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Background: Multiple sclerosis is an inflammatory demyelinating disease of the 
CNS. Annual MRI exams are crucial for disease monitoring. Interpreting high T2/
FLAIR lesion loads can be laborious. AI aids in lesion detection, and choosing 
between different solutions can be challenging.
Aim: This study compares two distinct software, Pixyl.Neuro.MS® and Jazz®, to 
assess their performance in T2/FLAIR lesion detection between two-time points.
Methods: Retrospective analysis included follow-up MRIs from 35 MS patients. 
Pixyl.Neuro.MS® automatically segments and classifies lesions. Jazz® automates 
the reading process and image display. Two readers (15 and 4 years of 
experience) conducted radiological analysis, followed by AI-assisted readings. A 
number of new lesions (NL) and reading times were recorded, with ground truth 
(GT) established by consensus. AI-detected lesions were classified as true (TP) 
and false positives (FP). Statistical analysis used SPSS (p < 0.05).
Results: Pixyl.Neuro.MS® readings averaged 2 min 46 s ± 1 min 4 s while using 
Jazz® 3 min 33 s ± 2 min 24 s. Over 50% of the population had a high lesion 
load (>20 lesions). Both software significantly improved NL detection (p < 0.01 
for both), revealing them in more patients than standard readings. Standard 
reports found 8 NL in 2 patients, while AI-assisted readings detected at least 17 
TP in 7 patients and rejected 61 FP lesions. GT detected 21 lesions in 19 patients.
Conclusion: Both AI software have been found to enhance NL detection in MS 
patients, outperforming standard methods. These tools offer crucial advantages 
for accurate disease monitoring.
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1 Introduction

Multiple sclerosis (MS) is a widespread  inflammatory 
demyelinating disease characterized by the presence of demyelinating 
lesions predominantly located in the central nervous system, typically 
distributed across periventricular, cortical/juxtacortical, infratentorial, 
and spinal cord regions (1, 2). The global prevalence of MS has 
witnessed a notable increase from 2.3 million individuals in 2013 to 
2.8 million in 2020, highlighting the significant burden this condition 
imposes on healthcare systems worldwide. Despite extensive research 
efforts, a definitive cure for MS remains elusive, with current 
therapeutic interventions primarily focused on mitigating the risk of 
relapses and disability progression (3–7).

MAGNIMS group recommends at least yearly follow-up MRI 
exams of MS patients, or more frequently if there is a modification 
in the treatment strategy with a 3–6 months MRI after the initiation 
of treatment (8). OFSEP working group (9) highlights the 
importance of gadolinium contrast agent deposition in the brain 
and suggests that contrast is unnecessary in every follow-up exam. 
Therefore, accurately detecting new or enlarging T2/FLAIR lesions 
on follow-up magnetic resonance imaging (MRI) scans serves as a 
critical marker for tracking the evolution of MS disease progression 
(8, 10, 11). However, evaluating MS lesions poses considerable 
challenges due to the inherent variability in lesion distribution and 
load among patients. Visual lesion detection, the traditional 
approach, is not only time-consuming but also lacks consistent 
reproducibility (12).

In response to this challenge, the field has witnessed a surge in the 
development of artificial intelligence (AI) solutions tailored to MRI 
imaging in MS patients. These AI applications encompass a spectrum 
of software aimed at lesion detection and segmentation in MRI images, 
leveraging both conventional machine learning and deep learning 
techniques (13–17). Some AI software tools perform a longitudinal 
analysis of images to detect any new lesions directly between two visits. 
In contrast, others prioritize automating the reading process using AI 
to provide assistance to radiologists. However, navigating the multitude 
of available radiological software options presents a significant 
challenge for clinicians and researchers alike (18, 19).

Radiological workflow in everyday clinical practice consists of 
several steps that cannot be skipped, including protocol adaptation, 
display of images, co-registration of images, image interpretation in 
addition to other relevant clinical data, and finally, the summarization 
of all relevant findings in a final report. Software like Jazz® and Pixyl.
Neuro.MS® are examples of AI tools that radiologists can use to assist 
with various steps in their workflow. These two software have distinct 
functionalities: Jazz® software (20) does a co-registration of images, 
displaying them to the radiologist in a more simplified manner, 
enabling single-click switching between previous and current images; 
conversely, Pixyl.Neuro.MS® software (21) performs lesion 
segmentation, providing radiologists with an AI-generated lesion 
mask with color-coded lesions to indicate their evolution.

Hence, this study aims to address this question by comparing the 
performance of two distinct software platforms, each with its unique 
functionalities, in aiding T2/FLAIR new lesion detection during the 
follow-up of MS patients.

Our aim was to determine the efficacy of these software solutions 
in facilitating the detection and characterization of MS lesions on MRI 

scans, ultimately contributing to improved patient care and 
management strategies.

