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for predicting early neurological
deterioration in symptomatic
intracranial atherosclerotic
stenosis

Yang Yang?!, Chunhao Mei?, Xiaoning Guo?, Jiajia Chen?,
Tingting Tao'* and Qingguang Wang!*

!Department of Neurology, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu,
China, 2Department of Neurology, Jiangyin Fifth People's Hospital, Jiangyin, Jiangsu, China

Background: To develop and validate a machine learning (ML) model for early
neurological deterioration (END) risk prediction in patients with symptomatic
intracranial atherosclerotic stenosis (SICAS).

Methods: This retrospective cohort study enrolled 557 patients with SICAS
between January 2022 and December2024. Relevantclinicaldatawere collected.
Least Absolute Shrinkage and Selection Operator (LASSO) regression selected
predictive features from clinical/imaging variables. Five ML algorithms, including
Gaussian Naive Bayes (GNB), Gradient Boosting Decision Trees (GBDT), Light
Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost),
and Logistic Regression (LR), were trained (70% of the data) and validated (30% of
the data) using 10-fold cross-validation. Model performance was assessed using
the area under the curve (AUC), calibration, and decision curve analysis (DCA).
Shapley additive explanations (SHAP) interpreted the feature contributions.
Results: The overall incidence rate of END was 18.13%. The XGBoost model
outperformed the other models, achieving a validation AUC of 0.874 (95%
Cl, 0.809-0.939), a sensitivity of 0.749, a specificity of 0.859, and excellent
calibration (deviation: 0.116). DCA indicates the clinical utility of the XGBoost
model. Key predictors included the NIHSS score (strongest driver), vascular
stenosis severity, Triglyceride Glucose (TyG) index, age, initial systolic blood
pressure (SBP), and diabetes. SHAP analysis provided interpretability for the
machine learning model and revealed essential factors related to the risk of END
in SICAS.

Conclusion: This study demonstrates the potential of ML in predicting END
in SICAS patients. The SHAP method enhances the interpretability of the
prediction model, providing a practical and implementable solution for the early
identification of high-risk patients.
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Introduction

Early neurological deterioration (END), a frequent complication
following acute ischemic stroke (AIS) with an estimated incidence
ranging from 12.06 to 17.4%, markedly adversely affects patient
prognosis (1-3). Research indicates that AIS patients with intracranial
atherosclerotic stenosis (ICAS) face a heightened risk of END and are
more susceptible to severe disability (4). In China, approximately
46.6% of AIS patients present with ICAS (5), which poses a
substantially greater challenge for preventing and managing END.

ICAS contributes to ischemic stroke primarily through several
distinct mechanisms, such as in situ thrombosis or artery-to-artery
embolism, hemodynamic impairment, and branch atheromatous
disease (6). These mechanisms are generally not observed in
non-ICAS stroke etiologies (7). Furthermore, significant differences
have been reported in admission National Institutes of Health Stroke
Scale (NIHSS) scores, 90-day functional outcomes, and blood pressure
variability (BPV) between patients with symptomatic intracranial
atherosclerotic stenosis (SICAS) and those without SICAS (8).
Although progress has been made in predicting END in broader
stroke populations (9, 10), there remains a lack of dedicated risk
prediction tools explicitly tailored to SICAS patients.

Machine learning methods can integrate multi-dimensional
clinical data and identify complex non-linear relationships. They have
shown significant advantages over traditional models in predicting
conditions such as coronary heart disease (CHD) (11), spontaneous
intracerebral hemorrhage (12), and ischemic stroke treatment (13).
These strengths offer a novel approach to developing more accurate
predictive models for END. Leveraging real-world clinical data, this
study aimed to construct a machine learning-based predictive model
for END risk in SICAS patients and assess the performance of
various algorithms.

Materials and methods
Study population

This study employed a retrospective, observational cohort design.
We enrolled hospitalized patients with AIS who were admitted to the
Jiangyin Clinical College of Xuzhou Medical University between
January 2022 and December 2024.

