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Introduction: Acute ischemic stroke (AIS) patients often experience poor
functional outcomes post-intravenous thrombolysis (IVT). Novel computational
methods leveraging machine learning (ML) architectures increasingly support
medical decision-making. We aimed to develop and validate a machine learning
model to predict 3-month unfavorable functional outcome after IVT in AIS
patients.

Methods: This retrospective study developed ML prognostic models for 3-month
functional outcome (modified Rankin scale scores of 3-6) in IVT-treated AlS
patients. A derivation cohort (n = 938) was split 7:3 for training/testing, with an
independent external validation cohort (n = 324). The least absolute shrinkage
and selection operator (LASSO) regression selected predictors from clinical/
neuroimaging/laboratory variables. Eight ML algorithms (including Logistic
Regression, Random Forest, Extreme Gradient Boosting, Multilayer Perceptron,
Support Vector Machine, Light Gradient Boosting Machine, Decision Tree, and
K-Nearest Neighbors) were trained using 10-fold cross-validation and evaluated
on test/external sets via the area under the curve (AUC), accuracy, precision,
recall and Fl-score. Additionally, the SHapley Additive exPlanations (SHAP)
interpreted the optimal model.

Results: 938 patients constituted the derivation cohort (training: n = 656, test:
n = 282) and 324 patients the external validation cohort. Unfavorable 3-month
outcomes (MRS 3-6) occurred in 25.7% and 22.8%, respectively. LASSO
regression selected five predictors: the neutrophil-to-lymphocyte ratio (NLR),
admission National Institutes of Health Stroke Scale (NIHSS) score, the Alberta
Stroke Program Early CT Score (ASPECTS), atrial fibrillation, and blood glucose.
While tree-based methods like XGBoost and LightGBM showed elevated
training performance (e.g., XGBoost training AUC = 0.878) but significant drops
in validation (AUC = 0.791), LR demonstrated optimal performance: robust
training AUC (0.792), minimal validation degradation (AUC = 0.787). LR model
was subsequently employed as classification method demonstrating optimal
performance with (AUC = 0.777) in the test dataset. External validation confirmed
LR’s stability (AUC = 0.797). SHAP analysis ranked NLR as the strongest predictor
(followed by NIHSS/ASPECTS), with higher values increasing risk. Learning curves
indicated no overfitting. A nomogram enabled individualized risk quantification.
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Conclusion: A parsimonious 5-variable LR model robustly predicts 3-month
post-IVT outcomes, combining clinical utility, interpretability, and generalizability.
NLR-driven inflammation is critical to prognosis. This tool facilitates early high-
risk patient identification for personalized intervention.
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Additive exPlanations

1 Introduction

Stroke remains as a global health crisis, ranking as the second
leading contributor to mortality worldwide and the third leading
cause of long-term disability (1). It imposes a substantial global health
burden at both individual and societal levels, with the rate of disability
burden increasing more rapidly in low-income and middle-income
countries than in high-income countries (2-4). Acute ischemic stroke
(AIS) is defined as sudden neurological dysfunction caused by focal
brain ischemia lasting more than 24 h or accompanied by evidence of
acute infarction on brain imaging, regardless of symptom duration,
accounts for approximately 70% of incident stroke events (5, 6).
Intravenous thrombolysis (IVT), administered within the 4.5-h time
window, constitutes the gold-standard therapy for AIS, as universally
endorsed by international guidelines (7). Despite advancements in
endovascular thrombectomy, IVT remains the most accessible and
efficacious reperfusion treatment for patients with AIS in clinical
practice, owing to its widespread availability and relative simplicity of
administration (8, 9). Despite its established efficacy in enhancing
functional recovery, nearly half of IVT-treated patients experience
unfavorable functional outcomes at 3 months. The modified Rankin
Scale (mRS; range 0-6, where 6 indicates death), which integrates both
motor and cognitive components and encompasses the constructs of
impairment, disability, and handicap, is considered to be the most
accepted outcome for assessing the efficacy of interventions of AIS
(10, 11). Given the substantial neurological disability burden
associated with AIS (12), developing validated predictive tools
remains imperative for the early identification of patients susceptible
to adverse functional outcomes. Such prognostic stratification would
facilitate targeted interventions and optimized resource allocation,
ultimately improving long-term neurological prognosis. However,
many existing prediction models are limited by their suboptimal
predictive accuracy and the lack of robust external validation,
resulting in uncertain generalizability to broader, more diverse
populations (13, 14). Furthermore, numerous tools rely on high-
dimensional data—incorporating extensive imaging, genomic, or
biomarker variables—which complicates clinical interpretation and
practical implementation, thereby hindering widespread adoption (15,
16). The development of novel, concise, yet robust prediction tools is
therefore essential to enhance clinical relevance and facilitate
translation into routine care.