2 Materials and methods

This retrospective study included 35 patients with MS who were 
referred to our institution for second opinion and follow-up for severe 
disease progression or high burden of MS lesions. All patients 
provided their written informed consent. Ethical approval was 
obtained from the Institutional Review Board of CPP Ile-de-France 
VI (ID RCB: 2019-A03066-51).

2.1 MRI acquisition

All patients underwent both a prior and a follow-up MRI scan 
using the same Siemens 3 T Skyra scanner (Erlangen, Germany). The 
standard OFSEP protocol for imaging of MS patients was used, 
including 3D FLAIR, thin slice 3D T1, axial DWI and ADC, and if 
needed 3D T1 post contrast, SWI, T2, DTI. However, for this 
retrospective study only FLAIR sequences were used for lesion 
analysis with the following parameters: TR = 7,000 ms, TE = 2.9 ms, 
TI = 900 ms, slice thickness = 1 mm, dFOV = 36.1 × 25.6 cm, 
resolution = 256 × 240. All images were pseudonymized 
before analysis.

2.2 Image analysis workflow

To evaluate MS lesion detection, we implemented a structured 
three-step analysis:

2.2.1 Standard clinical reading
The standard clinical reports used for comparison were generated 

in routine practice by different board-certified radiologists with 
varying years of experience. This heterogeneity reflects real-world 
clinical conditions and ensures that the study results are representative 
of daily reporting practice.

2.2.2 Reassessment using Jazz® software
MRI scans were reanalyzed using Jazz® (version 1.0.0, AI Medical, 

Switzerland), an AI-assisted software designed to facilitate lesion 
detection through automated co-registration of longitudinal FLAIR 
sequences. The software integrates a dedicated visualization 
environment tailored for multiple sclerosis follow-up.

In practical terms, Jazz® enables radiologists to directly compare 
prior and follow-up scans at the same anatomical location, allowing 
instantaneous toggling between time points with a single click 
(mouse or keyboard shortcut). This synchronized display helps the 
reader identify subtle signal changes. In addition, the software 
provides a “lesion locking” option: once a lesion is selected, the tool 
automatically tracks its anatomical location across different time 
points, ensuring consistent assessment of potential lesion evolution 
(Figure 1).

For this study, two independent readers reassessed the cases with 
both software solutions: one senior neuroradiologist with 15 years of 

https://doi.org/10.3389/fneur.2025.1678073
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mastilović et al.� 10.3389/fneur.2025.1678073

Frontiers in Neurology 03 frontiersin.org

experience and one radiology trainee with 4 years of experience. The 
workflow using Jazz® software included (i) review of the paired 
longitudinal FLAIR images within the Jazz® interface, (ii) use of the 
integrated annotation tool to label new lesions, and (iii) recording of 
the time required for each case. At the end of the evaluation, Jazz® 
automatically generated a structured quantitative report 
summarizing the number of new lesions identified, linked to the 
annotated regions.

The software is designed to fit into clinical routine by allowing 
radiologists to quickly switch between native images and AI-assisted 
visualizations without altering the standard reporting process. While 
the primary focus in this study was on new lesion detection, Jazz® also 
provides quantitative lesion counts that can be exported as part of the 
final report.

2.2.3 Reassessment using Pixyl.Neuro.MS® 
software

Six months later, the same two readers reanalyzed the images 
using Pixyl.Neuro.MS® (version 1.8.7, Pixyl SAS, France) a CE-marked 
and FDA-cleared cloud-based medical device for quantitative brain 
MRI analysis. Pixyl. Neuro® is organized into several dedicated 
modules tailored to different clinical contexts; in this study, the MS 
module (Pixyl.Neuro.MS®) was used for longitudinal monitoring of 
multiple sclerosis patients.

The workflow is as follows: DICOM images exported from the 
MRI scanner are pseudonymized and uploaded to the Pixyl platform. 
In routine clinical practice, images can be retrieved automatically 
from the PACS and results are returned directly to the hospital PACS 
as DICOM overlays and structured reports. For this research setting, 
however, all analyses were launched manually, and a dedicated web 
interface and a secure data sharing system was used to facilitate the 
review of outputs.

The MS module integrates a complete processing pipeline: (i) 
automated image preprocessing and quality control, (ii) segmentation 

using a supervised deep learning algorithm based on convolutional 
neural networks (CNNs), and (iii) automated generation of results and 
reports in DICOM format.

Pixyl.Neuro.MS® processes 3D T2-FLAIR sequences independent 
of the MRI manufacturer. The software automatically segments white 
matter hyperintensity lesions and quantifies lesion load by anatomical 
regions. When two time points are available, its longitudinal module 
generates a color-coded activity map (red for new lesions, blue for 
stable lesions, yellow for enlarging lesions) together with a quantitative 
report summarizing lesion number, volume, and classification (stable, 
new, or growing; Figure 2).

In this study, we specifically used the longitudinal setting, and the 
radiologists concentrated solely on the detection of new lesions.

