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for predicting early neurological 
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Background: To develop and validate a machine learning (ML) model for early 
neurological deterioration (END) risk prediction in patients with symptomatic 
intracranial atherosclerotic stenosis (SICAS).
Methods: This retrospective cohort study enrolled 557 patients with SICAS 
between January 2022 and December 2024. Relevant clinical data were collected. 
Least Absolute Shrinkage and Selection Operator (LASSO) regression selected 
predictive features from clinical/imaging variables. Five ML algorithms, including 
Gaussian Naive Bayes (GNB), Gradient Boosting Decision Trees (GBDT), Light 
Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), 
and Logistic Regression (LR), were trained (70% of the data) and validated (30% of 
the data) using 10-fold cross-validation. Model performance was assessed using 
the area under the curve (AUC), calibration, and decision curve analysis (DCA). 
Shapley additive explanations (SHAP) interpreted the feature contributions.
Results: The overall incidence rate of END was 18.13%. The XGBoost model 
outperformed the other models, achieving a validation AUC of 0.874 (95% 
CI, 0.809–0.939), a sensitivity of 0.749, a specificity of 0.859, and excellent 
calibration (deviation: 0.116). DCA indicates the clinical utility of the XGBoost 
model. Key predictors included the NIHSS score (strongest driver), vascular 
stenosis severity, Triglyceride Glucose (TyG) index, age, initial systolic blood 
pressure (SBP), and diabetes. SHAP analysis provided interpretability for the 
machine learning model and revealed essential factors related to the risk of END 
in SICAS.
Conclusion: This study demonstrates the potential of ML in predicting END 
in SICAS patients. The SHAP method enhances the interpretability of the 
prediction model, providing a practical and implementable solution for the early 
identification of high-risk patients.
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Introduction

Early neurological deterioration (END), a frequent complication 
following acute ischemic stroke (AIS) with an estimated incidence 
ranging from 12.06 to 17.4%, markedly adversely affects patient 
prognosis (1–3). Research indicates that AIS patients with intracranial 
atherosclerotic stenosis (ICAS) face a heightened risk of END and are 
more susceptible to severe disability (4). In China, approximately 
46.6% of AIS patients present with ICAS (5), which poses a 
substantially greater challenge for preventing and managing END.

ICAS contributes to ischemic stroke primarily through several 
distinct mechanisms, such as in situ thrombosis or artery-to-artery 
embolism, hemodynamic impairment, and branch atheromatous 
disease (6). These mechanisms are generally not observed in 
non-ICAS stroke etiologies (7). Furthermore, significant differences 
have been reported in admission National Institutes of Health Stroke 
Scale (NIHSS) scores, 90-day functional outcomes, and blood pressure 
variability (BPV) between patients with symptomatic intracranial 
atherosclerotic stenosis (SICAS) and those without SICAS (8). 
Although progress has been made in predicting END in broader 
stroke populations (9, 10), there remains a lack of dedicated risk 
prediction tools explicitly tailored to SICAS patients.

Machine learning methods can integrate multi-dimensional 
clinical data and identify complex non-linear relationships. They have 
shown significant advantages over traditional models in predicting 
conditions such as coronary heart disease (CHD) (11), spontaneous 
intracerebral hemorrhage (12), and ischemic stroke treatment (13). 
These strengths offer a novel approach to developing more accurate 
predictive models for END. Leveraging real-world clinical data, this 
study aimed to construct a machine learning-based predictive model 
for END risk in SICAS patients and assess the performance of 
various algorithms.

Materials and methods

Study population

This study employed a retrospective, observational cohort design. 
We enrolled hospitalized patients with AIS who were admitted to the 
Jiangyin Clinical College of Xuzhou Medical University between 
January 2022 and December 2024.

Inclusion Criteria were as follows: (1) age ≥ 45 years, (2) Time 
from symptom onset ≤72 h, (3) The diagnosis meets the diagnostic 
criteria for acute ischemic stroke (14), and (4) Magnetic Resonance 
Angiography (MRA) demonstrating stenosis (≥30%) in an 
intracranial artery segment (C4-M2), with magnetic resonance 
imaging - diffusion-weighted imaging (MRI-DWI) confirming an 
acute infarction within the vascular territory supplied by the 
stenotic artery.

