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Introduction: Acute ischemic stroke (AIS) patients often experience poor 
functional outcomes post-intravenous thrombolysis (IVT). Novel computational 
methods leveraging machine learning (ML) architectures increasingly support 
medical decision-making. We aimed to develop and validate a machine learning 
model to predict 3-month unfavorable functional outcome after IVT in AIS 
patients.
Methods: This retrospective study developed ML prognostic models for 3-month 
functional outcome (modified Rankin scale scores of 3–6) in IVT-treated AIS 
patients. A derivation cohort (n = 938) was split 7:3 for training/testing, with an 
independent external validation cohort (n = 324). The least absolute shrinkage 
and selection operator (LASSO) regression selected predictors from clinical/
neuroimaging/laboratory variables. Eight ML algorithms (including Logistic 
Regression, Random Forest, Extreme Gradient Boosting, Multilayer Perceptron, 
Support Vector Machine, Light Gradient Boosting Machine, Decision Tree, and 
K-Nearest Neighbors) were trained using 10-fold cross-validation and evaluated 
on test/external sets via the area under the curve (AUC), accuracy, precision, 
recall and F1-score. Additionally, the SHapley Additive exPlanations (SHAP) 
interpreted the optimal model.
Results: 938 patients constituted the derivation cohort (training: n = 656, test: 
n = 282) and 324 patients the external validation cohort. Unfavorable 3-month 
outcomes (mRS 3–6) occurred in 25.7% and 22.8%, respectively. LASSO 
regression selected five predictors: the neutrophil-to-lymphocyte ratio (NLR), 
admission National Institutes of Health Stroke Scale (NIHSS) score, the Alberta 
Stroke Program Early CT Score (ASPECTS), atrial fibrillation, and blood glucose. 
While tree-based methods like XGBoost and LightGBM showed elevated 
training performance (e.g., XGBoost training AUC = 0.878) but significant drops 
in validation (AUC = 0.791), LR demonstrated optimal performance: robust 
training AUC (0.792), minimal validation degradation (AUC = 0.787). LR model 
was subsequently employed as classification method demonstrating optimal 
performance with (AUC = 0.777) in the test dataset. External validation confirmed 
LR’s stability (AUC = 0.797). SHAP analysis ranked NLR as the strongest predictor 
(followed by NIHSS/ASPECTS), with higher values increasing risk. Learning curves 
indicated no overfitting. A nomogram enabled individualized risk quantification.
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Conclusion: A parsimonious 5-variable LR model robustly predicts 3-month 
post-IVT outcomes, combining clinical utility, interpretability, and generalizability. 
NLR-driven inflammation is critical to prognosis. This tool facilitates early high-
risk patient identification for personalized intervention.
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1 Introduction

Stroke remains as a global health crisis, ranking as the second 
leading contributor to mortality worldwide and the third leading 
cause of long-term disability (1). It imposes a substantial global health 
burden at both individual and societal levels, with the rate of disability 
burden increasing more rapidly in low-income and middle-income 
countries than in high-income countries (2–4). Acute ischemic stroke 
(AIS) is defined as sudden neurological dysfunction caused by focal 
brain ischemia lasting more than 24 h or accompanied by evidence of 
acute infarction on brain imaging, regardless of symptom duration, 
accounts for approximately 70% of incident stroke events (5, 6). 
Intravenous thrombolysis (IVT), administered within the 4.5-h time 
window, constitutes the gold-standard therapy for AIS, as universally 
endorsed by international guidelines (7). Despite advancements in 
endovascular thrombectomy, IVT remains the most accessible and 
efficacious reperfusion treatment for patients with AIS in clinical 
practice, owing to its widespread availability and relative simplicity of 
administration (8, 9). Despite its established efficacy in enhancing 
functional recovery, nearly half of IVT-treated patients experience 
unfavorable functional outcomes at 3 months. The modified Rankin 
Scale (mRS; range 0–6, where 6 indicates death), which integrates both 
motor and cognitive components and encompasses the constructs of 
impairment, disability, and handicap, is considered to be the most 
accepted outcome for assessing the efficacy of interventions of AIS 
(10, 11). Given the substantial neurological disability burden 
associated with AIS (12), developing validated predictive tools 
remains imperative for the early identification of patients susceptible 
to adverse functional outcomes. Such prognostic stratification would 
facilitate targeted interventions and optimized resource allocation, 
ultimately improving long-term neurological prognosis. However, 
many existing prediction models are limited by their suboptimal 
predictive accuracy and the lack of robust external validation, 
resulting in uncertain generalizability to broader, more diverse 
populations (13, 14). Furthermore, numerous tools rely on high-
dimensional data—incorporating extensive imaging, genomic, or 
biomarker variables—which complicates clinical interpretation and 
practical implementation, thereby hindering widespread adoption (15, 
16). The development of novel, concise, yet robust prediction tools is 
therefore essential to enhance clinical relevance and facilitate 
translation into routine care.