To prevent recognition bias, the cases were presented in a different 
order from the previous evaluation.

While two authors of the manuscript are affiliated with the software 
companies, several measures were taken to ensure an independent and 
unbiased validation. First, the retrospective analysis and validation 
were performed by authors with no ties to either company. Second, the 
MRI cases included in the study were not previously used for software 
development or training, ensuring that both AI solutions were tested 
on independent real-world data. Third, the AI-assisted outputs were 
compared against a ground truth established by experienced 
neuroradiologists who had no involvement in software development. 
Together, these safeguards minimize the risk of industry bias and 
strengthen the objectivity of our findings.

2.3 Ground truth definition

The final ground truth for lesion detection was established 
through a side-by-side review of prior and follow-up MRIs by the 
same two readers, who reached a consensus on the exact number of 
new T2/FLAIR lesions. The ground truth evaluation defined a new 

FIGURE 1

The figure represents the reading interface in Jazz® software. It allows a comparison of previous and new MRI FLAIR images of a patient with MS. The 
reader can easily switch from previous to new image, and vice versa, just by mouse clicking or using a keyboard shortcut (A), while there is as well 
lesion locking option (B) when the software automatically detects lesion’s anatomical location.
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lesion as an area of abnormality measuring at least 3 mm in the axial 
plane (1), located in typical MS regions (periventricular, juxtacortical, 
infratentorial) or within non-specific white matter. Only 3D FLAIR 

sequences were used for lesion detection. AI software outputs (from 
Jazz® and Pixyl.Neuro.MS®) were incorporated into the consensus 
process to assess the validity of detected lesions.

FIGURE 2

The figure shows representation of longitudinal evaluation of previous and new FLAIR images of a MS patient with high lesion load using Pixyl.Neuro.
MS® segmentation mask. The lesions are color-coded in the segmentation mask: blue – stable lesion, red – new lesion. The white arrows in C3 
indicate a new lesion detected using Pixyl.Neuro.MS®, confirmed by comparison of new (C2) and previous (C1) exams.
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2.4 Statistical analysis

Statistical analysis was performed using the SPSS Statistics 27 
package (IBM, SPSS, NY). Descriptive statistics included mean, 
median, and standard deviation for quantitative variables, while 
qualitative values were expressed as ratios. The Wilcoxon signed-rank 
test was used to determine statistically significant differences between: 
(1) the number of patients with new lesions detected by ground truth 
versus standard radiological reports; (2) the number of new lesions 
detected using Jazz® and Pixyl.Neuro.MS® compared to standard 
reports. Significance was set at α < 0.05. Correlation between readers’ 
performances was assessed using Pearson’s correlation coefficient, with 
the following interpretation: r ≤ 0.19—very low correlation; 0.2–0.39—
low correlation; 0.4–0.59—moderate correlation; 0.6–0.79—high 
correlation; 0.8–1—very high correlation. This structured approach 
ensures a clear workflow, minimizing bias while assessing the added 
value of AI-assisted lesion detection in MS follow-up imaging.

3 Results

3.1 Patient population

The patients’ demographic and MRI characteristics are given in 
Table 1. The analysis included 35 patients (mean age 48.8 ± 12.75) 
with multiple sclerosis with follow-up exams. Our cohort consisted of 
75% women and 25% men. Lesions load varied from less than 10 
lesions to more than 20 lesions, with the majority of patients exhibiting 
a severe lesion load of more than 20 lesions at the cerebral level 

(54.29%). In comparison, 28.57% had between 10 and 20 lesions, and 
8.86% had less than 10 lesions.

3.2 Inter-reader reliability

A correlation analysis revealed a high and statistically positive 
correlation between readers when using both Pixyl.Neuro.MS® 
(r = 0.73, p < 0.001) and Jazz® software (r = 0.75, p < 0.001).

3.3 Reading time

Reading added time using Pixyl.Neuro.MS® software took on 
average 2 m 46 s ± 1 m 4 s for both readers, while the reading time was 
on average 2 min 12 s ± 51 s for reader 1, and 3 min 26 s ± 1 min 5 s 
for reader 2.

Reading added time using Jazz® software took, on average, 3 m 
33 s ± 2 m 24 s for both readers, while the reading time was, on 
average, 2 m 25 s ± 1 m 6 s for reader 1, and 4 m 41 s ± 2 m 48 s for 
reader 2.

3.4 New T2/FLAIR lesions

The ground truth reported 21 new lesions from 9 patients 
(Figure  3). With the use of Pixyl.Neuro.MS® software, reader 1 
reported 19 true positive lesions from 9 patients, while reader 2 
reported 20 true positive lesions from 8 patients. On the other hand, 
with the use of Jazz® software, reader 1 reported 19 true positive lesions 
in 8 patients, while reader 2 reported 17 true positive lesions in 7 
patients. The standard report reported 8 new lesions in 2 patients.

