
Frontiers in Neurology 01 frontiersin.org

Early heart rate predicts 3-month 
outcomes in acute ischemic 
stroke patients receiving 
intravenous thrombolysis: a 
machine learning approach
Mian-Xuan Yao 1†, Min-Yi Yao 1†, Jia Gu 2, Ting Gao 2,3,4, 
Yi-Mian Yuan 5, Yang-Kun Chen 1,4,6 and Yong-Lin Liu 1,4,6*
1 Department of Neurology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan 
People’s Hospital), Dongguan, China, 2 School of Mathematics and Statistics, Huazhong University of 
Science and Technology, Wuhan, China, 3 Center for Mathematical Sciences, Huazhong University of 
Science and Technology, Wuhan, China, 4 Guangdong Provincial Key Laboratory of Mathematical and 
Neural Dynamical Systems, Great Bay University, Dongguan, China, 5 First School of Clinical Medicine, 
Guangdong Medical University, Zhanjiang, China, 6 Intelligent Brain Imaging and Brain Function 
Laboratory (Dongguan Key Laboratory), Dongguan People’s Hospital, Dongguan, China

Background: The predictive role of early heart rate (HR) dynamics in acute 
ischemic stroke patients (AIS) receiving intravenous thrombolysis (IVT) remains 
unclear. This study aimed to evaluate whether HR variability within 24 h post-
IVT predicts early neurological deterioration (END) and 3-month functional 
outcomes using machine learning.
Methods: This retrospective analysis included AIS patients without atrial 
fibrillation (AF) who received IVT at Dongguan People’s Hospital between 
January 2017 and December 2022. Hourly HR metrics (mean HR, SD, coefficient 
of variation [CV]) were analyzed. Primary outcomes were END (≥4-point NIHSS 
increase within 72 h) and poor 3-month outcomes (mRS ≥ 3). Machine learning 
models were developed and validated via receiver operating characteristic 
(ROC) analysis.
Results: Among 381 patients, logistic regression identified NIHSS on admission 
(OR = 1.287, p < 0.001), maximum HR (OR = 0.956, p = 0.023), minimum HR 
(OR = 1.027, p = 0.001), and HR SD (OR = 1.356, p = 0.002) as independent 
predictors of poor 3-month outcomes. HR CV also showed significance but 
correlated strongly with SD. A machine learning model integrating onset-to-
treatment time, NIHSS, and HR parameters (max/min HR, mean HR, SD) achieved 
an area under the ROC curve (AUC) of 0.82 for predicting 3-month outcomes. 
No HR metrics were significantly associated with END.
Conclusion: In AIS patients without AF, early HR dynamics—particularly 
maximum HR, minimum HR, SD, and CV—strongly correlate with 3-month 
functional outcomes after IVT. The machine learning model demonstrated high 
predictive accuracy, highlighting the potential of real-time HR monitoring for 
risk stratification and personalized management in thrombolysis-treated AIS 
patients.
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Background

Acute ischemic stroke (AIS), which caused by sudden occlusion 
of cerebral vessels, is one of the major causes of disability and mortality 
globally and it is expected to increase in the coming years, due to the 
aging of the population (1). Therefore, early prediction of the 
functional prognosis of patients can help to carry out corresponding 
intervention as soon as possible. Intravenous thrombolysis therapy 
(IVT) is one of the most effective methods for improving functional 
outcomes following ischemic stroke. Previous studies have reported 
that outcomes after IVT are influenced by a variety of factors (2), 
including age (3), the National Institutes of Health Stroke Scale 
(NIHSS) score at admission, the Trial of Org 10,172 in Acute Stroke 
Treatment (TOAST) classification, and complications (4).

