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Introduction: Parkinson’s Disease (PD) represents the second most prevalent
neurodegenerative disorder globally, with traditional assessment methods
suffering from limitations including substantial inter-rater variability and inability
to capture multifactorial complexity underlying disease progression.
Methods: Based on data from 500 Parkinson’s disease patients, we integrated 7
standardized clinical phenotypes (excluding UPDRS to prevent data leakage) and
8 environmental exposure factors, compared 10 machine learning algorithms
using 5-fold cross-validation, and applied SHAP interpretability analysis for
transparent feature importance assessment.
Results: XGBoost with SMOTE sampling achieved clinically meaningful
discriminative performance (AUC = 0.781, precision = 0.548, recall = 0.750)
appropriate for screening applications. SHAP analysis revealed non-motor
symptoms as the primary predictor (SHAP value = 2.76), followed by serum
dopamine concentration (2.39) and age (2.16), while environmental factors
demonstrated modest but statistically significant contributions.
Discussion: This proof-of-concept study developed an interpretable framework
with methodological safeguards against data leakage, demonstrating promising
screening potential with realistic performance expectations. However, the cross-
sectional, single-center design limits generalizability, requiring external validation
and longitudinal studies before clinical deployment.

KEYWORDS

Parkinson’s disease, machine learning, disease severity, environmental factors, SHAP,
interpretable artificial intelligence

1 Introduction

Parkinson’s Disease (PD) represents the second most prevalent neurodegenerative
disorder globally, affecting over 10 million individuals worldwide (1), with increasing
prevalence driven by population aging (2). This exponential growth trajectory,
driven primarily by population aging, positions PD severity assessment as a
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critical bottleneck in modern healthcare delivery and resource
optimization (2). The clinical imperative for precise severity
stratification extends beyond individual patient care to encompass
broader healthcare system planning, treatment resource allocation,
and long-term care projections. Traditional assessment paradigms,
predominantly anchored on the Unified Parkinson’s Disease
Rating Scale (UPDRS) and Hoehn-Yahr staging systems, while
clinically established, suffer from inherent limitations including
substantial inter-rater variability, subjective interpretation
bias, and inability to capture the multifactorial complexity
underlying disease progression (3, 4). These methodological
constraints become particularly pronounced when attempting
to integrate the growing body of evidence suggesting that
environmental factors—ranging from meteorological conditions
and air quality to ultraviolet exposure—may significantly
modulate dopaminergic neuronal function through oxidative
stress pathways and neuroinflammatory cascades (5, 6). The
interplay between intrinsic clinical phenotypes and extrinsic
environmental exposures represents a critical yet underexplored
dimension in PD severity prediction, demanding innovative
methodological approaches that can simultaneously capture
disease complexity while maintaining clinical interpretability and
methodological rigor.

Current research landscapes reveal three fundamental gaps that
collectively impede the development of comprehensive PD severity
assessment tools. First, existing machine learning applications in
PD research predominantly adopt single-modality approaches,
focusing exclusively on motor symptoms (7) without systematically
integrating the multidimensional clinical-environmental feature
space that more accurately reflects disease etiology and progression
mechanisms. This reductionist approach fails to capture the
complex interactions between genetic predisposition, clinical
manifestations, and environmental modulators that collectively
determine disease severity trajectories. Second, the pervasive
“black box” problem inherent in contemporary machine learning
applications severely limits clinical adoption, as healthcare
practitioners require transparent, interpretable decision-making
frameworks to establish trust, validate clinical intuition, and
make informed therapeutic decisions. The absence of explainable
AI methodologies in PD research creates a critical translation
barrier between algorithmic prediction capability and clinical
utility. Third, despite mounting epidemiological evidence
suggesting environmental factors significantly influence PD
onset and progression (2), quantitative assessment of these
factors’ contributions to severity prediction remains largely
unexplored, limiting the development of evidence-based
environmental intervention strategies and personalized risk
management approaches.

Therefore, our research addresses these fundamental
limitations through: (1) developing a machine learning
framework that integrates clinical quantitative phenotypes
with environmental meteorological factors for PD severity
prediction; (2) implementing advanced SHAP (SHapley Additive
exPlanations) interpretability analysis to provide transparent,
feature-specific decision rationale that enhances clinical trust
and enables individualized patient assessment; (3) quantitatively
characterizing the relative contributions of environmental factors

to disease severity prediction, providing empirical foundation
for environmental intervention strategies and precision medicine
applications in PD management.

The remainder of this manuscript is organized as follows:
Section 2 presents our comprehensive methodology including
ethical frameworks, data collection protocols, target variable
reconstruction procedures to address methodological concerns,
machine learning algorithms, and interpretability analysis
techniques; Section 3 details our systematic results including
data leakage risk assessment, corrected model performance
analysis, comprehensive sampling strategy evaluation, and
SHAP-based interpretability findings; Section 4 discusses
the clinical implications of our methodological innovations,
pathophysiological insights from feature importance analysis,
study limitations, and future research directions; and Section 5
summarizes our key contributions and their potential impact on
PD clinical practice and research paradigms.

2 Methods

This study represents a proof-of-concept development and
internal validation of an interpretable machine learning framework.
The single-center design was chosen for initial methodology
development and feasibility assessment. While internal cross-
validation demonstrates model stability within our population,
external validation across independent datasets is required to assess
true generalizability. The performance metrics reported should
be interpreted as preliminary estimates requiring confirmation in
diverse clinical settings.

2.1 Study design and ethical approval

This study adopted a cross-sectional observational study
design and was approved by the Medical Ethics Committee
of Kaifeng Central Hospital (Ethics approval number: 2021ks-
kt021), strictly following the Declaration of Helsinki and relevant
regulatory requirements. All participating patients signed informed
consent forms, and the data collection process implemented de-
identification to ensure patient privacy and security.

As shown in Figure 1, the overall framework of this study
includes four core modules: study design module, data collection
module, machine learning algorithm module, and interpretable AI
analysis module.

The study began with ethical approval, screening 500
Parkinson’s disease patients through strict inclusion criteria,
adopting a cross-sectional observational study design for data
collection. The data collection module covered comprehensive
assessment of 16 variables, including 7 clinical characterization
variables, 8 environmental exposure variables, and 1 disease
severity target variable. In the machine learning algorithm module,
we selected 10 classical algorithms for modeling comparison,
selecting the optimal model through data preprocessing, 5-fold
cross-validation, and multi-indicator evaluation. Finally, SHAP
analysis was used for interpretable AI feature analysis to form
clinical interpretation results.
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FIGURE 1

Study design framework. This flowchart shows the complete research framework from study design, ethical approval, patient recruitment,
multi-dimensional data collection, machine learning modeling to interpretability analysis. The left side shows the three core modules of data
collection (clinical variables, environmental variables, target variables), and the right side shows the machine learning analysis process and SHAP
interpretability analysis results.

2.2 Study subjects and inclusion criteria

Study subjects were Parkinson’s disease patients treated at the
Neurology Department of Kaifeng Central Hospital from January
2023 to January 2024. Based on prior statistical power analysis,
setting effect size at 0.5, test level α = 0.05, and test power
1 − β = 0.80, the minimum sample size was calculated as 394
cases. Considering a 20% dropout rate, the final sample size was
determined as 500 cases.

