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Background: Post-stroke depression (PSD) is a prevalent complication that 
adversely affects recovery following stroke. Repetitive transcranial magnetic 
stimulation (rTMS) has garnered attention as a potential therapeutic intervention 
for PSD. This pilot double-blind randomized trial aimed to assess the feasibility 
and preliminary effects of high- and low-frequency rTMS in PSD, while exploring 
potential neural mechanisms using electroencephalography.
Methods: Chronic stroke survivors diagnosed with PSD were randomly allocated 
to receive either high-frequency rTMS targeting the left dorsolateral prefrontal 
cortex or low-frequency rTMS targeting the right dorsolateral prefrontal cortex 
for 20 sessions. Hamilton Depression Rating Scale were assessed, and resting-
state electroencephalography were recorded at baseline, mid-treatment, and 
post-treatment.
Results: Both high- and low-frequency rTMS were well tolerated and reduced 
depressive symptoms at mid- and post-treatment. Electroencephalography 
analysis did not reveal divergent neural signatures associated with the two 
protocols. However, altered connectivity linking posterior divisions of the middle 
frontal gyrus and specific regions in the theta- and beta-band frequencies were 
associated with the improvement in Hamilton Depression Rating Scale scores.
Conclusion: This pilot study provides preliminary evidence that rTMS is feasible 
for managing PSD across both high- and low-frequency protocols. EEG 
analyses suggest potential neurobiological mechanisms, which may inform 
future research on treatment optimization.
Clinical trial registration: chictr.org.cn, ChiCTR1900021168.
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1 Introduction

Stroke remains the third-leading cause of death and disability 
combined globally. The number of stroke survivors is estimated to 
exceed 200 million by 2050 if current trends persist (1). For effective 
management of stroke survivors, healthcare providers should not only 
focus on secondary prevention and rehabilitation, but also on 
managing mood and emotional disorders that commonly follow 
stroke. Among the many post-stroke mood and emotional 
disturbances, post-stroke depression (PSD) is the most prevalent, with 
a prevalence of about 30%, and is associated with poor recovery, 
negative quality of life, and increased mortality rates (2). Substantial 
advancements have been achieved in efficacious interventions for 
PSD. Beyond pharmacotherapy and psychological therapy for PSD, 
repetitive transcranial magnetic stimulation (rTMS) has shown 
therapeutic effects (3).

High-frequency rTMS over the left dorsolateral prefrontal cortex 
(DLPFC) is a widely used treatment approach in patients with major 
depressive disorder, whereas low-frequency rTMS over the right 
DLPFC has demonstrated comparable antidepressant effects (4). 
Accordingly, a systematic review indicated that both high- and 
low-frequency rTMS were effective for patients with PSD (5). 
However, the majority of previous low-frequency rTMS studies were 
performed alongside antidepressant treatment (6). A randomized 
trial directly comparing the effects of high- and low-frequency rTMS 
on PSD has not yet been reported. Low-frequency rTMS has 
garnered clinical interest for the treatment of PSD for various 
reasons. Epilepsy occurs in 6.4–15% stroke survivors (7). 
Nevertheless, rTMS-induced seizure is a rare but serious adverse 
event, most frequently occurs during high-frequency rTMS (8). 
Low-frequency rTMS, thought to down regulate cortical activity, is 
known for its safety in patients with epilepsy (9), and might be safer 
for individuals with PSD. If therapeutic efficacy is comparable, 
low-frequency rTMS over the right DLPFC might be the preferred 
treatment due to its greater safety profile.

Although the neural mechanisms underlying the therapeutic 
efficacy of rTMS remain unclear, connectivity changes are considered 
crucial for mediating rTMS-induced depression relief in depressive 
disorder (10). Numerous functional magnetic resonance imaging 
studies reported alterations of resting-state functional connectivity 
following rTMS treatment over the DLPFC (11). 
Electroencephalography (EEG), characterized by high temporal 
resolution and frequency specific information, offers unique insights 
in brain activity (12). Advances in EEG source localization, partially 
mitigating low spatial resolution, enhance its utility for studying brain 
networks (13). Regarding resting-state EEG connectivity changes 
following rTMS treatment, alterations in the theta, beta, and gamma 
band frequencies have been reported in previous major depressive 
disorder studies (14–16). In a recent PSD study, increased theta-band 
EEG functional connectivity between the left frontal and right parietal 
cortices was observed following high-frequency rTMS applied over 
the left DLPFC, coinciding with the amelioration of depression 
symptoms (17). The investigation of functional connectivity changes 
may be beneficial for optimizing the rTMS strategy for PSD.