Exclusion Criteria were as follows: (1) age < 45 years, (2) posterior 
circulation infarction, (3) history of atrial fibrillation (AF) or AF 
detected on admission electrocardiogram (ECG), (4) NIHSS score > 
18 on admission, (5) presence of tandem extracranial stenosis or 
occlusion in the culprit vessel, and (6) receipt of endovascular therapy.

This study adhered to ethical standards and was approved by the 
Research Ethics Committee of Jiangyin Clinical College of Xuzhou 
Medical University (Approval No. 2025-KY019-01).

Clinical baseline data

The following baseline clinical data were collected from the 
electronic medical record system:

	 1.	 Demographics: age, sex, and body mass index (BMI). BMI was 
defined as the ratio of a person’s weight (in kilograms) to the 
square of their height (in meters).

	 2.	 Comorbidities: hypertension, diabetes, CHD, hyperlipidemia, 
and previous stroke.

	 3.	 Personal History: smoking history (defined as current 
smoking or smoking cessation within the past 6 months) and 
alcohol consumption history (defined as habitual alcohol  
intake).

	 4.	 Clinical assessment: admission NIHSS score, initial systolic 
blood pressure (SBP), and initial diastolic blood pressure 
(DBP). The NIHSS scores were assessed by certified 
neurologists at our center and independently evaluated by a 
second blinded neurologist. A senior neurologist adjudicated 
any discrepancies.

	 5.	 Laboratory investigations: fasting venous blood samples were 
collected at 06:00 the following morning and analyzed for 
white blood cell (WBC) count, platelet (PLT) count, total 
cholesterol (TC), low-density lipoprotein (LDL), high-density 
lipoprotein (HDL), triglycerides (TG), and fasting blood 
glucose (FBG). The triglyceride glucose (TyG) index was 
calculated using the following formula: TyG index = Ln [TG 
(mg/dL) × FBG (mg/dL)/2] (15).

Imaging assessment

Brain MRI and magnetic resonance angiography (MRA) were 
performed using a 3.0 Tesla Siemens MRI scanner. The acquired 
sequences included T1-weighted, T2-weighted, fluid-attenuated 
inversion recovery (FLAIR), and time-of-flight (TOF) MRA images. 
Intracranial artery stenosis severity was quantified via the Warfarin–
Aspirin symptomatic intracranial disease (WASID) criteria (16): 
stenosis (%) = (narrowest luminal diameter at the lesion site−/−
diameter of the proximal normal vessel) × 100. The severity of 
vascular stenosis is classified as mild (30–50%), moderate (50–70%), 
and severe or occlusive (> 70% or complete occlusion). If multiple 
stenoses were present, the data from the most severe stenosis were 
recorded. MRI-DWI confirmed an acute infarction within the 
vascular territory supplied by the stenotic artery. Recorded stenosis 
sites included the internal carotid artery (ICA) segments C4-C7 and 
the middle cerebral artery (MCA) segments M1-M2. The first 
radiologist initially evaluated all imaging and then reviewed it by a 
second, more experienced radiologist; any disagreements were 
resolved by a senior radiologist at the center.

Clinical treatment

Treatment modalities were recorded as follows: (1) Receipt of 
intravenous thrombolysis (IVT). (2) Antiplatelet therapy: Dual 
antiplatelet therapy (DAPT) or single antiplatelet therapy (SAPT). (3) 
Receipt of statin therapy.
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Outcome measure

In this study, the primary outcome measure, END, was defined as 
either a ≥ 2-point increase in the NIHSS total score or a ≥ 1-point 
increase in the motor items of the NIHSS scale, occurring within 24 h of 
hospital admission. This threshold was selected because it is a sensitive 
indicator of poor functional outcomes (17). All NIHSS scores were 
evaluated by certified and trained neurologists or research nurses at the 
time of patient admission (baseline) and every 4 h thereafter within 24 h.