Inflammation and immune responses critically mediate all phases
of cerebral ischemia pathogenesis. Following ischemic insult, the
inflammatory response initiated promptly. Focal brain ischemia
stimulates what is called sterile inflammation (17), trigger
inflammatory signaling through the activation of microglia, which
subsequently release pro-inflammatory cytokines and chemokines,
thereby promoting robust pro-inflammatory cascades, propelling the
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pathophysiological progression (18, 19). Critically, ischemic
microenvironments trigger local immune responses, characterized by
inflammatory cytokine production, which exacerbate blood-brain
barrier (BBB) permeability (20, 21). Notably, neutrophils are the
earliest leukocytes recruited from peripheral blood into the brain (22,
23). Neutrophils induce neurotoxicity through multiple mechanisms
such as the participation in thrombus formation and expansion,
upregulation of matrix metalloproteinases, excessive generation of
reactive oxygen species, and the release of neutrophil extracellular
traps (NETs) (24-26). The subsequent increase in capillary
permeability, disruption of the BBB, and cellular edema can
collectively impair post-stroke revascularization and vascular
remodeling, thereby adversely affecting stroke outcomes (27). Clinical
studies demonstrated the early increase of peripheral neutrophils as
an independent predictor of neurological deterioration and poor
outcome (28, 29). In addition, acute central nervous system injury can
induce a state of immunodepression by activating the sympathetic
nervous system and hypothalamic—pituitary-adrenal axis, leading to
elevated catecholamines and steroids that cause apoptosis and
functional deactivation of peripheral lymphocytes (30). Lymphocytes
serve as pivotal regulators of host defense, and their depletion
markedly elevates susceptibility to infections. Clinical research data
indicates that low lymphocyte counts constitute an independent
predictor of infection risk in stroke patients (31, 32). Emerging
evidence underscores the prognostic significance of these mechanisms
of leukocyte-derived inflammation in post-stroke outcomes (27), with
the neutrophil-to-lymphocyte ratio (NLR) validated as a predictive
biomarker for clinical outcome in AIS patients receiving IVT (33).
While baseline NLR has been established as an independent risk
factor for outcomes including early neurological improvement (ENI),
hemorrhagic transformation (HT), and mortality in AIS patients (34),
the predominant focus of current NLR research on univariate
assessments fails to capture synergistic interactions with clinical
covariates (35). This methodological constraint impedes clinical
translation, given that isolated biomarkers inherently lack the
discriminative power for complex multifactorial outcomes.

Machine learning (ML), a rapidly advancing branch of artificial
intelligence (AI), leveraging computational advances to uncover
predictive insights from high-dimensional data, demonstrates
growing utility in clinical stroke research (36, 37). ML offers
substantial advantages in predictive accuracy and in identifying
previously overlooked patient subgroups defined by unique
physiological characteristics and prognostic trajectories. Various
methodologies exist for feature selection within the domain of
ML. Notably, the least absolute shrinkage and selection operator
(LASSO) regression distinguishes itself from conventional stepwise
regression techniques, which utilize forward or backward variable
selection, by facilitating the effective screening of a greater number of
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variables even when the sample size is limited (38). Moreover, LASSO
regression provides superior feature selection from high-dimensional
biomedical datasets while addressing multicollinearity limitations
inherent in conventional methods (39). As a result, LASSO-based ML
methods demonstrate enhanced prognostic discrimination across
diverse medical applications (40-42). Furthermore, to compensate for
the scarcity of interpretable evidence supporting predictive models,
we deployed the SHapley Additive exPlanations (SHAP) analysis. This
technique offers intuitive, feature-level explanations, which are critical
for validating model efficacy and building trust (43). Consequently,
integrating complementary clinical variables using ML models and
SHAP interpretation may optimize the prediction of unfavorable
outcomes for post-IVT AIS patients.

Therefore, we aimed to develop and validate a machine learning
model for predicting 3-month functional outcomes in IVT-treated
AIS patients, incorporating interpretability analysis to elucidate
predictor contributions to the model predictions.

2 Materials and methods
2.1 Study population

This retrospective study enrolled patients diagnosed with AIS who
received IVT within the 4.5-h treatment window. The derivation
cohort consisted of 938 patients treated at The Affiliated Hospital of
Xuzhou Medical University between September 2020 and October
2024. Admission non-contrast head computed tomography (CT)
confirmed the absence of acute hemorrhage. An independent external
validation cohort comprised 324 consecutive patients treated with
IVT for AIS at Hongze District People’s Hospital between January
2019 and December 2022. Identical inclusion and exclusion criteria
were applied to both cohorts. Inclusion criteria were: (1) over 18 years
of age; (2) clinically and neuroimaging-confirmed diagnosis of AIS;
(3) within 4.5 h of symptom onset, followed by recombinant tissue
plasminogen activator (rt-PA) treatment (0.9 mg/kg up to a maximum
of 90 mg, 10% of the dose as a bolus followed by a 60-min infusion of
the remaining dose). Exclusion criteria were: (1) pre-stroke modified
Rankin Scale (mRS) scores > 2, indicating significant pre-existing
disability; (2) unavailable 3-month post-stroke mRS assessment; (3)
receipt of subsequent endovascular thrombectomy; (4) active
malignancy or major trauma at admission; (5) incomplete clinical
data. To assess potential selection bias, we compared patients excluded
due to missing data with the final derivation cohort across baseline
characteristics. The study protocol received approval from the Ethics
Committee of The Affiliated Hospital of Xuzhou Medical University
(Approval number: XYFY2025-KL044-01). Given its retrospective
design using anonymized data, the requirement for written informed
consent was waived.

