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Mechanisms and potential
therapeutic molecular targets in
blood—brain barrier disruption
following subarachnoid
hemorrhage: a review of early
brain injury

Hao Ouyang’?, Hua Gu*, Yong Cai'? and Chenli Wang?

The First People's Hospital of Huzhou (The First Affiliated Hospital of Huzhou University), Huzhou,
China, ?Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China, *Changsha Medical College,
Changsha, Hunan, China

Subarachnoid hemorrhage (SAH) is a devastating stroke characterized by acute
onset, severe symptoms, and a poor prognosis. A series of pathological changes
occur within 72 h after SAH, leading to early brain injury (EBI). Blood—brain barrier
(BBB) disruption is a key factor contributing to the EBI progression. When the BBB
is compromised, detrimental substances and immune cells have the potential to
infiltrate brain tissues, and a range of mechanisms contribute to the disruption
of the BBB following SAH. This review provides a comprehensive overview of
the current knowledge regarding the underlying mechanisms and potential
therapeutic targets in BBB disruption during EBI following SAH. It focuses on the
dysfunction of endothelial cells, tight junctions, astrocytes, and pericytes; the
specific molecular targets for EBI after SAH; and new emerging treatments for
BBB disruption in EBI after SAH.
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Introduction

Subarachnoid hemorrhage (SAH) is a critical form of hemorrhagic stroke resulting from
the rupture of pathological blood vessels, leading to the direct influx of blood into the
subarachnoid space within the brain (1). The prevalence of SAH was approximately 10 per
100,000 individuals in the general population, accounting for 5-10% of all stroke cases, while
the incidences were more evident in specific countries (Finland and Japan), elderly, women,
black races, family history of SAH and some heritable connective-tissue disorders (2, 3). An
underlying intracranial aneurysm rupture is the primary etiology in approximately 80-85%
of cases of spontaneous SAH (4). Brain injury induced by SAH could be divided into early
brain injury (EBI) and delayed brain injury. EBI is the primary prognostic factor for
aneurysmal SAH, which can occur within minutes to 72 h after the initial bleeding. EBI is
characterized by increased intracranial pressure, resulting in global cerebral ischemia or the
presence of extravasated blood (5, 6). Multiple physiological disturbances cause EBI, and
various pathological changes occur within 72 h after SAH, potentially leading to secondary
brain tissue damage (7). In clinical practice, surgical clipping or endovascular coiling used for
early aneurysmal obliteration are widely applied to prevent rebleeding and improve the
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prognosis of SAH. Moreover, intensive medical care should be used to
manage delayed cerebral ischemia after ruptured aneurysm is
successfully treated, irrespectively for cerebral vasospasm (CVS), and
other various medical complications status. Furthermore, it is crucial
to closely monitor and effectively manage surrogate markers for early
brain injury (EBI) in order to enhance the prognosis of subarachnoid
hemorrhage (SAH). These markers include the initial clinical severity,
extent of subarachnoid hemorrhage, and the presence of global
cerebral edema (5).

Studies have shown that the disruption of the BBB is a significant
factor in the development of brain edema caused by EBI (8). An
increased intracranial pressure following SAH is strongly correlated
with reduced cerebral blood flow and widespread cerebral ischemia.
This is accompanied by the extravasation of blood and degradation
products, which can impact the advancement of brain injury. The
disruption of BBB permeability significantly contributes to death
within 72 h after SAH, as it could induce brain edema, increase
intracranial pressure, cause secondary neuron apoptosis, and result in
brain herniation (9). The BBB in the cerebrovascular system is
composed of neurons, endothelial cells, pericytes, astrocytes,
microglia, and vascular smooth muscle cells (VSMC) (10). The BBB
regulates brain homeostasis by restricting the entry of neurotoxic
plasma components, blood cells, and pathogens from the systemic
circulation (11). Preclinical SAH studies have demonstrated that BBB
permeability increases at 24-36 h, peaks at 48 h, and normalizes at
72 h. Disruption of the BBB function is closely correlated with damage
to the basal lamina and microvasculature (12, 13). Thus, inhibiting of
BBB disruption could considered as an effective strategy to improve
the prognosis of EBI after SAH.

Considering the complexity of SAH and the difficulty in
identifying effective treatments, exploring new therapeutic approaches
for EBI is crucial to improving the prognosis of SAH. Therefore, it is
necessary to perform a thorough review of the literature in order to
evaluate the underlying mechanisms and identify potential molecular
targets for therapeutic interventions in BBB disruption following EBI
after SAH.

