related genes; LASSO, least absolute shrinkage and selection operator; OS, overall survival; ROC, receiver operating characteristic.

Frontiers in Neurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1665835
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2025.1665835

FIGURE 2

Validation of the prognostic model utilizing the four ERGs constructed from the training dataset. (A) ROC curves for OS in TCGA-LGGGBM datasets.
(B) Kaplan–Meier curve of OS in TCGA-LGGGBM datasets. (C) Risk score distribution, survival status, and expression levels of four ERGs in
TCGA-LGGGBM datasets. For the validation sets, (D) showcases ROC curves for OS in mRNAseq_325 datasets, while (E) presents the Kaplan–Meier
curve of OS in mRNAseq_325 datasets. (F) further details the risk score distribution, survival status, and expression levels of the 4 ERGs in
mRNAseq_325 datasets. Lastly, (G) exhibits ROC curves for OS in mRNA-array_301 datasets, followed by (H), which illustrates the Kaplan–Meier
curve of OS in mRNA-array_301 datasets. Finally, (I) depicts the risk score distribution, survival status, and expression levels of the 4 ERGs in
mRNA-array_301 datasets. “ERGs” refer to epilepsy-related genes, while “ROC” denotes the receiver operating curve. ERGs, epilepsy-related genes;
GBM, glioblastoma; LGG, lower grade glioma; OS, overall survival; ROC: receiver operating characteristic; TCGA-LGGGBM, The Cancer Genome
Atlas Merged Cohort of LGG and GBM.

enrichment analysis (ssGSEA) to estimate the relative abundance
of various immune cell types. Our correlation analyses unveiled
significant associations between the risk score and the infiltration
of multiple immune cell types across the TCGA-LGGGBM dataset
and two additional CGGA datasets (Figure 4A).

Notably, the risk score demonstrated a moderate positive
correlation with the tumor microenvironment components,

including microenvironment score (r = 0.470; TCGA-LGGGBM,
Figure 4B), immune score (r = 0.386; Figure 4C), and stromal
score (r = 0.438; Figure 4D). Furthermore, higher risk scores were
also associated with increased infiltration of several cell types,
most prominently macrophages (r = 0.524; Figure 4E), as well as
fibroblasts and endothelial cells, suggesting a link between risk
stratification and the immune-stromal landscape of glioma.
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URE 3FIG

Significance of the ERG risk score as an independent and robust predictive indicator within TCGA-LGGGBM dataset. (A) Results of multivariate Cox
regression analyses, showcasing the influence of the risk score alongside clinical–pathological features identified from univariate Cox analysis on OS
in the TCGA-LGGGBM dataset. (B) Nomogram incorporating the 4-SRG risk score and age, derived from the TCGA-LGGGBM dataset. By summing
the points from these variables, one can determine the total points, projecting onto the bottom scales to ascertain the probability of 1-, 3-, and
5-year OS. (C) Calibration plot for 1-/3-/5-year intervals, validating the accuracy of the prognostic nomogram. (D) Kaplan–Meier curve illustrating
OS for the score calculated from the nomogram. ERGs, epilepsy-related genes; GBM, glioblastoma; LGG, lower grade glioma; OS, overall survival;
TCGA-LGGGBM, The Cancer Genome Atlas Merged Cohort of LGG and GBM.

Furthermore, our analysis revealed positive associations
between the risk score and the expression levels of various
immune checkpoints across the three datasets (Figure 4F).
Notably, these included SIGLEC7 (r = 0.478 in TCGA-
LGGGBM, Figure 4G), PDCD1 (r = 0.425 in TCGA-LGGGBM,
Figure 4H), LILRB2 (r = 0.458 in TCGA-LGGGBM,
Supplementary Figure S6A), HAVCR2 (r = 0.401 in TCGA-
LGGGBM, Supplementary Figure S6B), LAG3 (r = 0.425 in
TCGA-LGGGBM, Supplementary Figure S6C), and SIRPA (r =
−0.242 in TCGA-LGGGBM, Supplementary Figure S6D). These
findings shed light on the intricate interplay between ERGs and the
immune microenvironment in glioma.

