

OPEN ACCESS

EDITED BY Svetlana Lorenzano, Sapienza University of Rome, Italy

REVIEWED BY
Mohammad El-Ghanem,
HCA Healthcare Houston Medical Center,
United States
Wen-Jun Tu,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China
Christine Kremer,
Lund University, Sweden
Daisuke Wajima,
Okinawa Prefectural Nanbu Medical Center,

*CORRESPONDENCE
Shuang He

⋈ 67105704@qq.com

RECEIVED 20 July 2025
ACCEPTED 16 September 2025
PUBLISHED 01 October 2025

CITATION

Bao L and He S (2025) Effects of manual carotid compression in endovascular thrombectomy for acute anterior circulation large-vessel occlusion: a multicenter, propensity score-matching study. *Front. Neurol.* 16:1669778. doi: 10.3389/fneur.2025.1669778

COPYRIGHT

© 2025 Bao and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Effects of manual carotid compression in endovascular thrombectomy for acute anterior circulation large-vessel occlusion: a multicenter, propensity score-matching study

Li Bao and Shuang He*

Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, China

Background: Randomized controlled trials suggested that balloon guide catheters for proximal flow control (PFC) in endovascular thrombectomy (EVT) for acute anterior circulation large-vessel occlusion (LVO) have unsatisfactory results. Our study aimed to explore effects of manual carotid compression (MCC) achieving temporary PFC in EVT, without interfering with endovascular procedures.

Methods: We retrospectively included 203 patients with acute occlusion of the intracranial internal carotid artery or the M1 or proximal M2 segments of the middle cerebral artery undergoing EVT from three independent centers (n = 80 in the MCC group and n = 123 in the non-MCC group). The primary outcome was the 90-day functional independence, defined as a modified Rankin Scale (mRS) score \leq 2. Propensity score matching (PSM) analysis was conducted to compare outcomes.

Results: In the overall cohort, the median age was 71 years (IQR 62-76), with 119 male patients (58.6%). Baseline characteristics between the two groups differed significantly in terms of hypertension (p = 0.017), previous stroke/TIA (p = 0.01), pre-stroke mRS (p = 0.003), baseline National Institutes of Health Stroke Scale (NHISS) score (p = 0.004), left occlusion (p < 0.001), and transfermoral access (p = 0.009). After adjusting for baseline characteristics using PSM, 34 matched pairs were analyzed. There was no significant difference in the 90-day functional independence between the two groups (44.1% vs. 32.4%, p = 0.454). The MCC group showed significantly lower mRS scores at 90 days (p = 0.031), with a higher proportion of patients scoring 0-1 (41.2% vs. 8.8%, p = 0.005). MCC significantly increased the first pass effect (FPE) rate (55.9% vs. 23.5%, p = 0.013) and the rate of modified Thrombolysis in Cerebral Infarction score \geq 2b after the first pass (70.6% vs. 41.2%, p = 0.028), and reduced NHISS scores at 24 h after recanalization (p = 0.002) and at 7 days or discharge (p < 0.001). In terms of safety outcomes, MCC effectively reduced the incidence of intracranial hemorrhage (ICH) (14.7% vs. 47.1%, p = 0.009) and symptomatic ICH (sICH) (0% vs. 17.6%, p = 0.033).

Conclusion: MCC in EVT for patients with acute anterior circulation LVO in our cohort could improve the 90-day mRS score and the proportion of patients with scores of 0-1, increase the reperfusion rate after the first pass and enhance early neurological improvement, while decreasing the incidence of ICH and sICH.

KEYWORDS

manual carotid compression, endovascular thrombectomy (EVT), large-vessel occlusion (LVO), propensity scorematching (PSM), acute ischemic stroke, balloon guide catheter (BGC)

Introduction

According to the estimated burden of stroke in China, among the population aged 40 and older, there were 3.4 million new stroke cases, 17.8 million individuals living with stroke, and 2.3 million strokerelated deaths in 2020 (1). Acute ischemic stroke (AIS) accounts for approximately 87% of strokes and has high rates of disability and mortality, bringing a huge burden to society (2, 3). Endovascular thrombectomy (EVT) has been proven effective in treating AIS caused by large vessel occlusion (LVO) in multiple randomized clinical trials (RCTs), establishing it as the standard treatment (4-7). The primary objective of EVT is to achieve rapid and complete reperfusion, ultimately resulting in favorable clinical outcomes. In this setting, several studies, including multicenter registry studies such as NASA and ROSSETTI, have found that transient proximal flow control (PFC) using a balloon guide catheter (BGC) was positively associated with improved EVT efficiency and better clinical outcomes in anterior circulation LVO (8–13). However, recent trials, including ProFATE and PROTECT-MT, have reported that the use of BGCs in EVT did not meet the expected results, and in some cases, led to poorer functional recovery (14-17). This may be related to challenges such as the incompatibility between BGCs and large-bore aspiration catheters, difficulties in achieving proper positioning of BGCs, and inadequate support for effective aspiration. Additionally, the advancements in first-line thrombectomy techniques and devices may also play a role (18). This raised the question: could extracorporeal PFC, when applied without interfering with endovascular procedures, improve EVT efficacy?