Inclusion Criteria were as follows: (1) age > 45 years, (2) Time
from symptom onset <72 h, (3) The diagnosis meets the diagnostic
criteria for acute ischemic stroke (14), and (4) Magnetic Resonance
Angiography (MRA) demonstrating stenosis (>30%) in an
intracranial artery segment (C4-M2), with magnetic resonance
imaging - diffusion-weighted imaging (MRI-DWI) confirming an
acute infarction within the vascular territory supplied by the
stenotic artery.

Exclusion Criteria were as follows: (1) age < 45 years, (2) posterior
circulation infarction, (3) history of atrial fibrillation (AF) or AF
detected on admission electrocardiogram (ECG), (4) NIHSS score >
18 on admission, (5) presence of tandem extracranial stenosis or
occlusion in the culprit vessel, and (6) receipt of endovascular therapy.

This study adhered to ethical standards and was approved by the
Research Ethics Committee of Jiangyin Clinical College of Xuzhou
Medical University (Approval No. 2025-KY019-01).

Frontiers in Neurology

10.3389/fneur.2025.1667119

Clinical baseline data

The following baseline clinical data were collected from the
electronic medical record system:

1. Demographics: age, sex, and body mass index (BMI). BMI was
defined as the ratio of a persons weight (in kilograms) to the
square of their height (in meters).

2. Comorbidities: hypertension, diabetes, CHD, hyperlipidemia,
and previous stroke.

3. Personal History: smoking history (defined as current
smoking or smoking cessation within the past 6 months) and
alcohol consumption history (defined as habitual alcohol
intake).

4. Clinical assessment: admission NIHSS score, initial systolic
blood pressure (SBP), and initial diastolic blood pressure
(DBP). The NIHSS scores were assessed by certified
neurologists at our center and independently evaluated by a
second blinded neurologist. A senior neurologist adjudicated
any discrepancies.

5. Laboratory investigations: fasting venous blood samples were
collected at 06:00 the following morning and analyzed for
white blood cell (WBC) count, platelet (PLT) count, total
cholesterol (TC), low-density lipoprotein (LDL), high-density
lipoprotein (HDL), triglycerides (TG), and fasting blood
glucose (FBG). The triglyceride glucose (TyG) index was
calculated using the following formula: TyG index = Ln [TG
(mg/dL) x FBG (mg/dL)/2] (15).

Imaging assessment

Brain MRI and magnetic resonance angiography (MRA) were
performed using a 3.0 Tesla Siemens MRI scanner. The acquired
sequences included T1-weighted, T2-weighted, fluid-attenuated
inversion recovery (FLAIR), and time-of-flight (TOF) MRA images.
Intracranial artery stenosis severity was quantified via the Warfarin-
Aspirin symptomatic intracranial disease (WASID) criteria (16):
stenosis (%) = (narrowest luminal diameter at the lesion site—/—
diameter of the proximal normal vessel) x 100. The severity of
vascular stenosis is classified as mild (30-50%), moderate (50-70%),
and severe or occlusive (> 70% or complete occlusion). If multiple
stenoses were present, the data from the most severe stenosis were
recorded. MRI-DWI confirmed an acute infarction within the
vascular territory supplied by the stenotic artery. Recorded stenosis
sites included the internal carotid artery (ICA) segments C4-C7 and
the middle cerebral artery (MCA) segments M1-M2. The first
radiologist initially evaluated all imaging and then reviewed it by a
second, more experienced radiologist; any disagreements were
resolved by a senior radiologist at the center.

Clinical treatment

Treatment modalities were recorded as follows: (1) Receipt of
intravenous thrombolysis (IVT). (2) Antiplatelet therapy: Dual
antiplatelet therapy (DAPT) or single antiplatelet therapy (SAPT). (3)
Receipt of statin therapy.
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Outcome measure

In this study, the primary outcome measure, END, was defined as
either a > 2-point increase in the NIHSS total score or a > 1-point
increase in the motor items of the NIHSS scale, occurring within 24 h of
hospital admission. This threshold was selected because it is a sensitive
indicator of poor functional outcomes (17). All NIHSS scores were
evaluated by certified and trained neurologists or research nurses at the
time of patient admission (baseline) and every 4 h thereafter within 24 h.