3.5 The correlation of ERGs risk score with
both anti-tumor drug sensitivity and the
expression of oncogenes

Utilizing the “Oncopredict” package and the GDSC V2
database, we predicted the sensitivity score of anti-tumor drugs
across three databases, revealing a consistent correlation pattern
(Figure 5A). Among the 198 drugs analyzed, several exhibited a
positive correlation with the risk score, including vorinostat (r
= 0.560 in TCGA-LGGGBM, Figure 5B), linsitinib (r = 0.553
in TCGA-LGGGBM, Supplementary Figure S7A), doramapimod
(r = 0.495 in TCGA-LGGGBM, Supplementary Figure S7B),
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FIGURE 4

Relationship between ERG risk score and immune cell infiltration, as well as the expression of immune checkpoint genes. (A) Heatmap visualizing the
correlation between risk score and immune cell infiltration, calculated with the XCELL algorithm using data across the TCGA-LGGGBM dataset and
two CGGA datasets. Scatter plots illustrate the correlation between the risk score and the scores of microenvironment (B), immune (C), and stroma
(D), as well as the correlation between the risk score and the infiltration of phagocytes (E). (F) Heatmap presenting the correlation between the risk
score and the expression of immune checkpoint genes across the same datasets. Scatter plots demonstrate the correlation between the risk score
and the expression of specific immune checkpoint genes, such as SIGLEC7 (G) and PDCD1 (H). CGGA, Chinese Glioma Genome Atlas; ERG,
epilepsy-related gene; GBM, glioblastoma; LGG, lower grade glioma; TCGA-LGGGBM, The Cancer Genome Atlas Merged Cohort of LGG and GBM.
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osimertinib (r = 0.414 in TCGA-LGGGBM, Supplementary
Figure S7C), afatinib (r = 0.367 in TCGA-LGGGBM,
Supplementary Figure S7D), tamoxifen (r = 0.385 in TCGA-
LGGGBM, Supplementary Figure S7E), and gefitinib (r = 0.370
in TCGA-LGGGBM, Supplementary Figure S7F). Conversely,
several drugs demonstrated a negative correlation with the risk
score, including dasatinib (r = −0.630 in TCGA-LGGGBM,
Supplementary Figure S7G), 5-fluorouracil (r = −0.358 in TCGA-
LGGGBM, Supplementary Figure S7H), AZD1332 (r = −0.339 in
TCGA-LGGGBM, Supplementary Figure S7I), and teniposide (r =
−0.350 in TCGA-LGGGBM, Supplementary Figure S7J).

In addition, correlation analyses across all three datasets
revealed a consistent positive relationship between the risk
score and the expression levels of several well-characterized
oncogenes (Figures 5C–F). Specifically, strong associations
were observed in the TCGA-LGGGBM cohort for PAX3
(r = 0.918, Supplementary Figure S8A), HOXD13 (r =
0.717, Supplementary Figure S8B), HOXA9 (r = 0.644,
Supplementary Figure S8C), and TWIST1 (r = 0.598,
Supplementary Figure S8D). Similar positive correlations were
also noted for RUNX1 (r = 0.591, Supplementary Figure S8E),
HSPB1 (r = 0.586, Supplementary Figure S8F), HDAC1 (r
= 0.537, Supplementary Figure S8G), and JUN (r = 0.421,
Supplementary Figure S8H). These findings underscore the
intricate associations between the ERG risk score, drug sensitivity,
and oncogene expression in glioma.