Manual carotid compression (MCC) is a non-invasive technique that effectively arrests anterior circulation blood flow. It has been recognized for its applications such as transcranial Doppler ultrasound, reducing brain embolism caused by arterial cannulation and aortic clamping, and treating arteriovenous fistulas (19–23). Given this, our multicenter study was aimed to investigate the impact of transient PFC via MCC on procedure and clinical outcomes in EVT-treated patients with anterior circulation LVO, focusing on functional independence at 90 days, the first-pass effect (FPE), the final recanalization quality, and distal/new region embolism. Propensity score matching (PSM) was employed to mitigate the confounding bias commonly encountered in observational studies.

Methods

Study design and patients

We retrospectively collected consecutive patients who underwent EVT treatment for acute occlusion of the intracranial internal carotid artery (ICA) or middle cerebral artery M1 or proximal M2 segments from November 2024 to March 2025 at three independent stroke centers. The exclusion criteria were as follows: (1) known or suspected pre-existing (chronic) large vessel occlusion in the symptomatic

region; (2) intracranial hemorrhage (ICH) on CT prior to EVT; (3) tandem stenosis (70–99%) or occlusion; (4) coexisting intracranial tumors, aneurysms, intracranial infections, or arteriovenous malformations; (5) pre-stroke modified Rankin Scale (mRS) score > 2; (6) Alberta Stroke Program Early CT Score (ASPECTS) < 6; (7) Patients allergic to contrast agents. Patients were categorized into MCC or non-MCC group according to whether they received MCC in EVT. This study was conducted according to the Declaration of Helsinki with the approval of the Institutional Review Boards. Written informed consent was obtained from all patients or their legal representatives before inclusion.

Data collection and outcomes

Baseline characteristics of the patients were comprehensively assessed, including age, sex, body mass index (BMI), medical history, pre-stroke mRS score and stroke characteristics involving the National Institutes of Health Stroke Scale (NIHSS) score [at admission, 24 h after recanalization, and 7 days after recanalization or at hospital discharge (whichever occurred first)], the admission ASPECTS, stroke etiology by TOAST criteria (24), and the occlusion site. Treatment details comprised the use of intravenous tissue plasminogen activator (IV tPA), the access approach (femoral or radial), general anesthesia, symptom onset to puncture time, procedural time (puncture to final successful recanalization time), MT technique [direct aspiration (DA) or combined DA + stent retriever (SR)].

The primary outcome was functional independence (defined as mRS score \leq 2) at 90 days. Secondary outcomes included mRS score at 90 days, other dichotomous analysis of score on the mRS at 90 days (0–1 vs. 2–6, 0–3 vs. 4–6, 0–4 vs. 5–6, and 0–5 vs. 6); change of the NHISS score from baseline to 24 h after recanalization, and to 7 days after treatment or at hospital discharge (whichever occurred first); the final recanalization quality assessed by the modified Thrombolysis in Cerebral Infarction (mTICI) score at the final intracranial angiogram; FPE (defined as an mTICI = 3 after the first pass); mTICI score \geq 2b after the first pass; the number of passes attempts to achieve successful recanalization (no more than 4); occurrence of emboli in a new or distal territory. Safety outcomes included all-cause mortality at 90 days after treatment; all ICH and symptomatic intracranial hemorrhages (sICH) according to the Heidelberg criteria (25). Neurological improvement was defined as the reduction of the NHISS score.

Procedure

EVT was performed by experienced neurointerventionists following the current guidelines. DA or combined DA + SR were considered the first-line thrombectomy technique. The coaxial or exchange technique was used to advance a long sheath to the highest possible position in the internal carotid artery, with the aspiration catheter or distal access catheter positioned as close as possible to the

site of occlusion. The selection of any endovascular devices, including the long sheath (Ballast, Balt, France), aspiration catheter (Ace, Penumbra, USA; React, Medtronic, USA), distal access catheter (Zenith, China; Soft, TONBRIDGE, China), microcatheter (rebar, Medtronic, USA), microguidewire (Synchro SELECT, Stryker, USA), and stent retrievers (Solitaire; Medtronic, USA; EmboTrap, Cerenovus, USA), was determined at the discretion of the operators. In the MCC group, the assistant synchronously acupressured the ipsilateral carotid artery during negative pressure aspiration or stent retraction, and in the non-MCC group, EVT was done conventionally without extra intervention. The assistant ensured the forward blood flow arrest by applying ultrasound at the compression site. The choice of anesthesia (general anesthesia or conscious sedation), the change of thrombectomy strategy or devices, and any resuscitation treatments, including intracranial angioplasty with or without stenting and intraarterial drug therapy, were determined by the operator, considering the occlusion mechanism, the patient's clinical condition, and other relevant factors. Strict systolic blood pressure management should be applied to all patients following EVT (≤160 mmHg for those without hemorrhagic transformation immediately post-procedure, ≤140 mmHg for those with hemorrhagic transformation, and all should not be lower than 120 mmHg). All patients should undergo Non-Contrast CT within 24 h after treatment; if necessary, additional imaging should be performed at any time in case of neurological deterioration.

Statistical analysis

All statistical analysis was conducted using RStudio software (version 4.4.3). Graphs were created using GraphPad version 10.1.2. The normality of continuous variables was assessed using the Kolmogorov-Smirnov test. Continuous variables with normal distribution were expressed as means (SD), while non-normally distributed variables were presented as medians (IQR). Categorical variables were reported as frequencies (proportions). Comparisons of continuous variables were performed using the t-test or Mann-Whitney U test. Categorical variables were compared using the χ^2 test or Fisher's exact test. PSM analysis was performed on primary and secondary outcomes using the nearest-neighbor method to adjust for potential confounders between MCC and non-MCC groups. A 1:1 matching without replacement was performed based on a caliper of 0.1. Covariate balance between matched groups was assessed using p-values and standardized mean differences (SMD). The factors adjusted for in the PSM analysis included age, sex, BMI, medical history, stroke characteristics, IV-tPA, transfemoral access, general anesthesia, symptom onset to puncture time, first-line technique. A two-tailed *p* value of <0.05 was considered statistically significant.

