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Optic neuritis (ON), a central manifestation of multiple inflammatory central 
nervous system (CNS) disorders, has seen remarkable advances in diagnostic and 
therapeutic strategies due to rapid progress in imaging technologies. This review 
systematically summarizes recent high-quality literature focusing on the latest 
progress of optical coherence tomography (OCT), optical coherence tomography 
angiography (OCTA), magnetic resonance imaging (MRI), and diffusion tensor 
imaging (DTI) in ON. It further explores the integrative application and clinical 
value of multimodal imaging combined with immune biomarkers. Additionally, the 
application of artificial intelligence (AI) and deep learning (DL) in image analysis is 
discussed. This review highlights current innovations and proposes future directions 
for establishing multicenter standardized protocols, facilitating precision diagnostics, 
and promoting personalized management, thereby accelerating clinical translation 
and advancing neuroimmunological ophthalmology.
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1 Introduction

Optic neuritis (ON) is an inflammatory demyelinating condition of the optic nerve, 
presenting with acute or subacute visual loss, often accompanied by pain on eye movement, 
and can be unilateral or bilateral (1, 2). ON may manifest either as an isolated episode or as 
the initial/concomitant feature of central nervous system (CNS) demyelinating disorders, 
particularly multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and 
myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), highlighting 
the clinical heterogeneity that complicates early diagnosis (3–5). Since the clinical 
implementation of aquaporin-4 immunoglobulin G (AQP4-IgG) testing in 2004 (6), the 
etiological spectrum of ON has been refined, prompting a shift from purely symptom-based 
to immunopathology-informed classification.

Despite advances in our understanding, ON still presents several diagnostic and 
management challenges. Distinct ON subtypes differ markedly in attack frequency, visual 
recovery, treatment response, and long-term prognosis; yet early clinical features often overlap, 
leading to frequent misdiagnosis (7, 8). Conventional auxiliary tests such as visual fields (VF), 
visual evoked potentials (VEP), and magnetic resonance imaging (MRI) often serve as 
exclusion tools rather than providing quantitative assessments of inflammation and axonal 
injury (9, 10). While high-dose corticosteroids remain the first-line treatment during acute 
ON episodes, imaging biomarkers capable of evaluating treatment efficacy and predicting 
relapse remain lacking, limiting personalized monitoring and management strategies.

In recent years, the emergence of high-resolution imaging tools such as optical coherence 
tomography (OCT), Optical coherence tomography angiography (OCTA), and 
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MRI—particularly advanced sequences like diffusion tensor imaging 
(DTI)—has ushered ON research into a new era of quantifiable 
visualization (11). OCT provides micron-level precision in measuring 
retinal nerve fiber layer (RNFL) and ganglion cell–inner plexiform 
layer (GCIPL) thickness, thereby reflecting axonal and neuronal 
integrity (3, 5). OCTA enables non-invasive assessment of 
microvascular density and perfusion characteristics in the optic disc 
and macula, offering insights into etiological differences and visual 
recovery prognosis (12). MRI and DTI detect microstructural 
abnormalities in the optic nerve tract and associated regions, 
correlating strongly with clinical outcomes (13, 14). Moreover, the 
integration of artificial intelligence (AI) and deep learning (DL) 
technologies is transforming automated image analysis and feature 
extraction, enabling large-scale quantitative studies (15). As a result, 
imaging biomarkers are increasingly central to early detection, 
etiological classification, therapeutic monitoring, and prognostic 
evaluation, progressively anchoring ON management within the 
framework of precision medicine.

This review presents innovations in the following areas: (1) 
Multimodal integration: combining OCT, OCTA, MRI/DTI, and 
AI-based technologies to systematically compare the advantages of 
structural, perfusion, and microstructural imaging; (2) Synthesis of 
recent evidence: focusing on high-quality studies from 2023 to 2025, 
including differentiation between NMOSD and MS, and AI-based 
automated ON classification and feature extraction; (3) Feasibility of 
clinical pathways: proposing an integrated diagnostic and therapeutic 
framework based on imaging and immune biomarkers, including 
AQP4-IgG, MOG-IgG, and neurofilament light chain (NfL). By 
framing ON as a model intersection of neuroimmunology and 
ophthalmic imaging, this review underscores the central role of 
imaging biomarkers in elucidating disease mechanisms and guiding 
precision therapeutic strategies, thereby emphasizing their 
transformative potential in both clinical and research settings.