This pilot study aimed to assess the feasibility and preliminary 
effects of high-frequency rTMS over the left DLPFC and low-frequency 
rTMS over the right DLPFC in patients with PSD without concomitant 
antidepressant treatment. Additionally, we  hypothesized that the 

reduction in depressive symptoms following rTMS treatment would 
be associated with changes in EEG functional connectivity.

2 Materials and methods

2.1 Participants and study design

This study followed CONSORT recommendations (18) and was 
registered in the Chinese Clinical Trial Registry (ChiCTR1900021168). 
The study was approved by the ethics committee of Shenzhen People’s 
Hospital, and consent forms were signed by all participants. The 
inclusion criteria were as follows: age 18–75 years; chronic stroke 
survivors of more than 3 months from the first stroke episode and 
without a second stroke; the depressive symptoms occurred more than 
one month following the stroke; met the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition diagnosis of “mood disorder 
due to another medical condition (stroke) with major depressive-like 
episode”; 24-item Hamilton Depression Rating Scale (HAMD-24) 
score ≥20; Chinese speaking; and self-reported right-handedness. 
Patients taking any anti-depression drug 4 weeks prior to enrollment, 
with Mini-Mental Status Exam (MMSE) score <18, with other 
psychiatric history (e.g., schizophrenia), with other neurological 
diseases (e.g., Alzheimer’s disease), with severe medical conditions 
(e.g., heart failure), with a history of substance or alcohol abuse, or 
with any contraindication to TMS (19) were excluded.

This study was designed as a double-blind, randomized controlled 
trial. Participants were randomly allocated to either the high-
frequency rTMS group targeting the left DLPFC (HF-left) or the 
low-frequency rTMS group targeting the right DLPFC (LF-right). The 
allocation sequence was generated using a random number generator 
by an independent assessor uninvolved in stimulation or analysis. 
Participants, outcome assessors and data analyzers were kept unaware 
of the group allocation. Baseline evaluations encompassed 
demographic data, clinical features, HAMD scores, MMSE scores, 
National Institutes of Health Stroke Scale (NIHSS) scores, and resting-
state EEG (rsEEG) measurements (labeled as timepoint 0, T0). 
Subsequently, the participants completed 20 daily sessions of rTMS 
(5 days a week, over a 4-week period). HAMD scores and rsEEG 
assessments were repeated upon completion of 10 and 20 rTMS 
sessions, denoted as timepoints 1 (T1, mid-treatment, after 10 
sessions) and 2 (T2, post-treatment, after 20 sessions), respectively.

2.2 Repetitive transcranial magnetic 
stimulation

rTMS was delivered via a MagPro ×100 magnetic stimulator 
connecting a B658 coil (MagVenture, Farum, Denmark). The coil was 
situated tangentially on the scalp, with its handle positioned diagonally 
toward the posterior-lateral direction at a 45-degree angle from the 
midline. The resting motor threshold was determined as the lowest 
stimulus intensity required to elicit a motor-evoked potential 
surpassing 50 mV in at least 5 out of 10 trials within the relaxed 
abductor pollicis brevis muscle (20). For HF-left rTMS, the coil was 
positioned over the F3 electrode site of the 10–10 EEG system to target 
the left DLPFC. Pulses were delivered at 10 Hz with 100% intensity of 
the resting motor threshold (4-s trains, 26-s intertrain interval, 3,000 
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pulses/session). For LF-right rTMS, the coil was situated over the F4 
electrode site. Pulses were administered at 1 Hz with 100% intensity 
of the resting motor threshold (10-s trains, 1-s intertrain interval, 
2,100 pulses/session).