Some previous studies have revealed ANS dysfunction in patients 
after ischemic stroke (5, 6). Heart rate (HR) and heart rate variability 
(HRV) analysis, accurately representing the balance between the 
sympathetic and parasympathetic nervous systems and reflecting the 
overall stresses acting on the body, is a simple and non-invasive method 
to assess ANS function (7, 8). Currently, there are some studies on the 
relationship between HR and clinical prognosis after stroke. The study 
from Wang et al. (9), found that higher mean heart rate (MHR) and 
HRV were associated with the increased risk of 3-month all-cause 
mortality and worse functional outcome after mechanical thrombectomy 
therapy for AIS patients. Another study from Lee et al. (10), found that 
HR during the acute period of ischemic stroke (HR data between the 4th 
and 7th day after stroke onset) is a predictor of all-cause mortality during 
the first year after AIS. However, some of these studies only focused on 
a random HR after stroke, which cannot reflect the overall condition and 
changes of HR over a period of time. Some studies included patients 
with ischemic stroke of different pathogenesis, failing to reflect the 
impact of HR on the prognosis of these patients of different etiologies. 
In addition, some studies collected HR in different time periods, which 
may also affect results. Nowadays, studies focusing on the relationship 
between HR and outcome of AIS patients after IVT are still limited.

Random Forest (RF) is an ensemble learning method based on 
decision trees that has been widely applied in constructing clinical 
prognostic models in recent years. In the medical field, Random 
Forest is considered an effective tool for addressing big data analysis 
challenges due to its ability to handle high-dimensional data and 
complex non-linear relationships (11).

In the present study, we aimed to explore the influence of HR and 
HRV during the first 24 h after IVT on END and 3-month outcome 
in patients who received IVT and without atrial fibrillation (AF).

Methods

Patient selection

Consecutive patients with AIS who were treated with intravenous 
recombinant tissue plasminogen activator (r-tPA) and hospitalized at 
Dongguan People’s Hospital from January 1, 2017, to December 31, 
2022, were enrolled in this study. The inclusion criteria encompassed: 
(1) individuals aged over 18 years; (2) AIS confirmed by magnetic 
resonance imaging (MRI) during hospitalization; (3) onset of 
ischemic stroke symptoms within 4.5 h prior to r-tPA administration; 
(4) continuous monitoring and hourly documentation of clinical 

features and heart rate (HR) for 24 h post-IVT; (5) a pre-stroke 
modified Rankin Scale (mRS) score of 1 or lower; and (6) 
comprehensive documentation, including follow-up data. Patients 
were excluded if they: (1) received additional endovascular therapy 
following IVT; (2) had AF; (3) were administered medications to 
control HR within 48 h before symptom onset or 24 h after IVT; or 
(4) were lost to follow-up. This study was granted approval by the 
ethics committee of Dongguan People’s Hospital (approval number: 
KYKT2024-063). Informed written consent was obtained from all 
the patients.

Data collection

Demographic information, including age, gender, and medical 
histories of hypertension, diabetes mellitus, smoking, and previous 
strokes, was collected. Stroke subtypes were classified according to 
the TOAST criteria (12). Furthermore, the NIHSS score at 
admission, onset-to-treatment time (OTT), systolic blood pressure 
(SBP) at admission, and hourly HR recordings for 24 h after IVT 
were documented. SIASO was defined as a stenosis of at least 50% in 
the intracranial artery responsible for AIS (13). The degree of 
stenosis was measured using three-dimensional time-of-flight 
magnetic resonance angiography [MRI parameters are detailed in 
our previous publication (14)] by comparing the diameter of the 
stenotic vessel to the diameter of a normal vessel located distal to the 
stenosis (15).

Definition of HRV

The HR data were collected as a standard part of patient 
monitoring during hospitalization, using an electrocardiogram 
monitor in the stroke units, and were then entered into the electronic 
medical records system. For all patients, HR was recorded hourly 
during the first 24 h after IVT. Eight patients underwent urgent CT 
examinations during the 24-h post-thrombolysis, resulting in isolated 
hourly gaps in their heart rate recordings. These missing values were 
imputed using linear interpolation of adjacent time-point 
measurements. We calculated the MHR and HRV in accordance with 
established guidelines (31). HRV was determined using the following 
formula (19):

(1) Standard deviation of MHR (SD):

	
( ) ( )( )n 1 2

i 11/ n 1 HRmeanHRi−
=

− −∑

(2) Coefficient of variability (CV [%]): SD/HRmean × 100 (16).