2 Optical coherence tomography

OCT, a noninvasive imaging modality with micrometer 
resolution, has become a cornerstone in assessing structural damage 
to the optic nerve and retina in patients with ON. By quantifying 
changes in the RNFL and ganglion GCIPL, OCT reveals demyelination 
and axonal degeneration processes. Beyond structural assessment, 
OCT informs disease classification, prognostication, and treatment 
monitoring, while facilitating integration with other 
imaging modalities.

2.1 RNFL and GCIPL thickness and visual 
function in ON

2.1.1 Inter-eye difference and temporal dynamics
Idiopathic ON/MS-related ON. RNFL thinning typically 

becomes evident within the first 3 months after ON onset, with 
reductions averaging 15–18 μm, and correlates robustly with 
subsequent visual acuity recovery, underscoring its role as a 
sensitive biomarker for early post-acute damage (16). GCIPL 
thickness offers a more specific reflection of ganglion cell integrity, 
correlating strongly with contrast sensitivity and visual field 

deviations, and providing a sensitive early biomarker (17). 
Narrative synthesis of multiple studies suggests that inter-eye 
difference (IED) metrics, rather than absolute values, are especially 
powerful in idiopathic and MS-related ON. Thresholds of ≥4 μm 
GCIPL inter-eye absolute difference (IEAD) or ≥4% inter-eye 
percent difference (IEPD) yield AUC values approaching 0.90 
across devices (18). Similar RNFL-based cutoffs reliably identify 
prior ON even when absolute values remain within normative 
ranges (19). These findings support GCIPL-based IED as a practical 
biomarker for early post-acute evaluation of idiopathic and 
MS-associated ON.

MOGAD and NMOSD. By contrast, antibody-mediated ON 
demonstrates distinct longitudinal patterns. In MOGAD, GCIPL 
decline is measurable within weeks post-ON and parallels 10-2 visual 
field loss; RNFL may continue to decrease up to 12 months, reflecting 
ongoing neuroaxonal damage or edema resolution (20, 21). In 
NMOSD, RNFL loss is typically more abrupt and diffuse with limited 
structural recovery, consistent with AQP4-IgG–mediated 
astrocytopathy, and GCIPL thinning is often more pronounced after 
attacks (22). These antibody-specific dynamics illustrate that although 
IED is broadly informative, its interpretation must be tailored to the 
underlying etiology.

2.1.2 Structure–function correlation beyond 
high-contrast visual acuity

Beyond high-contrast visual acuity (VA), OCT metrics correlate 
quantitatively with more sensitive functional indices. In a 
prospective cohort of 88 acute ON patients, eyes with greater 
GCIPL thinning exhibited a mean loss of 8.5 letters on the 2.5% 
low-contrast Sloan chart at 6 months (p < 0.01), despite comparable 
high-contrast VA, highlighting the importance of low-contrast 
letter acuity (23). This underscores that contrast sensitivity and 
visual field indices provide more sensitive functional correlates of 
OCT-detected neurodegeneration.

2.2 Predicting ON prognosis and relapse 
risk with OCT

Beyond structural assessment, OCT is increasingly used to 
monitor treatment response and predict ON relapse. Notably, RNFL 
thinning > 20 μm combined with prolonged visual evoked potential 
(VEP) latency > 12 ms significantly increased relapse risk (hazard 
ratio = 2.7, p = 0.003) (24). Additionally, early RNFL thinning 
correlated with reduced retinal microvascular density, and their 
combination enhanced relapse prediction accuracy (25). Building 
on structural-functional correlations, a predictive model based on 
OCT-derived GCIPL metrics in traumatic optic neuropathy 
demonstrated that GCIPL thickness served as an independent 
prognostic factor for visual recovery, achieving an area under the 
curve (AUC) of 0.90 within 1 year (26). Further study confirmed 
that accelerated longitudinal GCIPL thinning over 6–12 months is 
strongly associated with poorer visual outcomes and increased 
relapse risk (27). OCT also plays a role in monitoring disease 
progression within the framework of No Evidence of Disease 
Activity (NEDA) in MS, where preserved retinal thickness 
correlates with sustained NEDA status and reduced relapse 
risk (28).
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2.3 OCT and ON of different etiologies