Mechanisms of EBI after SAH

A intracranial pressure (ICP) peak after SAH could arrest in
intracranial circulation (14), and severe global ischemic injury could
caused by temporary intracranial circulatory arrest via hemostasis,
which was associated with autoregulation loss, lower cerebral perfusion
pressure (CPP) or cerebral blood flow (CBF), and elevated secondary
ICP (15). Moreover, the cytotoxic edema could affect by hypoxic state
via energy failure in neurons and glia (16). Furthermore, ischemia can

Abbreviations: BBB, Blood—brain barrier; SAH, Subarachnoid hemorrhage; EBI,
Early brain injury; CVS, Cerebral vasospasm (CVS); ICP, Intracranial pressure; CPP,
Cerebral perfusion pressure; CBF, Cerebral blood flow; MMP-9, Matrix
Metalloproteinase-9; TJ, Tight junction; AQP4, Aquaporin 4; ROS, Reactive oxygen
species; NOS, Nitric oxide synthase; eNOS, Endothelial nitric oxide synthase;
nNOS, Neural nitric oxide synthase; iINOS, Inducible nitric oxide synthase; TLR4,
Toll-Like receptor 4; NF-xB, Nuclear factor-kappa B; JAK/STAT, Janus kinase/
signal transducer and activator of transcription; PI3K/Akt, Phosphatidylinositol

3-kinase/protein kinase B.
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trigger the apoptosis of BBB cells, leading to an augmented permeability
of serum from the blood vessels into the cerebral tissues, which is
primarily attributed to the death of endothelial cells and perivascular
astrocytes (17). The astrocytes and microglia were activated after SAH,
which could induce the up-regulation of pro-inflammatory cytokines,
and then the brain parenchyma was affected (18). Finally, the
pathophysiological changes during the EBI period after SAH within
72 h included raised ICP, reduced CPP and CBP, BBB disruption, acute
vasospasm, autoregulation dysfunction, brain swelling, and brain
edema (16). Multiple mechanisms have been shown to be involved in
cell death and subsequent dysfunction following SAH, and the specific
details are illustrated in Figure 1 (19-22). In summary, EBI after SAH is
a synergistic outcome of multiple mechanisms, including elevated ICP,
reduced CBF/CPP, ion disturbance, and molecular alterations. These
processes collectively induce cell death in neurovascular units, laying
the pathological foundation for BBB disruption. The details of
mechanisms for EBI after SAH are summarized in Table 1.

Among the multiple pathological processes of EBI, BBB disruption
is a pivotal link connecting upstream insults (e.g., ischemia, oxidative
stress) to downstream damage (e.g., brain edema). The integrity of
BBB directly determines the extent of fluid and toxic substance
infiltration into brain tissue, thereby governing the development of
cerebral edema. Thus, the following section focuses on the association
between BBB integrity and brain edema.

BBB integrity and brain edema

BBB disruption after SAH could induce varies pathophysiological
processes, and the endothelial cell apoptosis was involved (23). The
presence of blood breakdown products, such as oxyhemoglobin, and
the associated oxidative stress have been linked to the advancement of
blood-brain barrier (BBB) disruption. Additionally, the activation of
inflammatory cytokines, including TNF-a, IL-1f, and thromboxane
A2, can induce BBB disruption by promoting endothelial cell death
and activating matrix metalloproteinases. Furthermore, various
mechanisms are involved in BBB disruption, including matrix
metalloproteinase-9 (MMP-9)—which degrades the extracellular
matrix of the basement membrane (e.g., collagen IV, laminin) and
directly cleaves tight junction proteins (occludin, ZO-1) to increase
BBB permeability (23), and tight junction (TJ) proteins between
endothelial cells (24). Cerebral edema may occur when blood
components and inflammatory factors infiltrate the brain following
disruption of the BBB. Study has indicated that aquaporin 4 (AQP4)
is implicated in the development of brain edema after SAH. Inhibiting
AQP4 has been associated with amelioration of cerebral edema, as it
plays a crucial role in regulating water balance within brain tissue
following SAH (25). To conclude, BBB disruption is the core
pathogenesis of cerebral edema in EBI, with oxidative stress,
inflammatory cytokines, and MMP-9 activation as key mediators.
Targeting these pathways to preserve BBB integrity may effectively
alleviate brain edema.