Statistical analysis

Statistical analyses were performed using R (version 3.6.8) and
Python (version 3.7). The normality of continuous variables was
assessed using the Shapiro-Wilk test. Data are presented as mean +
standard deviation (SD) for normally distributed variables and as
median with interquartile range (IQR) for non-normally distributed
variables. Categorical variables are presented as counts (percentages)
and were compared using the chi-square test. The 95% confidence
interval for the models performance was estimated from the
distribution of scores obtained from the cross-validation folds.
Statistical significance was set at p < 0.05.

Machine learning model construction

Variables with >5% missing data were excluded from analysis;
variables with <5% missingness were imputed using multiple
imputation. The dataset was randomly split into a training set and a
validation set in a 7:3 ratio. Following the standardization of
quantitative features, the Least Absolute Shrinkage and Selection
Operator (LASSO) algorithm was applied to the training set to select
the most predictive features (features with non-zero coeflicients). A
10-fold cross-validation procedure was incorporated during LASSO
feature selection to maximize the area under the receiver operating
characteristic (ROC) curve (AUC). LASSO is a regularization
regression technique commonly used to reduce high-dimensional
feature spaces and aid in identifying and selecting optimal clinical
predictors for subsequent model building.

The synthetic minority over-sampling technique (SMOTE) was
used to address the issue of class imbalance. Five machine learning
algorithms were utilized to predict END risk in SICAS patients: Logistic
Regression (LR), Light Gradient Boosting Machine (LightGBM),
Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting
(XGBoost), and Gaussian Naive Bayes (GNB). Each model possesses
unique advantages: LR is the most traditional and interpretable method
in clinical prediction models, and its inclusion helps determine whether
more complex machine learning models yield significant performance
improvements (18). LightGBM’s computational efficiency makes it an
ideal choice for large-scale datasets (19). GBDT serves as the classical
implementation of gradient boosting (20). XGBoost, another gradient
boosting method, is renowned for its robust and high-performing
nature, making it a powerful tool for classification and regression tasks
in medical research (21). GNB, based on the Bayesian theorem, offers
simplicity and rapid execution, providing a distinct benchmark
compared to other complex models based on gradient boosting (22).

For the training set, k-fold cross-validation (k = 10) was employed
as the resampling technique, and hyperparameter tuning was
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performed using a grid search. Model discriminatory ability was
assessed using ROC curves and precision-recall (PR) curves. The
calibration curves were used to calibrate the models. A decision curve
analysis (DCA) was performed to estimate the net clinical benefit.
Additionally, the performance of each model was evaluated using a
confusion matrix, reporting the following metrics: accuracy,
sensitivity, specificity, Positive predictive value (PPV), negative
predictive value (NPV), F1-score, and Cohen’s kappa coeflicient. The
F1-score, which is the harmonic mean of precision and recall, is
particularly suitable for evaluating model performance on imbalanced
datasets. Meanwhile, Cohen’s Kappa coefficient assesses the agreement
between model predictions and actual outcomes, accounting for the
possibility of random agreement. This makes it a more reliable metric
than accuracy alone.

Results
Baseline characteristics comparison

A total of 557 eligible patients from the Jiangyin Clinical College of
Xuzhou Medical University were included in the model (Figure 1). The
overall incidence of END was 18.13%. The median age of the participants
was 62 years (IQR: 56-70), and 52.96% were male. Compared with the
non-END group, the END group was significantly older (p = 0.028), had
a higher admission NIHSS score (p < 0.001), included more patients
with a history of diabetes mellitus (p < 0.001), and showed elevated SBP
(p<0.001). In terms of imaging assessments, the END group
demonstrated a significantly greater frequency of severe stenosis or
occlusion (p < 0.001), as well as a higher prevalence of stenosis in the M1
segment (p = 0.030), relative to the non-END group (Table 1).

Feature selection for machine learning
models

LASSO regression analysis was performed on the training dataset
encompassing 24 variables. The optimal A value, indicated by the
vertical dashed line in Figure 2B, was A =0.028. This A value
corresponded to the retention of six predictive features in the model:
age, diabetes, initial SBP, admission NIHSS Score, TyG index, and
vascular stenosis severity (Figure 2).