Statistical analysis

Statistical analyses were performed using R (version 3.6.8) and 
Python (version 3.7). The normality of continuous variables was 
assessed using the Shapiro–Wilk test. Data are presented as mean ± 
standard deviation (SD) for normally distributed variables and as 
median with interquartile range (IQR) for non-normally distributed 
variables. Categorical variables are presented as counts (percentages) 
and were compared using the chi-square test. The 95% confidence 
interval for the model’s performance was estimated from the 
distribution of scores obtained from the cross-validation folds. 
Statistical significance was set at p < 0.05.

Machine learning model construction

Variables with >5% missing data were excluded from analysis; 
variables with ≤5% missingness were imputed using multiple 
imputation. The dataset was randomly split into a training set and a 
validation set in a 7:3 ratio. Following the standardization of 
quantitative features, the Least Absolute Shrinkage and Selection 
Operator (LASSO) algorithm was applied to the training set to select 
the most predictive features (features with non-zero coefficients). A 
10-fold cross-validation procedure was incorporated during LASSO 
feature selection to maximize the area under the receiver operating 
characteristic (ROC) curve (AUC). LASSO is a regularization 
regression technique commonly used to reduce high-dimensional 
feature spaces and aid in identifying and selecting optimal clinical 
predictors for subsequent model building.

The synthetic minority over-sampling technique (SMOTE) was 
used to address the issue of class imbalance. Five machine learning 
algorithms were utilized to predict END risk in SICAS patients: Logistic 
Regression (LR), Light Gradient Boosting Machine (LightGBM), 
Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting 
(XGBoost), and Gaussian Naive Bayes (GNB). Each model possesses 
unique advantages: LR is the most traditional and interpretable method 
in clinical prediction models, and its inclusion helps determine whether 
more complex machine learning models yield significant performance 
improvements (18). LightGBM’s computational efficiency makes it an 
ideal choice for large-scale datasets (19). GBDT serves as the classical 
implementation of gradient boosting (20). XGBoost, another gradient 
boosting method, is renowned for its robust and high-performing 
nature, making it a powerful tool for classification and regression tasks 
in medical research (21). GNB, based on the Bayesian theorem, offers 
simplicity and rapid execution, providing a distinct benchmark 
compared to other complex models based on gradient boosting (22).

For the training set, k-fold cross-validation (k = 10) was employed 
as the resampling technique, and hyperparameter tuning was 

performed using a grid search. Model discriminatory ability was 
assessed using ROC curves and precision-recall (PR) curves. The 
calibration curves were used to calibrate the models. A decision curve 
analysis (DCA) was performed to estimate the net clinical benefit. 
Additionally, the performance of each model was evaluated using a 
confusion matrix, reporting the following metrics: accuracy, 
sensitivity, specificity, Positive predictive value (PPV), negative 
predictive value (NPV), F1-score, and Cohen’s kappa coefficient. The 
F1-score, which is the harmonic mean of precision and recall, is 
particularly suitable for evaluating model performance on imbalanced 
datasets. Meanwhile, Cohen’s Kappa coefficient assesses the agreement 
between model predictions and actual outcomes, accounting for the 
possibility of random agreement. This makes it a more reliable metric 
than accuracy alone.

Results

Baseline characteristics comparison

A total of 557 eligible patients from the Jiangyin Clinical College of 
Xuzhou Medical University were included in the model (Figure 1). The 
overall incidence of END was 18.13%. The median age of the participants 
was 62 years (IQR: 56–70), and 52.96% were male. Compared with the 
non-END group, the END group was significantly older (p = 0.028), had 
a higher admission NIHSS score (p < 0.001), included more patients 
with a history of diabetes mellitus (p < 0.001), and showed elevated SBP 
(p < 0.001). In terms of imaging assessments, the END group 
demonstrated a significantly greater frequency of severe stenosis or 
occlusion (p < 0.001), as well as a higher prevalence of stenosis in the M1 
segment (p = 0.030), relative to the non-END group (Table 1).

Feature selection for machine learning 
models

LASSO regression analysis was performed on the training dataset 
encompassing 24 variables. The optimal λ value, indicated by the 
vertical dashed line in Figure  2B, was λ = 0.028. This λ value 
corresponded to the retention of six predictive features in the model: 
age, diabetes, initial SBP, admission NIHSS Score, TyG index, and 
vascular stenosis severity (Figure 2).