Mechanical impact

During the acute phase of SAH, a decrease in CPP and an increase
in ICP play a significant role in reducing CBE. The reasons for a
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FIGURE 1
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TABLE 1 Potential mechanism for early brain injury after SAH.

Components Molecular mediators

Endothelial cell apoptosis, TNF-a, IL-1f, and thromboxane A2

Targets

BBB disruption (23)

Vascular integrity MMP-9, T] proteins between endothelial cells

BBB disruption (24, 28)

AQP4

Cerebral edema (25)

CBE ICP, and CPP

Brain’s microcirculation (12)

Mechanical impact MMP-9

Platelet aggregation (28)

CMRO2

Oxygen and glucose metabolism (29)

Tons disturbance

Intracellular calcium, potassium, sodium, and magnesium

CSD (30-33)

Ras-MAPK-NF-kB, JAK/STAT, and TLR4/NF-kB

IL-1, IL-6, and TNF-« (35-37)

Molecular alterations Lipid peroxidation and protein oxidation

Oxidative stress (39)

NOS

ROS, oxidative stress (40)

decrease in CPP and increase in ICP included cerebral edema,
cerebrovascular dysfunction causing congestion, and hematomas
blocking cerebrospinal fluid circulation, and the levels could return
normal or slightly elevated quickly. However, the pathophysiological
mechanisms, such as disruption of the BBB, constriction of
microvessels, formation of microthrombi, and impaired
autoregulation, prolonged the time needed for the recovery of cerebral
blood flow (12). Study found the arterioles’ reactivity to endothelin-1
was increased after blood injection (26). Furthermore, ultrastructural
examination revealed the presence of partially collapsed capillaries,
enlarged astrocyte foot processes, and protrusions from endothelial
cell lumens within 1 h following SAH (27).

The progression of microthrombi can be influenced by platelets,
with arterial damage and active bleeding playing a significant role in
promoting platelet aggregation and the formation of microthrombi.
The potential mechanism involved the liberation of serotonin, ADP,

and platelet-derived growth factor subsequent to SAH, leading to
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potential alterations in cerebral perfusion. Moreover, the collagenases
release, such as MMP-9 was associated with BBB disruption, while the
inflammatory damage could exacerbate via lymphatic cells adhering
to microvessels. Furthermore, the brain energy metabolism included
oxygen and glucose metabolism. The decrease in cerebral metabolic
rate of oxygen (CMRO,) after SAH is significantly related to lower
CBF and elevated ICP (28). An increase in high-glucose anaerobic
glycolysis has been found to be associated with a decline in
neurological function score, particularly in relation to anaerobic
metabolism (29).

lons disturbance
After SAH, there are several alterations observed in the brain

microenvironment, including fluctuations in intracellular levels of
calcium, potassium, sodium, and magnesium. These dynamic changes
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are closely linked to brain tissue injury, such as disruption of nerve
electrical activity, constriction of blood vessels, and the occurrence of
chronic delayed effects. Nowadays, the etiology of cerebral ischemic
injury after SCH was considered induce cortical spreading depression
(CSD) caused by ion imbalance combined with the secondary cortical
spreading cerebral ischemia (CSCI). Possible targets for intervention
to address ion imbalance involve increasing the threshold for CSD by
enhancing NO availability, utilizing magnesium ion antagonism,
NMDA receptor antagonists, or maintaining high perfusion pressure,
all of which have been associated with shorter duration of CSD
(30-33).

Molecular alterations

The immune-inflammatory response plays a significant role in
brain injury and CVS following SAH. Additionally, the activation of
inflammatory cells, increased expression of immune molecules, and
release of inflammatory mediators have been observed following
disruption of the BBB, which may be a response to the presence of
blood-derived antigens—referring to blood components (e.g.,
hemoglobin breakdown products, platelet-derived factors) that are
normally sequestered by the BBB and enter brain tissue after
disruption. It should be clarified that this inflammatory response is
not a traditional antibody-antigen specific immune reaction, but
rather a result of blood components acting as damage-associated
molecular patterns (DAMPs) to activate innate immune pathways
(34). Studies has indicated that during the acute stage of SAH, there
is an increase in the levels of IL-1, IL-6, and TNF-«, and the
production of these inflammatory factors involves the activation of
the Ras-MAPK-NF-kB, JAK/STAT, and TLR4/NF-kB pathways
(35-37).