Acute Ischemic Stroke patients (1 =7349) |

(1) Age <45 years (n=536)

(2) Symptom onset >72 hours (n=1,865)

(3) Missing MRA data (n=476)

(4) Posterior circulation infarction (n=983)
(5) Absence of culprit artery stenosis or
stenosis <30% (n=2,129)

(6) Concomitant tandem extracranial
stenosis (n=456)

(7) Receipt of endovascular therapy (n=347)

‘ Final anlyzed sample (n=557) ‘

END group Non-END group
(n=101) (n=456)
FIGURE 1
Study flowchart. A total of 557 patients were included in the final
analysis.
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TABLE 1 Baseline characteristics of patients with and without END (SICAS cohort, Jiangyin Clinical College, 2022-2024).

Characteristic END
Overall N = 557 Non-END group N = 456 END group N = 101
Age, median (Q1, Q3) 62 (56, 70) 61 (56, 69) 65 (56, 71) 0.028!
Sex, 1 (%) 0.3212
Female 262 (47.0%) 219 (48.0%) 43 (42.6%)
Male 295 (53.0%) 237 (52.0%) 58 (57.4%)
Hypertension, 1 (%) 0.3152
No 195 (35.0%) 164 (36.0%) 31 (30.7%)
Yes 362 (65.0%) 292 (64.0%) 70 (69.3%)
Diabetes, 1 (%) 0.0022
No 370 (66.4%) 316 (69.3%) 54 (53.5%)
Yes 187 (33.6%) 140 (30.7%) 47 (46.5%)
CHD, n (%) 0.635%
No 337 (60.5%) 278 (61.0%) 59 (58.4%)
Yes 220 (39.5%) 178 (39.0%) 42 (41.6%)
Hyperlipidemia, n (%) 0.099°
No 284 (51.0%) 240 (52.6%) 44 (43.6%)
Yes 273 (49.0%) 216 (47.4%) 57 (56.4%)
Stroke, n (%) 0.669°
No 455 (81.7%) 374 (82.0%) 81 (80.2%)
Yes 102 (18.3%) 82 (18.0%) 20 (19.8%)
Smoking, 1 (%) 0.217%
No 387 (69.5%) 322 (70.6%) 65 (64.4%)
Yes 170 (30.5%) 134 (29.4%) 36 (35.6%)
Alcohol, n (%) 0.684%
No 379 (68.0%) 312 (68.4%) 67 (66.3%)
Yes 178 (32.0%) 144 (31.6%) 34 (33.7%)
BMI, median (Q1, Q3) 21.85 (19.59, 23.91) 21.78 (19.53, 23.92) 22.09 (20.07, 23.90) 0.487!
NIHSS score, median (Q1, Q3) 5(3,7) 5(3,7) 6(4,9) <0.001!
Vascular stenosis severity, 1 (%) <0.001*
Mild 265 (47.6%) 241 (52.9%) 24 (23.8%)
Moderate 179 (32.1%) 147 (32.2%) 32 (31.7%)
Severe or occlusion 113 (20.3%) 68 (14.9%) 45 (44.6%)
Stenosis site, 71 (%) 0.030°
C4-C7 231 (41.5%) 193 (42.3%) 38 (37.6%)
Ml 183 (32.9%) 139 (30.5%) 44 (43.6%)
M2 143 (25.7%) 124 (27.2%) 19 (18.8%)
SBP (mmHg), 1 (%) <0.0012
<140 159 (28.5%) 131 (28.7%) 28 (27.7%)
140-160 240 (43.1%) 213 (46.7%) 27 (26.7%)
>160 158 (28.4%) 112 (24.6%) 46 (45.5%)
DBP (mmHg), 1 (%) 0.318°
<90 235 (42.2%) 198 (43.4%) 37 (36.6%)
90-110 305 (54.8%) 243 (53.3%) 62 (61.4%)
>110 17 (3.1%) 15 (3.3%) 2 (2.0%)
(Continued)
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TABLE 1 (Continued)