FIGURE 1

Study flowchart. A total of 557 patients were included in the final 
analysis.
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TABLE 1  Baseline characteristics of patients with and without END (SICAS cohort, Jiangyin Clinical College, 2022–2024).

Characteristic END p-value

Overall N = 557 Non-END group N = 456 END group N = 101

Age, median (Q1, Q3) 62 (56, 70) 61 (56, 69) 65 (56, 71) 0.0281

Sex, n (%) 0.3212

 � Female 262 (47.0%) 219 (48.0%) 43 (42.6%)

 � Male 295 (53.0%) 237 (52.0%) 58 (57.4%)

Hypertension, n (%) 0.3152

 � No 195 (35.0%) 164 (36.0%) 31 (30.7%)

 � Yes 362 (65.0%) 292 (64.0%) 70 (69.3%)

Diabetes, n (%) 0.0022

 � No 370 (66.4%) 316 (69.3%) 54 (53.5%)

 � Yes 187 (33.6%) 140 (30.7%) 47 (46.5%)

CHD, n (%) 0.6352

 � No 337 (60.5%) 278 (61.0%) 59 (58.4%)

 � Yes 220 (39.5%) 178 (39.0%) 42 (41.6%)

Hyperlipidemia, n (%) 0.0992

 � No 284 (51.0%) 240 (52.6%) 44 (43.6%)

 � Yes 273 (49.0%) 216 (47.4%) 57 (56.4%)

Stroke, n (%) 0.6692

 � No 455 (81.7%) 374 (82.0%) 81 (80.2%)

 � Yes 102 (18.3%) 82 (18.0%) 20 (19.8%)

Smoking, n (%) 0.2172

 � No 387 (69.5%) 322 (70.6%) 65 (64.4%)

 � Yes 170 (30.5%) 134 (29.4%) 36 (35.6%)

Alcohol, n (%) 0.6842

 � No 379 (68.0%) 312 (68.4%) 67 (66.3%)

 � Yes 178 (32.0%) 144 (31.6%) 34 (33.7%)

BMI, median (Q1, Q3) 21.85 (19.59, 23.91) 21.78 (19.53, 23.92) 22.09 (20.07, 23.90) 0.4871

NIHSS score, median (Q1, Q3) 5 (3, 7) 5 (3, 7) 6 (4, 9) <0.0011

Vascular stenosis severity, n (%) <0.0012

 � Mild 265 (47.6%) 241 (52.9%) 24 (23.8%)

 � Moderate 179 (32.1%) 147 (32.2%) 32 (31.7%)

 � Severe or occlusion 113 (20.3%) 68 (14.9%) 45 (44.6%)

Stenosis site, n (%) 0.0302

 � C4-C7 231 (41.5%) 193 (42.3%) 38 (37.6%)

 � M1 183 (32.9%) 139 (30.5%) 44 (43.6%)

 � M2 143 (25.7%) 124 (27.2%) 19 (18.8%)

SBP (mmHg), n (%) <0.0012

 � <140 159 (28.5%) 131 (28.7%) 28 (27.7%)

 � 140–160 240 (43.1%) 213 (46.7%) 27 (26.7%)

 � >160 158 (28.4%) 112 (24.6%) 46 (45.5%)

DBP (mmHg), n (%) 0.3183

 � <90 235 (42.2%) 198 (43.4%) 37 (36.6%)

 � 90–110 305 (54.8%) 243 (53.3%) 62 (61.4%)

 � >110 17 (3.1%) 15 (3.3%) 2 (2.0%)

(Continued)
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Machine learning models

We evaluated the five models using accuracy, sensitivity, specificity, 
PPV, NPV, F1-score, and Cohen’s kappa coefficient. All five machine 

learning models achieved mean accuracy exceeding 0.80 in the training 
set, with their predictive capability further validated in the independent 
validation set (Table 2). Figures 3A,B demonstrate that the XGBoost 
algorithm exhibited superior performance and stability in both the 

TABLE 1  (Continued)