2.2 Data collection

The analysis incorporated these clinical variables: (1)
Demographics: age, sex and body mass index (BMI). (2) Medical
history: hypertension, diabetes mellitus (DM), coronary heart disease
(CHD), atrial fibrillation (AF), anticoagulant/antiplatelet medications,
smoking status, and alcohol consumption; (3) Clinical features:
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admission systolic/diastolic blood pressure (SBP/DBP), onset-to-
treatment time (OTT), National Institutes of Health Stroke Scale
(NIHSS) score at admission and discharge, Trial of ORG 10172 in
Acute Stroke Treatment (TOAST) classification, Alberta Stroke
Program Early CT Score (ASPECTS) (44), mRS score at 3 months; (4)
Laboratory indices: admission levels of neutrophil, lymphocyte,
platelet, eosinophil counts, blood glucose, albumin, and glycated
hemoglobin (HbA1c). The neutrophil-to-lymphocyte ratio (NLR) was
calculated at admission by dividing absolute neutrophil count by
absolute lymphocyte count.

2.3 Outcome definition

Functional outcome was assessed using the mRS 3 months after
IVT. Evaluations were performed during scheduled clinic visits by
board-certified neurologists blinded to the predictive model
development. For patients unable to attend clinic, structured telephone
interviews were conducted by trained research nurses using a
validated protocol to ensure reliable mRS scoring. The primary
outcome was unfavorable functional outcome, defined as mRS score
3-6. A favorable outcome was defined as mRS score 0-2 (45).

2.4 Feature selection

Feature selection was performed using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression (46). This
regularization technique minimizes overfitting by applying an L1
penalty term that shrinks coefficients and drives some coefficients of
non-informative features to zero. Continuous variables were
standardized (mean = 0, standard deviation = 1) before model fitting
to ensure equivalent scaling of the penalty term. LASSO regression
was performed on the derivation cohort training set (70% of
derivation cohort). Feature subset optimization against overfitting was
achieved by determining the optimal regularization parameter (1)
value through the standard error of the minimum distance based
10-fold cross-validation (47). Features with non-zero coeflicients after
LASSO regularization were retained for subsequent modeling.

2.5 Machine learning model development
and evaluation

2.5.1 Model development

Eight supervised machine learning algorithms were trained to
predict the 3-month unfavorable functional outcome using the
features selected by LASSO: Logistic Regression (LR), Random Forest
(RF), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron
(MLP), Support Vector Machine (SVM), Light Gradient Boosting
Machine (LightGBM), Decision Tree (DT), and K-Nearest Neighbors
(KNN). Models were implemented using Python libraries (scikit-learn
0.22.1, XGBoost 1.2.1, LightGBM 3.2.1). The derivation cohort was
randomly stratified by outcome and split into a training set (70%) and
a held-out internal test set (30%). Hyperparameter tuning for each
algorithm was performed exclusively on the training set using a nested
10-fold cross-validation strategy. The inner loop of the cross-
validation was optimized by maximizing the Area Under the Receiver
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Operating Characteristic Curve (ROC-AUC). The internal test set was
used only once for the final comparative evaluation of all tuned models.

We implemented a comprehensive tuning strategy using grid
search with cross-validation. For tree-based models (XGBoost,
LightGBM, Random Forest, Decision Tree), we focused on
regularization parameters including max_depth, min_samples_split,
and reg_lambda to control model complexity and prevent overfitting.
For linear models (Logistic Regression, SVM), we optimized
regularization strength through the C parameter. All preprocessing
steps were fitted solely on the training folds of the inner loop to
prevent any data leakage. The optimized hyperparameters from the
inner loop were then used to train a final model on the entire training
set for evaluation on the held-out internal test set.

2.5.2 Model evaluation and comparison

Model performance was assessed using: (1) Discrimination:
Primary metric: Area Under the Receiver Operating Characteristic
Curve (ROC-AUC). Secondary metrics: Accuracy, Precision, Recall,
F1-Score. Optimal classification thresholds were determined by
maximizing the Youden Index on the validation folds. ROC curves and
AUC values were generated for all datasets: internal training (using
cross-validation predictions), internal test set, and external validation
set. (2) Calibration: Calibration curves plotted predicted probabilities
against observed event frequencies (Python, sklearn 0.22.1). Perfect
calibration demonstrates along the 45° line. The Brier score was also
reported (lower score indicates better calibration, range 0-1). (3)
Clinical Utility: Decision Curve Analysis (DCA) implemented in R
software (rmda 1.6) assessed the net benefit across a range of
probability thresholds (15-35%) relevant for clinical decision-making.
The performance metrics on the internal test set were compared across
all eight algorithms to identify the optimal predictive model.

2.5.3 Model interpretation

The SHapley Additive exPlanations (SHAP) method (Python
SHAP v0.39.0) was applied to the selected optimal model for
interpretability (48). SHAP values attribute a contribution value to
each feature for each individual prediction, enabling local and global
interpretability. Graphical depiction techniques included: (1)
Summary plots identifying the five most influential covariates through
value magnitude visualization; (2) Dependency plots elucidating
marginal effect relationships between feature variations and Shapley
value fluctuations; (3) Global feature importance analysis combined
with partial dependence evaluations. This integrated approach
delineates directional associations between explanatory variables and
adverse outcome predictions.

2.5.4 External validation

The generalizability of the final optimized model was evaluated by
applying the parameters trained on the full derivation cohort training
set to the independent, prospectively collected external validation
cohort from Hongze District People’s Hospital. AUC, sensitivity and
specificity were computed.

2.6 Statistical analysis

Statistical analysis was conducted using SPSS (Statistical Package
for the Social Sciences, v26.0), R (v4.2.3), and Python (v3.11.4).
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Continuous variables were summarized as mean + standard deviation
(SD) or medians (IQRs), with group comparisons conducted using the
Mann-Whitney U test. Categorical variables were reported as
frequency percentages (%), analyzed through Pearson’s y* or Fisher’s
exact tests. Independent predictor capacity was expressed through
odds ratios (95% confidence intervals). All statistical tests were
two-tailed, adopting p-value < 0.05 as the significance statistically.