Characteristic

Overall N = 557

END
Non-END group N = 456

10.3389/fneur.2025.1667119

END group N = 101

TC (mmol/L), mean + SD 4.64 £0.59 4.63 £0.59 4.71 £0.58 0.172*
HDL (mmol/L), median (Q1, Q3) 1.11 (1.01, 1.24) 1.11 (1.00, 1.24) 1.08 (1.01, 1.21) 0.385'
LDL (mmol/L), mean + SD 3.07 £ 0.56 3.05+0.55 3.15+0.57 0.117*
WBC (x 10°/L), median (Q1, Q3) 7.76 (5.98, 9.69) 7.86 (6.12,9.74) 6.99 (5.55, 9.58) 0.184'
PLT (x 10°/L), mean + SD 204 £ 51 203 51 21055 0.218*
TyG index, median (Q1, Q3) 9.01 (8.81,9.17) 9.01 (8.81,9.16) 9.04 (8.82,9.22) 0.107'
Antiplatelet, n (%) 0.7012
DAPT 34 (6.1%) 27 (5.9%) 7 (6.9%)
SAPT 523 (93.9%) 429 (94.1%) 94 (93.1%)
IVT, n (%) 0.488>
No 467 (83.8%) 380 (83.3%) 87 (86.1%)
Yes 90 (16.2%) 76 (16.7%) 14 (13.9%)
Statins, 1 (%) 0.761°
No 19 (3.4%) 15 (3.3%) 4 (4.0%)
Yes 538 (96.6%) 441 (96.7%) 97 (96.0%)

'Wilcoxon rank sum test; *Pearson's Chi-squared test; *Fisher's exact test; “Welch Two-Sample t-test.
BMI, body mass index; CHD, coronary heart disease; NTHSS, National Institutes of Health Stroke Scale; WBC, white blood cell; PLT; platelet; TC, total cholesterol; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; TyG index, triglyceride-glucose index; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy. Mild stenosis, 30-50%; moderate stenosis,

50-70%; severe or occlusion, 70-100%.

A . .

Coefficients

23 23 23 22 21 22 21

18 18 16 11 6 4 2 2 1 1

0.94
1

Binomial Deviance
0.90
1

0.86
|

FIGURE 2

Log Lambda

o..‘.

e
.

Feature selection using LASSO regression analysis. Panel (A) displays the coefficient trajectories of the 24 candidate features across varying penalty
parameter (1) values, illustrating the evolution of LASSO coefficients during regularization. Panel (B) presents the coefficient profiles of all 24 features
across the log()) sequence in the LASSO model, with vertical dashed lines indicating the optimal A values at the minimum mean squared error

(A = 0.028) and one standard error above the minimum (A = 0.049). The optimal A value (A = 0.028) yielded six variables with non-zero coefficients.

Log(A)

Machine learning models

We evaluated the five models using accuracy, sensitivity, specificity,
PPV, NPV, Fl1-score, and Cohen’s kappa coefficient. All five machine
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learning models achieved mean accuracy exceeding 0.80 in the training
set, with their predictive capability further validated in the independent

05

validation set (Table 2). Figures 3A,B demonstrate that the XGBoost
algorithm exhibited superior performance and stability in both the
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TABLE 2 Performance metrics of machine learning models in the validation set.

10.3389/fneur.2025.1667119

AUC Accuracy Sensitivity Specificity PPV NPV F1-score Kappa (95
(95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% Cl)  (95% CI) (95% ClI) %Cl)
0.874 0.882
0.71 (0.666- 0.728 (0.696-  0.598 (0.554-
XGBoost (0.809- 0.824 (0.806-0.843) | 0.749 (0.721-0.777) | 0.859 (0.835-0.883) (0.873-
0.754) 0.760) 0.642)
0.939) 0.892)
0.819 0.818 0.849
0.68 (0.649- | 0.572 (0.543-
LR (0.740- 0.834 (0.823-0.844) | 0.602 (0.529-0.675) | 0.93 (0.895-0.965) (0.753- (0.832- 0711) 0600
0.897) 0.884) 0.866) ’ ’
0.799 0.734 0.861
0.691 (0.664- | 0.57 (0.532-
GBDT (0.729- 0.825 (0.807-0.843)  0.659 (0.608-0.710) | 0.896 (0.875-0.917) (0.701- (0.837- 0717) 0.608)
0.869) 0.767) 0.884) ’ ’
0.834 0.861
0.67 (0.609- 0.69 (0.653- | 0.561 (0.514-
GNB (0.757- 0.817 (0.798-0.836) | 0.674(0.616-0.732) 0.8 (0.848-0.912) (0.840-
0.730) 0.727) 0.608)
0.910) 0.881)
0.767 0.818
0.85 (0.829- | 0.636 (0.595- | 0.495 (0.435-
LightGBM (0.681- 0.795 (0.764-0.826) | 0.623 (0.559-0.686) | 0.864 (0.819-0.910) (0.753-
0.872) 0.677) 0.554)
0.854) 0.884)