Results

Baseline characteristics and outcomes before PSM

Between November 2024 and March 2025, 239 AIS patients receiving MCC in EVT were assessed for eligibility, of whom 36 were excluded, and 203 were ultimately included (n = 80 in the MCC group

and n=123 in the non-MCC group) (Figure 1). In the overall cohort, the median age was 71 years (IQR 62–76), with 119 male patients (58.6%). The median baseline NHISS score was 15 (IQR 12–20), and the median baseline ASPECTS was 9 (IQR 8–10). The median time from symptom onset to puncture was 469 min (IQR 330–570). A total of 55patients (27.1%) received IV tPA prior to EVT. The occlusion sites were intracranial ICA [56 (27.6%)], M1 [122 (60.1%)], and M2 [25 (12.3%)]. According to the TOAST classification, 77 patients (37.9%) were identified as having atherosclerosis-related LVO, and 80 patients (39.4%) were judged to have cardiogenic embolism.

There were significant differences between the two groups in terms of hypertension (p=0.017), previous stroke/TIA (p=0.01), pre-stroke mRS (p=0.003), baseline NHISS (p=0.004), left occlusion (p<0.001), and transfemoral access (p=0.009) (Table 1). No significant difference was observed between the groups regarding the first-line thrombectomy technique (p=0.972). Four patients (5%) in the MCC group and five patients (4.1%) in the non-MCC group received intra-arterial 5% tirofiban injection. Additionally, 6 patients (7.5%) in the MCC group and 11 patients (8.9%) in the non-MCC group underwent stent implantation as a rescue measure.

There was no significant difference between the two groups in the primary outcome of functional independence at 90 days (52.5% vs. 41.5%, p = 0.162) (Table 2). There was significant difference between the two groups in the 90-day mRS score [2 (1-3.8) vs. 3 (2-4), p = 0.021 and the predefined binary comparison of 0–1 (vs 2–6) (40% vs. 19.5%, p = 0.002). The distribution of the 90-day mRS scores for both groups was shown in Figure 2. The MCC group had a significantly higher PFE rate (50% vs. 29.3%, p = 0.005) and mTICI \geq 2b after the first pass rate (60% vs. 36.6%, p = 0.002). The MCC group also demonstrated significantly better neurological improvement (change of NIHSS score) at 24 h post-reperfusion (p < 0.001), compared to the non-MCC group. However, there was no significant difference in neurological improvement between the two groups at 7 days or at discharge (p = 0.383). Regarding safety outcomes, patients who received MCC had a lower incidence of ICH (27.5% vs. 58.5%; p < 0.001) and sICH (5% vs. 22%; p = 0.002).

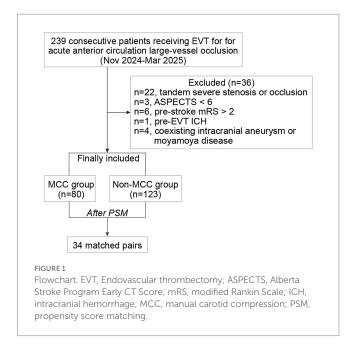


TABLE 1 Comparison of baseline characteristics before and after propensity score matching.