3 Results
3.1 Baseline characteristics

This research initially enrolled 1,529 patients diagnosed with AIS
and received IVT within 4.5 h of symptom onset. After applying the
exclusion criteria, the final derivation cohort consisted of 938 patients
(Figure 1). Exclusions included: endovascular therapy (n=173),
pre-stroke mRS >2 (n=55), missing data (n=162), concurrent
malignancy or major trauma (n = 35), and loss to 3-month follow-up
(n =166). Patients missing essential record required for model
development (n = 162) were excluded. To assess potential selection
bias, we compared these excluded patients with the included
derivation cohort (n = 938) across baseline characteristics including
demographics, clinical features, and laboratory indices. No significant
differences were observed in any variable (all p-values > 0.05;
Supplementary Table 1), indicating comparable profiles between
groups. This supports the representativeness of the analyzed cohort
despite missing data handling via complete-case analysis. The
derivation cohort was randomly split into a training set (70%, # = 656)
and an internal test set (30%, n = 282). Baseline characteristics did not
differ significantly (p > 0.05) between the training and internal test
sets (Supplementary Table 2), confirming successful randomization
and mitigating selection bias.

The overall derivation cohort (n = 938) had a mean age of 68 years
(range 59-77), with males comprising 65.9%. Table 1 details clinical
profiles stratified by 3-month functional outcome (favorable with mRS
0-2 vs. unfavorable with mRS 3-6). Unfavorable outcomes occurred
in 241 patients (25.7%). The external validation set (n = 324) showed
a comparable unfavorable outcome rate of 22.8% (n = 74). Reduced
functional recovery significantly correlated with multiple clinical
indicators including: advanced age, atrial fibrillation, smoking/
drinking history, anticoagulant therapy, admission SBP, onset-to-
treatment time, ASPECTS, baseline NIHSS, TOAST classification,
NLR, platelet count, eosinophil level, albumin, RDW, HDL, and
glucose levels (p < 0.05; Table 1).

3.2 Feature selection for outcome
prediction

The selection of predictive features was performed using Least
Absolute Shrinkage and Selection Operator (LASSO) regression, a
penalized regression technique designed to handle multicollinearity
and prevent overfitting by shrinking the coefficients of
non-informative variables to zero. An initial pool of 17 clinically
accessible variables, encompassing demographics, medical history,
clinical presentation, imaging features, and laboratory indices, was

standardized and entered into the model. The optimal regularization
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AIS patients undergoing IVT treatment (n = 1,529)

Ex

clusion of patients (n = 591) :

Treated by endovascular treatment (n = 173)

Pre-stroke mRS > 2 (n = 55)

Missing data (n = 162)

Concurrent malignancies or significant trauma (n = 35)
Loss of follow-up (n = 166)

Patients eligible to analysis (n = 938)

Favorable outcome group
mRS score 0~2 (n = 697)

Unfavorable outcome group
mRS score 3~6 (n = 241)

FIGURE 1

Flowchart of patient selection. AIS, acute ischemic stroke; IVT, intravenous thrombolysis; mRS score, modified Rankin Scale.

parameter (1) was determined via 10-fold cross-validation on the
derivation training set (n = 656), minimizing the binomial deviance.
This process identified the optimal A parameter (lambda with
2), which
multicollinearity and overfitting through coefficient shrinkage (49).

minimum  distance = 0.039;  Figure addresses
At this optimal A, the model retained five variables with non-zero
coeflicients: NLR, baseline NIHSS, ASPECTS, atrial fibrillation, and
blood glucose. Subsequently, multivariate logistic regression analysis
confirmed that each of these five variables was independently
associated with an increased risk of unfavorable outcome (p < 0.05;
Table 2) (50). Odds ratios (OR) with 95% confidence intervals (CI) are
reported in Table 2, and the LASSO coefficients are provided in
Supplementary Table 3.

3.3 Models performance comparisons

Eight machine learning models (XGBoost, LR, LightGBM, RE,
DT, MLP, SVM, KNN) were trained and tuned using the five selected
predictors on the derivation training set via 10-fold cross-validation.
Performance was independently evaluated on the held-out internal
test Our
hyperparameters across all model types. For tree-based models (e.g.,

set. optimization encompassed tuning of core
XGBoost, LightGBM), we focused on parameters controlling tree

(e.g.
regularization intensity (e.g., L1/L2 coefficients), and key overfitting

complexity depth constraints, leaf node quantities),
prevention mechanisms. For linear models (e.g., Logistic Regression,
SVM), we systematically optimized regularization types and strengths.
All parameters were determined through comprehensive grid search
with cross-validation.