Definition of clinical prognosis in the early 
stage

We used early neurological deterioration (END) as a measure to 
evaluate the clinical outcome of ischemic stroke in its initial stages. 
END is defined as a worsening of neurological status, indicated by an 
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increase of ≥4 points in the NIHSS score within the first 72 h after 
admission (17).

Definition of short-term clinical outcome

We conducted a 90-day follow-up with these patients to assess 
their mRS scores. A favorable outcome was defined as an mRS score 
of 2 or lower, whereas a poor outcome was defined as an mRS score of 
3 or higher.

Machine learning and feature filtering

Patients were randomly assigned to the training group and 
validation group at a ratio of 7:3. The random forest model quantified 
the importance of each feature. Using the random forest method, 
we explored the contribution of each clinical feature to 3-month poor 
outcomes and END.

Statistical analysis

Continuous variables that exhibited a normal distribution were 
presented as the mean ± SD, whereas those that were non-normally 
distributed were reported as the median with the interquartile range. The 
statistics above were done using SPSS for Mac (version 26.0; IBM Corp., 
Armonk, NY, United States). Using Python (version 3.11.3), a random 
forest model was constructed. Logistic regression analysis was employed 
for both univariate and multivariate analyses to identify risk factors. The 
results were expressed as odds ratios (OR) and 95% confidence intervals 
(95% CI). In developing the clinical prediction model, variables with a 
p-value < 0.05 from univariate analysis were included in the multivariate 
analysis for variable selection. Variables with p-values < 0.05  in the 
multivariate analysis were used to construct the prediction model for 
END and adverse outcomes at 3 months. The accuracy of the model was 
evaluated using the ROC curve to visualize the AUC value. A p-value 
less than 0.05 was considered statistically significant.

Results

Patients’ characteristics

A total of 533 patients with AIS who received IVT with r-tPA in 
our stroke unit were consecutively enrolled. However, 152 patients 
were excluded for various reasons: 12 had a baseline mRS score of ≥2, 
73 had AF, 23 underwent additional endovascular therapy, 25 were 
taking medications to control HR within 48 h before onset or 24 h 
after IVT, 4 died from non-ischemic stroke-related causes, and 15 
were lost to follow-up. Consequently, 381 patients were included in 
this study (Figure 1).

These 381 patients had a mean age of 61.1 ± 11.6 years. Among 
them, 291 patients (76.4%) were male, and 105 patients (27.5%) had 
stroke with SIASO. Thirty-one patients (8.1%) experienced END, and 77 
patients (20.2%) had a poor outcome at the 3-month follow-up (Table 1).

Screening and ranking of important clinical 
features

The study ultimately included 381 patients. Figure 2 illustrates the 
relationships between each independent variable and both 3-month 
poor outcomes and END. The correlation coefficients of all 
independent variables were evenly distributed. Using the random 
forest classification method, the 381 patients were randomly divided 
into a training set and a testing set in a 7:3 ratio. The training set was 
used to train the random forest classification model, while the testing 
set was used to predict 3-month poor outcomes and END. The results 
showed that the area under the ROC curve (AUC) for 3-month poor 
outcomes was 0.84, and for END, it was 0.64. The confusion matrix 
and ROC curve of the regression results are shown in Figure 3. The 
importance of each variable for 3-month poor outcomes and END was 
calculated and illustrated in Figure 4.

Based on the contribution of each variable to the outcomes, the top 
nine contributing factors were selected for analysis using the random 
forest classification model. These factors included NIHSS on 
admission, SBP on admission, OTT, age, SD, CV, maximum heart rate, 
minimum heart rate, and mean heart rate. Using 70% of the data as the 
training set and the remaining 30% as the testing set, the nine features 
were analyzed again for their impact on 3-month poor outcomes and 
END using the random forest classification model. The results showed 

FIGURE 1

Flowchart of the selection process. AIS, acute ischemic stroke; IVT, 
intravenous thrombolysis; mRS, modified Rankin Scale; HR, heart 
rate.
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that the AUC for the random forest classification model was 0.84 for 
3-month poor outcomes and 0.68 for END. The corresponding 
confusion matrix and ROC curve are presented in Figure 5.