Inflammation and immune responses critically mediate all phases 
of cerebral ischemia pathogenesis. Following ischemic insult, the 
inflammatory response initiated promptly. Focal brain ischemia 
stimulates what is called sterile inflammation (17), trigger 
inflammatory signaling through the activation of microglia, which 
subsequently release pro-inflammatory cytokines and chemokines, 
thereby promoting robust pro-inflammatory cascades, propelling the 

pathophysiological progression (18, 19). Critically, ischemic 
microenvironments trigger local immune responses, characterized by 
inflammatory cytokine production, which exacerbate blood–brain 
barrier (BBB) permeability (20, 21). Notably, neutrophils are the 
earliest leukocytes recruited from peripheral blood into the brain (22, 
23). Neutrophils induce neurotoxicity through multiple mechanisms 
such as the participation in thrombus formation and expansion, 
upregulation of matrix metalloproteinases, excessive generation of 
reactive oxygen species, and the release of neutrophil extracellular 
traps (NETs) (24–26). The subsequent increase in capillary 
permeability, disruption of the BBB, and cellular edema can 
collectively impair post-stroke revascularization and vascular 
remodeling, thereby adversely affecting stroke outcomes (27). Clinical 
studies demonstrated the early increase of peripheral neutrophils as 
an independent predictor of neurological deterioration and poor 
outcome (28, 29). In addition, acute central nervous system injury can 
induce a state of immunodepression by activating the sympathetic 
nervous system and hypothalamic–pituitary–adrenal axis, leading to 
elevated catecholamines and steroids that cause apoptosis and 
functional deactivation of peripheral lymphocytes (30). Lymphocytes 
serve as pivotal regulators of host defense, and their depletion 
markedly elevates susceptibility to infections. Clinical research data 
indicates that low lymphocyte counts constitute an independent 
predictor of infection risk in stroke patients (31, 32). Emerging 
evidence underscores the prognostic significance of these mechanisms 
of leukocyte-derived inflammation in post-stroke outcomes (27), with 
the neutrophil-to-lymphocyte ratio (NLR) validated as a predictive 
biomarker for clinical outcome in AIS patients receiving IVT (33). 
While baseline NLR has been established as an independent risk 
factor for outcomes including early neurological improvement (ENI), 
hemorrhagic transformation (HT), and mortality in AIS patients (34), 
the predominant focus of current NLR research on univariate 
assessments fails to capture synergistic interactions with clinical 
covariates (35). This methodological constraint impedes clinical 
translation, given that isolated biomarkers inherently lack the 
discriminative power for complex multifactorial outcomes.

Machine learning (ML), a rapidly advancing branch of artificial 
intelligence (AI), leveraging computational advances to uncover 
predictive insights from high-dimensional data, demonstrates 
growing utility in clinical stroke research (36, 37). ML offers 
substantial advantages in predictive accuracy and in identifying 
previously overlooked patient subgroups defined by unique 
physiological characteristics and prognostic trajectories. Various 
methodologies exist for feature selection within the domain of 
ML. Notably, the least absolute shrinkage and selection operator 
(LASSO) regression distinguishes itself from conventional stepwise 
regression techniques, which utilize forward or backward variable 
selection, by facilitating the effective screening of a greater number of 
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variables even when the sample size is limited (38). Moreover, LASSO 
regression provides superior feature selection from high-dimensional 
biomedical datasets while addressing multicollinearity limitations 
inherent in conventional methods (39). As a result, LASSO-based ML 
methods demonstrate enhanced prognostic discrimination across 
diverse medical applications (40–42). Furthermore, to compensate for 
the scarcity of interpretable evidence supporting predictive models, 
we deployed the SHapley Additive exPlanations (SHAP) analysis. This 
technique offers intuitive, feature-level explanations, which are critical 
for validating model efficacy and building trust (43). Consequently, 
integrating complementary clinical variables using ML models and 
SHAP interpretation may optimize the prediction of unfavorable 
outcomes for post-IVT AIS patients.

Therefore, we aimed to develop and validate a machine learning 
model for predicting 3-month functional outcomes in IVT-treated 
AIS patients, incorporating interpretability analysis to elucidate 
predictor contributions to the model predictions.

2 Materials and methods

2.1 Study population

This retrospective study enrolled patients diagnosed with AIS who 
received IVT within the 4.5-h treatment window. The derivation 
cohort consisted of 938 patients treated at The Affiliated Hospital of 
Xuzhou Medical University between September 2020 and October 
2024. Admission non-contrast head computed tomography (CT) 
confirmed the absence of acute hemorrhage. An independent external 
validation cohort comprised 324 consecutive patients treated with 
IVT for AIS at Hongze District People’s Hospital between January 
2019 and December 2022. Identical inclusion and exclusion criteria 
were applied to both cohorts. Inclusion criteria were: (1) over 18 years 
of age; (2) clinically and neuroimaging-confirmed diagnosis of AIS; 
(3) within 4.5 h of symptom onset, followed by recombinant tissue 
plasminogen activator (rt-PA) treatment (0.9 mg/kg up to a maximum 
of 90 mg, 10% of the dose as a bolus followed by a 60-min infusion of 
the remaining dose). Exclusion criteria were: (1) pre-stroke modified 
Rankin Scale (mRS) scores > 2, indicating significant pre-existing 
disability; (2) unavailable 3-month post-stroke mRS assessment; (3) 
receipt of subsequent endovascular thrombectomy; (4) active 
malignancy or major trauma at admission; (5) incomplete clinical 
data. To assess potential selection bias, we compared patients excluded 
due to missing data with the final derivation cohort across baseline 
characteristics. The study protocol received approval from the Ethics 
Committee of The Affiliated Hospital of Xuzhou Medical University 
(Approval number: XYFY2025-KL044-01). Given its retrospective 
design using anonymized data, the requirement for written informed 
consent was waived.