Oxidative stress can be triggered by the breakdown products of
hemoglobin that are released into the subarachnoid space following a
SAH. This oxidative stress can be further intensified by cerebral
ischemia-reperfusion. Oxidative stress leads to lipid peroxidation and
protein oxidation, which are associated with DNA damage, cell
apoptosis, and the activation of inflammatory cascade reactions.
Oxidative stress induces endothelial cell apoptosis, degrades tight
junction proteins, and damages the basement membrane, directly
exacerbating BBB disruption (38). Thus, interventions targeting
oxidative stress (e.g., inhibiting ROS production, activating
antioxidant pathways) can protect endothelial function, maintain T
integrity, thereby alleviating BBB disruption and ultimately reducing
EBI severity (39).

The production of reactive oxygen species (ROS) following SAH
is mediated by heme oxygenase, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, and nitric oxide synthase (NOS). NO
generated by NOS was significantly reduced owing to acute cerebral
vasospasm (CVS)—a pathological vasoconstriction of cerebral arteries
after SAH, whereas it was dramatically increased after 24 h. Thus,
NOS and NO contributed a crucial role in brain damage caused by
oxidative stress (40). Studies have shown that reducing the factors that
lead to the production of ROS and inhibiting ROS generation can
result in enhanced antioxidant responses, which are correlated with
reduced oxidative stress-induced damage (41, 42). Endothelial nitric
oxide synthase (eNOS) knockout is associated with larger infarct size
in cerebral infarction models (43), but in SAH, eNOS knockout is
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associated with less microvascular damage and exerts neuroprotective
effects (44).

BBB disruption after SAH

Disruption of the BBB, a prominent pathological feature, is
strongly correlated with unfavorable outcomes following SAH. Unlike
ischemic stroke (mainly caused by focal ischemia) and intracerebral
hemorrhage (mainly caused by extravasated blood components), BBB
disruption after SAH is multifactorial: it results from transient global
cerebral ischemia after aneurysm rupture, delayed cerebral ischemia,
and the toxic effects of extravasated blood components (45-47).

BBB disruption leads to the infiltration of blood components and
inflammatory factors into brain tissue, triggering cerebral edema and
neuroinflammation. Approximately 8-67% of SAH patients are
diagnosed with global cerebral edema on admission, and nearly 12%
develop delayed cerebral edema within 2 weeks (48). Elevated BBB
permeability and global cerebral edema in the acute phase of SAH are
significantly associated with poor prognosis and are considered
important manifestations of EBI (48). Additionally, SAH comorbidities
(e.g., infection, electrolyte disturbance) can further worsen BBB
disruption and clinical outcomes (45).

BBB component dysfunction and its
association with EBI

The BBB serves as the interface between the bloodstream and the
central nervous system, facilitating the communication of substances
from the peripheral blood to the brain (49). The key constituents of
the BBB comprise microvascular endothelial cells, TJs, astrocytes, and
pericytes. The integrity and functionality of the BBB are influenced by
these components (Figure 2) (50). Moreover, the components of the
BBB can undergo modifications based on the specific needs of various
brain regions and blood vessels. These modifications encompass
alterations in glial cells, the extracellular matrix, and VSMC (51).

In addition to the classic components of the blood-brain barrier
(BBB), emerging evidence in recent years has highlighted the critical
role of the glymphatic drainage system in brain waste clearance (52).
This system facilitates the elimination of neurotoxic substances
f-amyloid (ApP) through glymphatic fluid flow mediated by
aquaporin-4 (AQP4) expressed in astrocytic end-feet (53). Following
subarachnoid hemorrhage (SAH), disruption of AQP4 polarity may
impair glymphatic function, leading to Ap accumulation (54). Similar
mechanisms have been observed in Alzheimer’s disease (AD), where
glymphatic dysfunction is recognized as an early pathological
hallmark (55). Thus, SAH-induced early brain injury may accelerate
neurodegenerative progression by interfering with glymphatic
clearance pathways (56).

Microvascular endothelial cell dysfunction
and EBI

Microvascular endothelial cells, which are connected by TJs,
adherens junctions, and gap junction proteins, constitute the primary
constituent of the BBB and serve as the initial protective barrier in the
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The structure and related components of the BBB.
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brain (57-60). Cerebral endothelial cells establish a barrier through
the expression of TJ proteins, which limit vesicle-mediated
transcellular transport or transporter-mediated transport (61). These
cells facilitate the transportation of proteins and molecules to reach
brain tissues, and the activity of vesicle transport in endothelial cells
as well as the components of the plasma membrane can influence
transcellular transport (62-64). Endothelial cells are widely used in
BBB models, but the transporters and cellular machinery differ
between polarized endothelial cells’ luminal and abluminal sides (62).