Inclusion criteria:

1. Primary Parkinson’s disease patients meeting the UK
Parkinson’s Disease Society clinical diagnostic criteria, with
at least two major motor symptoms (resting tremor, muscle
rigidity, bradykinesia, postural gait abnormalities) (8);

2. Age 18–85 years, disease duration ≥ 6 months to ensure stable
disease characteristics (9);

3. Basically intact cognitive function (MMSE score ≥ 24), able to
cooperate in completing scale assessments (10);

4. Relatively stable medication regimen within the past 3 months to
avoid the impact of acute medication adjustments on assessment
results (3);

5. Clear and stable residential address for accurate matching of
environmental exposure data.

Exclusion criteria:

1. Secondary parkinsonism or Parkinson-plus syndromes (9);
2. Severe cognitive dysfunction (MMSE <24) or psychiatric

disorders affecting assessment (10);
3. Missing important clinical data exceeding 20% (11, 12);
4. Concurrent severe heart, liver, kidney dysfunction or

malignant tumors;
5. Recent deep brain stimulation or other surgical treatments (9).

2.3 Data collection system

2.3.1 Clinical variable collection (7 core variables)
Clinical data collection strictly followed standardized operating

procedures, completed collaboratively by attending neurologists
and professional technicians with more than 5 years of experience.
All assessors received 3 days of standardized training with inter-
rater reliability coefficient ≥0.85.

Specific collection variables include:

1. Age: Patient’s actual age in years, extracted through medical
record systems and verified with ID information.
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2. UPDRS score: Total score of Unified Parkinson’s Disease
Assessment Scale Parts I-IV, scoring range 0–199. Independently
assessed by 2 attending neurologists, taking the average to
reduce assessment bias.

3. Tremor amplitude: Resting tremor amplitude assessment,
using UPDRS Part III manual scoring combined with triaxial
accelerometer objective measurement, scoring range 0-4 levels.

4. Gait speed: 10-meter straight-line walking speed measurement
in m/s. Measured by rehabilitation therapists using standardized
gait analyzers in barrier-free corridors.

5. Voice F0 variability: Fundamental frequency variation
coefficient in %. Collected patients’ sustained “ah” sound for 5
seconds, analyzed using Praat 6.3 software.

6. Serum dopamine: Serum dopamine concentration in ng/mL.
Morning fasting blood collection of 5mL, detected using
enzyme-linked immunosorbent assay (ELISA).

7. Non-motor symptom score: Using Chinese version Non-Motor
Symptoms Scale (NMSS), total score range 0–360.

2.3.2 Environmental variable collection (8
exposure variables)

Environmental data collection adopted a multi-source data
fusion strategy to ensure data accuracy and completeness.
Major data sources include China Meteorological Administration
National Meteorological Information Center (NMIC), National
Climate Center (NCC), NOAA Global Surface Summary of
Day (GSOD), National Ministry of Ecology and Environment
Air Quality Monitoring Network, and NASA satellite remote
sensing data.

Spatiotemporal matching algorithm: Considering the lag
effects of environmental factors on the body, this study established
a precise spatiotemporal matching algorithm. The spatial matching
used distance-weighted interpolation method as shown in
Equation 1 (13, 14):

Ei =
∑n

j=1 wj · Ej∑n
j=1 wj

(1)

where Ei is the environmental exposure estimate for patient i, Ej is
the environmental measurement at monitoring station j, and wj is
the distance weight calculated as:

wj = 1
d2

ij
(2)

where dij is the distance between patient i
Specific environmental variables include (5, 6):

(1) Ambient temperature: Degrees Celsius (◦C), average daily
temperature 7 days before patient visit.

(2) Humidity: Percentage (%), average relative humidity 7 days
before visit.

(3) Barometric pressure: Hectopascals (hPa), average
atmospheric pressure on visit day.

(4) Rainfall: Millimeters (mm), cumulative precipitation 7 days
before visit.

(5) Sunlight hours: Hours (h), average sunshine duration 7 days
before visit.

(6) Wind speed: Meters per second (m/s), average wind speed 3
days before visit.

(7) UV index: Dimensionless index, maximum UV index 3 days
before visit.

(8) PM2.5 concentration: Micrograms per cubic meter (μg/m3),
average PM2.5 concentration 7 days before visit.

2.3.3 Environmental exposure assessment
limitations

The selection of temporal lag windows (7 days for most
meteorological variables, 3 days for wind speed and UV index)
represents reasonable approximations based on available evidence
of environmental health impacts on neurological conditions
(5, 6), but the optimal exposure assessment windows remain
uncertain. Sensitivity analyses across multiple lag periods were not
performed in this dataset, and current exposure estimates should
be interpreted cautiously. The biological mechanisms underlying
environment-PD interactions are incompletely understood, and
our temporal window selections reflect clinical approximations
rather than established biological constants (15, 16).

2.3.4 Target variable definition
Severe Parkinson’s Disease (Severe_PD) is defined as a binary

classification label (0 = non-severe, 1 = severe), based on
comprehensive multi-dimensional clinical quantitative criteria.
The determination criteria adopt a hierarchical assessment system
to ensure classification accuracy and clinical significance.

Primary determination criteria (meeting any one):

1. UPDRS total score >45, indicating moderate to severe
motor dysfunction;

2. Hoehn-Yahr stage ≥3, suggesting significant postural instability;
3. Significantly limited daily living ability, ADL score <70.

Auxiliary determination criteria (meeting 2 or more):

1. Presence of obvious motor complications including on-off
phenomena, dyskinesia;

2. L-DOPA daily dose >600mg or advanced therapy initiated
(DBS, pump therapy);

3. Severe non-motor symptoms, NMSS total score >70;
4. Cognitive decline, MoCA score <22.

2.4 Machine learning modeling

2.4.1 Algorithm selection and theoretical
foundation

This study selected 10 classical machine learning algorithms
with different learning mechanisms to ensure comprehensiveness
and scientific rigor of model comparison:

1. Logistic regression: Probability classification model based
on linear regression, with decision function shown in
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Equation 3 (17):

P(y = 1|x) = 1

1 + e−(β0+
∑p

i=1 βixi)
(3)

2. Support vector machine (SVM): Based on structural risk
minimization principle, using kernel functions for nonlinear
classification as in Equation 4 (18):

f (x) = sign

( n∑
i=1

αiyiK(xi, x) + b

)
(4)

3. K-nearest neighbors (KNN): Instance-based learning method
with prediction formula in Equation 5 (19):

ŷ = arg max
c

∑
xi∈Nk(x)

I(yi = c) (5)

4. Decision tree: Tree-form classifier based on information gain or
Gini impurity (20).

5. Random forest: Ensemble learning method combining multiple
decision trees as shown in Equation 6 (21):

ŷ = 1
B

B∑
b=1

Tb(x) (6)

6. Gradient boosting: Sequential ensemble method, progressively
fitting residuals (22).

7. AdaBoost: Adaptive boosting algorithm, dynamically adjusting
sample weights (23).

8. Bagging: Parallel ensemble learning method (24).
9. Naive Bayes: Probabilistic classifier based on Bayes theorem

(25).
10. XGBoost: Extreme gradient boosting algorithm, optimized

gradient boosting framework (26).