2.2 Data collection

The analysis incorporated these clinical variables: (1) 
Demographics: age, sex and body mass index (BMI). (2) Medical 
history: hypertension, diabetes mellitus (DM), coronary heart disease 
(CHD), atrial fibrillation (AF), anticoagulant/antiplatelet medications, 
smoking status, and alcohol consumption; (3) Clinical features: 

admission systolic/diastolic blood pressure (SBP/DBP), onset-to-
treatment time (OTT), National Institutes of Health Stroke Scale 
(NIHSS) score at admission and discharge, Trial of ORG 10172 in 
Acute Stroke Treatment (TOAST) classification, Alberta Stroke 
Program Early CT Score (ASPECTS) (44), mRS score at 3 months; (4) 
Laboratory indices: admission levels of neutrophil, lymphocyte, 
platelet, eosinophil counts, blood glucose, albumin, and glycated 
hemoglobin (HbA1c). The neutrophil-to-lymphocyte ratio (NLR) was 
calculated at admission by dividing absolute neutrophil count by 
absolute lymphocyte count.

2.3 Outcome definition

Functional outcome was assessed using the mRS 3 months after 
IVT. Evaluations were performed during scheduled clinic visits by 
board-certified neurologists blinded to the predictive model 
development. For patients unable to attend clinic, structured telephone 
interviews were conducted by trained research nurses using a 
validated protocol to ensure reliable mRS scoring. The primary 
outcome was unfavorable functional outcome, defined as mRS score 
3–6. A favorable outcome was defined as mRS score 0–2 (45).

2.4 Feature selection

Feature selection was performed using the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression (46). This 
regularization technique minimizes overfitting by applying an L1 
penalty term that shrinks coefficients and drives some coefficients of 
non-informative features to zero. Continuous variables were 
standardized (mean = 0, standard deviation = 1) before model fitting 
to ensure equivalent scaling of the penalty term. LASSO regression 
was performed on the derivation cohort training set (70% of 
derivation cohort). Feature subset optimization against overfitting was 
achieved by determining the optimal regularization parameter (λ) 
value through the standard error of the minimum distance based 
10-fold cross-validation (47). Features with non-zero coefficients after 
LASSO regularization were retained for subsequent modeling.

2.5 Machine learning model development 
and evaluation

2.5.1 Model development
Eight supervised machine learning algorithms were trained to 

predict the 3-month unfavorable functional outcome using the 
features selected by LASSO: Logistic Regression (LR), Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron 
(MLP), Support Vector Machine (SVM), Light Gradient Boosting 
Machine (LightGBM), Decision Tree (DT), and K-Nearest Neighbors 
(KNN). Models were implemented using Python libraries (scikit-learn 
0.22.1, XGBoost 1.2.1, LightGBM 3.2.1). The derivation cohort was 
randomly stratified by outcome and split into a training set (70%) and 
a held-out internal test set (30%). Hyperparameter tuning for each 
algorithm was performed exclusively on the training set using a nested 
10-fold cross-validation strategy. The inner loop of the cross-
validation was optimized by maximizing the Area Under the Receiver 
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Operating Characteristic Curve (ROC-AUC). The internal test set was 
used only once for the final comparative evaluation of all tuned models.

We implemented a comprehensive tuning strategy using grid 
search with cross-validation. For tree-based models (XGBoost, 
LightGBM, Random Forest, Decision Tree), we  focused on 
regularization parameters including max_depth, min_samples_split, 
and reg_lambda to control model complexity and prevent overfitting. 
For linear models (Logistic Regression, SVM), we  optimized 
regularization strength through the C parameter. All preprocessing 
steps were fitted solely on the training folds of the inner loop to 
prevent any data leakage. The optimized hyperparameters from the 
inner loop were then used to train a final model on the entire training 
set for evaluation on the held-out internal test set.

2.5.2 Model evaluation and comparison
Model performance was assessed using: (1) Discrimination: 

Primary metric: Area Under the Receiver Operating Characteristic 
Curve (ROC-AUC). Secondary metrics: Accuracy, Precision, Recall, 
F1-Score. Optimal classification thresholds were determined by 
maximizing the Youden Index on the validation folds. ROC curves and 
AUC values were generated for all datasets: internal training (using 
cross-validation predictions), internal test set, and external validation 
set. (2) Calibration: Calibration curves plotted predicted probabilities 
against observed event frequencies (Python, sklearn 0.22.1). Perfect 
calibration demonstrates along the 45° line. The Brier score was also 
reported (lower score indicates better calibration, range 0–1). (3) 
Clinical Utility: Decision Curve Analysis (DCA) implemented in R 
software (rmda 1.6) assessed the net benefit across a range of 
probability thresholds (15–35%) relevant for clinical decision-making. 
The performance metrics on the internal test set were compared across 
all eight algorithms to identify the optimal predictive model.

2.5.3 Model interpretation
The SHapley Additive exPlanations (SHAP) method (Python 

SHAP v0.39.0) was applied to the selected optimal model for 
interpretability (48). SHAP values attribute a contribution value to 
each feature for each individual prediction, enabling local and global 
interpretability. Graphical depiction techniques included: (1) 
Summary plots identifying the five most influential covariates through 
value magnitude visualization; (2) Dependency plots elucidating 
marginal effect relationships between feature variations and Shapley 
value fluctuations; (3) Global feature importance analysis combined 
with partial dependence evaluations. This integrated approach 
delineates directional associations between explanatory variables and 
adverse outcome predictions.

2.5.4 External validation
The generalizability of the final optimized model was evaluated by 

applying the parameters trained on the full derivation cohort training 
set to the independent, prospectively collected external validation 
cohort from Hongze District People’s Hospital. AUC, sensitivity and 
specificity were computed.

2.6 Statistical analysis

Statistical analysis was conducted using SPSS (Statistical Package 
for the Social Sciences, v26.0), R (v4.2.3), and Python (v3.11.4). 