The BBB disruption caused by SAH was associated with the
progression of EBI and cerebral vasospasm (CVS), depending on the
response of endothelial cells (65, 66). Within 24 h following SAH,
there is evidence of the presence of oxyhemoglobin, excessive iron,
and oxidative stress resulting from the breakdown of red blood cells.
These factors are known to contribute significantly to the apoptosis of
endothelial cells (67-69). The free radicals induced by oxidative stress
could cause cellular damage by accelerating DNA fragmentation,
protein breakdown, and lipid peroxidation. These changes are
significantly related to pathological changes in endothelial cells,

Frontiers in Neurology

leading to increased permeability of the BBB (70-73). Disruption of
the basal lamina and development of cerebral vasospasm (CVS)
contribute significantly to the advancement of EBI through endothelial
cell damage (74, 75). Nevertheless, there are mechanisms that can
suppress endothelial cell death. The presence of ApoE has a strong
correlation with the inhibition of EBI in SAH. ApoE levels increase
significantly after 6 h, reach their peak after 48 h, and return to normal
after 72 h in SAH. This elevation of ApoE may hinder the activation
of the inflammatory cyclophilin A (CypA)-NF-kB-MMP-9 pathway,
thereby preserving the integrity of the BBB (76). Furthermore, the
Janus kinase 2 (JAK2)/STAT3 signaling pathway has been found to
partially regulate endothelial cell apoptosis, and activation of the
JAK2/STAT3 cascade can result in increased expression of anti-
apoptotic genes such as B-cell lymphoma 2 (Bcl-2) and Bcl-xL
(77-79).

The activation of the Nrf2-ARE signaling pathway in endothelial
cells following SAH is crucial for preserving BBB integrity by
inhibiting endothelial cell apoptosis and countering the effects of
oxidative stress. This pathway regulates the expression of detoxifying
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enzymes and antioxidative proteins, thereby mitigating the
detrimental effects of SAH-induced oxidative stress on the BBB (80—
82). The level of v-erb-b2 avian erythroblastic leukemia viral oncogene
homolog 4 (ErbB4) is upregulated in endothelial cells 72 h after
SAH. ErbB4 triggers the activation of the yes-associated protein
(YAP)/phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
Subunit beta (PIK3CB) signaling pathway, resulting in enhanced
expression of occludin and claudin-5. This pathway promotes
endothelial cell survival under oxidative stress and stabilizes
intercellular junctions, thereby maintaining BBB integrity and
reducing brain edema (83).

The integrity of BBB could be affected by the endothelial
cytoskeleton. Studies has demonstrated that increased expression of
myosin light chain kinase (MLCK) is linked to heightened
phosphorylation of myosin light chain (MLC), resulting in
reorganization of the cytoskeleton, disrupted cell-cell interactions in
endothelial cells, compromised BBB integrity, and the development of
vasogenic brain edema following SAH (84). Moreover, the integrity of
endothelial TJs plays a crucial role in preventing platelet adhesion to
extracellular collagen, thus maintaining the delicate equilibrium
between hemostasis and thrombosis. However, the dysregulation of
this equilibrium occurs due to the upregulation of vascular endothelial
growth factor (VEGF) expression following vasospasm subsequent to
SAH (85-87). In the acute phase of SAH, the increased expression of
VEGF may impact platelet adhesion and disruption of endothelial T]
through the regulation of collagen IV exposure and its binding to
platelet glycoprotein Ia-II (88, 89). These alterations can affect the
entry of platelets into the brain, triggering neuroinflammation and
EBI following SAH (90-92). Furthermore, insufficient NO production
by endothelial cells failed to effectively inhibit platelet adhesion and
aggregation, thus potentially contributing to the development of
ischemic brain injury following SAH (93). The enhanced protein
kinase C (PKC) expression was regarded as the primary mechanism
for vasospasms, and the PKC family was significantly related to S100
calcium-binding protein during cerebral vasospasm (CVS) after SAH
(94). SAH could change transport mechanisms among endothelial
cells, and P-glycoprotein (P-gP) was reduced after SAH (95). Vesicular
trafficking in endothelial cells and changes in Mfsd2a expression and
TJ proteins have a significant impact on BBB permeability following
SAH (96).