A statistically significant difference exists between the number of 
patients with new lesions detected by radiological reading using Pixyl.
Neuro.MS® and Jazz® software compared to the number of patients 
with new lesions detected by the standard radiological report 
(z = −2.646, p < 0.01 for both software).

Finally, compared to the ground truth, 61 false positive new lesions 
were detected by Pixyl.Neuro.MS® software alone, and radiologists did 
not retain these lesions (Figure 4). False positive lesions were associated 
with artifacts in 40% (24/61) of cases, while the remaining 60% (38/61) 
resulted from co-registration errors (28%) and the presence of slowly 
enlarging lesions (SELs; 26%).

The addition of AI support markedly improved lesion detection 
compared to standard clinical reports. The standard reports, 
produced in routine practice, showed very high specificity and PPV 
(100%) but low sensitivity (22.2%), reflecting the tendency to miss 
subtle new lesions under clinical time constraints, in a population 
with a large number of MS lesions per patient. When using Jazz®, 
both readers achieved substantially higher sensitivities (77.8–88.9%) 
while maintaining perfect specificity and PPV, highlighting its 
ability to increase lesion detection without introducing false 
positives. Pixyl® further increased sensitivity, reaching 100% for 
both readers, although Reader 2 experienced a slight decrease in 
specificity (96.2%) and PPV (90%), indicating a small number of 
false positives. When used in a fully automated mode, Pixyl® 
detected all true lesions (100% sensitivity and NPV) but generated 
a high number of false positives, leading to low specificity (26.9%) 

TABLE 1  Study population characteristics.

Demographic and MRI characteristics

Number of patients 35

 � Female 26

 � Male 9

Age, mean (SD), years 48.8 ± 12.75

 � Female 50.27 ± 13.28

 � Male 44.55 ± 12.58

EDSS, median (interquartile range)

 � Baseline 4 (2.5–6)

 � Follow-up 4 (2.5–6)

 � EDSS change 0 (0–0.5)

Time between scans, days (interquartile 

range)

499 (234–690)

Lesion load, number (%)

 � <10 lesion 6 (17.14%)

 � 10–20 lesions 12 (34.28%)

 � >20 lesions 17 (48.57%)

Clinical form, number (%)

 � Relapsing–remitting 21 (60%)

 � Primary progressive 2 (5.71%)

 � Secondary progressive 12 (34.29%)
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and PPV (31.2%). These results suggest that both software solutions 
enhance lesion detection compared to standard practice, with Jazz® 
favoring specificity and precision, while Pixyl® maximizes sensitivity 
but requires radiologist oversight to filter out false positives 
(Table 2).

4 Discussion

In this study, AI-assisted radiological assessments 
significantly improved lesion detection in MS patients with a 
high lesion load.

Compared to standard MRI reading, both Pixyl.Neuro.MS®, 
which automates lesion segmentation, and Jazz®, which optimizes 
follow-up image display, enhanced radiologists’ ability to identify new 
lesions (z = −2.646, p = 0.01 for both software). This resulted in 
additional lesion detection in 20 and 22% of cases (reader 1 and reader 
2, respectively), highlighting the potential of AI in challenging 
diagnostic scenarios. The early and accurate detection of new FLAIR 
lesions is one of the most important parameters for therapeutic 
decision-making since it helps estimate actual disease activity (22, 23). 
Changes in the lesion count were found to influence therapeutic 
decisions in various ways, potentially leading to treatment escalation 
in cases of breakthrough disease. However, a manual follow-up 

FIGURE 3

The figure shows an example of the lesion (indicated by the white arrow) missed by radiological evaluation by Jazz® software, while it was detected by 
AI-assisted radiological report made using Pixyl.Neuro.MS® software.

FIGURE 4

The figure represents a false positive lesion (indicated by the white arrow) which was segmented as a new lesion but actually represents an artifact 
located at the interface between cerebrospinal fluid and brain parenchyma.
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evaluation of MRI exams remains challenging for radiologists, 
especially in advanced stages that have a high lesion burden.

Several factors contribute to these difficulties. Initially the 
detection of new lesions is complicated by the multiple pre-existing 
lesions, especially when they are small or when their localization is in 
areas of tissue remodeling. Second, brain atrophy, a common feature 
in MS, alters brain morphology and can introduce interpretation 
errors. Finally, the interrater variability in neuroradiology still 
represents an issue which can be responsible for inconsistencies in 
lesion identification.

In this context, AI provides valuable assistance by improving 
objectivity and reproducibility in image analysis. Pixyl.Neuro.MS® and 
Jazz® exemplify two complementary approaches: segmentation-based 
versus co-registration/display-based. Pixyl.Neuro.MS® provides fully 
automatic quantitative outputs (lesion count, lesion volume, activity 
maps), offering a standardized method to track disease evolution, but 
at the cost of occasional false positives that require validation. Jazz®, on 
the other hand, provides a quantitative information but not the lesion 
masks, improving visual comparison between time points, thereby 
reducing the risk of missing subtle changes while keeping the final 
decision fully dependent on the radiologist.