Continuous variables were summarized as mean ± standard deviation 
(SD) or medians (IQRs), with group comparisons conducted using the 
Mann–Whitney U test. Categorical variables were reported as 
frequency percentages (%), analyzed through Pearson’s χ2 or Fisher’s 
exact tests. Independent predictor capacity was expressed through 
odds ratios (95% confidence intervals). All statistical tests were 
two-tailed, adopting p-value < 0.05 as the significance statistically.

3 Results

3.1 Baseline characteristics

This research initially enrolled 1,529 patients diagnosed with AIS 
and received IVT within 4.5 h of symptom onset. After applying the 
exclusion criteria, the final derivation cohort consisted of 938 patients 
(Figure  1). Exclusions included: endovascular therapy (n = 173), 
pre-stroke mRS > 2 (n = 55), missing data (n = 162), concurrent 
malignancy or major trauma (n = 35), and loss to 3-month follow-up 
(n = 166). Patients missing essential record required for model 
development (n = 162) were excluded. To assess potential selection 
bias, we  compared these excluded patients with the included 
derivation cohort (n = 938) across baseline characteristics including 
demographics, clinical features, and laboratory indices. No significant 
differences were observed in any variable (all p-values > 0.05; 
Supplementary Table  1), indicating comparable profiles between 
groups. This supports the representativeness of the analyzed cohort 
despite missing data handling via complete-case analysis. The 
derivation cohort was randomly split into a training set (70%, n = 656) 
and an internal test set (30%, n = 282). Baseline characteristics did not 
differ significantly (p > 0.05) between the training and internal test 
sets (Supplementary Table 2), confirming successful randomization 
and mitigating selection bias.

The overall derivation cohort (n = 938) had a mean age of 68 years 
(range 59–77), with males comprising 65.9%. Table 1 details clinical 
profiles stratified by 3-month functional outcome (favorable with mRS 
0–2 vs. unfavorable with mRS 3–6). Unfavorable outcomes occurred 
in 241 patients (25.7%). The external validation set (n = 324) showed 
a comparable unfavorable outcome rate of 22.8% (n = 74). Reduced 
functional recovery significantly correlated with multiple clinical 
indicators including: advanced age, atrial fibrillation, smoking/
drinking history, anticoagulant therapy, admission SBP, onset-to-
treatment time, ASPECTS, baseline NIHSS, TOAST classification, 
NLR, platelet count, eosinophil level, albumin, RDW, HDL, and 
glucose levels (p < 0.05; Table 1).

3.2 Feature selection for outcome 
prediction

The selection of predictive features was performed using Least 
Absolute Shrinkage and Selection Operator (LASSO) regression, a 
penalized regression technique designed to handle multicollinearity 
and prevent overfitting by shrinking the coefficients of 
non-informative variables to zero. An initial pool of 17 clinically 
accessible variables, encompassing demographics, medical history, 
clinical presentation, imaging features, and laboratory indices, was 
standardized and entered into the model. The optimal regularization 
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parameter (λ) was determined via 10-fold cross-validation on the 
derivation training set (n = 656), minimizing the binomial deviance. 
This process identified the optimal λ parameter (lambda with 
minimum distance = 0.039; Figure  2), which addresses 
multicollinearity and overfitting through coefficient shrinkage (49). 
At this optimal λ, the model retained five variables with non-zero 
coefficients: NLR, baseline NIHSS, ASPECTS, atrial fibrillation, and 
blood glucose. Subsequently, multivariate logistic regression analysis 
confirmed that each of these five variables was independently 
associated with an increased risk of unfavorable outcome (p < 0.05; 
Table 2) (50). Odds ratios (OR) with 95% confidence intervals (CI) are 
reported in Table  2, and the LASSO coefficients are provided in 
Supplementary Table 3.

3.3 Models performance comparisons

Eight machine learning models (XGBoost, LR, LightGBM, RF, 
DT, MLP, SVM, KNN) were trained and tuned using the five selected 
predictors on the derivation training set via 10-fold cross-validation. 
Performance was independently evaluated on the held-out internal 
test set. Our optimization encompassed tuning of core 
hyperparameters across all model types. For tree-based models (e.g., 
XGBoost, LightGBM), we  focused on parameters controlling tree 
complexity (e.g., depth constraints, leaf node quantities), 
regularization intensity (e.g., L1/L2 coefficients), and key overfitting 
prevention mechanisms. For linear models (e.g., Logistic Regression, 
SVM), we systematically optimized regularization types and strengths. 
All parameters were determined through comprehensive grid search 
with cross-validation.

Comprehensive performance evaluation revealed distinct 
characteristics among the models. As shown in Figure 3A, all models 
demonstrated reasonable training performance without perfect 
discrimination (AUC range: 0.708–0.878), indicating successful 
mitigation of overfitting through our optimized regularization 
approach. While tree-based methods like XGBoost and LightGBM 
showed elevated training performance (e.g., XGBoost training 
AUC = 0.878; Figure  3A) but significant drops in validation 

(AUC = 0.791; Figure 3B), Logistic Regression achieved stable cross-
validated performance (AUC = 0.792, 95% CI: 0.754–0.829) that was 
maintained on the validation set (AUC = 0.787, 95% CI: 0.673–0.900) 
with minimal performance degradation (ΔAUC = 0.005) (Figure 3B). 
Critical assessment of model calibration demonstrated LR’s superior 
reliability with optimal Brier score (0.140, 95% CI: 0.131–0.149), 
significantly outperforming other models in calibration accuracy 
(Figure 3C). Decision Curve Analysis confirmed LR’s clinical utility, 
providing the greatest net benefit across clinically relevant threshold 
probabilities (15–35%) (Figure 3D). Precision-Recall analysis further 
supported LR’s robust performance (AP = 0.656) in handling class 
imbalance (Figures 3E,F). Accuracy, Precision, Recall, F1-Score and 
Cutoff value for all models are detailed in Table 3. Collectively, based 
on its optimal balance of discriminatory ability, calibration reliability, 
and clinical utility across multiple metrics, Logistic Regression was 
selected as the preferred model for deployment.