2.3 EEG acquisition and preprocessing

For the EEG recordings, patients sat comfortably relaxed in a chair. 
Sixty-four Ag–AgCl monopolar electrodes were positioned according 
to the standard 10–10 system., and impedances <10 kΩ were 
maintained. EEG signals were recorded for 8 min with eyes closed. A 
BrainAmpDC amplifier (Brain Products GmbH, Gilching, Germany) 
was used. The FCz channel served as the reference electrode, with the 
ground electrode positioned at AFz during EEG recording. The signals 
were initially recorded at a sampling rate of 5,000 Hz, and subsequent 
offline analysis was conducted. EEG data were exported to MATLAB 
(MathWorks, Inc., Natick, MA, USA), where preprocessing was carried 
out using the EEGLAB toolbox (21). First, visible contaminated 
segments were manually removed. The data underwent filtering 
between 1 and 45 Hz using a finite impulse response filter. Bad channels 
were eliminated and interpolated through spherical spline interpolation. 
Subsequently, the data were segmented into 2-s epochs. Artifacts such 
as eye blinks, muscle activity, and heart noise were eliminated by an 
independent component analysis approach. Finally, the signals were 
referenced to the common average and filtered into delta (1–3 Hz), 
theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) frequency bands.

2.4 EEG source connectivity analysis

We used the Brainstorm toolbox for EEG source localization (22). 
A FreeSurfer average brain template was employed for 62 EEG 
channels (without FCz and AFz) co-registration. The head model was 
computed using a symmetric boundary element method through 
OpenMEEG (23). No noise modeling was used as noise covariance. 
The weighted minimum norm estimate algorithm was employed as an 
inverse solution. Unconstrained dipoles at 3003 vertices on the cortical 
surface were generated and the current density was measured. In the 
Montreal Neurological Institute space, the cortical surface was 
parcellated into 31 regions of interest (ROIs), derived from the 
parcellation of resting-state functional magnetic resonance imaging 
in a prior study (24). The debiased weighted phase lag index (dwPLI) 
was computed to quantify EEG functional connectivity (25). It serves 
as an index of phase-synchronization, with a range between 0 and 1, 
wherein higher values signify stronger connectivity.

2.5 Partial least squares regression

The study utilized the N-way Toolbox (26) to perform the partial 
least squares (PLS) regression analyses which is appropriate to 
investigate the relationship between brain activity and behavior in 
neuroimaging research (27). The left and right posterior divisions of 
the middle frontal gyrus (LPMFG and RPMFG), approximating to the 
stimulated left or right DLPFC, were employed as separate seed regions 
of interest. The changes in dwPLI values between the PMFG to other 
ROIs, from T0 to T1 and from T0 to T2 within each frequency band, 

were considered separate independent variables. Correspondingly, the 
relative changes in HAMD scores from T0 to T1 and from T0 to T2 
were designated as the dependent variables. PLS identified a model 
with a threshold set at 0.75. Cross-validation was conducted employing 
the leave-one-out prediction method. The mean connectivity changes 
within the network linking the PMFG and the ROIs identified in the 
PLS models were each correlated with the relative change in HAMD 
scores. Bonferroni correction was applied for multiple comparisons.

2.6 Statistical analyses

Statistical analyses were conducted using R Statistical Software 
(v4.1.2; R Core Team 2021). The Shapiro–Wilk test was used to assess 
normality. Nonparametric statistics were used as required. For the 
comparison of demographics and clinical features between HF-left 
and LF-right groups, independent t-tests, Fisher’s Exact tests or 
Chi-square test were employed. To assess changes in HAMD scores 
over time, a two-way repeated measures ANOVA was conducted, with 
time (T0, T1, and T2) as within-subject factors and group (HF-left and 
LF-right) as a between-subject factor, followed by post-hoc testing 
using Bonferroni corrected t-tests. EEG functional connectivity 
matrices were compared between groups using network-based 
statistics (NBS) implemented via the NBS toolbox (28). All analyses 
were performed in the modified intention-to-treat population, 
including participants who received at least one treatment.

3 Results

3.1 Participant characteristics

Figure 1 presents the participant enrollment in the study. Twelve 
patients were enrolled, and one withdrew for personal reasons before 
randomization. Five patients were randomized to the HF-left rTMS 
group and six were randomized to the LF-right rTMS group. They 
completed the rsEEG recordings and neuropsychological assessments 
at T0, T1, and T2. Table 1 displays the demographic and baseline 
characteristics. No significant differences in age, sex, baseline HAMD, 
MMSE, NIHSS scores, lesion hemisphere and location, and time since 
stroke were observed across the groups (all p > 0.05). There was no 
significant correlation between HAMD and MMSE, or NIHSS score 
(all p > 0.05).