Variables	Before PSM				After PSM				
	MCC (n = 80)	Non-MCC (n = 123)	р	SMD	MCC (n = 34)	Non-MCC (n = 34)	р	SMD	
Age (years)	70.5 (56.3–76.8)	71 (66–75)	0.855	0.111	70 (58–74.3)	71 (53–76)	0.833	0.106	
Female	30 (37.5%)	54 (43.9%)	0.448	0.131	14 (41.2%)	10 (29.4%)	0.446	0.248	
BMI (kg/m²)	25.2 (21.1–27.3)	23.9 (21.5–26.8)	0.098	0.264	24.5 (21.2–26.5)	24 (21.3–27.4)	0.954	0.070	
Medical history									
Hypertension	54 (67.5%)	102 (82.9%)	0.017*	0.363	25 (73.5%)	21 (61.8)	0.437	0.253	
Diabetes	24 (30.0%)	30 (24.4%)	0.471	0.126	10 (29.4)	12 (35.3)	0.795	0.126	
Atrial fibrillation	36 (45.0%)	45 (36.6%)	0.294	0.172	14 (41.2%)	9 (26.5%)	0.305	0.315	
Coronary heart disease	16 (20.0%)	27 (22.0%)	0.875	0.048	5 (14.7%)	2 (5.9%)	0.425	0.293	
Dyslipidemia	26 (32.5%)	30 (24.4%)	0.270	0.180	8 (23.5%)	7 (20.6%)	>0.999	0.071	
Previous stroke/TIA	22 (27.5%)	15 (12.2%)	0.010*	0.391	3 (8.8%)	7 (20.6%)	0.304	0.337	
Pre-stroke mRS	0 (0-1)	0 (0-0)	0.003*	0.365	0 (0-1)	0 (0-0)	0.399	0.143	
Stroke characteristi	cs								
Baseline NHISS	14 (12–18.8)	17 (13–20)	0.004*	0.408	15 (12–18.5)	15 (13–19)	0.944	0.112	
Baseline ASPECTS	9 (8–10)	9 (8–10)	0.493	0.092	10 (8–10)	10 (9-10)	0.565	0.233	
Etiology by TOAST			0.301	0.223			0.415	0.326	
Atherosclerosis	26 (32.5%)	51 (41.5%)			13 (38.2%)	15 (44.1%)			
Cardioembolism	32 (40.0%)	48 (39.0%)			14 (41.2%)	9 (26.5%)			
Undetermined or other reason	22 (27.5%)	24 (19.5%)			7 (20.6%)	10 (29.4%)			
Occlusion site			0.798	0.097			0.931	0.092	
Intracranial ICA	20 (25.0%)	36 (29.3%)			9 (26.5%)	10 (29.4%)			
M1	40 (62.5%)	72 (58.54%)			19 (55.9%)	19 (55.9%)			
M2	10 (12.5%)	15 (12.2%)			6 (17.6%)	5 (14.7%)			
Left occlusion	60 (75%)	54 (43.9%)	<0.001*	0.668	22 (64.7%)	20 (58.8%)	0.803	0.121	
Treatment details			l	'			J	'	
IV tPA	22 (27.5%)	33 (26.8%)	>0.999	0.015	10 (29.4%)	9 (26.5%)	>0.999	0.066	
Transfemoral access	78 (97.5%)	105 (85.4%)	0.009*	0.444	32 (94.1%)	27 (79.4%)	0.152	0.445	
General anesthesia	74 (92.5%)	111 (90.2%)	0.764	0.080	30 (88.2%)	31 (91.2%)	>0.999	0.097	
Symptom onset to puncture time (min)	477.5 (312–570)	454 (336–540)	0.609	0.014	540 (337.3–585)	454 (337–663.3)	0.663	0.014	
Procedural time (min)	75.5 (50.5–100)	84 (48-97)	0.890	0.019	67.5 (50–91)	83 (49-90.3)	0.458	0.200	
First-line technique			0.972	0.026			0.467	0.237	
DA	38 (47.5%)	60 (48.8%)			15 (44.1%)	19 (55.9%)			
Combined DA + SR	42 (52.5%)	63 (51.2%)			19 (55.9%)	15 (44.1%)			

Values were shown as median (IQR) or frequency (%). *Statistical significance. PSM, propensity score matching. MCC, manual carotid compression; BMI, body mass index; TIA, transient ischemic attack; mRS, modified Rankin Scale; NHISS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; IV tPA intravenous tissue plasminogen activator; DA, direct aspiration; SR, stent retriever; SMD, standardized mean difference.

There was no difference between the two groups in the mortality at 90 days and other secondary outcomes. The causes of death in the MCC group included three cases of large intracranial hematoma, one case of malignant brain edema, and two cases of severe infection. In the non-MCC group, the causes of death included nine cases of large intracranial hematoma, two cases of malignant brain edema and one case of post-discharge pulmonary infection.

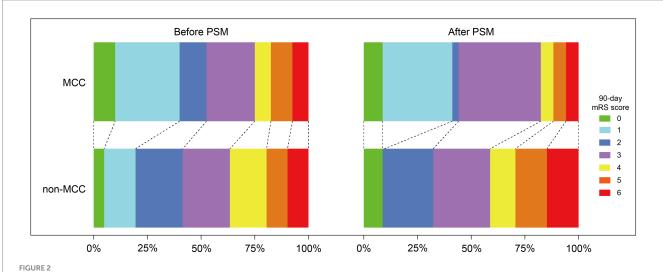
Propensity score matching analysis

After adjusting for differences in age, sex, BMI, hypertension, diabetes, atrial fibrillation, coronary heart disease, dyslipidemia, previous stroke/TIA, pre-stroke mRS score, NHISS at admission, baseline ASPECTS, etiology by TOAST, occlusion site, left occlusion, IV-tPA, transfemoral access, general anesthesia, symptom onset to puncture time, and first-line technique, 34 pairs of MCC and non-MCC

TABLE 2 Outcomes before and after propensity score matching.