Comprehensive performance evaluation revealed distinct
characteristics among the models. As shown in Figure 3A, all models
demonstrated reasonable training performance without perfect
discrimination (AUC range: 0.708-0.878), indicating successful
mitigation of overfitting through our optimized regularization
approach. While tree-based methods like XGBoost and LightGBM
showed elevated training performance (e.g., XGBoost training

AUC =0.878; Figure 3A) but significant drops in validation
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(AUC = 0.791; Figure 3B), Logistic Regression achieved stable cross-
validated performance (AUC = 0.792, 95% CI: 0.754-0.829) that was
maintained on the validation set (AUC = 0.787, 95% CI: 0.673-0.900)
with minimal performance degradation (AAUC = 0.005) (Figure 3B).
Critical assessment of model calibration demonstrated LR’s superior
reliability with optimal Brier score (0.140, 95% CI: 0.131-0.149),
significantly outperforming other models in calibration accuracy
(Figure 3C). Decision Curve Analysis confirmed LR’s clinical utility,
providing the greatest net benefit across clinically relevant threshold
probabilities (15-35%) (Figure 3D). Precision-Recall analysis further
supported LR’ robust performance (AP = 0.656) in handling class
imbalance (Figures 3E,F). Accuracy, Precision, Recall, F1-Score and
Cutoff value for all models are detailed in Table 3. Collectively, based
on its optimal balance of discriminatory ability, calibration reliability,
and clinical utility across multiple metrics, Logistic Regression was
selected as the preferred model for deployment.

3.4 Development and validation of the
optimal model

The optimal Logistic Regression model, using the five selected
predictors (AF, ASPECTS, NIHSS, Blood Glucose, NLR), was refined
on the entire derivation training set (n = 656) using 10-fold cross-
validation. The mean cross-validated AUC was 0.794 (95% CI: 0.749-
0.838; range across folds: 0.728-0.851; Figure 4A). Validation set
performance maintained stability (mean AUC 0.788, 95% CI: 0.655-
0.920) (Figure 4B). Evaluation on the internal test set (n=282)
demonstrated sustained performance (AUC = 0.777, 95% CI: 0.710-
0.844; Figure 4C). Accuracy, specificity, and sensitivity on the test set
were 0.791, 0.860, and 0.567, respectively. The learning curve analysis
indicated stable model performance, with converging training and
validation accuracy estimates remaining above 80% without
significant divergence as the sample size increased, suggesting the
model was adequately fitted without overfitting (Figure 4D).
Calibration on the test set was moderate (Figure 4F; Brier
Score = 0.140). Decision Curve Analysis confirmed positive net
benefit across the same relevant probability thresholds (Figure 4F).
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TABLE 1 Baseline characteristics of the subgroup according to clinical outcomes.

Variables

Total (n = 938)

Favorable outcome

group (n = 697)

Unfavorable outcome
group (n = 241)

10.3389/fneur.2025.1668816

Demographics
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Age, median (IQR) 68 (59, 77) 68 (59, 76) 70 (60, 79) 0.010
Gender, (male, %) 618 (65.88) 465 (66.71) 153 (63.49) 0.362
BMI, median (IQR) 24.80 (22.85, 27.06) 24.82 (22.86, 27.06) 24.77 (22.49, 27.06) 0.580
Previous history
Hypertension, 1 (%) 605 (64.50) 450 (64.56) 155 (64.32) 0.945
DM, n (%) 218 (23.24) 160 (22.96) 58 (24.07) 0.725
CHD, n (%) 149 (15.88) 107 (15.35) 42 (17.43) 0.447
AE 1 (%) 97 (10.34) 51 (7.32) 46 (19.09) <0.001
Previous stroke, 1 (%) 275 (29.32) 197 (28.26) 78 (32.37) 0.228
Anticoagulant therapy, n (%) 135 (14.39) 79 (11.33) 56 (23.24) <0.001
Smoking, 7 (%) 328 (34.97) 266 (38.16) 62 (25.73) <0.001
Drinking, n (%) 153 (16.31) 127 (18.22) 26 (10.79) 0.007
Baseline parameters
SBP, median (IQR) 151 (138, 165) 150 (137, 164) 155 (140, 168) 0.020
DBP, median (IQR) 86 (78, 94) 85 (78, 94) 87(77,97) 0.409
OTT, median (IQR) 185 (130, 237) 175 (125, 232) 205 (150, 253) <0.001
ASPECTS, median (IQR) 8(7,8) 8(7,9) 7(6,8) <0.001
Baseline NITHSS score, median

6(4,11) 6(4,8) 10 (6, 17) <0.001
(IQR)
NIHSS score after IVT, median

3(2,8) 3(1,6) 9(4,15) <0.001
(IQR)
TOAST classification <0.001
Large-artery atherosclerosis, 1
%) 636 (67.80) 471 (67.58) 165 (68.46)
Cardioembolic, n (%) 114 (12.15) 70 (10.04) 44 (18.26)
Small-artery occlusion, n (%) 181 (19.30) 149 (21.38) 32(13.28)
Other etiology, n (%) 6 (0.64) 6 (0.86) 0 (0.00)
Undetermined etiology, 1 (%) 1(0.11) 1(0.14) 0(0.00)
Laboratory data
Neutrophil, median (IQR) 4.88 (3.63,6.47) 4.57 (3.47,5.92) 6.02 (4.47, 8.39) <0.001
Lymphocyte, median (IQR) 1.6 (1.2,2.2) 1.7 (1.3,2.3) 1.4 (0.9, 1.8) <0.001
NLR, median (IQR) 2.94 (1.95, 4.83) 2.63 (1.79, 4.01) 4.65 (2.64,7.79) <0.001
Platelets, median (IQR) 199 (162, 235) 202 (165, 236) 185 (157, 231) 0.025
Eosinophils, median (IQR) 0.08 (0.04, 0.15) 0.10 (0.05, 0.16) 0.05 (0.02,0.11) <0.001
Albumin, median (IQR) 42.2(39.2,44.9) 42.3 (39.7,44.9) 41.6 (38.0,44.7) 0.011
Hemoglobin, median (IQR) 141 (130, 152) 141 (131, 152) 140 (127, 152) 0.249
RDW, median (IQR) 12.9 (124, 13.4) 12.9 (124, 13.3) 12.9 (12.6, 13.5) 0.049
TC, median (IQR) 4.48 (3.91,5.01) 4.48 (3.89, 5.04) 4.46 (3.97,4.93) 0.974
TG, median (IQR) 1.36 (0.97, 1.64) 1.35(0.98, 1.65) 1.36 (0.95, 1.58) 0.490
HDL, median (IQR) 1.07 (0.91, 1.17) 1.05 (0.90, 1.17) 1.07 (0.92, 1.17) 0.041
LDL, median (IQR) 2.56 (2.12, 3.00) 2.56 (2.07, 3.01) 2.56 (2.20, 3.00) 0.129
CRP, median (IQR) 1.55 (0.60, 4.50) 1.50 (0.60, 4.30) 1.80 (0.60, 5.00) 0.183
UA, median (IQR) 308 (255, 366) 305 (255, 366) 311 (249, 363) 0.936