Recent studies also provide disease-specific insights for 
MOGAD and NMOSD, highlighting structural changes along the 
anterior and posterior visual pathways that reflect distinct 
neurodegenerative patterns. OCT provides valuable information 
not only for prognosis but also for differentiating ON subtypes. 
GCIPL thinning, particularly in the parafoveal region, is more 
pronounced in NMOSD-associated optic neuritis (NMOSD-ON) 
than in multiple sclerosis–associated optic neuritis (MS-ON), and 
strongly correlates with cognitive and visual processing speed 
deficits (r = −0.62, p < 0.001) (23). Further studies have 
demonstrated that MS-ON primarily affects the temporal RNFL 
quadrants, AQP4-IgG + NMOSD-ON results in diffuse loss across 
all quadrants, and MOGAD-ON exhibits relatively symmetric but 
milder thinning (p < 0.001) (29).

In MOGAD, eyes with prior ON show significant reduction in 
pRNFL and GCIPL thickness, which correlates with the number of 
ON episodes, as well as structural atrophy along the visual pathway, 
including lateral geniculate nucleus (LGN) and occipital cortex, 
indicating pathway-specific neurodegeneration (30). In NMOSD, 
LGN volume is reduced after ON, associated with retinal neuroaxonal 
loss and optic radiation damage, but does not decline in the absence 
of new ON episodes, suggesting that neurodegeneration primarily 
follows acute attacks (22). Collectively, these findings highlight OCT’s 
value in capturing disease-specific progression patterns across 
different ON etiologies.

In line with these findings, it has been observed that despite severe 
acute vision loss, MOGAD-ON often retains relatively preserved 
GCIPL thickness (mean reduction 14 μm), in contrast to NMOSD-ON 
eyes, which show markedly greater loss (mean reduction 28 μm, 
p = 0.008) (31). Recent comparative reviews and cohort analyses 
provide consistent evidence that MOGAD-ON is frequently bilateral 
at onset, associated with pronounced optic disc swelling, and followed 
by variable but sometimes modest chronic GCIPL loss despite 
profound acute deficits. By contrast, AQP4-IgG + NMOSD-ON is 
characterized by severe and diffuse chronic pRNFL and GCIPL 

thinning after attacks, with average chronic pRNFL values often 
<80 μm, whereas MS-ON more commonly shows temporal-
predominant RNFL loss (19). These modality-specific signatures 
support the use of OCT-guided triage for serologic testing when 
clinical features are ambiguous (Table 1).

Beyond descriptive features, newer analytic models further 
enhance diagnostic classification. An OCT-based model was 
developed that accurately distinguished diffuse RNFL and GCIPL 
thinning in NMOSD-ON, temporal thinning in MS-ON, and 
relatively preserved retinal structure in MOGAD-ON despite 
significant visual loss (32). Similarly, inter-eye difference (IED) 
metrics were shown to be useful, with GCIPL IED significantly greater 
in MOGAD-ON compared to MS-ON and NMOSD-ON, achieving 
a sensitivity of 87% and specificity of 85% for subtype discrimination 
(33). Finally, longitudinal MS cohorts demonstrate the prognostic 
dimension of OCT biomarkers, with pRNFL quantification identifying 
individuals at increased risk of cognitive dysfunction (23). Together, 
these findings underscore the capacity of OCT-derived metrics to 
capture both disease-specific phenotypes and long-term outcomes 
more comprehensively.

2.4 Technological advancements and 
future directions

High-speed swept-source OCT (SS-OCT) has been shown to 
significantly enhance imaging depth and speed, improving 
visualization of deep optic nerve structures and reducing motion 
artifacts, thereby enabling more accurate detection of optic disc 
edema and structural distortion in ON patients (34). Quantitative 
birefringence analysis using polarization-sensitive OCT (PS-OCT) 
has been reviewed, highlighting its ability to detect pre-atrophic 
microstructural disorganization in the RNFL, which may aid in 
identifying ON activity before irreversible damage occurs (35). A 
novel search algorithm for OCT layer segmentation has been 
developed, achieving highly precise delineation of retinal layers even 
in severely distorted optic nerves, thereby facilitating robust ON 

TABLE 1  Comparative imaging discriminators across ON subtypes.