3.6 Correlation of risk score of ERGs with
tumor progression

The risk score of ERGs was found to be closely associated
with cancer progression, as indicated by the results of GSEA
analysis (Figure 6A). Notably, this risk score exhibited significant
correlations with key cancer-related biological processes, including
lymphocyte-mediated immunity [normalized enrichment score
(NES) = 2.610] and leukocyte-mediated immunity (NES = 2.492).
Additionally, it was also linked to mononuclear cell differentiation
(NES = 2.157), positive regulation of cell adhesion (NES =
2.216), and mitotic nuclear division (NES = 1.908). All of the
above-mentioned processes are presented in Figures 6B–D and
Supplementary Figure S9A. Furthermore, the analysis revealed
associations with crucial KEGG pathways such as cell cycle
(NES = 2.117) and DNA replication. In addition, pathways
like the P53 signaling pathway (NES = 1.877) and JAK STAT
signaling pathway (NES = 1.938) were also implicated. All of
the above-mentioned processes are presented in Figures 6B–
D and Supplementary Figure S9A. Further analysis involved
differential expression analysis on high-risk and low-risk
samples across three datasets, leading to the identification of
DEGs with consistent changes (Supplementary Figure S10D).
These DEGs were found to be significantly enriched in
processes like extracellular matrix organization, angiogenesis,
response to drug, cell migration, and cell adhesin (Figure 6E),
as well as pathways including ECM-receptor intersection,
GnRH secretion, GABAergic synapse, focal adhesion, and TNF
(Figure 6F).

3.7 Overexpression of PAX3 in glioma and
its association with cancer progression

In the realm of glioma research, PAX3 stands out among
the ERGs identified in our risk model, boasting the strongest
correlation with the risk score (Figure 7A). Analysis across multiple
datasets, including TCGA-LGGGBM, GSE4290, and GSE50161,
has consistently revealed heightened expression of PAX3 in glioma
tissues compared to their normal counterparts (Figures 7B–D).

Survival analysis within the TCGA-LGGGBM cohort
highlighted the clinical relevance of PAX3 expression, revealing
that reduced PAX3 levels were significantly associated with
progression-free survival, disease-specific survival, and improved
overall survival (Figures 7E–G).

Further exploration into its molecular associations unveils
intriguing links between PAX3 expression and various oncogenes,
suggesting its potential role as an oncogenic driver in glioma
progression (Figure 7H). Moreover, PAX3 expression demonstrates
significant positive correlations with multiple immune checkpoints,
particularly PDCD1, SIGLEC7, and LILRB2, underscoring
its involvement in immune regulation within the glioma
microenvironment (Figure 7I).

The influence of PAX3 extends beyond molecular signaling,
encompassing alterations in the tumor microenvironment, as
reflected by its positive correlations with the infiltration of
various immune and stromal cell populations, such as mesangial
cells, common lymphoid progenitors, Th2 cells, and astrocytes
(Figure 7J).

GSEA enrichment analysis provides further insights into the
functional relevance of PAX3 in glioma biology, linking it to key
cancer-related biological processes and KEGG pathways such as
neurotransmitter secretion, immune response to tumor cells, and
cell cycle regulation (Figures 7K–M).

Moreover, PAX3 expression has emerged as a potential
determinant of therapeutic sensitivity, with its levels significantly
correlating with the responsiveness to multiple anti-tumor drugs,
including vorinostat, doramapimod, linsitinib, and tamoxifen,
among others (Figure 7N, Supplementary Figure S11). Conversely,
it also demonstrates associations with resistance to certain agents
like 5-fluorouracil, dasatinib, and entospletinib, underscoring its
multifaceted role in modulating therapeutic responses in glioma
(Supplementary Figure S11).