3.4 Development and validation of the 
optimal model

The optimal Logistic Regression model, using the five selected 
predictors (AF, ASPECTS, NIHSS, Blood Glucose, NLR), was refined 
on the entire derivation training set (n = 656) using 10-fold cross-
validation. The mean cross-validated AUC was 0.794 (95% CI: 0.749–
0.838; range across folds: 0.728–0.851; Figure  4A). Validation set 
performance maintained stability (mean AUC 0.788, 95% CI: 0.655–
0.920) (Figure  4B). Evaluation on the internal test set (n = 282) 
demonstrated sustained performance (AUC = 0.777, 95% CI: 0.710–
0.844; Figure 4C). Accuracy, specificity, and sensitivity on the test set 
were 0.791, 0.860, and 0.567, respectively. The learning curve analysis 
indicated stable model performance, with converging training and 
validation accuracy estimates remaining above 80% without 
significant divergence as the sample size increased, suggesting the 
model was adequately fitted without overfitting (Figure  4D). 
Calibration on the test set was moderate (Figure  4E; Brier 
Score = 0.140). Decision Curve Analysis confirmed positive net 
benefit across the same relevant probability thresholds (Figure 4F).

FIGURE 1

Flowchart of patient selection. AIS, acute ischemic stroke; IVT, intravenous thrombolysis; mRS score, modified Rankin Scale.
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TABLE 1  Baseline characteristics of the subgroup according to clinical outcomes.

Variables Total (n = 938) Favorable outcome 
group (n = 697)

Unfavorable outcome 
group (n = 241)

p value

Demographics

Age, median (IQR) 68 (59, 77) 68 (59, 76) 70 (60, 79) 0.010

Gender, (male, %) 618 (65.88) 465 (66.71) 153 (63.49) 0.362

BMI, median (IQR) 24.80 (22.85, 27.06) 24.82 (22.86, 27.06) 24.77 (22.49, 27.06) 0.580

Previous history

Hypertension, n (%) 605 (64.50) 450 (64.56) 155 (64.32) 0.945

DM, n (%) 218 (23.24) 160 (22.96) 58 (24.07) 0.725

CHD, n (%) 149 (15.88) 107 (15.35) 42 (17.43) 0.447

AF, n (%) 97 (10.34) 51 (7.32) 46 (19.09) <0.001

Previous stroke, n (%) 275 (29.32) 197 (28.26) 78 (32.37) 0.228

Anticoagulant therapy, n (%) 135 (14.39) 79 (11.33) 56 (23.24) <0.001

Smoking, n (%) 328 (34.97) 266 (38.16) 62 (25.73) <0.001

Drinking, n (%) 153 (16.31) 127 (18.22) 26 (10.79) 0.007

Baseline parameters

SBP, median (IQR) 151 (138, 165) 150 (137, 164) 155 (140, 168) 0.020

DBP, median (IQR) 86 (78, 94) 85 (78, 94) 87 (77, 97) 0.409

OTT, median (IQR) 185 (130, 237) 175 (125, 232) 205 (150, 253) <0.001

ASPECTS, median (IQR) 8 (7, 8) 8 (7, 9) 7 (6, 8) <0.001

Baseline NIHSS score, median 

(IQR)
6 (4, 11) 6 (4, 8) 10 (6, 17) <0.001

NIHSS score after IVT, median 

(IQR)
3 (2, 8) 3 (1, 6) 9 (4, 15) <0.001

TOAST classification <0.001

Large-artery atherosclerosis, n 

(%)
636 (67.80) 471 (67.58) 165 (68.46)

Cardioembolic, n (%) 114 (12.15) 70 (10.04) 44 (18.26)

Small-artery occlusion, n (%) 181 (19.30) 149 (21.38) 32 (13.28)

Other etiology, n (%) 6 (0.64) 6 (0.86) 0 (0.00)

Undetermined etiology, n (%) 1 (0.11) 1 (0.14) 0 (0.00)

Laboratory data

Neutrophil, median (IQR) 4.88 (3.63, 6.47) 4.57 (3.47, 5.92) 6.02 (4.47, 8.39) <0.001

Lymphocyte, median (IQR) 1.6 (1.2, 2.2) 1.7 (1.3, 2.3) 1.4 (0.9, 1.8) <0.001

NLR, median (IQR) 2.94 (1.95, 4.83) 2.63 (1.79, 4.01) 4.65 (2.64, 7.79) <0.001

Platelets, median (IQR) 199 (162, 235) 202 (165, 236) 185 (157, 231) 0.025

Eosinophils, median (IQR) 0.08 (0.04, 0.15) 0.10 (0.05, 0.16) 0.05 (0.02, 0.11) <0.001

Albumin, median (IQR) 42.2 (39.2, 44.9) 42.3 (39.7, 44.9) 41.6 (38.0, 44.7) 0.011