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 938) Favorable outcome Unfavorable outcome
group (n = 697) group (n = 241)

AST, median (IQR) 24.00 (20.00, 29.00) 24.00 (20.00, 30.00) 25.00 (20.00, 29.00) 0.721
ALT, median (IQR) 20.00 (15.00, 29.00) 20.00 (15.00, 29.00) 20.00 (15.00, 29.00) 0.826
GGT, median (IQR) 23.00 (15.00, 35.00) 22.00 (15.00, 35.00) 23.00 (16.00, 35.00) 0.658
HbA ¢, median (IQR) 6.08 (5.60, 6.65) 6.00 (5.60, 6.50) 6.30 (5.70, 6.65) 0.077
Blood glucose, median (IQR) 5.65 (4.90, 7.43) 5.48 (4.84, 6.99) 6.20 (5.15, 7.90) <0.001
Treatment after admission
Hemorrhagic transformation, n

112 (11.94) 33 (4.73) 79 (32.78) <0.001
(%)
SICH, n (%) 51 (5.44) 5(0.72) 46 (19.09) <0.001
NTHSS score on discharge,

2 (0, 6.00) 1(0,3) 13 (7, 25) <0.001
median (IQR)

BMI, Body Mass Index; DM, diabetes mellitus; AF, Atrial fibrillation; CHD, coronary heart disease; OTT, Onset-to-treatment; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic
blood pressure; DBP, diastolic blood pressure; ASPECTS, Alberta Stroke Program Early CT Score; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; IVT, intravenous thrombolysis;
RDW, red cell distribution width; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NLR, neutrophil-to-lymphocyte ratio; HT, hemorrhagic transformation; sICH, Symptomatic

Hemorrhagic transformation.
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Feature selection based on LASSO model. (A) Coefficient profiles during LASSO regularization. (B) Ten-fold cross-validation for identifying the optimal

3.5 Optimal model interpretation

SHapley Additive exPlanations (SHAP) analysis was employed to
interpret the final Logistic Regression model globally and locally. The
SHAP summary plot (Figure 5A) illustrates the impact and
directionality of each predictor. Higher NLR values and NIHSS scores
consistently increased the risk of an unfavorable outcome, while
higher ASPECTS scores decreased the risk. Presence of AF and higher
blood glucose levels also generally increased the risk. NLR exhibited

Frontiers in Neurology

predominant risk-enhancing properties, where elevated values
substantially increasing adverse outcome risk. Mean absolute SHAP
value analysis ranked the features by their overall contribution to the
model’s predictions: NLR was the most influential predictor, followed
by NIHSS, ASPECTS, Atrial Fibrillation and Blood Glucose
(Figure 5B). Examples of local interpretability are shown in Figure 5C
(patient predicted low risk, actual favorable outcome) and Figure 5D
(patient predicted high risk, actual unfavorable outcome). Each
feature’s specific value and its SHAP contribution (increasing or
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TABLE 2 Multivariate logistic regression analysis.

10.3389/fneur.2025.1668816

Variable Estimate SE V4 P OR (95% Cl)

(Intercept) —1.553 0.683 —2.274 0.023 0.212 (0.055-0.798)
NLR 0.294 0.031 9.345 <0.001 1.342 (1.264-1.430)
NIHSS 0.06 0.012 5.187 <0.001 1.062 (1.038-1.087)
ASPECTS —0.287 0.078 —3.684 <0.001 0.751 (0.644-0.874)
Atrial fibrillation 0.828 0.254 3261 0.001 2.288 (1.386-3.756)
Blood glucose 0.098 0.033 2.943 0.003 1.103 (1.034-1.178)

SE, Standard error; OR, odds ratio; CI, confidence interval; NLR, neutrophil-to-lymphocyte ratio; NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early

CT Score.

decreasing the predicted probability away from the base value)
combine to generate the individual prediction.

3.6 External validation and clinical
application

External validation was conducted using an independent external
Hongze District People’s Hospital validation cohort comprising 324
stroke patients receiving IVT, with unfavorable outcomes documented
in 74 cases (22.8%). It demonstrated robust generalizability, achieving
an AUC of 0.797 (95% CI: 0.737-0.858; Figure 6A), sensitivity of
0.730, and specificity of 0.752. To facilitate clinical implementation, a
nomogram was constructed based on the final logistic regression
coefficients (Figure 6B), enabling clinicians to estimate individualized
probabilities of an unfavorable 3-month outcome for patients
receiving IVT for AIS.