3.8 Implication of PAX3 in the cell
proliferation, migration, and vorinostat
sensitivity of glioma

To investigate PAX3’s role in glioma cell dynamics, we
manipulated its expression using shRNA and overexpression
plasmids (Supplementary Figure S12). The results from the CCK-8
assay unveiled a significant inhibition of cell proliferation of U251
(Figure 8A) and U87 cells (Figure 8B) upon PAX3 knockdown,
while overexpression of PAX3 notably promoted glioma cell
proliferation (Figures 8C, D). Consistent findings were observed
in the EdU assay, where PAX3 knockdown attenuated glioma cell
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FIGURE 5

The intricate connections between ERG risk score and the imputed sensitivity of anti-tumor drugs and oncogene expressions. (A) Heatmap visualizing
the correlation between the risk score and the imputed sensitivity of anti-tumor drugs across the TCGA-LGGGBM dataset and two CGGA datasets.
(B) Scatter plots offering a focused view of the correlation between the risk score and the sensitivity of vorinostat, a representative anti-tumor drug.
(C–E) Volcano plots depicting correlation analyses between the risk score and the expression of oncogenes across the TCGA-LGGGBM,
mRNAseq_325, and mRNA-array_301 datasets, highlighting significant associations. (F) Heatmap presenting the correlation between the risk score
and the expression of oncogenes across the TCGA-LGGGBM dataset and two CGGA datasets. CGGA, Chinese Glioma Genome Atlas; ERG,
epilepsy-related gene; GBM, glioblastoma; LGG, lower grade glioma; TCGA-LGGGBM, The Cancer Genome Atlas Merged Cohort of LGG and GBM.
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FIGURE 6

Correlation of the ERG risk score with cancer progression. (A) Heatmap illustrating the outcomes of GSEA analysis concerning the biological
processes associated with the risk score, utilizing data from TCGA-LGGGBM and two CGGA datasets. (B) GSEA plots demonstrating the relationship
between risk score and several immune functions such as mononuclear cell differentiation, leukocyte-mediated immunity, and
lymphocyte-mediated immunity. (C) Heatmap presenting the results of GSEA analysis for KEGG pathways associated with the risk score, using data
from TCGA-LGGGBM and two CGGA datasets. (D) GSEA plots depicting the association between the risk score and DNA replication, cell cycle, and
focal adhesion. Lollipop plots represent the findings of enrichment analysis regarding differentially expressed genes in both biological processes (E)
and KEGG pathways (F) between high- and low-risk groups. CGGA, Chinese Glioma Genome Atlas; ERGs, epilepsy-related genes; GBM,
glioblastoma; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; LGG, lower grade glioma; TCGA-LGGGBM,
The Cancer Genome Atlas Merged Cohort of LGG and GBM.
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FIGURE 7

PAX3 expression in glioma and its implications in cancer progression. (A) Heatmap illustrating the correlation between ERG risk score and the
expression of ERGs within the model. Violin plots displaying the differential expression of PAX3 in TCGA-LGGGBM (B), GSE4290 (C), and GSE50161
(D) datasets, as well as OS analysis results regarding PAX3 (E), DSS (F), and PFI (G) in TCGA-LGGGBM datasets. (H) Volcano plot showcasing the
correlation between PAX3 expression and oncogenes. (I) Lollipop plot presenting the correlation between PAX3 expression and immune checkpoint
genes. (J) Lollipop plot demonstrating the correlation between PAX3 expression and the infiltration of multiple immune and stroma cells. GSEA plots
highlighting the association of PAX3 with various biological processes (K, L) and KEGG pathways (M) in the TCGA-LGGGBM dataset. (N) Scatter plot
depicting PAX3 expression correlated with the imputed sensitivity score of vorinostat. DSS, disease-specific survival; ERGs, epilepsy-related genes;
GBM, glioblastoma; GSEA, gene set enrichment analysis; LGG, lower grade glioma; GBM, Glioblastoma; LGG, lower grade glioma; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PFI, progression-free interval; TCGA-LGGGBM, The Cancer Genome Atlas Merged Cohort of LGG and GBM.
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FIGURE 8