Imaging modality NMOSD-ON (AQP4-
IgG+)

MOGAD-ON (MOG-
IgG+)

MS-ON Idiopathic ON

OCT: RNFL/GCL thinning Severe, often widespread
Prominent but with partial 

recovery

Focal thinning, especially 

temporal quadrant
Variable, usually mild

OCTA: Vessel density changes
Pronounced deep capillary 

plexus loss

Moderate superficial plexus 

loss
Mild vessel density decrease Minimal changes

MRI: Lesion distribution
Longitudinally extensive optic 

nerve lesions (≥3 segments)

Anterior, often optic nerve 

head swelling

Retrobulbar, short-segment 

lesions
Mixed patterns

MRI: Contrast enhancement Marked, long, continuous Prominent, anterior Patchy, short segment Variable

Advanced MRI (DTI, MRS)

Reduced FA, increased radial 

diffusivity; metabolic changes 

consistent with demyelination + 

axonal loss

Less severe DTI changes; 

relative axonal preservation

Focal demyelination; subtle 

metabolic changes
Nonspecific

Prognosis (functional 

outcome)

Poor visual recovery, high 

recurrence risk

Often good recovery; relapses 

common

Intermediate recovery; 

associated with MS conversion 

risk

Usually favorable
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subtype classification and treatment monitoring (36). Looking 
ahead, the integration of advanced OCT modalities with artificial 
intelligence and longitudinal data analysis is expected to further 
enhance the early detection, classification, and individualized 
monitoring of ON, paving the way toward predictive and precision 
neuro-ophthalmology.

3 Optical coherence tomography 
angiography

With advances in imaging technology, OCTA, a non-dye, 
noninvasive blood flow imaging modality, has increasingly been used 
to investigate retinal microvascular alterations in ON and related CNS 
demyelinating diseases, showing remarkable potential for evaluating 
visual function recovery and aiding disease classification.

3.1 Microvascular changes in ON

OCTA has revealed significant reductions in peripapillary and 
macular vessel densities during both acute and chronic stages of ON, 
offering valuable insights beyond traditional structural metrics. 
Quantitative studies of demyelinating ON have shown that vessel 
density loss in the superior and inferior quadrants is significantly 
more pronounced (p < 0.001) and closely correlates with visual field 
defects (r = 0.72, p < 0.01) (37). Additionally, peripapillary choroidal 
microvasculature dropout has been associated with poor visual 
recovery in ON patients (p = 0.003), even after adjusting for RNFL 
thickness, suggesting that deeper vascular alterations may serve as 
independent prognostic biomarkers (38). Early OCTA-detected 
reductions in vessel density have been shown to precede structural 
thinning and predict long-term functional decline, particularly in 
patients experiencing recurrent ON episodes (25). Together, these 
results highlight OCTA’s potential as a sensitive, non-invasive 
modality for early detection, prognostication, and treatment response 
evaluation in ON.

3.2 Application of OCTA in differential 
diagnosis of ON in MS, NMOSD, and 
MOGAD

A systematic review of OCTA biomarkers in MS and NMOSD 
identified consistent patterns of pronounced superficial capillary 
plexus (SCP) rarefaction in NMOSD, with peripapillary vessel 
density reductions exceeding 20%, whereas MS exhibited milder 
changes primarily in the temporal quadrant (39). These findings 
reinforce the value of SCP integrity as a subtype-specific imaging 
biomarker. Mohammadi et  al. (40) conducted a meta-analysis of 
OCTA data across 11 studies, reporting that NMOSD patients had 
significantly larger foveal avascular zone (FAZ) areas and lower 
parafoveal vessel densities than both MS and healthy controls 
(p < 0.001), while MOGAD patients exhibited near-normal 
microvascular metrics. This highlights the utility of FAZ morphology 
and flow indices in distinguishing NMOSD-ON from other ON 
subtypes. Furthermore, novel OCTA-derived indices, including 
vessel tortuosity and fractal dimension, have been introduced to 

evaluate microvascular complexity (39). Findings indicate that 
NMOSD-ON is associated with markedly reduced capillary regularity 
and impaired vascular remodeling potential, providing mechanistic 
insights and supporting OCTA’s role in disease classification and 
activity monitoring.

3.3 Advances in deep learning for OCTA 
image analysis

Recent innovations in deep learning (DL) have significantly 
enhanced the accuracy, efficiency, and reproducibility of OCTA 
analysis. Several state-of-the-art DL frameworks have been 
reviewed, highlighting the robustness of U-Net variants and 
attention-based models in accurately segmenting fine vascular 
structures, achieving vessel segmentation Dice coefficients 
exceeding 0.90 and reducing manual annotation by over 70%, 
thereby paving the way for standardized and fully automated 
ON-related vascular imaging analysis (41). A multi-view 
tri-alignment deep learning framework, MuTri, has been proposed 
to translate structural OCT into synthesized OCTA volumes with 
high fidelity, overcoming inter-modality variability. This model 
achieved over 25% improvement in cross-modality translation 
accuracy compared to baseline GAN architectures, enabling 
simulated 3D OCTA generation in cases where perfusion data 
may be unavailable (42). Collectively, these developments position 
DL as a critical tool for earlier and more precise characterization 
of microvascular changes in ON and related 
demyelinating conditions.