3.2 Treatment responses

Both HF-left and LF-right rTMS groups showed reductions in 
HAMD scores over time. Mean scores decreased from 24.2 ± 5.4 at 
baseline to 9.6 ± 6.5 at T1 and 7.8 ± 6.02 at T2 in the HF-left group 
(Cohen’s d = 2.42, 95% CI: 0.52–4.32 and 2.87, 95% CI: 0.70–5.03, 
respectively), and from 26 ± 9.19 to 11.3 ± 5.89 and 8.83 ± 5.46 in the 
LF-right group (d = 1.73, 95% CI: 0.60–2.87 and 2.26, 95% CI: −0.09 - 
4.61) (Figure 2). The ANOVA revealed no significant main effect of 
group or group × time interaction, but a significant main effect of time 
was observed (F2,8 = 69.08, p < 0.001). The post hoc analysis uncovered 
a notable reduction in HAMD scores from T0 to T1 (t10 = −8.22, 
p < 0.001, Bonferroni-corrected), as well as from T0 to T2 (t10 = −6.90, 
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p < 0.001, Bonferroni-corrected). Both interventions were well-
tolerated and safe, with full adherence and no reported adverse events.

3.3 EEG differences between groups

NBS were used to assess functional connectivity across all frequency 
bands at T0, T1, and T2. No significant between-group differences or 
within-group changes were observed (primary t-threshold = 0.05, 5,000 
permutations, family-wise error corrected p > 0.05).

3.4 EEG changes and clinical improvements

For HAMD changes from T0 to T1, a theta frequency PLS model 
identified a connection between the LPMFG and the left 

supplementary eye field (LSEF), right insular cortex (RINS), and right 
middle temporal gyrus (RMTG); a higher theta band dwPLI change 
in this model correlated with a greater HAMD score change (r = 0.83, 
95% CI: 0.46–0.96, Bonferroni-corrected p = 0.01) (Table  2 and 
Figure 3). The PLS models were not significant in the delta, alpha, and 
beta bands for the LPMFG, nor in any frequency band for the RPMFG 
(all p > 0.05; Table 2).

For HAMD changes from T0 to T2, a theta frequency PLS model 
identified the connection between the LPMFG and right anterior 
division of middle frontal gyrus (RAMFG) and right frontal eye field 
(RFEF); a larger theta band dwPLI change was correlated with a 
greater HAMD score change (r = 0.80, 95% CI: 0.37–0.94, Bonferroni-
corrected p = 0.03) (Table 2 and Figure 4A). A beta frequency PLS 
model identified the connection between the RPMFG and the right 
orbitofrontal cortex (RORB); a greater beta band dwPLI change was 
correlated with a higher HAMD score change (r = 0.78, 95% CI: 

FIGURE 1

Flowchart depicting the CONSORT guidelines for the study.

https://doi.org/10.3389/fneur.2025.1671487
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Su et al.� 10.3389/fneur.2025.1671487

Frontiers in Neurology 05 frontiersin.org

0.34–0.94, p = 0.04, Bonferroni-corrected) (Table 2 and Figure 4B). 
PLS models for LPMFG in the delta, alpha, and beta were not 
significant, as well as that for RPMFG in the delta, theta and alpha 
band (all p > 0.05, Table 2).

4 Discussion

This pilot study suggests that high-frequency rTMS to the left 
DLPFC and low-frequency rTMS to the right DLPFC are safe, feasible, 
and potentially effective for reducing depressive symptoms in PSD, 

TABLE 1  Demographic and clinical characteristics of the participants in 
high-frequency rTMS targeting the left dorsolateral prefrontal cortex 
(HF-left) and low-frequency rTMS targeting the right dorsolateral 
prefrontal cortex (LF-right) groups.

Characteristic HF-left
(n = 5)

LF-right
(n = 6)

p-value

Age (years) 58.6 ± 5.3 61.8 ± 9.3 0.51

Sex, female [n (%)] 2 (40%) 4 (67%) 0.57

HAMD 24.2 ± 5.4 26 ± 9.19 0.71

MMSE 26.2 ± 4.09 26.2 ± 4.71 0.99

NIHSS 1 ± 1.73 2.5 ± 2.74 0.32

Lesioned hemisphere (n) 0.18

  Right 5 3

  Left 0 2

  Both 0 1

Lesion Location (n) 0.56

  Sub-cortical 4 3

  Cortical-sub-cortical 0 1

  Brainstem 1 1

  Corpus callosum 0 1

Time since stroke (months) 9.4 ± 4.4 13.8 ± 8.7 0.33

HAMD, Hamilton Depression Rating Scale. MMSE, Mini-Mental Status Exam. NIHSS, 
National Institutes of Health Stroke Scale.