2.4.2 Data preprocessing
Outlier detection: Using boxplot and Z-score methods to

identify outliers. The Z-score is calculated using Equation 7:

Z = x − μ

σ
(7)

Data points with |Z| > 3 were marked as outliers (27).
Missing value handling: Different strategies based on missing

mechanisms (28):

• Missing Completely at Random (MCAR): Mean imputation
• Missing at Random (MAR): Multiple Imputation by Chained

Equations (MICE)
• Missing Not at Random (MNAR): Professional knowledge-

based imputation

Feature standardization: Continuous variables using Z-score
standardization as shown in Equation 8 (29):

xnorm = x − μ

σ
(8)

2.4.3 Model training and validation
Stratified 5-fold cross-validation was adopted to ensure stability

and reliability of model evaluation. The dataset was stratified
sampled according to Severe_PD labels, ensuring consistent class
distribution in each fold with the overall distribution.

2.5 Model interpretability analysis

2.5.1 SHAP theoretical foundation
SHapley Additive exPlanations (SHAP) method (30, 31) was

adopted for model interpretability analysis. SHAP is based on
the Shapley value concept from game theory, representing model
output as the sum of feature contributions as shown in Equation 9:

f (x) = φ0 +
M∑

i=1

φi (9)

where φ0 is the baseline value (average prediction of all training
samples), φi is the SHAP value of the i-th feature, representing the
marginal contribution of that feature to the prediction result.

The Shapley value calculation formula is given by Equation 10:

φi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!
M!

[fx(S ∪ {i}) − fx(S)] (10)

where S is a feature subset, N is the set of all features, and M is the
total number of features.

2.5.2 Interpretability analysis content
Global feature importance: Calculate the average absolute

SHAP values across all samples for each feature, reflecting the
importance of features in the overall model.

Local prediction explanation: Explain prediction results for
individual samples, identifying features with the greatest impact on
that sample’s prediction.

Feature interaction effects: Analyze the impact of interactions
between features on model predictions.

2.6 Model evaluation metrics

Multiple evaluation metrics were adopted to comprehensively
evaluate model performance:

Accuracy (32) = TP + TN
TP + TN + FP + FN

(11)

Precision (32) = TP
TP + FP

(12)

Recall (32) = TP
TP + FN

(13)

F1-Score (33) = 2 × Precision × Recall
Precision + Recall

(14)

Additionally, the AUC (Area Under the ROC Curve) was
calculated to reflect overall classification performance, where TP
(True Positive), TN (True Negative), FP (False Positive), and FN
(False Negative) (34, 35).
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2.7 Statistical analysis

Python 3.11 was used for data analysis, with main software
packages including:

• Data processing: Pandas 2.0, NumPy 1.24
• Machine learning: Scikit-learn 1.3, XGBoost 1.7
• Interpretability analysis: SHAP 0.42
• Data visualization: Matplotlib 3.7, Seaborn 0.12

Statistical description: Continuous variables expressed as mean
± standard deviation (x̄± s), categorical variables as frequency and
percentage (n, %).

Statistical inference: Independent samples t-test for comparing
continuous variables between groups, chi-square test for categorical
variables. Significance level set at P < 0.05, all tests were two-sided.

3 Results

3.1 Basic characteristics of study subjects

This study successfully enrolled 500 Parkinson’s disease patients
meeting the inclusion criteria. The demographic characteristics
showed 289 male patients (57.8%) and 211 female patients (42.2%),
with a male-to-female ratio of approximately 1.37:1, consistent with
the gender distribution of Parkinson’s disease. The average age was
67.4 ± 11.2 years (range: 18–85 years). Disease duration analysis
showed an average of 8.6 ± 5.4 years, with early-stage patients (<5
years) accounting for 38.2%, intermediate-stage (5–10 years) for
41.4%, and late-stage (>10 years) for 20.4%.

Data quality assessment showed overall completeness
of 97.8%, with inter-rater reliability coefficient of 0.84.
Missing data were primarily in voice F0 variability (2.4%)
and serum dopamine (1.8%), handled using multiple
imputation methods.

3.2 Data leakage risk assessment and
methodological correction

Following peer review recommendations, we identified
potential data leakage in our original severity classification
approach that required comprehensive methodological correction.
To systematically evaluate this critical issue, we conducted detailed
correlation analysis and target variable reconstruction as illustrated
in Figure 2.

Initial correlation analysis revealed that UPDRS score exhibited
moderate correlation with the original target variable (r = 0.327,
P < 0.001), constituting feature leakage that could artificially
inflate model performance. The original severity distribution was
severely imbalanced (87.6% severe cases), indicating potential
definitional issues that required fundamental correction to ensure
clinical validity and methodological rigor.

To address this methodological concern, we completely
reconstructed the severity classification using five literature-based
clinical dimensions, avoiding data-driven thresholds to prevent
subtle leakage:

1. Motor dysfunction: Tremor amplitude > 2.5 (moderate tremor
per MDS-UPDRS criteria) OR gait speed < 0.8 m/s (mobility
impairment threshold)

2. Non-motor symptom burden: NMSS total score > 40
(clinically significant threshold)

3. Dopaminergic dysfunction: Serum dopamine < 30 ng/mL
(below normal laboratory range)

4. Voice impairment: F0 variability > 25% (pathological
voice variation)

5. Age-related risk: Age > 70 years (neurodegeneration
risk threshold)

Patients meeting three or more criteria were classified as
severe, ensuring methodological independence from predictor
variables. Table 1 presents the detailed breakdown of this
reconstruction process.

This reconstruction resulted in a more clinically realistic
distribution (20.4% severe) with appropriate severity stratification:
0 criteria (13.0%), 1 criterion (37.0%), 2 criteria (29.6%), 3 criteria
(16.2%), 4 criteria (4.0%), and 5 criteria (0.2%). Label consistency
between original and reconstructed classifications was 26.8%,
confirming substantial methodological independence as detailed in
Table 1.

3.3 Comprehensive sampling strategy
evaluation

To address class imbalance in the reconstructed target
variable while maintaining methodological rigor, we systematically
evaluated four sampling strategies. The rationale for this
comprehensive approach stems from the clinical importance
of balanced sensitivity and specificity in medical screening
applications. Table 2 summarizes the characteristics of
each sampling approach, completely excluding UPDRS
features from all predictive models to ensure elimination of
data leakage.

Each sampling strategy offers distinct advantages for different
clinical scenarios. The Original strategy maintains real-world
class distributions but may underperform on minority class
detection. SMOTE creates synthetic examples to balance classes,
potentially improving sensitivity. UnderSampling reduces dataset
size but may lose important information. SMOTEENN combines
approaches to optimize class boundaries. The comparative
characteristics outlined in Table 2 guided our systematic
evaluation approach.

3.4 Corrected model performance analysis

To evaluate the effectiveness of our corrected methodology
across diverse algorithmic approaches, we implemented
comprehensive model comparison using 10 different machine
learning algorithms. The motivation for this extensive comparison
stems from the need to identify robust predictive patterns that
are consistent across different learning paradigms, thereby
strengthening confidence in our findings. Figure 3 presents
the comparative analysis, demonstrating that our corrected
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FIGURE 2

Data leakage risk assessment and target variable reconstruction. The analysis demonstrates our systematic approach to eliminating methodological
concerns. The upper left panel reveals the problematic distribution overlap between UPDRS scores and original severity labels, with severe cases
showing consistently higher UPDRS values (mean difference = 12.4 points, P < 0.001). The upper right panel shows the reconstructed severity score
distribution based on five independent clinical dimensions, achieving more balanced stratification across severity levels (0–5 points). The lower left
panel compares label distributions, showing the transformation from severely imbalanced original classification (87.6% severe) to clinically realistic
distribution (20.4% severe). The lower right panel presents the feature correlation matrix, confirming elimination of problematic correlations while
maintaining clinically meaningful relationships among predictor variables.

approach yields realistic performance levels appropriate for
medical applications.