Outcomes		After PSM						
	MCC (n = 80)	Non-MCC (n = 123)	р	SMD	MCC (n = 34)	Non-MCC (n = 34)	р	SMD
Primary outcomes								
Functional independence at 90 d	42 (52.5%)	51 (41.5%)	0.162	0.222	15 (44.1%)	11 (32.4%)	0.454	0.244
Secondary outcomes								
Dichotomized mRS scores at 90 d								
mRS score at 90 d	2 (1-3.8)	3 (2-4)	0.021*	0.307	3 (1-3)	3 (2-5)	0.031*	0.558
0-1 (vs 2-6)	32 (40.0%)	24 (19.5%)	0.002*	0.460	14 (41.2%)	3 (8.8%)	0.005*	0.805
0-3 (vs 4-6)	60 (75.0%)	78 (63.4%)	0.115	0.253	28 (82.4%)	20 (58.8%)	0.062	0.535
0-4 (vs 5-6)	66 (82.5%)	99 (80.5%)	0.861	0.052	30 (88.2%)	24 (70.6%)	0.134	0.447
0-5 (vs 6)	74 (92.5%)	111 (90.2%)	0.764	0.080	32 (94.1%)	29 (85.3%)	0.425	0.293
Final mTICI ≥ 2b	74 (92.5%)	114 (92.7%)	>0.999	0.007	30 (88.2%)	29 (85.3%)	>0.999	0.087
Final mTICI = 3	58 (72.5%)	78 (63.4%)	0.233	0.196	21 (61.8%)	19 (55.9%)	0.805	0.120
mTICI≥2b after the first pass	48 (60.0%)	45 (36.6%)	0.002*	0.482	24 (70.6%)	14 (41.2%)	0.028*	0.620
mTICI = 3 after the first pass (FPE)	40 (50.0%)	36 (29.3%)	0.005*	0.434	19 (55.9%)	8 (23.5%)	0.013*	0.701
No. of passes	1 (1-3)	2 (1-3)	0.026*	0.226	1 (1-2)	2 (1-2)	0.062	0.306
Change of NIHSS score								
24 h after recanalization	−3.5 (−5 to −2)	-2 (-5 to 0)	<0.001*	0.312	-4 (-5 to -2)	-1 (-4 to 4)	0.002*	0.780
7 days or at discharge	-7.5 (-10.8 to -4.3)	-7 (−10 to −3)	0.383	0.136	-9.5 (-12 to -6)	-6 (-8 to -3)	<0.001*	0.677
Emboli to new territory	2 (2.5%)	6 (4.9%)	0.630	0.126	2 (5.9%)	0	0.473	0.354
Emboli to distal territory	12 (15.0%)	21 (17.1%)	0.844	0.057	4 (11.8%)	10 (29.4%)	0.134	0.447
Safety outcomes								
ICH	22 (27.5%)	72 (58.5%)	<0.001*	0.660	5 (14.7%)	16 (47.1%)	0.009*	0.748
sICH	4 (5.0%)	27 (22.0%)	0.002*	0.512	0	6 (17.6%)	0.033*	0.655
Mortality at 90 d	6 (7.5%)	12 (9.8%)	0.764	0.080	2 (5.9%)	5 (14.7%)	0.425	0.293

Values were shown as median (IQR) or frequency (%). *Statistical significance. PSM, propensity score matching; MCC, manual carotid compression; mRS, modified Rankin Scale; mTICI, modified Thrombolysis in Cerebral Infarction; FPE, first-pass effect; NHISS, National Institutes of Health Stroke Scale; ICH, intracranial hemorrhages; sICH, symptomatic intracranial hemorrhages; SMD, standardized mean difference.


treatments were successfully matched after PSM analysis. After matching, the baseline characteristics of the two groups were balanced (Table 1). After PSM analysis, there was no significant difference in functional independence at 90 days between the two groups (44.1% vs. 32.4%, p=0.454). However, the MCC group had a significantly lower mRS score at 90 days (p=0.031), primarily due to a higher proportion of patients with scores of 0–1 (41.2% vs. 8.8%, p=0.005) (Table 2; Figure 2). Additionally, the MCC group showed significantly higher FPE rates (55.9% vs. 23.5%, p=0.013) and first-pass mTICI \geq 2b rates (70.6% vs. 41.2%, p=0.028). Patients in the MCC group had significantly greater improvement in NHISS scores at 24h after recanalization (p=0.002) and at 7 days or discharge (p<0.001) compared to the non-MCC group. In terms of safety outcomes, MCC significantly reduced the occurrence of ICH (14.7% vs. 47.1%, p=0.009) and sICH (0% vs. 17.6%, p=0.033).

Discussion

In this multicenter PSM study, we found that temporary PFC achieved by MCC in EVT did not significantly improve the primary

outcome (90-day functional independence) in patients with acute anterior circulation LVO. The functional, imaging, and safety outcomes in the non-MCC group of our study were similar to the control groups in the ProFATE and PROTECT-MT studies (15, 16). However, in terms of secondary outcomes, after controlling for confounding factors with PSM analysis, we observed that MCC significantly improved the 90-day mRS score (mainly reflected in the higher proportion of 0–1 scores), PFE rate, first-pass mTICI \geq 2b rate, early neurological improvement (change in NIHSS score), and the rates of ICH and sICH.

In recent years, there has been a focus on optimizing techniques and strategies to improve angiographic and clinical outcomes in EVT. Currently, the use of BGCs, which provide proximal flow arrest, has become a contentious issue in first-line thrombectomy approaches for AIS patients with anterior circulation LVO. Contrary to previous observational studies, the PROTECT-MT trial found that the use of BGCs was associated with poorer functional recovery and procedure results, as well as a higher rate of ICA vasospasm (15). As analyzed by Liu et al. (15) and Dhillon et al. (18), on one hand, the rapid advancement of thrombectomy techniques and devices has leveled out the benefits of BGCs in earlier years; on the other hand, BGCs has

Distribution of the modified Rankin Scale (mRS) at 90 days of patients with anterior circulation large-vessel occlusion treated with or without manual carotid compression (MCC) in endovascular thrombectomy before and after propensity score matching (PSM).

limitations such as restricting the use of large-bore aspiration catheters, affecting the stability of the access, and reducing collateral circulation flow. The disappointing results of BGCs in EVT led us to propose MCC, a technique that arrested anterior blood flow ex vivo without disrupting the endovascular procedure.