4 Magnetic resonance imaging and 
diffusion tensor imaging

4.1 Conventional MRI sequences in ON and 
prognostic evaluation

Conventional MRI sequences, including T2-weighted, STIR, and 
contrast-enhanced T1-weighted imaging, remain foundational for 
detecting optic nerve lesions, enhancement, and demyelination in ON 
and related disorders, providing essential diagnostic and prognostic 
information (43). Radiological predictors of visual outcome in ON 
have been investigated, showing that greater optic nerve lesion length 
and higher enhancement intensity during acute episodes are 
significantly associated with poorer visual recovery at 12 months 
(r = −0.71, p < 0.001), highlighting inflammatory load as a key 
prognostic indicator (44). Furthermore, contrast-enhanced MRI 
studies have shown that optic nerve enhancement lengths exceeding 
17 mm are significantly correlated with initial deficits in high-contrast 
visual acuity and contrast sensitivity (p < 0.05), reinforcing the utility 
of MRI enhancement metrics in gauging acute disease severity and 
guiding early treatment decisions (45).

Although optic nerve MRI is currently optional for MS diagnosis, 
it provides crucial information for lesion assessment, monitoring 
disease progression, and predicting visual outcomes (46). Thus, 
conventional MRI sequences, together with emerging quantitative 
assessments, serve both diagnostic and prognostic roles, enhancing 
ON clinical evaluation.

https://doi.org/10.3389/fneur.2025.1666835
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Meng et al.� 10.3389/fneur.2025.1666835

Frontiers in Neurology 05 frontiersin.org

4.2 DTI performance in microstructural 
damage of ON

DTI has emerged as a sensitive imaging modality to capture 
microstructural changes in the optic nerve. The use of DTI in optic 
neuropathies has been reviewed, highlighting that elevated apparent 
diffusion coefficient (ADC) and reduced fractional anisotropy (FA) in 
the acute phase are predictive of subsequent axonal degeneration and 
vision loss, supporting early DTI assessment as a reliable predictor of 
long-term structural damage (47). The pathophysiological 
mechanisms underlying optic neuritis in multiple sclerosis have been 
reviewed, highlighting that DTI metrics reliably reflect microstructural 
axonal damage and demyelination processes in the optic nerve, thus 
serving as essential biomarkers for disease progression (48). 
Quantitative spinal MRI studies have demonstrated that structural 
changes in the spinal cord following optic neuritis closely relate to 
optic nerve damage and visual impairment, suggesting broader CNS 
involvement detectable by advanced imaging (49). Overall, these 
findings support DTI as a sensitive tool for capturing microstructural 
changes predictive of visual outcomes in ON, offering valuable 
insights for tailored therapeutic interventions.

Optic nerve MRI findings have been shown to correlate with 
cerebral MRI changes in MS, supporting the idea that both 
conventional and non-conventional imaging can provide a 
comprehensive view of disease activity (50). The value of DTI and 
other quantitative MRI sequences for assessing optic nerve 
microstructure has been emphasized, highlighting their potential to 
predict long-term visual outcomes and guide early therapeutic 
interventions (46).

4.3 Manifestations and diagnostic advances 
in different ON etiologies

MRI features can aid in distinguishing ON etiologies. A 
retrospective analysis of 56 ON patients showed that MOGAD-ON 
more frequently presented with bilateral involvement and lesions 
extending to distal segments, such as the intraorbital and canalicular 
regions, which was distinct from MS-ON and NMO-ON (p = 0.006 
and p = 0.039, respectively) (51). Furthermore, combining brain/
spinal cord and optic nerve MRI features with OCT RNFL thickness 
enabled differentiation of MS from NMOSD/MOGAD with 95% 
classification accuracy (p < 0.001) (52).