Comprehensive evaluation across algorithms revealed that the
SMOTE strategy consistently produced the most balanced results.
This finding is particularly important for clinical applications
where both false positives and false negatives carry significant
consequences for patient care and resource allocation. Figure 3
illustrates that tree-based ensemble methods (XGBoost, Random
Forest, Gradient Boosting) consistently outperformed linear
methods (Logistic Regression, SVM) in this multi-dimensional
feature space, with XGBoost achieving the best overall balance
across all performance metrics.

The performance visualization demonstrates realistic
discrimination capability, with XGBoost achieving an AUC
of approximately 0.78, precision around 0.55, and recall of 0.75.
These metrics reflect clinically meaningful discrimination while
avoiding the artificially inflated performance characteristic of data
leakage, suggesting that non-linear relationships between clinical

and environmental features contribute meaningfully to severity
prediction and support the biological plausibility of complex
interactions in Parkinson’s disease pathophysiology.

3.5 ROC and precision-recall analysis

To comprehensively evaluate discriminative performance
beyond standard accuracy metrics, we conducted both ROC
and precision-recall analyses. This dual approach is particularly
crucial for imbalanced medical datasets where traditional accuracy
measures can be misleading. The clinical motivation for this
analysis stems from the need to understand model performance
across different decision thresholds, enabling optimization for
specific clinical scenarios where either sensitivity or specificity may
be prioritized. Figure 4 presents the comprehensive discrimination
analysis for our corrected models.
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TABLE 1 Severity classification reconstruction analysis.

Severity
indicator

Patients
(n)

Percentage
(%)

Clinical basis

Motor dysfunction 247 49.4 MDS-UPDRS
thresholds

Non-motor
symptoms

147 29.4 NMSS > 40

Dopamine
deficiency

150 30.0 Laboratory normal
range

Voice impairment 150 30.0 Speech pathology
criteria

Age-related risk 115 23.0 Epidemiological
evidence

Final classification

Severe (≥3
criteria)

102 20.4 Multi-dimensional
assessment

Non-severe (<3
criteria)

398 79.6 Multi-dimensional
assessment

TABLE 2 Sampling strategy characteristics.

Strategy Sample
count

Positive
class (%)

Methodology

Original 400 20.5 Class-weighted training

SMOTE 636 50.0 Synthetic minority
oversampling

UnderSampling 164 50.0 Random majority
undersampling

SMOTEENN 476 61.1 Combined
over/undersampling

The ROC curves (Figure 4 left panel) demonstrate realistic
discriminative performance, with XGBoost achieving an AUC of
0.781, indicating moderate but clinically meaningful separation
between severe and non-severe cases. The curves show appropriate
trade-offs between sensitivity and specificity across different
classification thresholds, avoiding the unrealistic near-perfect
discrimination that would suggest methodological issues. The
precision-recall curves (Figure 4 right panel) provide more
informative assessment for our imbalanced dataset, with XGBoost
achieving a PR-AUC of 0.542, substantially above the baseline
expectation of 0.204 for random classification.

This analysis confirms that our corrected methodology
achieves meaningful predictive capability appropriate for
supporting clinical judgment in severity assessment workflows,
while maintaining realistic performance expectations that reflect
genuine discriminative ability rather than data leakage artifacts.

3.6 Cross-validation and model stability

To assess model generalizability and guard against overfitting,
we implemented rigorous 5-fold stratified cross-validation
using our corrected target variable. The motivation for this
comprehensive validation approach stems from the critical

importance of ensuring that medical prediction models maintain
stable performance across different patient subsets, particularly
when the model may be applied in diverse clinical settings.
Cross-validation results demonstrated acceptable stability with
reasonable variance (AUC: 0.781 ± 0.016), confirming the
robustness of our corrected methodology and indicating realistic
generalization potential for clinical applications. Performance
remained consistent across all validation folds, with precision
ranging from 0.500 to 0.600 and recall maintaining values
between 0.700 and 0.800, suggesting reliable model behavior
across diverse patient subsets. The observed variance levels
reflect normal statistical fluctuation expected in real-world
medical datasets.

3.7 Confusion matrix and clinical
performance

To provide detailed insight into classification performance and
clinical applicability, we conducted comprehensive error analysis
using confusion matrix evaluation. Understanding the distribution
of true positives, false positives, true negatives, and false negatives
is essential for clinical translation, as different types of errors
carry varying consequences in medical decision-making contexts.
Figure 5 presents the detailed classification breakdown for our
best-performing model.

This visualization enables clinical stakeholders to understand
the specific balance between sensitivity and specificity achieved
by our approach, facilitating informed decisions about
implementation in clinical workflows. The detailed classification
metrics presented in Table 3 provide clinical context for the
performance characteristics.

The clinical interpretation of these metrics, as summarized in
Table 3, reveals that our model achieves high negative predictive
value (93.1%), indicating reliable identification of non-severe
cases. The positive predictive value of 53.6%, while moderate,
is appropriate for a screening tool where follow-up clinical
assessment would confirm positive predictions. This performance
profile suggests the model’s optimal application as a first-line
screening instrument to prioritize patients for comprehensive
clinical evaluation rather than as a standalone diagnostic tool.

The 75.0% sensitivity demonstrates that the model successfully
identifies three-quarters of severe cases, while the 83.8% specificity
indicates strong performance in correctly classifying non-severe
patients. The 16.3% false positive rate means that approximately
one in six patients predicted as severe may require additional
clinical evaluation, which is acceptable for screening applications.
The 25.0% false negative rate, while requiring attention, falls within
reasonable bounds for decision support tools that complement
rather than replace clinical judgment.

These performance characteristics align with the corrected
AUC of 0.781, demonstrating consistent and realistic
discrimination capability across all evaluation metrics. The
balanced trade-off between sensitivity and specificity positions
this model as a valuable clinical decision support tool that can
enhance rather than replace traditional Parkinson’s disease severity
assessment approaches.
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FIGURE 3

Model performance comparison across sampling strategies. XGBoost demonstrated consistent superior performance across all sampling
approaches, with SMOTE strategy achieving optimal precision-recall balance for clinical applications.

FIGURE 4

ROC and precision-recall curves for corrected models. Left panel: ROC curves showing moderate discrimination ability (AUC = 0.781), indicating the
model can distinguish between severe and non-severe cases with 78.1% probability of correctly ranking a randomly selected severe case higher than
a non-severe case. Right panel: Precision-recall curves demonstrating performance substantially above baseline (0.204), with XGBoost achieving
54.8% precision (meaning 54.8% of patients predicted as severe are truly severe) and 75.0% recall (meaning 75% of truly severe patients are correctly
identified). This performance profile is appropriate for screening applications where follow-up clinical assessment would confirm positive predictions.