Logistic regression model for predicting 
3-month poor outcome

The SPSS was used to assess multicollinearity among the nine 
variables related to 3-month poor outcomes and END. It was found 
that SD and CV exhibited strong multicollinearity (VIF > 10, Table 2). 
Retaining both variables in statistical modeling would constitute 
redundant inclusion of a single underlying factor, thereby violating the 
independence assumption. Clinically, SD primarily reflects absolute 
safety thresholds of parameters (e.g., safe operating ranges for specific 
metrics), whereas CV captures intrinsic properties of biological 
variation (e.g., physiological fluctuation ranges). Given equivalent 

utility of SD and CV in HRV assessment and to ensure statistical 
robustness, we arbitrarily excluded one parameter—specifically CV—
in this investigation.

A logistic regression model was used to analyze the individual 
effects of the remaining eight variables on 3-month poor outcomes. 
The results revealed that the following six variables had significant 
associations with 3-month poor outcomes (Table 3): OTT (OR = 1.004 
[1.000–1.007], p = 0.039), NIHSS on admission (OR = 1.256 [1.179–
1.338], p = 0.000), Maximum heart rate (OR = 1.034 [1.017–1.052], 
p = 0.000), Minimum heart rate (OR = 1.040 [1.014–1.066], 
p = 0.003), Mean heart rate (OR = 1.044 [1.022–1.068], p = 0.000), SD 
(OR = 1.167 [1.059–1.286], p = 0.002).

A logistic regression model incorporating these six variables was 
used to analyze their combined impact on 3-month poor outcomes, 
with 70% of the data set as the training set and the remaining 30% as 
the testing set. The results showed that the AUC of the ROC curve was 
0.82 (confusion matrix and ROC curve shown in Figure 6). Significant 
predictors for 3-month poor outcomes included: NIHSS on admission 
(OR = 1.287 [1.185–1.389], p = 0.000), SD (OR = 1.356 [1.248–1.464], 
p = 0.002), Minimum heart rate (OR = 1.027 [1.005–1.049], p = 0.001), 
Maximum heart rate (OR = 0.956 [0.945–0.967], p = 0.023). Given the 
strong multicollinearity between CV and SD, the impact of CV on 
3-month poor outcomes was also significant (Table 4). Parameter 
setting of the random forest model was shown in Table 5.

Logistic regression model for predicting 
END

We also used a logistic regression model to analyze the effects of 
the remaining eight variables—age, OTT, NIHSS on admission, SBP 
on admission, maximum heart rate, minimum heart rate, mean heart 

TABLE 1  Patients characteristics of the study samples.

Characteristics Total sample
(n = 381)

Agea (years) 61.1 (11.6)

Menb (n,%) 291 (76.4%)

Hypertensionb (n,%) 270 (70.9%)

Diabetes mellitusb (n,%) 98 (25.7%)

History of hypercholesterolemiab (n, %) 160 (42.0%)

Smokers/ex-smokersb (n, %) 160 (41.5%)

History of coronary heart diseaseb (n, %) 26 (6.8%)

Previous strokeb (n, %) 62 (16.3%)

SBP on admissiona (mmHg) 158.2 (25.5)

OTTc (IQR, 25–75) 189.0 (136.0–240.0)

NIHSS on admissionc (IQR, 25–75) 5.0 (3.0–8.0)

SIASOb (n, %) 105 (27.5%)

Maximum heart ratea (bpm) 91.4 (14.6)

Minimum heart ratea (bpm) 60.6 (9.7)

Mean heart ratea (bpm) 72.8 (11.2)

SDc (IQR, 25–75) 7.5 (6.0–9.3)

CVc (IQR, 25–75) 10.4 (8.5–12.7)

ENDb (n, %) 31 (8.1%)

mRS at 90 daysb (n, %)