MRI patterns, including optic nerve vs. sheath involvement, can 
distinguish typical (MS-related) from atypical ON (NMOSD- or 
MOG-IgG-related), guiding tailored treatment strategies (53). In 
addition, MRI features of intraocular optic nerve disorders have been 
summarized, highlighting the role of MRI in lesion characterization, 
extent assessment, and monitoring therapeutic response (54). These 
findings collectively highlight that MRI, when combined with 
advanced sequences and OCT, improves etiological classification and 
informs individualized management in ON.

Comparative analysis of DTI parameters in white matter tracts of 
MS and related disorders demonstrated that decreased axial diffusivity 
and fractional anisotropy strongly correlate with retinal nerve fiber 
layer thinning and visual evoked potential abnormalities, reinforcing 
DTI’s utility for early detection and longitudinal monitoring of 
microstructural injury (55).

4.4 Combined OCT and MRI studies in ON

Integration of OCT and MRI enhances understanding and 
management of ON by linking structural and functional changes. 
Enhanced depth imaging OCT was used to identify retrolaminar 
hyper-reflective foci in MS patients with acute ON, revealing 
significant associations with MRI-detected lesions (p = 0.000) (56). 
Moreover, OCT-measured pRNFL thinning in 50 patients with optic 
neuropathy, specifically linked to ON, was shown to complement MRI 
assessments, with significant correlations to lesion length (p = 0.01), 
indicating that OCT enhances MRI’s diagnostic precision by capturing 
retinal changes associated with optic nerve damage (57). This 
approach was further validated in 79 MS patients with ON, showing 
that incorporating OCT-assessed optic nerve data into MRI-based 
dissemination in space (DIS) criteria increased diagnostic sensitivity 
by 12% (p = 0.03), improving early ON diagnosis without 
compromising specificity, thereby highlighting the synergistic 
potential of these modalities (58). Overall, these findings underscore 
the synergistic potential of combining structural and functional 
biomarkers, linking retinal and optic nerve pathology to enhance both 
diagnostic accuracy and therapeutic decision-making, paving the way 
for a more holistic understanding of ON pathophysiology.

5 Intelligent imaging analysis: artificial 
intelligence and deep learning in ON

AI and DL are progressively applied in ON research, providing 
standardized and automated solutions for visual function evaluation, 
and advancing imaging analysis from descriptive to quantitative and 
predictive levels.

5.1 Inferring blood flow maps from 
structural OCT

A convolutional neural network (CNN) model was employed to 
infer superficial capillary blood flow maps from standard OCT images, 
achieving 85% prediction accuracy and a Dice coefficient of 0.82 across 
independent ON samples (59). This demonstrated that microvascular 
perfusion could be assessed without OCTA. Cassottana et al. (60) 
conducted a comparative study assessing papillary and macular blood 
flow using OCTA in healthy subjects and patients with various optic 
neuropathies, providing normative and pathological benchmarks that 
enhance the interpretation of inferred flow maps. Together, these 
approaches strengthen deep learning models’ ability to discriminate 
ON etiologies by integrating structural and vascular imaging data.

5.2 Super-resolution and multimodal 
fusion of blood flow–structure imaging

An enhanced OCTA post-processing pipeline using attention-
guided super-resolution algorithms was introduced, significantly 
improving vascular detail resolution in retinal imaging, with PSNR 
increased by 3.9 dB and SSIM by 0.06 compared to baseline 
interpolation methods (61). This method enables more accurate 
visualization of capillary-level changes in optic neuropathies, facilitating 
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earlier and finer diagnostic discrimination. Moreover, a multimodal 
deep learning framework integrating structural OCT, OCTA, and 
serum omics data was developed, achieving an AUC of 0.95 for 
distinguishing inflammatory versus ischemic optic neuropathies and 
predicting six-month visual outcomes with 91.2% sensitivity and 89.5% 
specificity (62). These advances underscore the value of multimodal 
fusion in enhancing ON diagnostic precision and outcome prediction.

5.3 Automated OCTA processing and 3D 
reconstruction technologies

High-resolution 3D OCT volumes combined with synthetic slice 
generation were leveraged to improve lesion detection in 
demyelinating diseases, achieving 92.3% diagnostic accuracy in 
distinguishing MS-related optic neuropathy from controls and 
enhancing visualization of peripapillary microstructural abnormalities 
(63). In parallel, Vision Transformer (ViT) technology was applied for 
3D reconstruction of OCTA images, resulting in a 20% improvement 
in accuracy (64), enabling more comprehensive depiction of tissue 
and blood flow changes in various ON types. Additionally, AI groups 
have optimized segmentation strategies via reinforcement learning, 
reducing noise error by 15% and enhancing microvascular change 
detection across ON etiologies (41). Collectively, these developments 
position DL as a critical tool for more precise characterization of 
microvascular changes and overall ON imaging.