3.8 SHAP interpretability analysis

To address concerns regarding data leakage and enhance model
interpretability, we conducted comprehensive SHAP (SHapley

Additive exPlanations) analysis using a reconstructed target
variable that completely excludes UPDRS features. This approach
ensures that our interpretability results are clinically applicable and
methodologically sound.
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FIGURE 5

Confusion matrix for best model (XGBoost with SMOTE). The matrix demonstrates balanced classification performance with acceptable false positive
(16.3%) and false negative (25.0%) rates, appropriate for clinical screening applications.

3.8.1 Methodological correction for data leakage
Following the identification of potential data leakage in our

original analysis, we redefined the severity classification using
independent clinical indicators. The new severity label was
constructed based on five independent dimensions: (1) motor
dysfunction (tremor amplitude >2.5 OR gait speed <0.8 m/s),
(2) non-motor symptom burden (NMSS total score >40), (3)
dopaminergic dysfunction (serum dopamine <30 ng/mL), (4) voice
impairment (F0 variability >25%), and (5) age-related risk (age
>70 years). Patients meeting three or more criteria were classified
as severe, resulting in a clinically realistic distribution (20.4% severe
patients) and eliminating circular prediction patterns.

3.8.2 Feature importance ranking
We selected the best-performing XGBoost model for

SHAP interpretability analysis following comprehensive model
comparison and cross-validation. The model achieved realistic
performance with cross-validation AUC of 0.781 ± 0.016,
demonstrating stable and clinically appropriate discrimination
capability for the corrected target variable.

As shown in Figure 6, the feature importance ranking reveals
the average impact degree of each feature variable on model
prediction results without UPDRS contamination. The horizontal
axis represents mean(|SHAP value|), indicating the average
absolute contribution of each feature to model output.

Non-motor symptom score emerged as the most important
predictor (mean |SHAP value| = 2.76), highlighting the growing

TABLE 3 Detailed classification metrics with clinical interpretation.

Metric Value Clinical
interpretation

Screening
implications

True Negatives
(TN)

67 Correct non-severe
identification

High confidence in
negative cases

False Positives
(FP)

13 Over-diagnosis risk
(16.3%)

1 in 6 requires clinical
confirmation

False Negatives
(FN)

5 Under-diagnosis risk
(25.0%)

1 in 4 severe cases
missed

True Positives
(TP)

15 Correct severe
identification

Appropriate for
screening

Sensitivity
(Recall)

75.0% Severe case detection
rate

Identifies 3 of 4 severe
patients

Specificity 83.8% Non-severe case
accuracy

Correctly classifies 5
of 6 non-severe

Positive
predictive value

53.6% Severe prediction
reliability

Half of positive
predictions correct

Negative
predictive value

93.1% Non-severe
prediction reliability

93% of negative
predictions correct

Accuracy 82.0% Overall classification
accuracy

Appropriate for
decision support

F1-Score 0.632 Balanced
performance measure

Suitable for screening
applications

recognition of non-motor symptoms’ central role in disease
progression and severity assessment. This finding aligns with
contemporary clinical understanding that non-motor symptoms
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often precede motor manifestations and significantly impact
patients’ quality of life. Serum dopamine concentration
ranked second (2.39), reflecting the fundamental role of
dopaminergic dysfunction in Parkinson’s disease pathophysiology,
though this relationship should be interpreted as reflecting
general systemic dopaminergic activity rather than specific
central pathology.

Age ranked third (2.16), consistent with Parkinson’s disease
being an age-related neurodegenerative disorder. Voice F0
variability (2.10) and gait speed (1.55) represented important
motor-related indicators, while tremor amplitude (1.31) showed
moderate predictive value. Environmental factors, though less
influential individually, collectively demonstrated statistical
significance, with PM2.5 concentration (0.12) showing the
highest impact among environmental variables, providing
quantitative evidence for environmental participation in
disease progression.

3.8.3 SHAP beeswarm plot analysis
To understand how specific feature values influence model

predictions, we constructed SHAP beeswarm plots that reveal

nonlinear relationships and interaction patterns between features
and prediction outcomes.

As shown in Figure 7, the beeswarm plot displays the
distribution of SHAP values for each feature across all samples. The
horizontal axis represents SHAP values indicating impact direction
and magnitude, while color encoding reflects standardized feature
value levels (red = high, blue = low).

Non-motor symptom score exhibited a clear positive
correlation pattern, with high values (red points) predominantly
associated with positive SHAP contributions, indicating increased
severity risk. This relationship validates the clinical relevance of
comprehensive non-motor symptom assessment and supports
contemporary trends toward holistic disease evaluation. Serum
dopamine showed a complex pattern where the relationship
between biochemical levels and disease severity requires careful
interpretation as a peripheral marker rather than direct central
nervous system indicator.

Age demonstrated the expected positive correlation with
severity prediction, consistent with disease epidemiology and
neurodegeneration mechanisms. Voice F0 variability and gait speed
showed distinct directional patterns, with voice abnormalities
contributing positively to severity prediction while preserved
gait function provided protective effects. Environmental factors

FIGURE 6

Feature importance ranking based on SHAP values (excluding UPDRS).
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displayed more complex, nonlinear relationships, suggesting
intricate interactions between environmental exposure and
individual susceptibility factors that warrant further investigation
in population-based studies.

3.8.4 Single sample prediction explanation
To demonstrate the clinical utility of our interpretable

model, we analyzed a representative severe patient case
using SHAP waterfall plots to understand feature-by-feature
contribution patterns.

Figure 8 illustrates the prediction process for Sample 4, a
correctly identified severe patient (predicted probability = 0.85).
The waterfall plot shows the cumulative contribution of each
feature from the baseline value to the final prediction. Red bars
represent features that increase severity prediction, while blue bars
indicate protective factors.

For this patient, non-motor symptom score provided the
strongest positive contribution (+3.354), with a standardized
feature value of 1.72 indicating significantly elevated non-
motor symptom burden. Serum dopamine (+2.536, standardized
value = −2.07) contributed positively to severity prediction,
reflecting the relationship between biochemical dysfunction
and disease progression when appropriately normalized. Age
(+2.394, standardized value = 0.78) and tremor amplitude

(+1.975, standardized value = 1.10) further supported the
severe classification.

Conversely, voice F0 variability (−0.867, standardized value
= 0.29) and gait speed (−0.593, standardized value = −0.13)
provided modest protective contributions, suggesting relatively
preserved function in these domains. Environmental factors
showed mixed contributions, with some factors like ambient
temperature (+0.014) providing minimal positive influence while
PM2.5 levels (−0.057) showed slight protective effects for this
particular patient.

This individualized analysis demonstrates how the model
integrates multiple clinical dimensions to reach screening
conclusions, providing clinicians with transparent, feature-specific
rationale for each prediction. The approach enables identification
of key risk factors and potential intervention targets for individual
patients, supporting personalized care planning within appropriate
clinical workflows.

3.8.5 Serum dopamine interpretation
considerations

While serum dopamine concentration ranked as an important
predictive feature (SHAP value = 2.39), this peripheral biomarker
does not directly reflect central nervous system dopamine
availability or striatal dopaminergic activity (36, 37). Serum
dopamine should be interpreted as an accessible but limited marker

FIGURE 7

SHAP beeswarm plot analysis (corrected model).
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FIGURE 8

SHAP waterfall plot - individual patient analysis.

of general systemic dopaminergic activity rather than a reliable
proxy for specific central pathological processes. The predictive
value likely reflects its integration with other clinical indicators
within the multi-dimensional assessment framework.