The MCC group had a significantly higher proportion of patients with minimal functional impairment (mRS scores 0-1), and early stroke severity (NHISS change) was significantly reduced with higher FPE rates and first-pass mTICI ≥2b rates, suggesting that MCC's improvement in thrombectomy efficiency was more likely to facilitate the transition of patients from mild disability to complete independence. Studies have shown that PFE is associated with better clinical outcomes and is a key goal of EVT in achieving rapid and complete reperfusion (26, 27). Achieving FPE can effectively reduce the risks of thrombus rupture and distal migration, both of which are closely associated with poor outcomes (28-30), although the reduction in embolization rate in the new/distal territory did not reach statistical significance in our study. However, in this study, MCC did not significantly reduce the proportion of patients with an mRS score ≥ 2 . This might be attributed to MCC's more proximal blood flow arrest, which reduced more backpressure from ipsilateral collateral circulation that aided in thrombectomy (31) and limited the maintenance of the ischemic penumbra. Additionally, we observed that MCC led to a median improvement of 3 points in the early NHISS score compared to Non-MCC. The NHISS score reflects the severity of the stroke, and while a 3-point reduction may not significantly improve function in patients with more severe strokes (mRS \geq 3), it can be sufficient to reverse functional impairments in those with mild deficits, improving the mRS score from 2 to 0 or 1. Therefore, the analysis of limited data from this exploratory study suggests that MCC has the potential for clinical benefits, as indicated by the improvement in secondary outcomes (proportion of patients with an mRS score of 0-1). Moreu et al. (32) found that positioning BGCs higher was associated with better reperfusion rates and improved clinical outcomes when used with SR technology alone. Therefore, expanding the sample size of the MCC study and further exploring the optimal site of PFC are valuable for optimizing EVT efficacy in treating anterior circulation LVO.

Regarding safety outcomes, the MCC group showed a significant reduction in the incidence of ICH and sICH before and after PSM analysis. Enhanced first-pass reperfusion efficiency minimized mechanical damage to the blood-brain barrier at the occlusion site and ischemic time. Additionally, in AIS patients with high blood pressure and significant blood pressure variability, the risk of ICH after EVT is increased (33, 34). Early control of hemodynamic impact after reperfusion can mitigate reperfusion injury and promote recovery of the ischemic penumbra tissue (35). Similarly, the study by Deng et al. (36) on rapid local ischemic postconditioning, which reduced reperfusion injury and promoted functional independence, is also based on this theory. During thrombectomy, MCC has the value of reducing transient blood flow impact upon reperfusion, thereby providing neuroprotection. Therefore, theoretically, regular MCC after reperfusion may also hold potential neuroprotective applications for ischemic postconditioning. Xu et al. (37) also highlighted the role of non-pharmacological therapies in improving the imbalance caused by hyperperfusion during the reperfusion phase. Our study considered MCC as an efficient and effective non-pharmacological approach. Therefore, our research suggested that MCC warrants further large-scale and in-depth studies to confirm its value in preventing hemorrhagic transformation associated endovascular treatments.

MCC, a straightforward approach, offers the potential to significantly improve clinical outcomes through its benefits, including reduced costs, shorter procedure times, and minimal risks. The RCT by Hillebrand et al. (23) and the *in vitro* simulation by Isingoma et al. (19) showed that MCC could effectively reduce the rate of cerebral embolism during arterial catheterization and aortic clamping. Furthermore, MCC provides a safe and effective treatment alternative for patients with arteriovenous fistulas who are ineligible for endovascular therapy (22, 38). Our study aimed to investigate the effect of PFC without

interfering with endovascular procedures, and MCC perfectly meeted this intervention requirement. A key advantage of this trial is its practicality and generalizability. Unlike RCTs involving BGCs, there were no specific requirements or limitations regarding the access and devices for both groups. Moreover, the intervention poses no cost and relatively less endothelial damage. Therefore, this study demonstrated the feasibility and effectiveness of MCC in EVT, offering potential for optimizing future thrombectomy strategies to improve outcomes. Furthermore, this study validated the benefits of temporary PFC and provided a foundation and insights for advancing PFC devices, including BGCs. In general, MCC or optimized BGC, through PFC, can serve as an adjunctive strategy in various scenarios, such as preventing plaque dislodgement during the treatment of atherosclerotic disease, reducing cyanoacrylates glue reflux during the treatment of arteriovenous malformations, and promptly reducing flow in cases of hemorrhagic complications following endovascular procedure.

This study has some limitations. First, despite our efforts to control for confounders using PSM, the retrospective nature of this study inherently introduced unavoidable selection bias and unmeasured confounders. Additionally, the relatively small number of matched pairs after PSM may affect the reliability of the exploratory research results. Thirdly, the lack of a detailed assessment of the impact of collateral circulation and the Willis compensation on the efficacy of MCC may undermine the stability of the positive outcome generalization. Fourthly, the whole trial cohort consisted of Chinese patients. A large proportion (37.9%) of AIS patients with an atherosclerotic etiology rely more on long-established collateral circulation. Fifthly, since the operators in this study inevitably knew the treatment intervention, this could have influenced the management of patients during and after EVT. Sixthly, our patients received either DA or combined DA + SR techniques, and our results may not be generalizable apply to patients who received SR alone.