Characteristic END p-value

Overall N = 557 Non-END group N = 456 END group N = 101

TC (mmol/L), mean ± SD 4.64 ± 0.59 4.63 ± 0.59 4.71 ± 0.58 0.1724

HDL (mmol/L), median (Q1, Q3) 1.11 (1.01, 1.24) 1.11 (1.00, 1.24) 1.08 (1.01, 1.21) 0.3851

LDL (mmol/L), mean ± SD 3.07 ± 0.56 3.05 ± 0.55 3.15 ± 0.57 0.1174

WBC (× 109/L), median (Q1, Q3) 7.76 (5.98, 9.69) 7.86 (6.12, 9.74) 6.99 (5.55, 9.58) 0.1841

PLT (× 109/L), mean ± SD 204 ± 51 203 ± 51 210 ± 55 0.2184

TyG index, median (Q1, Q3) 9.01 (8.81, 9.17) 9.01 (8.81, 9.16) 9.04 (8.82, 9.22) 0.1071

Antiplatelet, n (%) 0.7012

 � DAPT 34 (6.1%) 27 (5.9%) 7 (6.9%)

 � SAPT 523 (93.9%) 429 (94.1%) 94 (93.1%)

IVT, n (%) 0.4882

 � No 467 (83.8%) 380 (83.3%) 87 (86.1%)

 � Yes 90 (16.2%) 76 (16.7%) 14 (13.9%)

Statins, n (%) 0.7613

 � No 19 (3.4%) 15 (3.3%) 4 (4.0%)

 � Yes 538 (96.6%) 441 (96.7%) 97 (96.0%)

1Wilcoxon rank sum test; 2Pearson's Chi-squared test; 3Fisher's exact test; 4Welch Two-Sample t-test.
BMI, body mass index; CHD, coronary heart disease; NIHSS, National Institutes of Health Stroke Scale; WBC, white blood cell; PLT, platelet; TC, total cholesterol; LDL, low-density 
lipoprotein; HDL, high-density lipoprotein; TyG index, triglyceride-glucose index; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy. Mild stenosis, 30–50%; moderate stenosis, 
50–70%; severe or occlusion, 70–100%.

FIGURE 2

Feature selection using LASSO regression analysis. Panel (A) displays the coefficient trajectories of the 24 candidate features across varying penalty 
parameter (λ) values, illustrating the evolution of LASSO coefficients during regularization. Panel (B) presents the coefficient profiles of all 24 features 
across the log(λ) sequence in the LASSO model, with vertical dashed lines indicating the optimal λ values at the minimum mean squared error 
(λ = 0.028) and one standard error above the minimum (λ = 0.049). The optimal λ value (λ = 0.028) yielded six variables with non-zero coefficients.
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FIGURE 3

Evaluation of the machine learning model. (A) ROC curves in the training set; (B) ROC curves in the validation set; (C) Calibration curve in the validation 
set; (D) Precision-recall (PR) curve in the training set; (E) PR curve in the validation set; (F) Decision curve analysis (DCA) in the validation set.

training (ROC-AUC 0.933, 95% CI 0.905–0.961) and validation 
(ROC-AUC 0.874, 95% CI 0.809–0.939) sets. The precision-recall 
curves (Figures 3D,E) confirmed XGBoost’s optimal performance and 

robust generalizability, with an area under the precision-recall curve 
(AUPRC) value of 0.895 (95% CI 0.877–0.913) in the training set and 
0.840 (95% CI 0.816–0.863) in the validation set. The calibration plot 

TABLE 2  Performance metrics of machine learning models in the validation set.

Model AUC 
(95% CI)

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV 
(95% CI)

NPV 
(95% CI)

F1-score 
(95% CI)

Kappa (95 
%CI)

XGBoost

0.874 

(0.809–

0.939)

0.824 (0.806–0.843) 0.749 (0.721–0.777) 0.859 (0.835–0.883)
0.71 (0.666–

0.754)

0.882 

(0.873–

0.892)

0.728 (0.696–

0.760)

0.598 (0.554–

0.642)

LR

0.819 

(0.740–

0.897)

0.834 (0.823–0.844) 0.602 (0.529–0.675) 0.93 (0.895–0.965)