These operational differences also imply distinct workflow 
consequences. In clinical practice, Pixyl.Neuro.MS® integrates with 
PACS and produces structured DICOM reports and overlays, which 
can facilitate multicenter standardization and longitudinal monitoring. 
Jazz® functions more as a reading accelerator, streamlining the 
toggling between prior and follow-up scans. The choice between the 
two may thus depend on whether the clinical priority is quantitative 
lesion tracking or rapid and confident visual assessment.

Our results align with a previous study that has explored AI’s role 
in MS imaging. The study of Combes et al. (24) shows the improved 
detection of new lesions when utilizing segmentation masks during 
radiological reading, whereas the study of Federau et al. (25) shows 
the improved detection of new lesions using AI-based software for the 
longitudinal MRI assessments of MS patients.

However, the impact of AI on diagnostic efficiency depends 
mainly on data quality and algorithm training. Conversely to the 
studies whose focus was on moderate lesion load cases, our study 
specifically investigated patients with a high lesion burden, where AI’s 
added value is particularly relevant. Our cohort was intentionally 
biased toward patients with a high lesion load, as the clinical advantage 
of AI-assisted detection is most pronounced when manual 
identification of new lesions becomes more difficult due to the sheer 

number of pre-existing lesions. While previous AI studies in 
inflammatory conditions have typically included mixed cohorts (26), 
the greatest detection challenges, and thus the most potential for AI 
benefit occur in cases with extensive lesion burden. This specificity 
could explain why the improvement in detection rate observed in our 
study was statistically significant.

One major consideration for integrating AI into neuroradiology 
is its effect on workflow efficiency. In our study, the average reading 
time with AI assistance was 2 min 46 s for Pixyl.Neuro.MS® and 
3 min 33 s for Jazz®, compared to an estimated 4 min for 
neuroradiologists and 8 min for radiology residents in conventional 
reading reported in the literature (27). A study by Sima et al. (32) 
showed that the use of AI software resulted in statistically shorter 
reading times compared to standard radiological reading. Similar 
results were shown by Peters et al. (28) and Combes et al. (24), who 
demonstrated shorter reading times when using AI compared to 
reading times without AI. Even though we did not compare reading 
times without and with the use of AI, our results suggest a potential 
time-saving benefit, though this advantage may be offset by the 
need to verify AI outputs. While AI identifies more lesions, it can 
also produce false positive results, which need to be validated by 
radiologists (29). The majority of false positive results in our study 
were associated with co-registration errors, either only 
co-registration or linked to the presence of severe atrophy. 
Additionally, some SELs that were considered new in new exams 
were reclassified as SELs upon further radiological evaluation. 
We also encountered artifacts that were mistakenly identified as 
new lesions. These artifacts typically appear at the boundary where 
fluid meets the air and the bone, which cannot be  completely 
suppressed in 3D FLAIR sequences (30). This aspect of AI validation 
may explain why the reading times might even increase in 
clinical practice.

Several limitations should be considered when interpreting 
our results. Firstly, our study was conducted on a relatively small 
cohort of 35 patients, with total of 21 new lesions, which limits the 
generalizability of the findings but nevertheless provides an 
important first step toward understanding how such software 
solutions may perform in clinical practice. Patients which were 
included in our study mostly had high lesion loads (>20 lesions), 
which prevented us from assessing AI’s performance in early-stage 
or low-burden cases. Secondly, MRI readings were performed in 
an already pre-prepared environment, which may not fully reflect 
everyday clinical workflow. A limitation of our study is that 
AI-assisted lesion detection was not applied under routine clinical 
conditions. Standard clinical reports were generated in daily 
practice, often under time constraints and other pressures, 
whereas the AI-assisted assessments were conducted in a 
controlled, experimental environment. This difference may partly 
contribute to the improved lesion detection observed with AI 
support. Future studies should investigate AI-assisted detection 
directly in clinical routine to better understand its practical 
impact. We  evaluated only FLAIR sequences, whereas the 
integration of other sequences, such as DIR, DWI, and T1 post-
contrast, could have an impact on the enhanced lesion 
characterization. Lastly, our study did not assess whether 
AI-enhanced lesion detection can be translatable to improve long-
term clinical outcomes.

TABLE 2  Diagnostic testing accuracy table provides sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value 
(NPV) based on the patient-level.