FIGURE 2

Hamilton Depression Rating Scale scores at baseline (T0), mid-
treatment (T1), and post-treatment (T2) in the high-frequency left 
dorsolateral prefrontal cortex (HF-left) and low-frequency right 
dorsolateral prefrontal cortex (LF-right) rTMS groups.

TABLE 2  Fitted R2 and cross-validated R2 of PLS models generated for 
rTMS response and connectivity change in different frequency bands 
from baseline to mid-treatment (T0-T1), and from baseline to post-
treatment (T0-T2).

Frequency T0-T1 T0-T2

LPMFG RPMFG LPMFG RPMFG

Delta [0.35; 0.31] [0.45; 0.44] [0.35; 0.34] [0.38; 0.26]

Theta [0.59; 0.53]* [0.35; 0.31] [0.32; 0.30] * [0.74; 0.50]

Alpha [0.76; 0.62] [0.49; 0.45] [0.51; 0.49] [0.58; 0.54]

Beta [0.62; 0.52] [0.60; 0.37] [0.30; 0.13] [0.36; 0.35] *

Data are presented as [Fitted R2; Cross-validated R2]. *Statistically significant results 
(Bonferroni-corrected p < 0.05). LPMFG, left posterior division of middle frontal gyrus. 
RPMFG, right posterior division of middle frontal gyrus.

FIGURE 3

From baseline (T0) to mid-treatment (T1), changes in left posterior 
division of middle frontal gyrus (LPMFG) connectivity, correspond 
with clinical response in the theta band. Connectivity alterations in 
theta band, involving LPMFG and distinct brain regions, correlate 
with improvements in Hamilton Depression Rating Scale (HAMD) 
scores. Lower panels depict the correlation between mean 
connectivity changes in the network and HAMD score changes in 
high-frequency rTMS targeting the left dorsolateral prefrontal cortex 
(HF-left) and low-frequency rTMS targeting the right dorsolateral 
prefrontal cortex (LF-right) groups. LSEF, left supplementary eye field; 
RINS, right insular cortex; RMTG, right middle temporal gyrus.
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with generally similar clinical outcomes between the two treatments. 
Moreover, rTMS-induced clinical improvements may correlate with 
changes in theta- and beta-band EEG functional connectivity 
following treatment. After ten sessions, increased theta-band 
connectivity of the LPMFG with the LSEF, RINS, and RMTG 
correlated with reductions in HAMD scores. After 20 sessions, HAMD 
score changes were linked to theta-band connectivity of LPMFG with 
RAMFG and RFEF, and to beta-band connectivity between RPMFG 
and RORB.

Preliminary results suggest that low-frequency right DLPFC 
rTMS and high-frequency left DLPFC rTMS produce comparable 
antidepressant effects in PSD, consistent with findings in MDD 
treatment (29). High-frequency rTMS over the left DLPFC has 
previously been reported to alleviate depressive symptoms in PSD 
compared with sham stimulation (17). As stroke is the most common 

cause of epilepsy in adults (7), low-frequency rTMS, which is safe for 
epilepsy, is preferred for stroke survivors. Previous studies have 
reported that low-frequency rTMS combined with antidepressants 
improves depressive symptoms in PSD. However, the distinct side-
effect profile of antidepressants may compromise tolerability, 
complicate therapy, or necessitate discontinuation (30). For example, 
fluoxetine appears effective in alleviating depression in PSD but may 
pose risks, including fractures, hyponatremia, and possible 
impairments in memory and communication (31). Our findings 
highlight the potential utility of low-frequency rTMS alone. Along 
with feasible recruitment, reliable outcomes, and no adverse events 
support its safety, tolerability, and the rationale for a larger 
confirmatory trial.