6 Imaging characteristics for pediatric 
optic neuritis

ON displays a distinct epidemiological profile compared to adults, 
with MOGAD-ON being more prevalent in children, accounting for 
30–64% of pediatric demyelinating syndromes (65), while MS-ON and 
NMOSD-ON are rarer in this group and more common in adult (66). In 
children, OCT reveals pronounced RNFL and GCIPL thinning during 
acute attacks, with median peripapillary RNFL thickness reaching 
164 μm due to severe swelling, but with better recovery potential (67). 
Concurrently, MRI shows extensive longitudinal optic nerve lesions with 
bilateral involvement and perineural enhancement, while OCTA 
highlights reduced peripapillary vessel density (e.g., 10–15% lower than 
age-matched controls) and widespread microvascular changes during 
inflammation (68). These findings contrast with adults, who exhibit 
greater chronic RNFL thinning (average reduction of 20–30 μm post-
attack), shorter MRI lesions with higher chiasmal involvement, and 
more stable but diminished OCTA vascular networks reflecting 
persistent damage. These differences underscore the need for pediatric-
specific reference standards for age-adjusted RNFL/GCIPL norms and 
microvascular metrics, alongside validated AI algorithms to enhance 
diagnostic accuracy and monitor progression, reflecting developmental 
variations in retinal and optic nerve anatomy.

7 Integration of imaging biomarkers 
and immunological biomarkers

Recent studies highlight the synergistic value of combining imaging 
and immunological biomarkers in the etiological diagnosis of ON 

(Figure 1). Specific MRI features—such as the volume and distribution 
of optic nerve enhancement—have been shown to correlate significantly 
with serum AQP4-IgG titers in NMOSD-ON patients, suggesting that 
AQP4-IgG levels may directly reflect central inflammatory burden on 
imaging (69). Complementing this, OCTA-derived microvascular 
parameters were integrated with serum MOG-IgG and AQP4-IgG 
antibody levels, providing a combined structural–immunological 
assessment (70). Their multimodal approach significantly improved the 
differentiation between MOGAD, NMOSD, and MS, outperforming 
individual biomarkers alone. Overall, these findings underscore the 
diagnostic value of integrating immune and imaging data for accurate 
ON subtype classification and disease monitoring.

Emerging multi-omics studies have deepened our understanding 
of how immunological activity shapes imaging manifestations in 
ON. Elevated serum levels of complement components C3a and C5a 
have been shown to correlate significantly with greater RNFL thinning 
in NMOSD-ON, indicating that OCT-detected structural damage 
reflects ongoing complement-mediated axonal injury (p < 0.01) (71). 
Additionally, integration of cytokine panels with OCTA metrics has 
demonstrated that elevated IL-6 and TNF-α levels correlate with 
reduced peripapillary vessel density (r = −0.54, p < 0.001), 
highlighting the close link between systemic inflammation and retinal 
microvascular rarefaction (70). These findings support a dual-
dimensional biomarker approach—combining immune indicators 
with imaging parameters—for improved ON subtype differentiation 
and dynamic disease monitoring.

For disease activity and prognosis evaluation, Serum NfL levels 
measured during acute ON attacks have been shown to strongly 
predict post-attack disability progression and correlate with structural 
imaging parameters, supporting their role as dynamic biomarkers of 
axonal damage (72). Complement components, including C1q and C3, 
have been highlighted as emerging predictors of disease severity and 
visual prognosis in ON. When integrated with structural imaging 
parameters, they improve sensitivity for detecting subclinical 
inflammation and long-term axonal damage, indicating their potential 
as adjunct biomarkers for monitoring chronic disease progression 
(73). AI-based algorithms integrating OCT and MRI features with 
serum immune profiles have been shown to enhance ON subtype 
classification and guide treatment stratification. These models achieved 
high diagnostic accuracy across multi-etiology datasets, demonstrating 
the potential of AI to combine multimodal data for precision medicine 
applications (74). Serum cytokine panels, including IL-6, VEGF, and 
miR-150, have been shown to correlate closely with OCT-derived 
RNFL and GCIPL measurements. Such immunological markers 
complement structural imaging in assessing optic nerve integrity and 
differentiating ON subtypes, providing a foundation for biomarker-
informed clinical decision-making (70). These markers are closely 
associated with RNFL and GCIPL thickness changes detected by OCT, 
providing refined neural structural damage information across ON 
etiologies and complementing conventional structural imaging, thus 
laying a solid foundation for future multimodal biomarker validation.