Radiological 
report

Sensitivity Specificity PPV NPV

Standard report 22.2% 100% 100% 78.8%

Reader 1 + Jazz 88.9% 100% 100% 96.3%

Reader 2 + Jazz 77.8% 100% 100% 92.9%

Reader 1 + Pixyl 100% 100% 100% 100%

Reader 2 + Pixyl 100% 96.2% 90% 100%

Pixyl 100% 26.9% 31.2% 100%
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It should also be noted that since the time of this study, several 
new releases of Pixyl.Neuro.MS® and Jazz® have become available, 
with improvements specifically aimed at reducing false positives. Our 
results therefore reflect the performance of the evaluated version at the 
time of analysis, and may not fully capture the capabilities of more 
recent software iterations.

The use of AI tool which improves lesion detection opens a 
promising avenue in neuroradiology and aligns with the broader 
evolution toward augmented radiology, where AI assists rather than 
replaces radiologists. Several future directions should be explored. 
Firstly, AI needs to be validated in a clinical environment with a 
diverse patient cohort and radiologists of varying expertise levels. 
Secondly, in the study it was evaluated only FLAIR sequence using 
AI, but integration of other sequences, such as DIR, SWI or post 
contrast T1 sequences, could not only enhance lesion detection and 
characterization, but also improve generalizability of the findings. 
Thirdly, how AI can be better integrated into the clinical workflow in 
order to minimize validation time and maximize efficiency needs to 
be  investigated. A hybrid AI-radiologist approach needs to 
be explored, mainly the fusion models between human expertise and 
AI, and incorporated into optimized double-reading protocols. Last 
but not least, a further investigation of the impact of AI-assisted 
radiological report on the clinical management of MS patients 
should be explored, especially concerning the treatment decision 
changes and patient outcomes, given the fact that number of new 
lesions and relapses in patients treated with interferon-beta are a 
useful tool for predicting the clinical disease activity in MS 
patients (31).

In conclusion, our study highlights the significant contribution 
of AI in detecting new lesions on follow-up MRI in MS patients 
with high lesion loads. Both Pixyl.Neuro.MS® and Jazz® 
significantly improved detection of new lesions compared to 
conventional readings. However, AI tools still require radiological 
validation to ensure that the results are accurate and also to 
eliminate the false positive results. Future AI integration must 
consider its impact on workflow efficiency and adaptation to 
clinical constraints.

AI represents a promising advancement in neuroradiology, but its 
clinical adoption requires further validation to optimize its 
performance and ensure meaningful contributions to patient care.

Data availability statement

The datasets presented in this article are not readily available 
because ethical considerations. Requests to access the datasets should 
be directed to myriam.edjlali@aphp.fr.

Ethics statement

The studies involving humans were approved by the Institutional 
Review Board of CPP Ile-de-France VI (ID RCB: 2019-A03066-51). 
The studies were conducted in accordance with the local legislation 
and institutional requirements. Written informed consent for 
participation was not required from the participants or the 
participants' legal guardians/next of kin in accordance with the 
national legislation and institutional requirements.

Author contributions

MM: Investigation, Conceptualization, Writing – review & editing, 
Writing – original draft, Visualization, Data curation, Formal analysis, 
Methodology. OH: Investigation, Writing  – review & editing, 
Methodology, Conceptualization, Resources. CF: Methodology, 
Conceptualization, Resources, Writing  – review & editing. VM-R: 
Resources, Methodology, Conceptualization, Data curation, Writing – 
review & editing. MB: Methodology, Investigation, Writing – review & 
editing, Conceptualization, Resources. JB: Conceptualization, Writing – 
review & editing, Methodology. FC: Conceptualization, Writing – review 
& editing, Methodology. ME: Investigation, Conceptualization, Writing – 
original draft, Writing – review & editing, Methodology, Data curation, 
Supervision, Formal analysis.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

Vincent Lebon. This work was performed on a platform member 
of France Life Imaging network (grant ANR-11-INBS-0006).

Conflict of interest

Verónica Muños-Ramírez is an employee at Pixyl SA. Christian 
Federau is the founder and CEO of AI Medical AG.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or those 
of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, 
is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fneur.2025.1678073
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
mailto:myriam.edjlali@aphp.fr


Mastilović et al.� 10.3389/fneur.2025.1678073

Frontiers in Neurology 09 frontiersin.org

References
	1.	Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, de Stefano N, et al. 

Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical 
guidelines. Brain. (2019) 142:1858–75. doi: 10.1093/brain/awz144

	2.	Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. 
Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 
(2018) 17:162–73. doi: 10.1016/S1474-4422(17)30470-2

	3.	Baneke Peer (2020). Atlas of MS 3rd Edition The Multiple Sclerosis International 
Federation. Available online at: https://www.msif.org/wp-content/uploads/2020/10/
Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf (Accessed June 
25, 2025).