Differing neurophysiological responses were considered to 
underpin high-frequency and low-frequency rTMS. Generally, 

FIGURE 4

From baseline (T0) to post-treatment (T2), alterations in both left posterior division of middle frontal gyrus (LPMFG) and right posterior division of 
middle frontal gyrus (RPMFG) connectivity, are associated with clinical response across different frequency bands. Connectivity alterations in LPMFG 
connectivity in theta (A) band, as well as RPMFG connectivity in beta (B) band involving distinct brain regions, correlate with improvements in Hamilton 
Depression Rating Scale (HAMD) scores. Lower panels depict the correlation between mean connectivity changes in each network and HAMD score 
changes in high-frequency rTMS targeting the left dorsolateral prefrontal cortex (HF-left) and low-frequency rTMS targeting the right dorsolateral 
prefrontal cortex (LF-right) groups. RAMFG, right anterior division of middle frontal gyrus; RFEF, right frontal eye field; RORB, right orbitofrontal cortex.
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high-frequency rTMS leads to increased excitability, whereas 
low-frequency rTMS results in cortical inhibition when applied to the 
motor and prefrontal cortices (32). As rTMS over the DLPFC has been 
extensively reported to modulate resting-state functional connectivity 
(11), we  further explored connectivity alterations associated with 
treatment response. Due to the lack of significant group differences in 
functional connectivity and the small sample size, we focused on a 
shared mechanism by which both high- and low-frequency rTMS 
alleviate depressive symptoms, rather than on their differences. A 
preliminary finding of this study was that rTMS ameliorates depressive 
symptoms, accompanied by enhancing functional connectivity in the 
theta and beta frequency bands.

Theta oscillation, a main feature dominating the resting-state 
EEG, arises from complex interactions between the medial septum-
diagonal band of Broca and the intra-hippocampal circuits (33). 
Theta oscillation involves various aspects of cognition such as 
memory encoding, locomotion, and spatial navigation (34). Theta 
power has also been proposed as a potential biomarker for depression, 
with observed alterations in the anterior cingulate cortex, fronto-
midline, and frontal theta power (35). Impaired theta connectivity in 
anterior regions in patients with major depression were reported (36). 
Theta connectivity alterations were observed in treatment responders 
of rTMS therapy in depression patients; nevertheless, the 
contradictory outcomes from a larger dataset were reported by the 
same group of authors recently (14, 37). In stroke survivors, 
functional connectivity in the theta band were significantly increased 
after intermittent theta burst stimulation (38). Moreover, the 
interhemispheric theta frontoparietal connectivity may be  a 
mechanism underlying the effectiveness of high-frequency rTMS in 
PSD (17).

Beta oscillations, primarily generated in the cortex and basal 
ganglia, are thought to support sensorimotor, cognitive, and affective 
processes (39). Alterations in beta-band connectivity have been widely 
reported in depression, with both increases and decreases observed 
(40). Although attenuation of beta-band EEG connectivity is 
frequently reported in stroke (41, 42), its relationship with post-stroke 
depression remains unclear. High-frequency left prefrontal rTMS has 
been shown to increase resting-state beta-band connectivity between 
the left dorsolateral prefrontal cortex and limbic regions in treatment-
resistant depression (15). Consistent with this, we found that increases 
in beta-band connectivity were positively correlated with the change 
in HAMD scores following rTMS treatment. How functional 
connectivity relates to rTMS-induced clinical improvement in PSD 
warrants further investigation.

This study is subject to several limitations warranting 
consideration. The most important is the very small sample size, 
which restricts the ability to draw firm conclusions about treatment 
effects. Additionally, the lack of a sham control group limits the 
ability to distinguish specific from placebo effects, particularly 
since no significant differences between groups were observed 
here. The absence of long-term follow-up prevents assessment of 
the durability of improvements. The study did not track stroke 
severity during treatment, restricting understanding of the 
intervention’s impact on overall disease progression. Moreover, 
while functional connectivity was examined as an exploratory 
feature, the small sample precludes meaningful interpretation of 
these findings. Finally, the lack of analysis of lesion location and 
volume limits interpretation of connectivity changes and restricts 

insights into how specific brain regions may influence treatment 
response. These limitations necessitate a larger, adequately powered 
trial to assess efficacy and the mechanistic role of 
functional connectivity.

5 Conclusion

In conclusion, this pilot study demonstrates that low-frequency 
rTMS is feasible, well tolerated, and may have effects comparable to 
high-frequency rTMS in alleviating depressive symptoms in patients 
with PSD, with recruitment, adherence, and data collection 
successfully achieved. These findings provide valuable guidance for 
designing a larger, adequately powered trial. Additionally, exploratory 
analyses suggest that theta- and beta- EEG functional connectivity 
may provide insights into treatment mechanisms, warranting further 
investigation in larger trials.
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