XGBoost, extreme gradient boosting; LR, logistic regression; GBDT, gradient boosting decision trees; GNB, Gaussian naive bayes; LightGBM, light gradient boosting machine; AUC, area
under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Evaluation of the machine learning model. (A) ROC curves in the training set; (B) ROC curves in the validation set; (C) Calibration curve in the validation
set; (D) Precision-recall (PR) curve in the training set; (E) PR curve in the validation set; (F) Decision curve analysis (DCA) in the validation set.

\ T

40 60 80 100

training (ROC-AUC 0.933, 95% CI 0.905-0.961) and validation
(ROC-AUC 0.874, 95% CI 0.809-0.939) sets. The precision-recall
curves (Figures 3D,E) confirmed XGBoost’s optimal performance and
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robust generalizability, with an area under the precision-recall curve
(AUPRC) value of 0.895 (95% CI 0.877-0.913) in the training set and
0.840 (95% CI 0.816-0.863) in the validation set. The calibration plot
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TABLE 3 Performance comparison between the complete model and the ablation model (excluding the TyG index).

10.3389/fneur.2025.1667119

Model AUC Accuracy Sensitivity Specificity PPV NPV F1-score Kappa
variant (95% Cl) (95% Cl) (95% Cl) (95% Cl) (95% Cl)  (95% Cl) = (95% Cl) (95% Cl)
0.874 0.882
Complete 0.71 (0.666- 0.728 (0.696- | 0.598 (0.554-
(0.809- 0.824 (0.806-0.843) | 0.749 (0.721-0.777) = 0.859 (0.835-0.883) (0.873-
model 0.754) 0.760) 0.642)
0.939) 0.892)
0.685 0.869
0.84 (0.77- 0.698 (0.665- = 0.561 (0.514-
Ablation model 0.789 (0.776-0.801) | 0.722 (0.693-0.751) = 0.843 (0.818-0.868) (0.640- (0.859-
0.91) 0.731) 0.608)
0.730) 0.879)
ROC curve(Training) ROC curve(Validation) ROC curve(Test)
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FIGURE 4

XGBoost model training, validation, and testing. (A) Training set ROC and AUC; (B) Validation set ROC and AUC. Cross-validation was performed using
data from 10% of the patients. Solid lines in different colors represent the 10 distinct results. (C) Test set ROC and AUC. Testing results from 30% of the

patients.

for the validation set (Figure 3C) indicated a minimal deviation (0.116,
95% CI 0.105-0.128) between predicted probabilities and observed
event rates for END risk in the XGBoost model. Decision curve
analysis (Figure 3F) revealed that the XGBoost model provided a
significantly greater net clinical benefit than the other four models
across the threshold probabilities. The ablation analysis (Table 3)
showed that the complete model outperformed the model excluding
the TyG index across all metrics. Specifically, the AUC decreased from
0.874 to 0.840, and the Fl-score dropped from 0.728 to 0.698,
confirming that while the TyG index is a valuable predictive feature, it
is not the sole determinant of model performance.

Optimal XGBoost model construction and
evaluation

The XGBoost model was trained using a 10-fold cross-validation.
The results demonstrated a mean AUC of 0.919 (95% CI 0.888-0.950)
in the training set, a mean AUC of 0.863 (95% CI 0.734-0.985) in the
validation set, and a mean AUC of 0.866 (95% CI 0.787-0.945) in the
test set (Figures 4A-C), indicating favorable predictive performance
of the model.