	4.	Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, 
Chandraratna D, et al. ECTRIMS/EAN guideline on the pharmacological treatment 
of people with multiple sclerosis. Mult Scler J. (2018) 24:96–120. doi: 
10.1177/1352458517751049

	5.	Baskaran AB, Grebenciucova E, Shoemaker T, Graham EL. Current updates on the 
diagnosis and management of multiple sclerosis for the general neurologist. J Clin 
Neurol. (2023) 19:217–29. doi: 10.3988/jcn.2022.0208

	6.	Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, et al. 
Association of Initial Disease-Modifying Therapy with Later Conversion to 
secondary progressive multiple sclerosis. JAMA. (2019) 321:175–87. doi: 
10.1001/jama.2018.20588

	7.	Lamb YN. Ocrelizumab: a review in multiple sclerosis. Drugs. (2022) 82:323–34. 
doi: 10.1007/s40265-022-01672-9

	8.	Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, et al. 2021 
MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients 
with multiple sclerosis. Lancet Neurol. (2021) 20:653–70. doi: 
10.1016/S1474-4422(21)00095-8

	9.	Brisset J-C, Kremer S, Hannoun S, Bonneville F, Durand-Dubief F, Tourdias T, et al. 
New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special 
consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol. (2020) 
47:250–8. doi: 10.1016/j.neurad.2020.01.083

	10.	Kaunzner UW, Gauthier SA. MRI in the assessment and monitoring of multiple 
sclerosis: an update on best practice. Ther Adv Neurol Disord. (2017) 10:247–61. doi: 
10.1177/1756285617708911

	11.	Kamraoui RA, Mansencal B, Manjon JV, Coupé P. Longitudinal detection of new 
MS lesions using deep learning. Front Neuroimaging. (2022) 1:948235. doi: 
10.3389/fnimg.2022.948235

	12.	Fagotti C, Pertici L, Mancini S. Comparative analysis of three commercially 
available AI software for brain volumetry and lesion segmentation in multiple sclerosis. 
ECR EPOS. (2023). doi: 10.26044/ecr2023/C-20095

	13.	Zheng D, He X, Jing J. Overview of artificial intelligence in breast Cancer medical 
imaging. J Clin Med. (2023) 12:419. doi: 10.3390/jcm12020419

	14.	Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in 
histopathology: enhancing cancer research and clinical oncology. Nat Can. (2022) 
3:1026–38. doi: 10.1038/s43018-022-00436-4

	15.	Rezazade Mehrizi MH, Mol F, Peter M, Ranschaert E, dos Santos DP, Shahidi R, 
et al. The impact of AI suggestions on radiologists’ decisions: a pilot study of 
explainability and attitudinal priming interventions in mammography examination. Sci 
Rep. (2023) 13:9230. doi: 10.1038/s41598-023-36435-3

	16.	Dahlblom V, Andersson I, Lång K, Tingberg A, Zackrisson S, Dustler M. Artificial 
intelligence detection of missed cancers at digital mammography that were detected at 

digital breast Tomosynthesis. Radiol Artif Intell. (2021) 3:e200299. doi: 
10.1148/ryai.2021200299

	17.	Pacilè S, Lopez J, Chone P, Bertinotti T, Grouin JM, Fillard P. Improving breast 
Cancer detection accuracy of mammography with the concurrent use of an artificial 
intelligence tool. Radiol Artif Intell. (2020) 2:e190208. doi: 10.1148/ryai.2020190208

	18.	Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, et al. Objective 
evaluation of multiple sclerosis lesion segmentation using a data management and 
processing infrastructure. Sci Rep. (2018) 8:13650. doi: 10.1038/s41598-018-31911-7

	19.	Commowick O, Kain M, Casey R, Ameli R, Ferré JC, Kerbrat A, et al. Multiple 
sclerosis lesions segmentation from multiple experts: the MICCAI 2016 challenge 
dataset. NeuroImage. (2021) 244:118589. doi: 10.1016/j.neuroimage.2021.118589

	20.	AI Medical. (2023). Available online at: https://www.ai-medical.ch (Accessed June 
26, 2025).

	21.	Pixyl. AI Insight for Improved Patient Care. (2024). Available online at: https://
pixyl.ai/ (Accessed June 26, 2025).

	22.	Sormani M, Rio J, Tintorè M, Sormani MP, Signori A, Li D, et al. Scoring treatment 
response in patients with relapsing multiple sclerosis. Mult Scler. (2013) 19:605–12. doi: 
10.1177/1352458512460605

	23.	Sormani MP, Gasperini C, Romeo M, Rio J, Calabrese M, Cocco E, et al. Assessing 
response to interferon-β in a multicenter dataset of patients with MS. Neurology. (2016) 
87:134–40. doi: 10.1212/WNL.0000000000002830

	24.	Combès B, Kerbrat A, Pasquier G, Commowick O, le Bon B, Galassi F, et al. A 
clinically-compatible workflow for computer-aided assessment of brain disease activity 
in multiple sclerosis patients. Front Med. (2021) 8:740248. doi: 10.3389/fmed.2021.740248