Hemoglobin, median (IQR) 141 (130, 152) 141 (131, 152) 140 (127, 152) 0.249

RDW, median (IQR) 12.9 (12.4, 13.4) 12.9 (12.4, 13.3) 12.9 (12.6, 13.5) 0.049

TC, median (IQR) 4.48 (3.91, 5.01) 4.48 (3.89, 5.04) 4.46 (3.97, 4.93) 0.974

TG, median (IQR) 1.36 (0.97, 1.64) 1.35 (0.98, 1.65) 1.36 (0.95, 1.58) 0.490

HDL, median (IQR) 1.07 (0.91, 1.17) 1.05 (0.90, 1.17) 1.07 (0.92, 1.17) 0.041

LDL, median (IQR) 2.56 (2.12, 3.00) 2.56 (2.07, 3.01) 2.56 (2.20, 3.00) 0.129

CRP, median (IQR) 1.55 (0.60, 4.50) 1.50 (0.60, 4.30) 1.80 (0.60, 5.00) 0.183

UA, median (IQR) 308 (255, 366) 305 (255, 366) 311 (249, 363) 0.936

(Continued)
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3.5 Optimal model interpretation

SHapley Additive exPlanations (SHAP) analysis was employed to 
interpret the final Logistic Regression model globally and locally. The 
SHAP summary plot (Figure  5A) illustrates the impact and 
directionality of each predictor. Higher NLR values and NIHSS scores 
consistently increased the risk of an unfavorable outcome, while 
higher ASPECTS scores decreased the risk. Presence of AF and higher 
blood glucose levels also generally increased the risk. NLR exhibited 

predominant risk-enhancing properties, where elevated values 
substantially increasing adverse outcome risk. Mean absolute SHAP 
value analysis ranked the features by their overall contribution to the 
model’s predictions: NLR was the most influential predictor, followed 
by NIHSS, ASPECTS, Atrial Fibrillation and Blood Glucose 
(Figure 5B). Examples of local interpretability are shown in Figure 5C 
(patient predicted low risk, actual favorable outcome) and Figure 5D 
(patient predicted high risk, actual unfavorable outcome). Each 
feature’s specific value and its SHAP contribution (increasing or 

TABLE 1  (Continued)

Variables Total (n = 938) Favorable outcome 
group (n = 697)

Unfavorable outcome 
group (n = 241)

p value

AST, median (IQR) 24.00 (20.00, 29.00) 24.00 (20.00, 30.00) 25.00 (20.00, 29.00) 0.721

ALT, median (IQR) 20.00 (15.00, 29.00) 20.00 (15.00, 29.00) 20.00 (15.00, 29.00) 0.826

GGT, median (IQR) 23.00 (15.00, 35.00) 22.00 (15.00, 35.00) 23.00 (16.00, 35.00) 0.658

HbA1c, median (IQR) 6.08 (5.60, 6.65) 6.00 (5.60, 6.50) 6.30 (5.70, 6.65) 0.077

Blood glucose, median (IQR) 5.65 (4.90, 7.43) 5.48 (4.84, 6.99) 6.20 (5.15, 7.90) <0.001

Treatment after admission

Hemorrhagic transformation, n 

(%)
112 (11.94) 33 (4.73) 79 (32.78) <0.001

sICH, n (%) 51 (5.44) 5 (0.72) 46 (19.09) <0.001

NIHSS score on discharge, 

median (IQR)
2 (0, 6.00) 1 (0, 3) 13 (7, 25) <0.001

BMI, Body Mass Index; DM, diabetes mellitus; AF, Atrial fibrillation; CHD, coronary heart disease; OTT, Onset-to-treatment; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; ASPECTS, Alberta Stroke Program Early CT Score; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; IVT, intravenous thrombolysis; 
RDW, red cell distribution width; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NLR, neutrophil-to-lymphocyte ratio; HT, hemorrhagic transformation; sICH, Symptomatic 
Hemorrhagic transformation.

FIGURE 2

Feature selection based on LASSO model. (A) Coefficient profiles during LASSO regularization. (B) Ten-fold cross-validation for identifying the optimal 
λ value.
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decreasing the predicted probability away from the base value) 
combine to generate the individual prediction.

3.6 External validation and clinical 
application

External validation was conducted using an independent external 
Hongze District People’s Hospital validation cohort comprising 324 
stroke patients receiving IVT, with unfavorable outcomes documented 
in 74 cases (22.8%). It demonstrated robust generalizability, achieving 
an AUC of 0.797 (95% CI: 0.737–0.858; Figure 6A), sensitivity of 
0.730, and specificity of 0.752. To facilitate clinical implementation, a 
nomogram was constructed based on the final logistic regression 
coefficients (Figure 6B), enabling clinicians to estimate individualized 
probabilities of an unfavorable 3-month outcome for patients 
receiving IVT for AIS.

4 Discussion

This study has developed and validated a machine learning-based 
predictive model for 3-month functional outcomes following IVT in 
AIS patients. Using LASSO regression for feature selection followed by 
multivariate logistic regression, we identified five key predictors from 
17 candidate variables (51): NLR, baseline NIHSS, ASPECTS, atrial 
fibrillation, and blood glucose. This parsimonious set of readily available 
clinical, radiological, and inflammatory biomarkers provides a practical 
foundation for prognostic assessment. We comprehensively evaluated 
eight machine learning models: Logistic Regression (LR), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), Multilayer 
Perceptron (MLP), Support Vector Machine (SVM), Light Gradient 
Boosting Machine (LightGBM), Decision Tree (DT), and K-Nearest 
Neighbors (KNN) (52). Based on the comprehensive performance 
evaluation across all validation metrics, logistic regression emerged as 
the most stable and reliable model, consistently demonstrating balanced 
performance without signs of overfitting. In contrast to complex tree-
based ensemble methods (e.g., XGBoost, LightGBM) and other 
non-linear algorithms, which exhibited enhanced in-sample metrics 
(e.g., XGBoost training AUC = 0.878) yet notable declines in external 
validation (AUC = 0.791), logistic regression preserved strong 
discriminative capability on the training set (AUC = 0.792) and 
validation set (AUC = 0.787) with only marginal deterioration. A 
critical advantage of LR was its exceptional calibration precision, 
reflected by a Brier score of 0.140, indicating close agreement between 