0.818 

(0.753–

0.884)

0.849 

(0.832–

0.866)

0.68 (0.649–

0.711)

0.572 (0.543–

0.601)

GBDT

0.799 

(0.729–

0.869)

0.825 (0.807–0.843) 0.659 (0.608–0.710) 0.896 (0.875–0.917)

0.734 

(0.701–

0.767)

0.861 

(0.837–

0.884)

0.691 (0.664–

0.717)

0.57 (0.532–

0.608)

GNB

0.834 

(0.757–

0.910)

0.817 (0.798–0.836) 0.674 (0.616–0.732) 0.88 (0.848–0.912)
0.67 (0.609–

0.730)

0.861 

(0.840–

0.881)

0.69 (0.653–

0.727)

0.561 (0.514–

0.608)

LightGBM

0.767 

(0.681–

0.854)

0.795 (0.764–0.826) 0.623 (0.559–0.686) 0.864 (0.819–0.910)

0.818 

(0.753–

0.884)

0.85 (0.829–

0.872)

0.636 (0.595–

0.677)

0.495 (0.435–

0.554)

XGBoost, extreme gradient boosting; LR, logistic regression; GBDT, gradient boosting decision trees; GNB, Gaussian naive bayes; LightGBM, light gradient boosting machine; AUC, area 
under the curve; PPV, positive predictive value; NPV, negative predictive value.
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for the validation set (Figure 3C) indicated a minimal deviation (0.116, 
95% CI 0.105–0.128) between predicted probabilities and observed 
event rates for END risk in the XGBoost model. Decision curve 
analysis (Figure  3F) revealed that the XGBoost model provided a 
significantly greater net clinical benefit than the other four models 
across the threshold probabilities. The ablation analysis (Table  3) 
showed that the complete model outperformed the model excluding 
the TyG index across all metrics. Specifically, the AUC decreased from 
0.874 to 0.840, and the F1-score dropped from 0.728 to 0.698, 
confirming that while the TyG index is a valuable predictive feature, it 
is not the sole determinant of model performance.

Optimal XGBoost model construction and 
evaluation

The XGBoost model was trained using a 10-fold cross-validation. 
The results demonstrated a mean AUC of 0.919 (95% CI 0.888–0.950) 
in the training set, a mean AUC of 0.863 (95% CI 0.734–0.985) in the 
validation set, and a mean AUC of 0.866 (95% CI 0.787–0.945) in the 
test set (Figures 4A–C), indicating favorable predictive performance 
of the model.

Model interpretation

SHAP analysis identified the admission NIHSS score as the most 
influential predictor in the model (Figure 5A). Higher admission 

NIHSS scores, elevated TyG index, advanced age, severe vascular 
stenosis, elevated initial SBP, and diabetes were all associated with 
an increased END risk (Figures  5A,B). Two representative cases 
further demonstrate the interpretability of the model: Figure 5C 
illustrates an END patient, while Figure  5D shows a non-END  
patient.

Discussion

We unearthed six pivotal predictors of END in patients with 
SICAS: age, diabetes, TyG index, initial SBP, admission NIHSS score, 
and the severity of vascular stenosis. To enhance our understanding, 
we developed a sophisticated machine learning model powered by 
XGBoost, specifically designed to assess the risk of END in these 
patients. Remarkably, internal validation underscored the model’s 
exceptional discriminative ability, strong calibration, and impressive 
predictive accuracy, positioning it as a vital tool in clinical practice.

NIHSS score and age

Our model confirms that the admission NIHSS score is the most 
significant predictor of END in patients with SICAS, which is 
consistent with existing research (2). The NIHSS is the most widely 
used neurological assessment tool, effectively evaluating the size of the 
infarct, neurological status, and functional outcomes in patients with 
AIS. Since these factors are the strongest predictors of functional 

TABLE 3  Performance comparison between the complete model and the ablation model (excluding the TyG index).