3.8.6 Clinical interpretation and validation
The correlation analysis (Figure 9 left panel) confirmed

appropriate feature independence without problematic
multicollinearity (all correlations < 0.4). The SHAP values
heatmap (Figure 9 right panel) revealed consistent importance
patterns across the patient cohort, with non-motor symptoms,
dopamine levels, and age showing the most substantial and
consistent contributions to severity prediction.

Our corrected SHAP analysis addresses the original
methodological concerns by: (1) eliminating data leakage through
independent target variable construction, (2) ensuring numerical
consistency between SHAP values and clinical interpretations,
(3) providing biologically plausible explanations for all feature
contributions, and (4) demonstrating clinical utility through
individual patient examples. The results support the validity
of our multi-dimensional approach to Parkinson’s disease
severity prediction while maintaining full interpretability and
clinical relevance.

This interpretable machine learning framework provides
clinicians with transparent, evidence-based tools for severity
assessment that complement traditional clinical evaluation

methods. The prominence of non-motor symptoms in our
analysis supports current trends toward comprehensive, multi-
dimensional disease assessment and suggests potential clinical
applications for early intervention and personalized treatment
planning. The realistic performance levels achieved (AUC = 0.781)
position this approach as a valuable screening tool rather than a
definitive diagnostic instrument, appropriate for clinical decision
support applications.

4 Discussion

4.1 Machine learning model performance
advantages and clinical application value

The machine learning mode developed in this study,
integrating clinical features and environmental factors, showed
promising potential for Parkinson’s disease severity screening
applications. Following rigorous methodological correction to
eliminate data leakage, XGBoost with SMOTE sampling achieved
realistic discriminative performance (AUC = 0.781, precision =
0.548, recall = 0.750), representing clinically meaningful capability
appropriate for medical screening applications. According to
general standards in medical statistics, AUC values between
0.7–0.8 indicate good diagnostic performance for complex medical
conditions, while our achieved performance level provides solid
foundation for clinical decision support applications.
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FIGURE 9

Feature correlation matrix and SHAP values distribution.

Particularly noteworthy is that our corrected model maintained
balanced sensitivity (75.0%) and specificity (83.8%), which has
important clinical significance for medical screening applications.
The 75.0% recall rate ensures effective identification of three-
quarters of severe patients, while the 83.8% specificity minimizes
false positive diagnoses, consistent with the basic principle in
medical practice of balancing sensitivity and specificity for
screening tools. In clinical management of Parkinson’s disease,
reliable identification of severe patients directly relates to
appropriate treatment timing and resource allocation. Through
machine learning model assistance, clinicians can identify
patients with higher disease progression risk more systematically,
thereby informing treatment decisions including medication
adjustments, advanced therapy considerations, or enhanced
monitoring protocols.

The comparative evaluation revealed that tree-based ensemble
methods consistently outperformed linear approaches in this
multi-dimensional feature space. XGBoost achieved optimal
performance balance, suitable for systematic severity assessment
and clinical decision support; ensemble methods demonstrated
robust performance across different sampling strategies, providing
stable predictions for diverse clinical scenarios. This multi-
algorithmic evaluation strategy provides evidence-based model
selection for clinical implementation, allowing healthcare systems
to choose approaches most suitable for their specific diagnostic
workflows and patient populations.

From a cost-effectiveness perspective, machine learning
model applications can significantly improve diagnostic
efficiency and reduce medical costs. Traditional Parkinson’s
disease severity assessment relies on experienced neurologists
to perform complex scale scoring, which is time-consuming
and highly subjective. Machine learning models based on
objective data can achieve rapid, standardized assessment,
reducing dependence on expert resources. Meanwhile, systematic
identification of patients requiring enhanced clinical attention
helps optimize resource allocation, potentially improving care

coordination and reducing unnecessary specialist referrals.
This evidence-based screening model aligns with modern
healthcare delivery optimization and has important health
economic value.

4.2 Pathophysiological mechanisms and
clinical significance of feature importance

SHAP interpretability analysis results provide deep insights
into understanding factors affecting Parkinson’s disease severity,
revealing complex mechanisms of disease progression. Following
methodological correction to eliminate data leakage, non-motor
symptom score emerged as the most important predictor
(SHAP value = 2.76), highlighting the growing recognition
of non-motor symptoms’ central role in disease progression
and severity assessment. This finding aligns with contemporary
clinical understanding that non-motor symptoms often precede
motor manifestations and significantly impact patients’ quality
of life, validating comprehensive assessment approaches beyond
traditional motor-focused evaluations.

Serum dopamine concentration ranked second (SHAP value =
2.39), reflecting the fundamental role of dopaminergic dysfunction
in Parkinson’s disease pathophysiology, though this relationship
should be interpreted as reflecting general systemic dopaminergic
activity rather than specific central pathology. Age ranked third
(2.16), consistent with Parkinson’s disease being an age-related
neurodegenerative disorder. Voice F0 variability (2.10) and gait
speed (1.55) represented important motor-related indicators,
while tremor amplitude (1.31) showed moderate predictive value,
collectively reinforcing the importance of comprehensive motor
function assessment.

The finding that non-motor symptoms demonstrated the
highest predictive importance has important clinical implications.
Traditional Parkinson’s disease assessment mainly focuses on
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motor symptoms, but contemporary medical practice increasingly
recognizes the important impact of non-motor symptoms on
patients’ quality of life. Non-motor symptoms include cognitive
decline, mood disorders, sleep problems, autonomic dysfunction,
etc. These symptoms may exist before motor symptoms appear
and worsen with disease progression. This study quantified
the importance of non-motor symptoms in disease severity
assessment through machine learning methods, providing scientific
basis for strengthening comprehensive symptom management in
clinical practice.

The inclusion of environmental factors opens new directions
for Parkinson’s disease research. Although environmental
variables demonstrated modest individual importance (PM2.5
concentration SHAP value = 0.12), they collectively showed
statistical significance, providing quantitative evidence for the
hypothesis that environmental factors participate in disease
progression. Existing epidemiological studies suggest that
environmental pollution, pesticide exposure, heavy metal contact
and other environmental factors may be related to Parkinson’s
disease risk. This study further found that these environmental
factors may not only affect disease onset but also participate in
disease progression processes. The influence of sunlight hours
may be related to vitamin D synthesis and circadian rhythm
regulation, and vitamin D deficiency has been confirmed to be
related to various neurological diseases. Air pollutants like PM2.5
may accelerate neuronal damage by promoting oxidative stress and
neuroinflammatory responses.

From Table 4, we can see significant differences in contributions
of different feature categories to disease severity prediction. Non-
motor symptoms demonstrated the highest individual predictive
value, supporting contemporary trends toward comprehensive
assessment approaches. Although motor symptoms collectively
remain important, the prominence of non-motor symptoms
suggests the necessity of holistic evaluation frameworks.
Biochemical indicators provide objective quantitative basis
for disease assessment, while environmental factors, despite
modest individual contributions, open new dimensions for
population health interventions.