forecast probabilities and actual event rates. Moreover, it yielded the 
greatest and most consistent net clinical benefit throughout the 
spectrum of relevant probability thresholds as evidenced by decision 
curve analysis. This stability likely reflects the intrinsic alignment 
between LR’s linear decision boundary and the predominantly additive 
relationships among our predictors, whereas unnecessary nonlinear 
complexity impaired generalization in other models.

The reliability and stability of our final logistic regression model 
were rigorously interrogated through a comprehensive validation 
framework. Internally, the model showed consistent performance with 
minimal degradation from cross-validation (mean AUC = 0.788) to 
the held-out test set (AUC = 0.777), while calibration metrics revealed 
excellent agreement between predicted probabilities and observed 
outcomes (Brier score = 0.144). Externally, the model maintained 
robust discrimination (AUC = 0.797) in an independent validation 
cohort (n = 324) with consistent sensitivity (0.730) and specificity 
(0.752). Furthermore, biological plausibility was confirmed through 
SHAP analysis, which demonstrated consistent risk directionality 
across cohorts (higher NLR/NIHSS/glucose increasing risk, higher 
ASPECTS reducing risk), thereby reinforcing model stability.

When compared to existing prognostic models, our approach 
demonstrates three distinct advantages. First, it exhibits superior 
generalizability, maintaining robust discrimination (AUC > 0.777) 
across both internal validation and independent external cohorts—a 
critical advancement for real-world implementation often lacking in 
single-center models. Second, it offers unmatched clinical practicality 
through its parsimonious nature, utilizing only five clinically routinely 
available variables without requiring specialized tests, complex 
computations, or additional costs. Third, it provides innovative 
biological interpretability through SHAP analysis, which not only 
quantifies feature contributions but also reveals clinically actionable 
interactions between predictors, enabling personalized risk assessment 
beyond conventional scoring systems.

SHAP interpretability analysis affirmed the central role of our five 
predictors. The analysis indicated that higher baseline NIHSS scores 
indicate heightened initial neurological deficits (53), and higher 
blood glucose synergistically amplify adverse outcome risks, 
consistent with cerebrovascular pathogenesis (54). Several 
mechanisms underlying stress-induced hyperglycemia pathology 
may explain this: Hepatic overproduction and insulin resistance 
further impair rt-PA fibrinolysis, compromises blood–brain barrier 
(BBB) integrity, and aggravate cerebral edema (55, 56). Conversely, 
diminished ASPECTS, signifying extensive early parenchymal injury 
(57, 58), and pre-existing atrial fibrillation emerged as independent 
radiological and comorbid risk factors. Mechanistically, atrial 

TABLE 2  Multivariate logistic regression analysis.

Variable Estimate SE Z p OR (95% CI)

(Intercept) −1.553 0.683 −2.274 0.023 0.212 (0.055–0.798)

NLR 0.294 0.031 9.345 <0.001 1.342 (1.264–1.430)

NIHSS 0.06 0.012 5.187 <0.001 1.062 (1.038–1.087)

ASPECTS −0.287 0.078 −3.684 <0.001 0.751 (0.644–0.874)

Atrial fibrillation 0.828 0.254 3.261 0.001 2.288 (1.386–3.756)

Blood glucose 0.098 0.033 2.943 0.003 1.103 (1.034–1.178)

SE, Standard error; OR, odds ratio; CI, confidence interval; NLR, neutrophil-to-lymphocyte ratio; NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early 
CT Score.
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FIGURE 3

Comprehensive analysis of ML algorithms. (A) ROC curves comparing discrimination performance of eight ML models for predicting post-thrombolysis 
outcomes in the training cohort. (B) ROC curves demonstrating generalization performance in validation cohort. (C) Calibration curves depicting 
agreement between predicted probabilities (x-axis) and observed event frequencies (y-axis). Logistic Regression showed optimal calibration. 
(D) Decision Curve Analysis (DCA) assessing net benefit across probability thresholds. (E) Training set PR curve. (F) Test set PR curve. Precision-recall 
relationships at varying probability thresholds. Horizontal dashed line indicates positive event rate.

https://doi.org/10.3389/fneur.2025.1668816
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bu et al.� 10.3389/fneur.2025.1668816

Frontiers in Neurology 10 frontiersin.org

fibrillation promotes cardioembolic clot resistance to lysis during 
thrombolysis, worsening ischemic injury (59, 60). Crucially, NLR 
ranked as a principal effector, outperforming conventional 
biomarkers (61, 62). Substantial evidence confirms that inflammatory 
mediators critically influence cerebral ischemia pathogenesis (63–
65). Following stroke onset, neutrophils constitute the earliest 

responding immune cells that amplify tissue damage through 
chemokine release and matrix metalloproteinase-9 (MMP-9) 
overexpression (26, 61), exacerbating BBB disruption and 
contributing to hemorrhagic transformation (66). Notably, neutrophil 
extracellular traps (NETs) demonstrate elevated plasma levels that 
correlate with poor prognoses (26). Supporting the importance of 

TABLE 3  Predictive performance metrics of different ML models in the validation set.