Model interpretation

SHAP analysis identified the admission NIHSS score as the most
influential predictor in the model (Figure 5A). Higher admission
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NIHSS scores, elevated TyG index, advanced age, severe vascular
stenosis, elevated initial SBP, and diabetes were all associated with
an increased END risk (Figures 5A,B). Two representative cases
further demonstrate the interpretability of the model: Figure 5C
illustrates an END patient, while Figure 5D shows a non-END
patient.

Discussion

We unearthed six pivotal predictors of END in patients with
SICAS: age, diabetes, TyG index, initial SBP, admission NIHSS score,
and the severity of vascular stenosis. To enhance our understanding,
we developed a sophisticated machine learning model powered by
XGBoost, specifically designed to assess the risk of END in these
patients. Remarkably, internal validation underscored the model’s
exceptional discriminative ability, strong calibration, and impressive
predictive accuracy, positioning it as a vital tool in clinical practice.

NIHSS score and age

Our model confirms that the admission NIHSS score is the most
significant predictor of END in patients with SICAS, which is
consistent with existing research (2). The NIHSS is the most widely
used neurological assessment tool, effectively evaluating the size of the
infarct, neurological status, and functional outcomes in patients with
AIS. Since these factors are the strongest predictors of functional
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FIGURE 5
stronger impacts on prediction outcomes.
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Interpretability analysis of the optimal machine learning model (XGBoost) using SHAP. (A) Feature importance matrix plot demonstrating variable
contributions to the final predictive model. Stenosis: Vascular stenosis severity. (B) SHAP feature attribution plot. Each row represents a feature, with
the x-axis indicating SHAP values. Red dots denote higher feature values; blue dots indicate lower values. (C-D) Individual prediction explanations using
SHAP force plots. Red features increase END risk; blue features decrease risk. Arrow length corresponds to effect magnitude—longer arrows represent

outcomes 3 months after a stroke (23), many established models for
predicting END consistently include both the admission NIHSS score
and the patient’s age (24-26). Therefore, it is essential to perform
standardized and thorough NIHSS assessments for all admitted
patients, particularly the elderly. This practice will help guide
optimized care and early intervention, potentially reducing the risk of
END through timely management.

Vascular stenosis severity

Although both the severity and location of intracranial stenosis
showed significant differences between groups, our analysis found that
stenosis severity—rather than its location—was a strong predictor of
END, second only to NTHSS score. Previous studies have established a
link between arterial stenosis or occlusion and END (27). For instance,
one prospective multicenter cohort study (28) indicated that ICAS, as
opposed to extracranial arterial stenosis (ECAS), is a clear risk factor for
END. Additionally, ICAS has been identified as an independent risk
factor for END and long-term disability in patients with single
subcortical infarcts (29), likely because severe stenosis significantly
reduces blood flow beyond the narrowed segment (30). A post hoc
analysis of the ARAMIS trial (31) suggested that DAPT was associated
with a lower risk of END compared to intravenous thrombolysis in
minor stroke patients with no or mild stenosis. Conversely, the early use
of tirofiban effectively reduced the risk of END in SICAS patients with
severe stenosis or occlusion (32). These findings underscore the
importance of stenosis severity in predicting the risk of END and support
the need for tailored treatments based on the characteristics of stenosis.

Diabetes and TyG index

Insulin resistance (IR) is a critical mechanism in diabetes that
contributes to the formation and rupture of atherosclerotic plaques
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through various pathways (33), which is also strongly associated
with END (34). The TyG index serves as a simple and reliable
marker of insulin resistance (35). A high TyG index level is linked
to END in patients with AIS (36) and is an independent risk factor
for END following thrombolysis (37). There are significant
differences in the vascular wall properties between ICAS and
ECAS—including aspects such as structure, metabolism, and
antioxidant activity—which make ICAS more likely to result in
atherosclerosis and plaque instability due to endothelial
dysfunction (38, 39). Consequently, the TyG index may be more
relevant for predicting ICAS than ECAS (40). Our previous study
(41) also confirmed that the TyG index is significantly associated
with severe intracranial stenosis and SICAS in nondiabetic
patients. These findings highlight the importance of the TyG index
and diabetes as significant predictors of END. Our study, along
with ablation analysis, confirms that while the TyG index is a
valuable predictive feature, it is not the sole determinant of model
performance. Meanwhile, the TyG index has limitations when it
comes to predicting END within the critical 24-h window. First,
its calculation requires fasting conditions. Second, the TyG index
reflects a chronic, underlying metabolic state rather than acute
events (such as thrombus propagation or hemodynamic
fluctuations). Future studies should consider integrating the TyG
index with acute-phase biomarkers (for example, inflammatory
markers) or imaging features. This combined approach could
provide a more comprehensive model for predicting END across
different timeframes, thereby enhancing its clinical utility for
personalized risk management.