Model 
variant

AUC 
(95% CI)

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV 
(95% CI)

NPV 
(95% CI)

F1-score 
(95% CI)

Kappa 
(95% CI)

Complete 

model

0.874 

(0.809–

0.939)

0.824 (0.806–0.843) 0.749 (0.721–0.777) 0.859 (0.835–0.883)
0.71 (0.666–

0.754)

0.882 

(0.873–

0.892)

0.728 (0.696–

0.760)

0.598 (0.554–

0.642)

Ablation model
0.84 (0.77–

0.91)
0.789 (0.776–0.801) 0.722 (0.693–0.751) 0.843 (0.818–0.868)

0.685 

(0.640–

0.730)

0.869 

(0.859–

0.879)

0.698 (0.665–

0.731)

0.561 (0.514–

0.608)

FIGURE 4

XGBoost model training, validation, and testing. (A) Training set ROC and AUC; (B) Validation set ROC and AUC. Cross-validation was performed using 
data from 10% of the patients. Solid lines in different colors represent the 10 distinct results. (C) Test set ROC and AUC. Testing results from 30% of the 
patients.
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outcomes 3 months after a stroke (23), many established models for 
predicting END consistently include both the admission NIHSS score 
and the patient’s age (24–26). Therefore, it is essential to perform 
standardized and thorough NIHSS assessments for all admitted 
patients, particularly the elderly. This practice will help guide 
optimized care and early intervention, potentially reducing the risk of 
END through timely management.

Vascular stenosis severity

Although both the severity and location of intracranial stenosis 
showed significant differences between groups, our analysis found that 
stenosis severity—rather than its location—was a strong predictor of 
END, second only to NIHSS score. Previous studies have established a 
link between arterial stenosis or occlusion and END (27). For instance, 
one prospective multicenter cohort study (28) indicated that ICAS, as 
opposed to extracranial arterial stenosis (ECAS), is a clear risk factor for 
END. Additionally, ICAS has been identified as an independent risk 
factor for END and long-term disability in patients with single 
subcortical infarcts (29), likely because severe stenosis significantly 
reduces blood flow beyond the narrowed segment (30). A post hoc 
analysis of the ARAMIS trial (31) suggested that DAPT was associated 
with a lower risk of END compared to intravenous thrombolysis in 
minor stroke patients with no or mild stenosis. Conversely, the early use 
of tirofiban effectively reduced the risk of END in SICAS patients with 
severe stenosis or occlusion (32). These findings underscore the 
importance of stenosis severity in predicting the risk of END and support 
the need for tailored treatments based on the characteristics of stenosis.

Diabetes and TyG index

Insulin resistance (IR) is a critical mechanism in diabetes that 
contributes to the formation and rupture of atherosclerotic plaques 

through various pathways (33), which is also strongly associated 
with END (34). The TyG index serves as a simple and reliable 
marker of insulin resistance (35). A high TyG index level is linked 
to END in patients with AIS (36) and is an independent risk factor 
for END following thrombolysis (37). There are significant 
differences in the vascular wall properties between ICAS and 
ECAS—including aspects such as structure, metabolism, and 
antioxidant activity—which make ICAS more likely to result in 
atherosclerosis and plaque instability due to endothelial 
dysfunction (38, 39). Consequently, the TyG index may be more 
relevant for predicting ICAS than ECAS (40). Our previous study 
(41) also confirmed that the TyG index is significantly associated 
with severe intracranial stenosis and SICAS in nondiabetic 
patients. These findings highlight the importance of the TyG index 
and diabetes as significant predictors of END. Our study, along 
with ablation analysis, confirms that while the TyG index is a 
valuable predictive feature, it is not the sole determinant of model 
performance. Meanwhile, the TyG index has limitations when it 
comes to predicting END within the critical 24-h window. First, 
its calculation requires fasting conditions. Second, the TyG index 
reflects a chronic, underlying metabolic state rather than acute 
events (such as thrombus propagation or hemodynamic 
fluctuations). Future studies should consider integrating the TyG 
index with acute-phase biomarkers (for example, inflammatory 
markers) or imaging features. This combined approach could 
provide a more comprehensive model for predicting END across 
different timeframes, thereby enhancing its clinical utility for 
personalized risk management.