Our environmental exposure assessment, while
methodologically rigorous, carries important limitations that affect
interpretation. The 7-day averaging windows for meteorological
variables, though biologically plausible, were not validated through
sensitivity analyses in this dataset. Individual exposure variability
due to activity patterns, indoor environments, and protective
behaviors was not captured by our residential location-based
estimates. Future studies should incorporate personal exposure
monitoring and systematic evaluation of multiple temporal lag
periods to optimize exposure assessment accuracy (16, 38).

4.3 Research limitations, innovative
contributions, and future development
directions

This proof-of-concept study has several important limitations
that significantly affect generalizability and clinical applicability.

These limitations must be addressed before clinical deployment can
be considered.

Critical generalizability limitations: The single-center, cross-
sectional design fundamentally limits the external validity of
our findings. Data from one medical center in Central China
may not represent PD populations in different geographic
regions, healthcare systems, or demographic contexts. The 20.4%
severe case prevalence in our reconstructed classification requires
validation across diverse clinical settings to confirm its clinical
relevance. External validation studies across multiple centers and
populations are essential before any clinical application.

Temporal and sausal inference limitations: The cross-
sectional design precludes establishment of causal relationships
between environmental factors and disease progression. Our
findings represent associations at single time points rather than
longitudinal progression patterns. Prospective cohort studies with
repeated measurements are required to validate the temporal
relationships suggested by our cross-sectional analysis.

Environmental assessment constraints: Despite
methodological rigor, our environmental exposure estimates
remain approximations of true individual exposures. The absence
of sensitivity analyses across different temporal lag periods
means optimal exposure windows remain uncertain. Personal
exposure monitoring would provide more accurate individual-level
exposure data.

First, the cross-sectional study design limits the establishment
of causal relationships and cannot fully reveal the temporal
sequence relationship between environmental factors and disease
progression. Although this study captured environmental exposure
information as accurately as possible through spatiotemporal
matching algorithms, single measurements are difficult to reflect
cumulative effects of long-term exposure. Disease occurrence and
development is a dynamic process requiring long-term follow-
up data to accurately assess the true impact of various factors.
Future research should consider conducting prospective cohort
studies to observe the influence of environmental factors on disease
progression trajectories through long-term follow-up.

Second, the regional representativeness of the research needs
further validation. This study’s data mainly came from a single
medical center in Central China, and the genetic background,
lifestyle and environmental exposure characteristics of the patient
population may have regional specificity. Different regions in China
have significant differences in climate conditions, environmental
pollution levels, economic development and healthcare resource
allocation, all of which may affect model generalizability. To
improve model universality and clinical applicability, future multi-
center, multi-regional validation studies are needed, particularly
model performance evaluation in regions with different climate
conditions and environmental pollution levels.

Third, the precision of environmental exposure measurement
still has room for improvement. Although this study adopted
advanced methods such as multi-source data fusion and distance-
weighted interpolation, environmental exposure estimation based
on residential locations may not fully reflect individual true
exposure levels. Individual activity patterns vary greatly, including
factors such as indoor/outdoor time allocation, commuting route
choices, occupational exposure risks, etc., all of which may affect
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TABLE 4 Feature contribution analysis for disease severity prediction.

Feature category Features SHAP range Main mechanism Clinical potential

Non-motor cymptoms 1 2.76 Nervous system involvement QoL assessment

Biochemical indicators 1 2.39 Neurotransmitter deficiency Pathological evaluation

Demographic features 1 2.16 Age-related degeneration Risk stratification

Motor symptoms 2 1.31–2.10 Dopaminergic loss Staging & monitoring

Environmental factors 8 0.12–0.35 Oxidative stress Intervention & prevention

actual environmental exposure doses. Additionally, factors such
as residential type, ventilation conditions, and air purification
equipment use also affect indoor environmental quality. Future
research should consider introducing wearable devices and
personal exposure monitoring technologies to obtain more precise
individualized environmental exposure data.

Despite the above limitations, this study made important
innovative contributions in multiple aspects, as shown in
Table 5. For the first time, clinical quantitative features were
combined with environmental meteorological factors to construct
a comprehensive prediction model for Parkinson’s disease
severity, providing a new multi-dimensional perspective for
disease assessment. This fusion method not only improved
prediction accuracy but also provided new ideas for understanding
complex disease influencing factors. Methodologically, the
spatiotemporal matching algorithm and multi-source data fusion
strategy established in this study provide technical innovation for
environmental epidemiological research, with reference value for
environmental factor research in other chronic diseases.

The rigorous methodological correction to eliminate data
leakage represents a critical innovation in medical machine
learning applications. By completely reconstructing target variables
using independent clinical dimensions, this study demonstrates
how to achieve genuine predictive capability while maintaining
clinical validity. The comprehensive sampling strategy evaluation
and cross-validation framework provide methodological templates
for future medical AI research, ensuring realistic performance
expectations and clinical applicability.

The in-depth application of SHAP interpretability analysis is
another important innovation of this study. Traditional machine
learning models are often viewed as “black boxes” with decision
processes lacking transparency, limiting their application in the
medical field. This study improved model transparency and
credibility through multi-level analysis including global feature
importance, SHAP beeswarm plots and single-sample waterfall
plots, also providing powerful tools for clinicians to understand
patient disease status and formulate individualized treatment plans.
This “white-box” machine learning method provides important
reference for clinical translation of medical artificial intelligence.

As shown in Table 5, the innovative contributions of this
study cover multiple levels, from methodological rigor to
clinical applications to social impact. The elimination of data
leakage establishes new standards for medical machine learning
research, ensuring genuine predictive capability rather than
artificially inflated performance. The combination of clinical and
environmental factors pioneered a comprehensive assessment
paradigm, while interpretability analysis enhanced clinical trust

and adoption potential. Realistic performance expectations provide
appropriate benchmarks for clinical screening applications rather
than unrealistic diagnostic claims.

4.4 Environmental exposure assessment:
temporal windows and biological rationale

The selection of temporal lag windows for environmental
exposure assessment requires careful consideration of biological
plausibility and mechanistic pathways. Our choice of 7-day
averaging windows for most meteorological variables is grounded
in established understanding of environmental health impacts
on neurological conditions. Short-term air pollution exposure
has been demonstrated to trigger neuroinflammatory responses
within 24–72 h, with effects potentially persisting for several days
(5, 39, 40). Temperature fluctuations and barometric pressure
changes can influence symptom severity through effects on blood
viscosity and cerebral perfusion, with impacts typically manifesting
within 3–7 days of exposure (4, 41). However, we acknowledge
that the biological mechanisms underlying environment-
PD interactions remain incompletely understood, and our
temporal window selections represent reasonable approximations
based on available evidence rather than definitive biological
constants (15, 16).

To address concerns regarding temporal window selection,
future studies should incorporate sensitivity analyses across
multiple lag periods (1, 3, 7, 14, and 30 days) to identify
optimal exposure assessment windows for different environmental
factors (38). The heterogeneity in individual susceptibility to
environmental triggers also suggests that personalized lag period
selection based on patient characteristics may enhance prediction
accuracy in clinical applications.

4.5 Limitations and methodological
considerations of biomarker selection

The inclusion of serum dopamine as a predictive biomarker
requires careful interpretation within its biological limitations.
While serum dopamine concentration provides an accessible
peripheral marker related to dopaminergic system function,
it does not directly reflect central nervous system dopamine
availability or striatal dopaminergic activity, which are the primary
pathophysiological targets in Parkinson’s disease (3, 36). Serum
dopamine levels can be influenced by peripheral factors including
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TABLE 5 Innovative contributions and potential impact of this study.