  0 143 (37.5%)

  1 100 (26.2%)

  2 61 (16.0%)

  3 39 (10.2%)

  4 23 (6.0%)

  5 9 (2.4%)

  6 6 (1.6%)

aMean (SD), t-test; bn (%), chi-square test; cMann–Whiteny U test.
NIHSS, national institutes of health stroke scale; OTT, onset to treatment time; mRS, 
modified rankin scale; END, early neurological deterioration; SIASO, symptomatic 
intracranial artery stenosis or occlusion; SBP, systolic blood pressure; SD, standard deviation 
of heart rate; CV, coefficient of heart rate variation.

TABLE 2  Collinear statistics of risk factors for 3-month poor outcome 
and END.

Variable 3-month poor 
outcome

END

Tolerance VIT Tolerance VIT

Age 0.938 1.066 0.938 1.066

OTT 0.984 1.016 0.980 1.020

NIHSS on 

admission

0.960 1.042 0.945 1.058

SBP on 

admission

0.953 1.051 0.952 1.051

Maximum 

heart rate

0.108 9.279 0.107 9.318

Minimum 

heart rate

0.101 9.897 0.100 9.983

Mean heart 

rate

0.058 17.209 0.058 17.373

SD 0.022 45.607 0.022 45.655

CV 0.023 43.881 0.023 44.090

NIHSS, national institutes of health stroke scale; OTT, onset to treatment time; mRS, 
modified rankin scale; END, early neurological deterioration; SBP, systolic blood pressure; 
SD, standard deviation of heart rate; CV, coefficient of heart rate variation. Values in bold are 
statistically significant (p < 0.05).
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rate, and SD—on END. The results showed that the p-values for all 
variables, including all heart rate-related variables in this study, were 
greater than 0.05 (Table 3; Supplementary material).

Discussion

Our study demonstrates that maximum HR, minimum HR, HR 
CV, and HR SD within 24 h post-IVT are associated with 3-month 
unfavorable outcomes in non-AF AIS patients. Furthermore, 
we developed a clinical prediction model incorporating admission 
NIHSS, OTT, HR SD, maximum HR, minimum HR, and mean HR to 
predict 3-month unfavorable outcomes, which demonstrated high 
predictive value. However, HR and HRV parameters were not 
associated with END in our cohort. These findings may help clinicians 
identify non-AF AIS patients at elevated risk of poor 3-month 

outcomes, enabling timely interventions targeting HR and HRV 
control to potentially improve prognosis (18–20).

Our study suggests that higher HR SD and CV may predict 
poorer 3-month outcomes in IVT-treated patients without AF. HRV 
during the acute stroke phase has been associated with poor outcomes 
within the first 3 months post-ischemic stroke (21, 22). Nayani et al. 
(23) reported that patients with higher HRV had an increased 
likelihood of infarct expansion and poorer outcomes at 3 months and 
1 year post-stroke (This study included first-ever ischemic stroke 
patients assessed via 24-h Holter for HRV within 2 to 4 weeks). 
Additionally, Tang SC et al. analyzed 1-h continuous ECG signals in 
acute stroke patients (both ischemic and hemorrhagic) admitted to 
the stroke ICU within 24 h; their findings indicate that early HRV 
assessment may help predict outcomes in non-AF patients (24). The 
study from Qu et al. (25) validated the prognostic value of HRV in 
thrombolysis patients without AF in their 2023 JAHA study, 

FIGURE 2

Plots of correlation of each variable with 3-momth poor outcome (A) and END (B). NIHSS, national institutes of health stroke scale; OTT, onset to 
treatment time; END, early neurological deterioration; SIASO, symptomatic intracranial artery stenosis or occlusion; SBP, systolic blood pressure; SD, 
standard deviation of heart rate; CV, coefficient of heart rate variation.

TABLE 3  Logistic regression of each risk factor for 3-month poor outcome and END.