Initial SBP

Most patients in our study had an initial SBP above 140 mmHg, 
likely due to reflex hypertension after acute stroke (42). While the 
ENCHANTED trial (43) showed that intensive BP lowering is safe 

FIGURE 5

Interpretability analysis of the optimal machine learning model (XGBoost) using SHAP. (A) Feature importance matrix plot demonstrating variable 
contributions to the final predictive model. Stenosis: Vascular stenosis severity. (B) SHAP feature attribution plot. Each row represents a feature, with 
the x-axis indicating SHAP values. Red dots denote higher feature values; blue dots indicate lower values. (C-D) Individual prediction explanations using 
SHAP force plots. Red features increase END risk; blue features decrease risk. Arrow length corresponds to effect magnitude—longer arrows represent 
stronger impacts on prediction outcomes.
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in general stroke patients, those with ICAS may be at higher risk 
due to reduced hemodynamic reserve. Optimal BP targets may 
differ for this group. Current evidence offers mixed insights: a 
secondary analysis of ENCHANTED (44) found that although 
intracranial stenosis did not generally affect outcomes from 
intensive BP control (SBP 120–140 mmHg), patients with severe 
stenosis had higher END risk. The BP-TARGET trial (45) showed 
that lowering SBP below 120 mmHg after EVT could increase 
END risk due to hypoperfusion. Conversely, pre-thrombolysis BP 
above guidelines (180–185/110 mmHg) is associated with END 
(46), and high admission SBP (158 vs. 131 mmHg) correlates with 
END in large artery occlusion (47). In our cohort, the non-END 
group most often had median SBP levels (140–160 mmHg), while 
the END group peaked at SBP > 160 mmHg. This unexpected 
pattern raises the hypothesis that moderate SBP elevation 
(140–160 mmHg range) might confer protective effects against 
END risk, a proposition requiring validation through prospective 
multicenter clinical investigations.

XGBoost model and SHAP framework

In this study, the XGBoost model demonstrates significant 
advantages over traditional LR, extending beyond just a modest 
improvement in discriminatory performance. Importantly, 
XGBoost excels at capturing complex nonlinear relationships and 
interaction effects among predictor variables related to END risk. 
Unlike LR, ensemble algorithms like XGBoost automatically 
identify and model these intricate patterns, potentially providing 
a more accurate understanding of the pathophysiological 
mechanisms associated with END. Integrating the XGBoost model 
with the SHAP framework is particularly important, as it greatly 
enhances the model’s clinical interpretability. This integration 
allows for a transition from population-level predictions to 
individualized assessments. The ability to clarify specific risk-
driving factors offers clear and transparent insights for clinical 
decision-making, which aids in developing more targeted 
monitoring and intervention strategies—something traditional LR 
models often struggle to achieve. Therefore, the combination of 
XGBoost and SHAP not only improves predictive accuracy but 
also serves as a practical and actionable tool for personalized risk 
management of high-risk patients.

Limitations

First, the retrospective design, reliance on a single-center data 
source, and restrictions based on age, NIHSS scores, and anterior 
circulation infarction may limit the generalizability of our findings 
to broader populations, highlighting the need for validation 
through larger, prospective, multicenter studies. Second, this study 
did not explicitly differentiate between hemorrhagic and ischemic 
END; therefore, the impact of symptomatic intracranial 
hemorrhage (sICH) on those events was not adequately evaluated. 
Third, using MRA as a non-invasive vascular imaging tool has 
limitations; it is not very effective at distinguishing the causes of 
stenosis (such as differentiating atherosclerosis from arterial 

dissection) and has relatively lower sensitivity for detecting mild 
stenosis. This disadvantage may impact the accuracy of the model’s 
input features and, in turn, somewhat undermine the reliability of 
our conclusions. Fourth, we conducted only internal validation, 
and external validation is needed further to strengthen the 
robustness of our machine-learning predictive model. 
Additionally, our analysis may not have included certain critical 
variables, such as broader sociodemographic factors and detailed 
in-hospital therapeutic regimens, which could have significantly 
influenced patient outcomes.

Conclusion

This study demonstrates the potential of ML in predicting END 
in SICAS patients. The SHAP method enhances the interpretability of 
the prediction model, providing a practical and implementable 
solution for the early identification of high-risk patients.
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