Conclusion

In AIS patients with anterior circulation LVO in our cohort, the use of MCC during EVT to achieve transient PFC could improve the proportion of participants with a 90-day mRS score of 0–1, FPE rates, first-pass mTICI \geq 2b rates, and change in NIHSS score, and decreased the incidence of ICH and sICH. To further confirm the efficacy and safety of MCC in EVT for AIS, larger-scale, multi-center RCTs are necessary.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

- 1. Tu WJ, Zhao Z, Yin P, Cao L, Zeng J, Chen H, et al. Estimated burden of stroke in China in 2020. JAMA Netw Open. (2023) 6:e231455. doi: 10.1001/jamanetworkopen.2023.1455
- 2. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic

Ethics statement

The studies involving humans were approved by the Institutional Review Boards of the Affiliated Hospital of Nantong University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required from the participants or the participants' legal guardians/next of kin in accordance with the national legislation and institutional requirements.

Author contributions

LB: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Writing – original draft, Writing – review & editing. SH: Conceptualization, Methodology, Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

analysis for the global burden of disease study 2019. Lancet Neurol. (2021) 20:795–820. doi: 10.1016/S1474-4422(21)00252-0

3. Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. *Neurology*. (2021) 97:S6–s16. doi: 10.1212/WNL.0000000000012781

- 4. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early Management of Patients with Acute Ischemic Stroke: 2019 update to the 2018 guidelines for the early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. (2019) 50:e344–418. doi: 10.1161/STR.0000000000000211
- 5. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. *N Engl J Med.* (2015) 372:1019–30. doi: 10.1056/NEJMoa1414905
- 6. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. *N Engl J Med.* (2015) 372:11–20. doi: 10.1056/NEJMoa1411587
- 7. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, et al. Safety and efficacy of solitaire stent Thrombectomy: individual patient data meta-analysis of randomized trials. *Stroke.* (2016) 47:798–806. doi: 10.1161/STROKEAHA.115.012360
- 8. Nguyen TN, Malisch T, Castonguay AC, Gupta R, Sun CH, Martin CO, et al. Balloon guide catheter improves revascularization and clinical outcomes with the solitaire device: analysis of the North American solitaire acute stroke registry. *Stroke*. (2014) 45:141–5. doi: 10.1161/STROKEAHA.113.002407
- 9. Blasco J, Puig J, Daunis IEP, González E, Fondevila Monso JJ, Manso X, et al. Balloon guide catheter improvements in thrombectomy outcomes persist despite advances in intracranial aspiration technology. *J Neurointerv Surg.* (2021) 13:773–8. doi: 10.1136/neurintsurg-2020-017027
- 10. Baig AA, Waqas M, Turner RC, Kuo CC, Donnelly BM, Lai PMR, et al. A propensity score-matched comparative study of balloon guide catheters versus conventional guide catheters for concurrent mechanical thrombectomy with carotic stenting in tandem strokes: comparison of first pass effect, symptomatic intracranial hemorrhage, and 90-day functional outcomes. *J Neurointerv Surg.* (2024) 16:124–30. doi: 10.1136/jnis-2023-020114
- 11. Velasco Gonzalez A, Görlich D, Buerke B, Münnich N, Sauerland C, Rusche T, et al. Predictors of successful first-pass thrombectomy with a balloon guide catheter: results of a decision tree analysis. *Transl Stroke Res.* (2020) 11:900–9. doi: 10.1007/s12975-020-00784-2
- 12. Topiwala K, Quinn C, Mehta T, Masood K, Grande A, Tummala R, et al. BOBBY balloon guide catheter thrombectomy in large-vessel occlusion stroke: initial experience. *Interven Neuroradiol.* (2024) 30:80–5. doi: 10.1177/15910199221104920
- 13. Berndt MT, Goyal M, Psychogios M, Kaesmacher J, Boeckh-Behrens T, Wunderlich S, et al. Endovascular stroke treatment using balloon guide catheters may reduce penumbral tissue damage and improve long-term outcome. *Eur Radiol.* (2021) 31:2191–8. doi: 10.1007/s00330-020-07260-3
- 14. Bourcier R, Marnat G, Labreuche J, Desal H, Maria FD, Consoli A, et al. Balloon guide catheter is not superior to conventional guide catheter when stent retriever and contact aspiration are combined for stroke treatment. *Neurosurgery*. (2020) 88:E83–e90. doi: 10.1093/neuros/nyaa315
- 15. Liu J, Zhou Y, Zhang L, Li Z, Chen W, Zhu Y, et al. Balloon guide catheters for endovascular thrombectomy in patients with acute ischaemic stroke due to large-vessel occlusion in China (PROTECT-MT): a multicentre, open-label, blinded-endpoint, randomised controlled trial. *Lancet*. (2024) 404:2165–74. doi: 10.1016/S0140-6736(24)02315-8
- 16. Dhillon PS, Butt W, Podlasek A, Bhogal P, Lynch J, Booth TC, et al. Effect of proximal blood flow arrest during endovascular Thrombectomy (ProFATE): a Multicenter, blinded-end point, randomized clinical trial. *Stroke.* (2025) 56:371–9. doi: 10.1161/STROKEAHA.124.049715
- 17. Knapen RRMM, Goldhoorn RJB, Hofmeijer J, Lycklamaà Nijeholt GJ, van den Berg R, van den Wijngaard IR, et al. Balloon guide catheter versus non-balloon guide catheter: a MR CLEAN registry analysis. *Stroke Vasc Interv Neurol*. (2024) 4:e001103. doi: 10.1161/SVIN.123.001103
- 18. Dhillon PS, Nguyen TN. Temporary blood flow arrest during endovascular thrombectomy for acute ischaemic stroke. *Lancet.* (2024) 404:2132–3. doi: 10.1016/S0140-6736(24)02461-9
- 19. Isingoma P, Moon J, May-Newman K. Manual carotid compression is a viable alternative for reduction of cerebral microemboli. *Cardiovasc Eng Technol.* (2021) 12:353–60. doi: 10.1007/s13239-021-00528-9
- 20. Kai Y, Hamada J, Morioka M, Yano S, Kuratsu J. Treatment of cavernous sinus dural arteriovenous fistulae by external manual carotid compression. *Neurosurgery*. (2007) 60:253–8. doi: 10.1227/01.NEU.0000249274.49192.3B