Impact of PAX3 on glioma cell dynamics and vorinostat sensitivity. (A–D) CCK-8 assay evaluating the effects of PAX3 knockdown or overexpression
on U251 and U87 cell proliferation. (E) Images representing cell proliferation in the EdU assay and (F) corresponding quantitative analysis exhibiting
changes in cell proliferation of glioma cells upon knockdown or overexpression of PAX3. (G) Images representing migration status in transwell cell
migration assay and (H) corresponding quantitative analysis exhibiting changes in migration ability of glioma cells upon knockdown or
overexpression of PAX3. (I, J) Quantitative findings delineating alterations in glioma cell migratory capacity following PAX3 knockdown in the wound
healing assay. (K) Images representing expression of E-cadherin and CDH2 in glioma cells by western blot analysis and (L, M) corresponding
quantitative analysis results demonstrating alterations in their expression in glioma cells following PAX3 knockdown or overexpression. (N) Heatmap
depicting the association between PAX3 expression levels and HDACs. (O, P) CCK-8 assay measuring the IC50 of vorinostat in glioma cells with PAX3
knockdown or overexpression. CCK-8, Cell Counting Kit-8; CDH1, E-cadherin; CDH2, N-cadherin; IC50, half-maximal inhibitory concentration.
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proliferation, whereas its overexpression augmented this process
(Figures 8E, F).

Moreover, we performed a transwell migration assay. The
results demonstrated that PAX3 knockdown markedly reduced
glioma cell migration, whereas overexpression enhanced it
(Figures 8G, H). Similarly, wound scratch healing assays revealed
a decelerated wound closure rate in glioma cells upon PAX3
knockdown (Figures 8I, J).

At the molecular level, western blot analysis showed that PAX3
knockdown led to a downregulation of E-cadherin expression (an
epithelial marker) and an upregulation of CDH2 (a mesenchymal
marker). Conversely, PAX3 overexpression induced opposite
changes (Figures 8K–M).

Furthermore, we explored the impact of PAX3 on vorinostat
(a histone deacetylase inhibitor) sensitivity. Correlation analysis
indicated a positive association between PAX3 expression and
several vorinostat targets, particularly HDAC1/2/3 (Figure 8N).
Intriguingly, CCK-8 assays revealed that PAX3 knockdown
increased the sensitivity of U251 (Figure 8O) and U87 (Figure 8P)
cells to vorinostat, highlighting a potential role of PAX3 in
modulating drug sensitivity in glioma cells.

4 Discussion

Glioma remains one of the most aggressive and treatment-
resistant tumors of the central nervous system, with glioblastoma
representing the most lethal subtype (18). Despite multimodal
treatment strategies, including surgery, radiation, and
chemotherapy, prognosis remains poor due to significant
inter- and intra-tumoral heterogeneity, frequent recurrence, and
treatment resistance (18–20). These challenges highlight the urgent
need for more effective tools to stratify patients and to discover
novel therapeutic targets to improve clinical outcomes.

One underexplored aspect of glioma is its association
with epilepsy, which frequently occurs as an early clinical
manifestation and may carry prognostic significance. However,
the molecular mechanisms linking epilepsy-related pathways
and glioma progression remain largely unclear (21, 22). In this
study, we systematically analyzed glioma transcriptomic data
stratified by epilepsy status and identified differentially expressed
epilepsy-related genes (ERGs). Through rigorous statistical
modeling—including univariate Cox, LASSO, and multivariate
Cox regression—we developed a four-gene prognostic model
consisting of PAX3, RETN, VEPH1, and HTR1A. This model
showed excellent prognostic discrimination in both internal
(TCGA) and external (CGGA) validation cohorts, with area under
the curve (AUC) values exceeding 0.85 in the training set and
remaining above 0.73 in independent datasets.

Importantly, this ERG-based model not only stratifies glioma
patients into high- and low-risk groups with distinct overall
survival outcomes but also correlates with immune infiltration
levels and the expression of multiple immune checkpoint genes,
such as PDCD1, SIGLEC7, and LILRB2. This suggests that the ERG
signature may reflect broader tumor-immune interactions, thereby
contributing to both prognosis and treatment responsiveness. The
inclusion of epilepsy-related molecular features represents a novel

direction for prognostic modeling in glioma and may provide new
biological insights into seizure-associated gliomagenesis.