Innovation Contribution Academic value Clinical significance Social impact

Methodological rigor Data leakage elimination Research integrity Realistic expectations Clinical trust

Feature fusion Clinical + environmental multi-dimensional Research paradigm Comprehensive assessment Environmental awareness

Methodology Spatiotemporal matching algorithm Technical innovation Precise tools Data science application

Interpretability Deep SHAP analysis AI transparency Decision support Doctor-patient trust

Performance Realistic AUC = 0.781 Clinical benchmark Screening capability Healthcare optimization

dietary intake, stress responses, renal clearance, and medications,
potentially confounding the relationship with central dopaminergic
dysfunction (1, 37).

Our rationale for including serum dopamine stems from its
practical accessibility in clinical settings and its demonstrated
associations with PD motor severity in previous studies, albeit with
acknowledged limitations (2). The SHAP analysis revealed serum
dopamine as an important predictive feature, but this relationship
should be interpreted as reflecting general systemic dopaminergic
activity rather than specific central pathology. Future research
should prioritize more specific biomarkers of central dopaminergic
function, such as cerebrospinal fluid dopamine metabolites or
advanced neuroimaging measures, when feasible within clinical
workflows (37, 42).

The moderate predictive importance of serum dopamine in
our model (SHAP value = 2.39) suggests it contributes meaningful
information to severity assessment when integrated with other
clinical indicators, despite its peripheral nature. This finding
supports the value of multi-dimensional biomarker approaches
that combine accessible peripheral measures with comprehensive
clinical assessment, acknowledging that no single biomarker can
capture the full complexity of PD pathophysiology.

4.6 Clinical implementation framework
and translational pathway

The translation of our interpretable machine learning
framework into clinical practice requires systematic consideration
of implementation barriers, workflow integration, and cost-
effectiveness considerations (43). We propose a phased
implementation strategy designed to maximize clinical utility
while minimizing disruption to existing care pathways.

4.6.1 Phase I: clinical decision support
integration (0–12 months)

Initial implementation should focus on integrating our model
as a clinical decision support tool within existing electronic health
record (EHR) systems. The model would operate as a “silent”
assessment tool, providing severity predictions and SHAP-based
explanations to clinicians without directly influencing treatment
decisions (44, 45). This phase would allow clinical validation of
model predictions against physician assessments and identification
of cases where model-clinician disagreement provides valuable
diagnostic insights.

Technical requirements: API integration with major EHR
platforms, automated data extraction protocols for clinical
variables, and user-friendly visualization dashboards for SHAP
interpretability results (46). Environmental data integration would
require partnerships with meteorological services and air quality
monitoring networks to enable real-time exposure assessment (38).

Training and education: Comprehensive training programs
for neurologists and movement disorder specialists focusing
on model interpretation, limitations, and appropriate clinical
application (47). Educational materials should emphasize that the
model serves as a diagnostic aid rather than a replacement for
clinical expertise.

4.6.2 Phase II: prospective clinical validation
(12–24 months)

Following initial integration, prospective validation studies
should assess model performance in real-world clinical settings
across multiple centers. This phase would involve systematic
comparison of model-assisted versus standard clinical assessment,
measuring impacts on diagnostic accuracy, treatment timing, and
patient outcomes (48).

Primary endpoints: Concordance between model predictions
and clinical assessments, time to accurate severity classification,
identification of patients requiring treatment intensification, and
overall diagnostic confidence measures (49).

Secondary endpoints: Cost-effectiveness analysis comparing
model-assisted care versus standard care, healthcare resource
utilization patterns, and patient satisfaction with technology-
enhanced assessment processes.

4.6.3 Phase III: population health applications
(24+ months)

Long-term implementation should expand beyond
individual patient assessment to population health applications,
including environmental health monitoring and public health
interventions (50). The model’s environmental component enables
identification of geographic regions or time periods associated
with increased PD severity risk, informing targeted public
health strategies.

Public health integration: Collaboration with environmental
health agencies to develop early warning systems for periods of
elevated air pollution or adverse meteorological conditions that
may exacerbate PD symptoms. This could enable proactive patient
communication and preventive interventions.
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Health system optimization: Use of population-level severity
predictions to optimize resource allocation, specialist scheduling,
and healthcare capacity planning, particularly in regions with high
environmental risk factors.

4.6.4 Cost-effectiveness and economic
considerations

Economic evaluation of our framework requires consideration
of multiple cost domains and benefit categories (51). Direct
costs include software development, EHR integration, staff
training, and ongoing maintenance of environmental data feeds.
These implementation costs must be weighed against potential
benefits including reduced specialist consultation time, improved
diagnostic efficiency, earlier intervention in severe cases, and
prevention of unnecessary hospitalizations.

Preliminary cost-effectiveness modeling suggests that if the
model reduces specialist assessment time by 15–20 min per patient
while maintaining diagnostic accuracy, the cost savings could
offset implementation expenses within 2–3 years in healthcare
systems with high PD patient volumes. Additional benefits
from environmental intervention strategies and population health
applications may provide further economic justification, though
these require prospective validation.

4.6.5 Implementation barriers and mitigation
strategies

Technical barriers: EHR interoperability challenges, data
quality inconsistencies, and environmental data accessibility.
Mitigation strategies include standardized data collection
protocols, robust data validation algorithms, and partnerships with
reliable environmental monitoring networks.

Clinical barriers: Physician skepticism regarding AI tools,
workflow disruption concerns, and liability considerations (47,
52). Mitigation approaches include transparent model validation
studies, comprehensive training programs, clear clinical guidelines
for model interpretation, and explicit documentation of model
limitations.

Regulatory barriers: Medical device approval requirements,
data privacy regulations, and clinical validation standards. Early
engagement with regulatory agencies, comprehensive validation
studies, and robust data security protocols are essential for
successful regulatory approval.

This systematic implementation framework provides a
realistic pathway for clinical translation while acknowledging
the substantial challenges inherent in deploying AI tools in
healthcare settings. Success requires sustained collaboration
between researchers, clinicians, healthcare administrators, and
technology partners throughout the implementation process.

5 Conclusion

This proof-of-concept study developed an interpretable
machine learning framework integrating clinical and

environmental features for Parkinson’s disease severity prediction
with methodological safeguards against data leakage. Following
comprehensive target variable reconstruction using independent
clinical dimensions, XGBoost achieved clinically meaningful
discriminative performance (AUC = 0.781, precision = 0.548,
recall = 0.750) appropriate for screening applications. SHAP
interpretability analysis revealed non-motor symptoms as
the primary predictor (SHAP value = 2.76), followed by
serum dopamine concentration (2.39) and age (2.16), while
environmental factors demonstrated modest but statistically
significant contributions. However, the cross-sectional, single-
center design significantly limits generalizability, requiring external
validation across diverse populations and longitudinal studies to
establish temporal relationships before clinical deployment.
The serum dopamine biomarker, while predictively valuable,
should be interpreted as an accessible but limited peripheral
marker rather than a direct indicator of central dopaminergic
dysfunction. This preliminary framework establishes foundation
for transparent, evidence-based screening approaches, with
immediate research applications and long-term clinical potential
pending comprehensive validation studies.
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