Variable 3-month poor outcome END

β OR (95% CI) p-value β OR (95% CI) p-value

Age 0.019 1.020 (0.998–1.042) 0.082 0.013 1.013 (0.981–1.046) 0.432

OTT 0.004 1.004 (1.000–1.007) 0.039 0.004 1.004 (0.999–1.008) 0.094

NIHSS on admission 0.228 1.256 (1.179–1.338) 0.000 0.033 1.033 (0.960–1.112) 0.379

SBP on admission −0.004 0.996 (0.986–1.006) 0.382 0.001 1.001 (0.987–1.016) 0.863

Maximum heart rate 0.034 1.034 (1.017–1.052) 0.000 0.001 1.001 (0.976–1.026) 0.950

Minimum heart rate 0.039 1.040 (1.014–1.066) 0.003 −0.010 0.990 (0.952–1.029) 0.603

Mean heart rate 0.043 1.044 (1.022–1.068) 0.000 −0.005 0.996 (0.963–1.029) 0.791

SD 0.155 1.167 (1.059–1.286) 0.002 0.070 1.072 (0.933–1.233) 0.326

NIHSS, national institutes of health stroke scale; OTT, onset to treatment time; mRS, modified rankin scale; END, early neurological deterioration; SBP, systolic blood pressure; SD, standard 
deviation of heart rate. Values in bold are statistically significant (p < 0.05).
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demonstrating significant associations with 3-month outcomes. 
Extending this framework, our research introduces methodological 
refinements through three targeted innovations to enhance 
prognostic assessment: (1) Temporal specificity: We  focus on 
dynamic hourly HR metrics within the critical 24 h post-thrombolysis 
window, whereas Qu’s measurements at 1–3 and 7–10 days post-
stroke may miss early autonomic dysregulation; (2) statistical 
methods: Our study employed a random forest classification method. 
This approach integrates multiple decision trees to effectively mitigate 
the risks of overfitting inherent in single decision trees while 
enhancing the model’s predictive accuracy; (3) clinical translation 
innovation: Our model relies solely on NIHSS and bedside monitor 
data without serological/imaging biomarkers, enabling real-time risk 
stratification  – a significant advantage over Qu’s delayed 
HRV assessment.

Although the mechanisms through which HRV influences 
3-month clinical outcomes in ischemic stroke patients remain 
incompletely elucidated, HRV constitutes a critical biomarker 
reflecting sympathetic-parasympathetic balance (7, 8, 26). It provides 
insights into cardiovascular autonomic regulation, where disruption 

FIGURE 3

Confusion matrix and ROC curve for regression results (A confusion matrix for 3-momth poor outcome; B confusion matrix for END; C ROC curve for 
3-momth poor outcome; D ROC curve for END).

TABLE 4  Logistic regression of all risk factors for 3-month poor outcome.

Variable 3-month

β OR (95% 
CI)

p-value

OTT 0.004 1.002 (0.999–

1.005)

0.541

NIHSS on admission 0.229 1.287 (1.185–

1.389)

0.000

Maximum heart rate −0.012 0.956 (0.945–

0.967)

0.023

Minimum heart rate 0.006 1.027 (1.005–

1.049)

0.001

Mean heart rate 0.031 1.036 (0.981–

1.091)

0.488

SD 0.138 1.356 (1.248–

1.464)

0.002

NIHSS, national institutes of health stroke scale; OTT, onset to treatment time; SD, standard 
deviation of heart rate. Values in bold are statistically significant (p < 0.05).

https://doi.org/10.3389/fneur.2025.1668901
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yao et al.� 10.3389/fneur.2025.1668901

Frontiers in Neurology 07 frontiersin.org

of sympathetic-vagal equilibrium post-ischemic stroke induces 
alterations in HRV parameters (23, 27).