4 Discussion

This study has developed and validated a machine learning-based
predictive model for 3-month functional outcomes following IVT in
AIS patients. Using LASSO regression for feature selection followed by
multivariate logistic regression, we identified five key predictors from
17 candidate variables (51): NLR, baseline NIHSS, ASPECTS, atrial
fibrillation, and blood glucose. This parsimonious set of readily available
clinical, radiological, and inflammatory biomarkers provides a practical
foundation for prognostic assessment. We comprehensively evaluated
eight machine learning models: Logistic Regression (LR), Random
Forest (RF), Extreme Gradient Boosting (XGBoost), Multilayer
Perceptron (MLP), Support Vector Machine (SVM), Light Gradient
Boosting Machine (LightGBM), Decision Tree (DT), and K-Nearest
Neighbors (KNN) (52). Based on the comprehensive performance
evaluation across all validation metrics, logistic regression emerged as
the most stable and reliable model, consistently demonstrating balanced
performance without signs of overfitting. In contrast to complex tree-
based ensemble methods (e.g., XGBoost, LightGBM) and other
non-linear algorithms, which exhibited enhanced in-sample metrics
(e.g., XGBoost training AUC = 0.878) yet notable declines in external
validation (AUC=0.791), logistic regression preserved strong
discriminative capability on the training set (AUC=0.792) and
validation set (AUC =0.787) with only marginal deterioration. A
critical advantage of LR was its exceptional calibration precision,
reflected by a Brier score of 0.140, indicating close agreement between
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forecast probabilities and actual event rates. Moreover, it yielded the
greatest and most consistent net clinical benefit throughout the
spectrum of relevant probability thresholds as evidenced by decision
curve analysis. This stability likely reflects the intrinsic alignment
between LR linear decision boundary and the predominantly additive
relationships among our predictors, whereas unnecessary nonlinear
complexity impaired generalization in other models.

The reliability and stability of our final logistic regression model
were rigorously interrogated through a comprehensive validation
framework. Internally, the model showed consistent performance with
minimal degradation from cross-validation (mean AUC = 0.788) to
the held-out test set (AUC = 0.777), while calibration metrics revealed
excellent agreement between predicted probabilities and observed
outcomes (Brier score = 0.144). Externally, the model maintained
robust discrimination (AUC = 0.797) in an independent validation
cohort (n = 324) with consistent sensitivity (0.730) and specificity
(0.752). Furthermore, biological plausibility was confirmed through
SHAP analysis, which demonstrated consistent risk directionality
across cohorts (higher NLR/NIHSS/glucose increasing risk, higher
ASPECTS reducing risk), thereby reinforcing model stability.

When compared to existing prognostic models, our approach
demonstrates three distinct advantages. First, it exhibits superior
generalizability, maintaining robust discrimination (AUC > 0.777)
across both internal validation and independent external cohorts—a
critical advancement for real-world implementation often lacking in
single-center models. Second, it offers unmatched clinical practicality
through its parsimonious nature, utilizing only five clinically routinely
available variables without requiring specialized tests, complex
computations, or additional costs. Third, it provides innovative
biological interpretability through SHAP analysis, which not only
quantifies feature contributions but also reveals clinically actionable
interactions between predictors, enabling personalized risk assessment
beyond conventional scoring systems.

SHAP interpretability analysis affirmed the central role of our five
predictors. The analysis indicated that higher baseline NTHSS scores
indicate heightened initial neurological deficits (53), and higher
blood glucose synergistically amplify adverse outcome risks,
(54).
mechanisms underlying stress-induced hyperglycemia pathology

consistent with cerebrovascular pathogenesis Several
may explain this: Hepatic overproduction and insulin resistance
further impair rt-PA fibrinolysis, compromises blood-brain barrier
(BBB) integrity, and aggravate cerebral edema (55, 56). Conversely,
diminished ASPECTS, signifying extensive early parenchymal injury
(57, 58), and pre-existing atrial fibrillation emerged as independent
radiological and comorbid risk factors. Mechanistically, atrial
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FIGURE 3

Comprehensive analysis of ML algorithms. (A) ROC curves comparing discrimination performance of eight ML models for predicting post-thrombolysis
outcomes in the training cohort. (B) ROC curves demonstrating generalization performance in validation cohort. (C) Calibration curves depicting
agreement between predicted probabilities (x-axis) and observed event frequencies (y-axis). Logistic Regression showed optimal calibration.

(D) Decision Curve Analysis (DCA) assessing net benefit across probability thresholds. (E) Training set PR curve. (F) Test set PR curve. Precision-recall
relationships at varying probability thresholds. Horizontal dashed line indicates positive event rate.
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TABLE 3 Predictive performance metrics of different ML models in the validation set.