Models Validation set

LR XGBoost LightGBM RF DT MLP SVM KNN

AUC (95%CI) 0.787 (0.673–

0.900)

0.791 (0.688–0.894) 0.775 (0.665–0.884) 0.789 (0.677–

0.900)

0.700 (0.583–

0.818)

0.711 (0.591–

0.831)

0.752 (0.622–

0.882)

0.770 (0.651–

0.890)

Cutoff value 0.319 0.274 0.258 0.297 0.354 0.385 0.162 0.285

Accuracy 

(95%CI)

0.791 (0.767–

0.815)

0.757 (0.728–0.786) 0.738 (0.708–0.768) 0.771 (0.744–

0.798)

0.685 (0.637–

0.734)

0.677 (0.626–

0.728)

0.722 (0.688–

0.756)

0.750 (0.712–

0.789)

Precision 

(95%CI)

0.594 (0.547–

0.641)

0.519 (0.478–0.560) 0.495 (0.455–0.535) 0.554 (0.507–

0.601)

0.439 (0.386–

0.493)

0.424 (0.363–

0.485)

0.477 (0.433–

0.520)

0.536 (0.459–

0.614)

Recall (95%CI) 0.627 (0.576–

0.677)

0.677 (0.589–0.764) 0.647 (0.542–0.753) 0.627 (0.556–

0.698)

0.639 (0.574–

0.705)

0.606 (0.516–

0.697)

0.693 (0.649–

0.737)

0.614 (0.553–

0.676)

F1 score (95%CI) 0.607 (0.568–

0.645)

0.585 (0.530–0.641) 0.553 (0.497–0.609) 0.583 (0.538–

0.627)

0.514 (0.469–

0.559)

0.492 (0.432–

0.552)

0.563 (0.522–

0.605)

0.562 (0519–

0.605)

LR, Logistic Regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; MLP, Multilayer Perceptron; SVM, Support Vector Machine; LightGBM, Light Gradient Boosting Machine; 
DT, Decision Tree; KNN, K-Nearest Neighbors.

FIGURE 4

Logistic regression model development encompassed training cohort modeling, cross-validation refinement, and independent testing cohort 
verification. (A) Training set ROC analysis with 10-fold cross-validation. (B) Validation set ROC performance across 10 folds. (C) Test set discrimination 
performance (AUC 0.777, 95% CI: 0.710–0.844). Blue: model performance; red dashed: random classifier. (D) Learning curve: AUC by training sample 
size. Validation (blue dashed) converges with training (red) beyond 300 samples, indicating minimal overfitting. (E) Calibration curve showing 
agreement between predicted probabilities and observed outcomes. (F) Decision curve analysis: Logistic model (red solid) shows superior net benefit 
versus treat-all (black dashed) and treat-none (red dotted) strategies, particularly at 20–50% thresholds. Peak net benefit (0.17) occurs at 30% risk 
threshold.
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neurological severity, several studies indicate that baseline NIHSS 
scores correlate with 3-month functional recovery after IVT (67, 68). 
Additionally, clinical metrics like NLR independently predict 

hemorrhagic complications and mortality (61, 62). The use of LR, 
reinforced by SHAP interpretation, enhances clinical trust and 
facilitates integration into decision-making workflows.

FIGURE 5

Feature importance and interpretation. (A) SHAP summary plot: Directional impact of predictors on outcome risk. Point position indicates effect 
direction—positive values denote enhanced risk probability, while negative counterparts indicate protective functions. (B) Quantitative comparison of 
predictive influence magnitude. Error bars represent standard error of mean absolute SHAP values. (C) SHAP explanation for a patient with actual 
favorable outcome. (D) SHAP explanation for a patient with actual unfavorable outcome. Arrow length encodes predictor influence magnitude on 
prediction.

FIGURE 6

(A) ROC curve for predicting unfavorable outcome in external validation cohort. (B) Nomogram for clinical risk prediction: Point-based scoring system. 
To estimate probability: (1) Locate predictor value on corresponding axis; (2) Draw vertical line to Points axis; (3) Sum points; (4) Project total to 
probability axis.
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However, our study also has several limitations. First, biomarkers 
were measured at a single timepoint, lacking temporal dynamics. 
Second, despite external validation, model development relied on 
retrospective data from predominantly single-center cohorts; prospective 
multi-center validation remains essential. Third, incorporating 
additional potentially relevant factors such as detailed imaging 
biomarkers, genetic markers, or more detailed inflammatory profiling 
might improve predictive accuracy. Fourth, although inflammatory 
biomarker selection prioritized NLR based on existing evidence, future 
research is needed to directly compare a broader panel of indices (such 
as PLR, LMR, SII, PIV, and SIRI). Fifth, a complete-case analysis 
approach was used for handling missing data. Although comparative 
analysis demonstrated no systematic differences between patients 
excluded for missing data and the final cohort, mitigating immediate 
selection bias concerns, future prospective studies should employ 
advanced techniques such as multiple imputation to further enhance 
robustness. Our model demonstrates utility in facilitating identifying for 
AIS patients after IVT at elevated risk of unfavorable 90-day prognosis.

This research establishes a clinically feasible model using five 
routinely available predictors for post-IVT adverse outcomes in 
AIS. Logistic Regression demonstrated superior overall performance 
compared to seven other machine learning algorithms, achieving 
optimal balance between discrimination, calibration, and clinical utility. 
SHAP analysis quantified individual predictor contributions, 
confirming NLR as the most influential risk determinant. Our validated 
model provides a stratification tool to identify high-risk patients, 
enabling personalized interventions to mitigate poor 3-month outcomes.
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