During acute ischemic stroke, ANS integrity significantly impacts 
3-month prognosis through multiple pathways: Firstly, ANS-mediated 
vascular control may be impaired, potentially causing cerebrovascular 
dysregulation (e.g., vasospasm or pathological dilation), thereby 
compromising cerebral perfusion and neural function (28). Secondly, 
ANS dysfunction can disrupt neuroimmune interactions and impair 
neuromediator release, amplifying inflammatory cascades that 
exacerbate neuronal damage and hinder neural repair (29). Thirdly, 
post-stroke ANS disturbances contribute to metabolic dysregulation—
including impaired glucose homeostasis and dyslipidemia—which 
potentiates secondary brain injury and impedes functional recovery 
(30, 31). Finally, such dysfunction is associated with neuropsychiatric 
sequelae (e.g., anxiety and depression), reducing rehabilitation 
adherence and compromising neurological recuperatio (32).

Our investigation revealed that elevated minimum and maximum 
HRs recorded within 24 h post-IVT correlated with poorer 3-month 
functional outcomes in non-AF stroke patients receiving IVT. This 
observation is substantiated by extant literature (9, 33, 34). Wang et al. 
(9) demonstrated that heightened HRs predict increased 3-month 
all-cause mortality and inferior functional recovery following 
mechanical thrombectomy in AIS patients. Complementary evidence 
from an AF-positive AIS cohort further established elevated HR—
though not HR CV—as an independent predictor of 1-year mortality 
(33). Four interconnected pathophysiological pathways may elucidate 
this association: First, tachycardia likely signifies stroke-induced acute 
physiological stress, heralding adverse outcomes through 
neuroendocrine activation (34). Second, sympathetic overdrive 
elevates myocardial oxygen demand and arrhythmogenic 
susceptibility, compounding cardiac strain while reflecting ANS 
dysregulation (21, 26)—factors that collectively impair neurological 
recovery. Third, sustained tachycardia may indicate amplified 
inflammatory cascades post-stroke (35), wherein cytokine-mediated 
cardioneural injury and ANS dysfunction potentiate secondary brain 
damage via neurovascular uncoupling and immune dysregulation. 
Fourth, elevated heart rates may heighten hemorrhagic transformation 
(HT) risk, particularly in patients with cerebral microbleeds (CMBs) 
(36, 37), where intracranial hemorrhage directly exacerbates 
neurological deficits. Future mechanistic studies should delineate 
etiology-specific pathways and temporal dynamics governing heart 
rate-outcome relationships in ischemic stroke.

Our study developed a predictive model based on NIHSS score, 
CV, maximum heart rate, minimum HR, mean HR, and OTT, 
achieving an area under the ROC curve (AUC) of 0.82. This indicates 
that the model has high value in predicting 3-month poor outcomes 
in AIS patients undergoing intravenous thrombolysis. While the 

FIGURE 4

Relative importance of each variable for 3-month poor outcome (A) and END (B). NIHSS, national institutes of health stroke scale; OTT, onset to 
treatment time; END, early neurological deterioration; SIASO, symptomatic intracranial artery stenosis or occlusion; SBP, systolic blood pressure; SD, 
standard deviation of heart rate; CV, coefficient of heart rate variation.

TABLE 5  Parameter setting of the random forest model.

Parameters Set value

The number of decision trees (n_

estimators)

500

The maximum tree depth (max_depth) None

The splitting criterion Gini impurity

The feature selection method Square root of the number of features 

(sqrt)

The cross-validation strategy Stratified 5-fold CV

Hyperparameter tuning Randomized search (n_iter = 50)

The importance evaluation method Permutation Importance
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relationships between NIHSS on admission, OTT, and post-stroke 
clinical prognosis have been extensively reported, our study highlights 
the significant predictive value of heart rate and heart rate variability 
(HRV) for the 3-month clinical prognosis of patients treated with 
intravenous thrombolysis. The model does not rely on serological or 
imaging markers, allowing for a simple and rapid assessment of short-
term prognosis. This facilitates early intervention for high-risk 
patients with poor outcomes, thereby improving clinical prognosis.