Beyond prognostic value, our study also sheds light on potential
therapeutic vulnerabilities, particularly focusing on PAX3. Among
the four ERGs, PAX3 showed the strongest correlation with the
risk score and was consistently overexpressed in glioma tissues
across datasets. Functional experiments demonstrated that PAX3
promotes glioma cell proliferation and migration, accompanied by
modulation of epithelial–mesenchymal transition (EMT) markers
(23, 24).

An important focus in tumor microenvironment research is
how changes in immune cell composition and immune checkpoint
activity affect tumor progression. In glioma, certain immune
cells, such as neutrophils, macrophages, activated dendritic cells,
and activated CD4+ T cells, are linked to worse outcomes
(25). In line with this, our study found that higher ERG-
based risk scores were associated with increased infiltration of
macrophages, tumor-associated fibroblasts, and endothelial cells
(26, 27). We also observed positive correlations between the
risk score and several immune checkpoint genes, including
SIGLEC7, PDCD1, LILRB2, HAVCR2, and LAG3, which have
been tied to poor prognosis in glioma (27). These results
support the idea that targeting the immune microenvironment
and immune checkpoints may help improve glioma treatment
outcomes (28).

Postoperative chemoradiotherapy remains the standard
treatment for glioma, especially glioblastoma. Temozolomide
(TMZ), an oral alkylating agent, plays a key role by inducing tumor
cell death through DNA methylation. Its good tolerability, ability
to cross the blood-brain barrier, and high oral bioavailability make
it the first-line drug for glioma (29). However, its effectiveness is
often short-lived, as glioma cells commonly develop resistance
within a few months. This highlights the urgent need to investigate
resistance mechanisms and identify new therapeutic targets to
improve treatment outcomes.

PAX3 is a crucial stem cell transcription factor involved
in embryonic development and plays a role in neural cell
differentiation by downregulating glial fibrillary acidic protein.
Previous research has shown that silencing PAX3 can suppress
tumor growth in several cancers, including gastric and prostate
cancer, supporting its role as a potential oncogene (30, 31). In
our study, elevated PAX3 expression in glioma was associated with
enhanced cell proliferation, migration, and reduced sensitivity to
the histone deacetylase inhibitor vorinostat. Mechanistically, PAX3
expression positively correlated with HDAC1/2/3 levels, and its
knockdown increased glioma cell sensitivity to vorinostat. These
results indicate that PAX3 not only promotes glioma progression
but also contributes to therapeutic resistance, positioning it as a
promising target for glioma therapy.

5 Limitations

This study has several limitations. The prognostic model was
developed using datasets that included both IDH-mutant and
IDH–wild-type gliomas; although it showed strong performance
overall, further validation in IDH–wild-type glioblastomas,
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which represent a distinct and aggressive subgroup, is needed.
PAX3 emerged as a key regulator of glioma migration and
vorinostat response, yet its function may vary across molecular
subtypes such as mesenchymal and proneural. While our assays
support a role for PAX3 in proliferation, migration, and drug
sensitivity, the underlying mechanisms remain unclear and
require further dissection of its interactions with subtype-specific
pathways. In addition, advanced tools such as single-cell RNA
sequencing and machine learning, which have proven valuable
for capturing glioma heterogeneity and progression (2, 3),
were not extensively applied here; incorporating them could
refine both mechanistic insight and model accuracy. Finally,
our functional work was limited to two established glioma cell
lines (U87 and U251), which do not reflect the full diversity
of gliomas. Broader validation in additional models, including
patient-derived glioma cells and xenografts, will be essential.
Despite these limitations, our study presents a validated four-
gene ERG-based model and highlights PAX3 as a potential
therapeutic target, providing a foundation for more personalized
glioma therapy.
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