- 21. Kai Y, Morioka M, Yano S, Nakamura H, Makino K, Takeshima H, et al. External manual carotid compression is effective in patients with cavernous sinus Dural arteriovenous fistulae. *Interv Neuroradiol*. (2007) 13:115–22. doi: 10.1177/159101990701305117
- 22. Demartini Z, Koppe GL, de Almeida C, Teixeira B, Keijiro A, Francisco AN, et al. Matas test revisited: carotid compression for embolization of high-flow pediatric pial arteriovenous fistulas. Journal of neurosurgery. *Pediatrics*. (2021) 27:364–7. doi: 10.3171/2020.7.PEDS20401
- 23. Hillebrand J, Rouhollahpour A, Zierer A, Moritz A, Martens S. Digital carotid compression: a simple method to reduce solid cerebral emboli during cardiac surgery. *J Cardiothorac Vasc Anesth.* (2016) 30:304–8. doi: 10.1053/j.jvca.2015.11.017
- 24. Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hennerici MG. Classification of stroke subtypes. *Cerebrovasc Dis.* (2009) 27:493–501. doi: 10.1159/000210432
- 25. von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD, et al. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy. *Stroke*. (2015) 46:2981–6. doi: 10.1161/STROKEAHA.115.010049
- 26. Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, et al. First pass effect: a new measure for stroke thrombectomy devices. *Stroke.* (2018) 49:660–6. doi: 10.1161/STROKEAHA.117.020315
- 27. Zaidat OO, Ribo M, Mattle HP, Saver JL, Bozorgchami H, Yoo AJ, et al. Health economic impact of first-pass success among patients with acute ischemic stroke treated with mechanical thrombectomy: a United States and European perspective. *J Neurointerv Surg.* (2021) 13:1117–23. doi: 10.1136/neurintsurg-2020-016930
- 28. Lee DH, Sung JH, Kim SU, Yi HJ, Hong JT, Lee SW. Effective use of balloon guide catheters in reducing incidence of mechanical thrombectomy related distal embolization. *Acta Neurochir.* (2017) 159:1671–7. doi: 10.1007/s00701-017-3256-3
- 29. Lee IH, Ha SK, Lim DJ, Choi JI. Distal placement of balloon guide catheter facilitates stent-retriever mechanical thrombectomy for acute ischemic stroke in the anterior circulation. *Acta Neurochir*. (2023) 165:3759–68. doi: 10.1007/s00701-023-05818-w
- 30. Chueh JY, Kühn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ. Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke. (2013) 44:1396–401. doi: 10.1161/STROKEAHA.111.670463
- 31. Seymour T, Kobeissi H, Ghozy S, Gupta R, Kadirvel R, Kallmes DF. Under (back) pressure: better collateral flow may facilitate clot removal in ischemic stroke: a systematic review and meta-analysis. *Interv Neuroradiol.* (2023). doi: 10.1177/15910199231166739
- 32. Moreu M, Gómez-Escalonilla C, Miralbes S, Naravetla B, Spiotta AM, Loehr C, et al. Placing the balloon-guide catheter in the high cervical segment of the internal carotid artery is associated with improved recanalization. *J Neurointerv Surg.* (2025) 17:e326–32. doi: 10.1136/jnis-2024-021650
- 33. Kim TJ, Park HK, Kim JM, Lee JS, Park SH, Jeong HB, et al. Blood pressure variability and hemorrhagic transformation in patients with successful recanalization after endovascular recanalization therapy: a retrospective observational study. *Ann Neurol.* (2019) 85:574–81. doi: 10.1002/ana.25434
- 34. Xu D, Qi P, He Q, Shan D, Yang G, Yang H, et al. Systolic blood pressure modifies the effect of endovascular thrombectomy in acute ischemic stroke: a mediation analysis. *Am J Hypertens.* (2025) 38:206–16. doi: 10.1093/ajh/hpae155
- 35. Vitt JR, Trillanes M, Hemphill JC 3rd. Management of blood pressure during and after recanalization therapy for acute ischemic stroke. *Front Neurol.* (2019) 10:138. doi: 10.3389/fneur.2019.00138
- 36. Deng J, He G, Yi T, Wei L, Lu H, Zhou Q, et al. Neuroprotective effects of rapid local ischemic postconditioning in successful endovascular thrombectomy patients. Stroke. (2024) 55:2896–900. doi: 10.1161/STROKEAHA.124.047674
- 37. Xu Y, Hu W, Chen X, Zhou C, Zhao W, Wu C, et al. Maintaining balance: an update on nonpharmacological cytoprotection therapy for acute ischemic stroke. *Stroke*. (2025). doi: 10.1161/STROKEAHA.125.051589
- 38. Kalsi P, Padmanabhan R, Prasad KSM, Mukerji N. Treatment of low flow, indirect cavernous sinus dural arteriovenous fistulas with external manual carotid compression the UK experience. *Br J Neurosurg*. (2020) 34:701–3. doi: 10.1080/02688697.2020.1716947