END is a serious clinical event following IVT in AIS, which may 
result from hemorrhagic or ischemic injuries (38). Although IVT 
represents the standard treatment for AIS, a subset of patients still 
experience END after therapy (39). HRV, serving as an indicator of 
autonomic nervous system function, has gained attention for its 
potential in predicting stroke outcomes (40). Although this study 
did not find a significant association between HR, HRV, and END, 
previous research has shown that HRV analysis can predict early 
neurological deterioration in stroke patients. A study by Nozoe et al. 
(21) found that increased sympathetic activity during the transition 
from a supine to a sitting position in stroke patients may 
be associated with END. The absence of a significant association 
between HR, HRV and END in this study may be attributed to the 

fact that HR and HRV primarily reflect the functional status of the 
ANS. These parameters may not adequately capture the complexity 
of the pathophysiological processes underlying stroke, particularly 
in patients with non-AF AIS (40). Post-stroke pathophysiological 
changes involve multiple factors, including inflammatory responses, 
cerebral edema, and neurotransmitter imbalances. These factors 
may exert indirect effects on HR and HRV, rather than being directly 
reflected by changes in these parameters (35). Secondly, the selected 
HR metrics measured at 24 h post-IVT may be  insufficient to 
capture the relationship between HR/HRV and END (41). ANS after 
stroke represents a dynamic process, and alterations in HR and 
HRV may hold different implications at distinct phases following 
the event. Consequently, assessments conducted at varying time 
points could yield divergent results. Finally, the limited sample 
size—with only 31 patients experiencing END—combined with 
hourly heart rate measurements, may have influenced the 
study findings.

The random forest model developed in this study for predicting 
3-month poor outcomes achieved an AUC of 0.82, demonstrating 
robust predictive value. However, we  cannot rule out potential 
performance overestimation due to overfitting to cohort-specific 

FIGURE 5

Confusion matrix and ROC curve of regression results for the first nine variables (A confusion matrix for 3-momth poor outcome; B confusion matrix 
for END; C ROC curve for 3-momth poor outcome; D ROC curve for END).
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patterns. Whether its predictive reliability remains comparable to our 
findings when applied to populations with different demographics, 
healthcare settings, or temporal contexts requires urgent validation 
through independent cohort studies to confirm the stability of these 
results. Despite inherent bias risks in the retrospective design, this 
study maximizes causal plausibility through strictly timed data 
acquisition (hourly HR measurements within 24 h post-thrombolysis) 
and prospectively adjudicated outcomes (90-day mRS). We contend 
the model’s clinical significance lies primarily in providing a rapid 
screening tool for resource-constrained settings (AUC 0.82), while 
also offering an important reference for future large-scale multicenter 
prospective studies.

This study has the following advantages: First, this study ranks 
among the few available investigations directly assessing the 
association between HR metrics and clinical prognosis in non-AF AIS 
patients receiving intravenous thrombolysis. Second, we  collected 
heart rate data uniformly within the first 24 h after intravenous 
thrombolysis, avoiding biases caused by random sampling times. 
Finally, the study employed the random forest classification method, 
which integrates multiple decision trees to effectively reduce the risk 
of overfitting from individual trees and improve the predictive 
accuracy of the model.

There are several limitations in our study. First, the sample size 
was relatively small. Second, as a retrospective investigation, our study 
warrants validation through future large-scale, multicenter 
prospective studies to confirm these findings. Third, the limited 
occurrence of END in only 31 patients within the study sample may 
have influenced the result and a larger sample size is needed to 
confirm this result. Forth, since patients receiving endovascular 
therapy were excluded in this study, and these patients were all with 
SIASO, there may be bias in the samples of the SIASO group. Forth, 
the HR information was collected hourly, while long-term continuous 
dynamic HR recording may be  needed. Finally, since laboratory 
parameters were not incorporated into the machine learning models, 
we  cannot exclude the potential influence of these indicators 
on prognosis.

Conclusion

Our study found that in non-AF AIS patients, maximum heart 
rate, minimum heart rate, HR SD, and HR CV within the first 24 h 
after IVT were significantly associated with 3-month poor outcomes. 
Using machine learning methods, we developed a predictive model 
for 3-month poor outcomes and found that this model demonstrated 
high predictive value. These findings suggest that early intervention 
targeting HR in AIS patients may help improve their 
clinical outcomes.
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