8 Current challenges and future 
directions of imaging biomarkers

Despite substantial advances in imaging technologies for the 
diagnosis and monitoring of ON, several clinical challenges persist. 
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Significant heterogeneity in imaging parameters arises from variations 
in device platforms, scan acquisition protocols, and segmentation 
algorithms, complicating dataset harmonization across centers and 
limiting multi-site validation efforts (16). This lack of standardization 
hinders the reproducibility and comparability of results, especially in 
large-scale studies.

In parallel, most current AI applications in neuro-ophthalmology 
face limited generalizability, as highlighted by Kenney and Requarth 
(75). Models are frequently trained on narrow datasets from single 
institutions or specific devices, leading to performance declines when 
applied to external cohorts. Additionally, the lack of explainable 
outputs and standardized clinical integration frameworks further 
hinders their widespread adoption in practice (75). These limitations 
highlight the urgent need for collaborative multi-center efforts, open-
access imaging repositories, and standardized pipelines to facilitate the 
development of robust, generalizable AI-enhanced imaging tools. 
These issues highlight the importance of data sharing, external 
validation, and multicenter collaborative research. Only through 
establishing standardized workflows and open databases can cross-
institutional model training and validation be  achieved to ensure 
reliability and universality.

Looking forward, the integration of multimodal imaging with 
artificial intelligence is emerging as a cornerstone for enhancing 
diagnostic accuracy and individualized prognostication in ON. It has 
been demonstrated that integrating structural imaging modalities 
(e.g., OCT, MRI) with functional assessments such as OCTA and 
electrophysiological measures, supported by AI-driven analytical 
frameworks, allows for a more comprehensive characterization of the 
multifactorial pathophysiology of optic neuritis (76). It was validated 
that smartphone-based self-screening tools are feasible for early 

detection of neuro-ophthalmic disorders, underscoring their potential 
to expand access to real-time assessment, enable remote disease 
surveillance, and facilitate longitudinal monitoring beyond traditional 
clinical settings (77). Future interdisciplinary, multicenter, and 
multimodal research frameworks will be pivotal to advancing ON 
diagnosis and treatment toward precision medicine.

9 Conclusion

ON, a hallmark of central nervous system inflammatory disorders, 
relies critically on imaging biomarkers for accurate diagnosis, 
prognostic assessment, and clinical management. Advances in 
multimodal imaging—including optical coherence tomography 
(OCT), OCT angiography (OCTA), and magnetic resonance imaging/
diffusion tensor imaging (MRI/DTI)—combined with AI-driven 
analytics and immune profiling, have transformed etiological 
differentiation, relapse prediction, and personalized treatment 
selection. Despite ongoing challenges in standardization and AI 
generalizability, these biomarkers now anchor the entire ON 
management continuum—from early detection through long-term 
monitoring—highlighting their pivotal role in driving precision 
neuro-ophthalmology.
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FIGURE 1

Integrated precision medicine framework for optic neuritis (ON). The schematic illustrates the integration of multimodal imaging, serum biomarkers, 
and artificial intelligence (AI)-driven analytics to support clinical in ON. Left panel includes structural optical coherence tomography [OCT; retinal nerve 
fiber layer (RNFL), ganglion cell–inner plexiform layer (GCIPL)], optical coherence tomography angiography [OCTA; superficial capillary plexus [SCP], 
foveal avascular zone (FAZ), vessel density (VD)], magnetic resonance imaging/diffusion tensor imaging (MRI/DTI; orbital, brain, and spinal cord 
assessments), and serum biomarkers [AQP4-IgG, MOG-IgG, neurofilament light chain (NfL), complement components, cytokines]. These data streams 
converge into AI-based analytics encompassing quality control (QC), automated segmentation, multimodal data fusion, and prognostic modeling. 
Outputs from this computational framework inform the right panel, representing clinical integration, including diagnosis, subtype classification, 
treatment selection, longitudinal monitoring, assessment of No Evidence of Disease Activity (NEDA), and prediction of visual and functional outcomes. 
This model emphasizes the synergistic application of imaging, immunological profiling, and computational methods to guide individualized 
management strategies in ON.
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