10.3389/fneur.2025.1668816

Models Validation set
XGBoost LightGBM RF SVM
AUC (95%CI) 0.787 (0.673— | 0.791 (0.688-0.894)  0.775 (0.665-0.884) | 0.789 (0.677- = 0.700 (0.583— | 0.711(0.591- = 0.752 (0.622- = 0.770 (0.651—
0.900) 0.900) 0.818) 0.831) 0.882) 0.890)
Cutoff value 0.319 0.274 0.258 0.297 0.354 0.385 0.162 0.285
Accuracy 0.791 (0.767- | 0.757 (0.728-0.786) | 0.738 (0.708-0.768) | 0.771 (0.744- | 0.685(0.637- | 0.677 (0.626- | 0.722(0.688- | 0.750 (0.712—
(95%CI) 0.815) 0.798) 0.734) 0.728) 0.756) 0.789)
Precision 0.594 (0.547- | 0.519 (0.478-0.560) | 0.495 (0.455-0.535) | 0.554(0.507- | 0.439 (0.386- | 0.424(0.363— | 0.477 (0.433— | 0.536 (0.459—
(95%CI) 0.641) 0.601) 0.493) 0.485) 0.520) 0.614)
Recall (95%CI) 0.627 (0.576- | 0.677 (0.589-0.764) | 0.647 (0.542-0.753) | 0.627 (0.556— | 0.639 (0.574— | 0.606 (0.516- | 0.693 (0.649— | 0.614 (0.553—
0.677) 0.698) 0.705) 0.697) 0.737) 0.676)
Fl score (95%CI) = 0.607 (0.568- | 0.585 (0.530-0.641) | 0.553 (0.497-0.609) | 0.583(0.538- = 0.514(0.469- = 0.492(0.432- = 0.563 (0.522- | 0.562 (0519—
0.645) 0.627) 0.559) 0.552) 0.605) 0.605)

LR, Logistic Regression; RE, Random Forest; XGBoost, Extreme Gradient Boosting; MLP, Multilayer Perceptron; SVM, Support Vector Machine; LightGBM, Light Gradient Boosting Machine;
DT, Decision Tree; KNN, K-Nearest Neighbors.
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FIGURE 4
Logistic regression model development encompassed training cohort modeling, cross-validation refinement, and independent testing cohort
verification. (A) Training set ROC analysis with 10-fold cross-validation. (B) Validation set ROC performance across 10 folds. (C) Test set discrimination
performance (AUC 0.777, 95% CI: 0.710—-0.844). Blue: model performance; red dashed: random classifier. (D) Learning curve: AUC by training sample
size. Validation (blue dashed) converges with training (red) beyond 300 samples, indicating minimal overfitting. (E) Calibration curve showing
agreement between predicted probabilities and observed outcomes. (F) Decision curve analysis: Logistic model (red solid) shows superior net benefit
versus treat-all (black dashed) and treat-none (red dotted) strategies, particularly at 20—-50% thresholds. Peak net benefit (0.17) occurs at 30% risk
threshold.

fibrillation promotes cardioembolic clot resistance to lysis during  responding immune cells that amplify tissue damage through

thrombolysis, worsening ischemic injury (59, 60). Crucially, NLR ~ chemokine release and matrix metalloproteinase-9 (MMP-9)
ranked as a principal effector, outperforming conventional overexpression (26, 61), exacerbating BBB disruption and
biomarkers (61, 62). Substantial evidence confirms that inflammatory ~ contributing to hemorrhagic transformation (66). Notably, neutrophil
mediators critically influence cerebral ischemia pathogenesis (63—  extracellular traps (NETs) demonstrate elevated plasma levels that

65). Following stroke onset, neutrophils constitute the earliest  correlate with poor prognoses (26). Supporting the importance of
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Feature importance and interpretation. (A) SHAP summary plot: Directional impact of predictors on outcome risk. Point position indicates effect
direction—positive values denote enhanced risk probability, while negative counterparts indicate protective functions. (B) Quantitative comparison of
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(A) ROC curve for predicting unfavorable outcome in external validation cohort. (B) Nomogram for clinical risk prediction: Point-based scoring system.
To estimate probability: (1) Locate predictor value on corresponding axis; (2) Draw vertical line to Points axis; (3) Sum points; (4) Project total to

neurological severity, several studies indicate that baseline NIHSS
scores correlate with 3-month functional recovery after IVT (67, 68).
Additionally, clinical metrics like NLR independently predict
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hemorrhagic complications and mortality (61, 62). The use of LR,
reinforced by SHAP interpretation, enhances clinical trust and
facilitates integration into decision-making workflows.
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However, our study also has several limitations. First, biomarkers
were measured at a single timepoint, lacking temporal dynamics.
Second, despite external validation, model development relied on
retrospective data from predominantly single-center cohorts; prospective
multi-center validation remains essential. Third, incorporating
additional potentially relevant factors such as detailed imaging
biomarkers, genetic markers, or more detailed inflammatory profiling
might improve predictive accuracy. Fourth, although inflammatory
biomarker selection prioritized NLR based on existing evidence, future
research is needed to directly compare a broader panel of indices (such
as PLR, LMR, SII, PIV, and SIRI). Fifth, a complete-case analysis
approach was used for handling missing data. Although comparative
analysis demonstrated no systematic differences between patients
excluded for missing data and the final cohort, mitigating immediate
selection bias concerns, future prospective studies should employ
advanced techniques such as multiple imputation to further enhance
robustness. Our model demonstrates utility in facilitating identifying for
AIS patients after IVT at elevated risk of unfavorable 90-day prognosis.

This research establishes a clinically feasible model using five
routinely available predictors for post-IVT adverse outcomes in
AIS. Logistic Regression demonstrated superior overall performance
compared to seven other machine learning algorithms, achieving
optimal balance between discrimination, calibration, and clinical utility.
SHAP analysis quantified individual predictor contributions,
confirming NLR as the most influential risk determinant. Our validated
model provides a stratification tool to identify high-risk patients,
enabling personalized interventions to mitigate poor 3-month outcomes.
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