Initial SBP

Most patients in our study had an initial SBP above 140 mmHg,
likely due to reflex hypertension after acute stroke (42). While the
ENCHANTED trial (43) showed that intensive BP lowering is safe
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in general stroke patients, those with ICAS may be at higher risk
due to reduced hemodynamic reserve. Optimal BP targets may
differ for this group. Current evidence offers mixed insights: a
secondary analysis of ENCHANTED (44) found that although
intracranial stenosis did not generally affect outcomes from
intensive BP control (SBP 120-140 mmHg), patients with severe
stenosis had higher END risk. The BP-TARGET trial (45) showed
that lowering SBP below 120 mmHg after EVT could increase
END risk due to hypoperfusion. Conversely, pre-thrombolysis BP
above guidelines (180-185/110 mmHg) is associated with END
(46), and high admission SBP (158 vs. 131 mmHg) correlates with
END in large artery occlusion (47). In our cohort, the non-END
group most often had median SBP levels (140-160 mmHg), while
the END group peaked at SBP > 160 mmHg. This unexpected
pattern raises the hypothesis that moderate SBP elevation
(140-160 mmHg range) might confer protective effects against
END risk, a proposition requiring validation through prospective
multicenter clinical investigations.

XGBoost model and SHAP framework

In this study, the XGBoost model demonstrates significant
advantages over traditional LR, extending beyond just a modest
improvement in discriminatory performance. Importantly,
XGBoost excels at capturing complex nonlinear relationships and
interaction effects among predictor variables related to END risk.
Unlike LR, ensemble algorithms like XGBoost automatically
identify and model these intricate patterns, potentially providing
a more accurate understanding of the pathophysiological
mechanisms associated with END. Integrating the XGBoost model
with the SHAP framework is particularly important, as it greatly
enhances the model’s clinical interpretability. This integration
allows for a transition from population-level predictions to
individualized assessments. The ability to clarify specific risk-
driving factors offers clear and transparent insights for clinical
decision-making, which aids in developing more targeted
monitoring and intervention strategies—something traditional LR
models often struggle to achieve. Therefore, the combination of
XGBoost and SHAP not only improves predictive accuracy but
also serves as a practical and actionable tool for personalized risk
management of high-risk patients.

Limitations

First, the retrospective design, reliance on a single-center data
source, and restrictions based on age, NIHSS scores, and anterior
circulation infarction may limit the generalizability of our findings
to broader populations, highlighting the need for validation
through larger, prospective, multicenter studies. Second, this study
did not explicitly differentiate between hemorrhagic and ischemic
END; therefore, the impact of symptomatic intracranial
hemorrhage (sICH) on those events was not adequately evaluated.
Third, using MRA as a non-invasive vascular imaging tool has
limitations; it is not very effective at distinguishing the causes of
stenosis (such as differentiating atherosclerosis from arterial
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dissection) and has relatively lower sensitivity for detecting mild
stenosis. This disadvantage may impact the accuracy of the model’s
input features and, in turn, somewhat undermine the reliability of
our conclusions. Fourth, we conducted only internal validation,
and external validation is needed further to strengthen the
robustness of our machine-learning predictive model.
Additionally, our analysis may not have included certain critical
variables, such as broader sociodemographic factors and detailed
in-hospital therapeutic regimens, which could have significantly

influenced patient outcomes.

Conclusion

This study demonstrates the potential of ML in predicting END
in SICAS patients. The SHAP method enhances the interpretability of
the prediction model, providing a practical and implementable
solution for the early identification of high-risk patients.
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