	25.	Federau C, Hainc N, Edjlali M, Zhu G, Mastilovic M, Nierobisch N, et al. 
Evaluation of the quality and the productivity of neuroradiological reading of multiple 
sclerosis follow-up MRI scans using an intelligent automation software. Neuroradiology. 
(2024) 66:361–9. doi: 10.1007/s00234-024-03293-3

	26.	Peters S, Schmill L, Gless CA, Stürner K, Jansen O, Seehafer S. AI-based assessment 
of longitudinal multiple sclerosis MRI: strengths and weaknesses in clinical practice. Eur 
J Radiol. (2025) 183:111941. doi: 10.1016/j.ejrad.2025.111941

	27.	Al Yassin A, Salehi Sadaghiani M, Mohan S. It is about “time”: academic 
Neuroradiologist time distribution for interpreting brain MRIs. Acad Radiol. (2018) 
25:1521–5. doi: 10.1016/j.acra.2018.04.014

	28.	Peters S, Kellermann G, Watkinson J, Gärtner F, Huhndorf M, Stürner K, et al. AI 
supported detection of cerebral multiple sclerosis lesions decreases radiologic reporting 
times. Eur J Radiol. (2024) 178:111638. doi: 10.1016/j.ejrad.2024.111638

	29.	Haller S, Van Cauter S, Federau C. The R-AI-DIOLOGY checklist: a practical 
checklist for evaluation of artificial intelligence tools in clinical neuroradiology. 
Neuroradiology. (2022) 64:851–64. doi: 10.1007/s00234-021-02890-w

	30.	Naganawa S, Kato Y, Yoshida T, Sone M. Fluid signal suppression characteristics 
of 3D-FLAIR with a T2 selective inversion pulse in the skull base. Nat Commun. (2023) 
14:4915. doi: 10.1038/s41467-023-40507-3

	31.	Sormani MP, Freedman MS, Aldridge J, Marhardt K, Kappos L, De Stefano N. 
MAGNIMS score predicts long-term clinical disease activity-free status and confirmed 
disability progression in patients treated with subcutaneous interferon beta-1a. Mult 
Scler Relat Disord. (2021) 49:102790. doi: 10.1016/j.msard.2021.102790

	32.	Sima D, Wilms G, Vyvere TV (2020). On the use of icobrain’s prepopulated 
radiology reporting template for multiple sclerosis follow-up. In: ECR 2020 EPOS. 
Available online at: https://epos.myesr.org/poster/esr/ecr2020/C-11342. (Accessed 19 
Feb 2024)

https://doi.org/10.3389/fneur.2025.1678073
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1093/brain/awz144
https://doi.org/10.1016/S1474-4422(17)30470-2
https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf
https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf
https://doi.org/10.1177/1352458517751049
https://doi.org/10.3988/jcn.2022.0208
https://doi.org/10.1001/jama.2018.20588
https://doi.org/10.1007/s40265-022-01672-9
https://doi.org/10.1016/S1474-4422(21)00095-8
https://doi.org/10.1016/j.neurad.2020.01.083
https://doi.org/10.1177/1756285617708911
https://doi.org/10.3389/fnimg.2022.948235
https://doi.org/10.26044/ecr2023/C-20095
https://doi.org/10.3390/jcm12020419
https://doi.org/10.1038/s43018-022-00436-4
https://doi.org/10.1038/s41598-023-36435-3
https://doi.org/10.1148/ryai.2021200299
https://doi.org/10.1148/ryai.2020190208
https://doi.org/10.1038/s41598-018-31911-7
https://doi.org/10.1016/j.neuroimage.2021.118589
https://www.ai-medical.ch
https://pixyl.ai/
https://pixyl.ai/
https://doi.org/10.1177/1352458512460605
https://doi.org/10.1212/WNL.0000000000002830
https://doi.org/10.3389/fmed.2021.740248
https://doi.org/10.1007/s00234-024-03293-3
https://doi.org/10.1016/j.ejrad.2025.111941
https://doi.org/10.1016/j.acra.2018.04.014
https://doi.org/10.1016/j.ejrad.2024.111638
https://doi.org/10.1007/s00234-021-02890-w
https://doi.org/10.1038/s41467-023-40507-3
https://doi.org/10.1016/j.msard.2021.102790
https://epos.myesr.org/poster/esr/ecr2020/C-11342

	Evaluation of two AI techniques for the detection of new T2/FLAIR lesions in the follow-up of multiple sclerosis patients
	1 Introduction
	2 Materials and methods
	2.1 MRI acquisition
	2.2 Image analysis workflow
	2.2.1 Standard clinical reading
	2.2.2 Reassessment using Jazz® software
	2.2.3 Reassessment using Pixyl.Neuro.MS® software
	2.3 Ground truth definition
	2.4 Statistical analysis

	3 Results
	3.1 Patient population
	3.2 Inter-reader reliability
	3.3 Reading time
	3.4 New T2/FLAIR lesions

	4 Discussion

	References