Studies have already demonstrated that BBB integrity could
be assessed using the von Willebrand factor (vWF), thrombomodulin
(TM), and endothelin 1 (ET-1). The expression of these markers
increases SAH, demonstrating disrupted BBB (97). The p38
MAPK-p53/NF-kB (p65) signaling pathway involved TM’s role on
endothelial T proteins after SAH (98). Moreover, the expression of
ET-1 could affect the role of endothelial cells on VSMC (99). In
vascular smooth muscle cells, the binding of ET-1 to the ETA receptor
can trigger the activation of the ERK1/2 pathway and the Kruppel-like
transcription factor 4 (KLF4), leading to the transition of VSMCs from
a contractile phenotype to a synthetic phenotype, thereby inducing
KLF4 activation (100, 101). Studies have indicated that the expression
level of endothelin-1 increases after subarachnoid hemorrhage, and
the activation of endothelial nitric oxide synthase (eNOS) can provide
negative feedback on the expression of endothelin-1 (102). In addition,
lipoxin A4 (LXA4) plays a vital role in endothelial cells by inhibiting
neutrophil infiltration and pro-inflammatory cytokines. It exerts
regulatory control over the NF-kB signaling pathway through the
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inhibition of ERK1/2 phosphorylation, resulting in reduced levels of

pro-inflammatory  cytokines and  decreased

infiltration (103).

neutrophil

Tight junction disruption and EBI

The TJs, adherens junctions, and gap junctions constituted the
intercellular junctional complexes among endothelial cells (64). TJs
are composed of several proteins, such as occludin, zonula occludens-1
(ZO-1), and claudin-5 (104). These TJ proteins exhibited structural
similarity as phosphoproteins, and their interaction, redistribution,
and transmembrane protein localization could be modified through
phosphorylation (104, 105). The TJ system, which is a part of the
immunoglobulin superfamily, includes the junctional adhesion
molecules (JAMs). JAMs play a role in facilitating leukocyte migration
across endothelial cell layers through homotypic and heterotypic
interactions with other members of the JAM family. These interactions
have an impact on endothelial cells (106). Furthermore, the
disassembly of T]s was associated with an elevated BBB permeability,
then the BBB disruption was occurred, which could causing brain
edema formation after SAH. The transport of materials across the BBB
includes paracellular and transcellular pathways. The paracellular
pathway depends on the integrity of intercellular junctions (e.g., TTs,
adherens junctions)—SAH-induced TJ degradation opens this
pathway, allowing macromolecule leakage. The transcellular pathway
is mediated by vesicular transport (e.g., receptor-mediated
endocytosis) —SAH activates abnormal vesicular trafficking, further
increasing BBB permeability (64).

The expression of TJ proteins (claudin-3 and claudin-5) can
be regulated by sphingosine-1-phosphate receptor-1 (S1P1) proteins,
which activate the PI3K/AKkt signaling pathway. This activation leads
to the inhibition of glycogen synthase kinase 3 p (GSK3f) and the
stabilization of B-catenin. S1PI is primarily located in endothelial cells,
and its expression level decreases 24 h after SAH, leading to changes
in TJ protein expression (107). The activation of S1P1 by PAR-1
involves the regulation of endothelial protein C receptor (EPCR) and
activated protein C (APC) (98). The expression of adhesion molecules
on the luminal surface of endothelial cells was increased in response
to the presence of blood in the subarachnoid space (108-112). These
molecules facilitate the communication between endothelial cells and
leukocytes, promoting the recruitment, adhesion, and migration of
white blood cells to the site of bleeding (113-115). In addition, it has
been observed that neutrophils infiltrate the brain within the first
10 min following SAH, which is strongly associated with a decrease in
cerebral NO levels due to the activity of the neutrophil-derived
enzyme myeloperoxidase. Research studies have indicated that
neutrophil infiltration contributes to the disruption of the BBB after
SAH by releasing ROS, elastases, proteases, collagenase, and matrix
metalloproteinase-9 (MMP-9) (116).

The disruption of TJs between endothelial cells triggers the
activation of the NF-«xB inflammatory signaling pathway, resulting in
the development of posthemorrhagic vasogenic edema (117). The
primary cause of EBI observed within 24 h after SAH is believed to
be alterations in the expression levels of T] proteins. Moreover, a
decrease in the levels of various TJ proteins, such as ZO-1, occludin,
claudin-5, JAM-A, and adherens junction protein VE-cadherin, has
been observed between 24 and 48 h following SAH (118). Studies have
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reported a significant correlation between elevated permeability and
reduced expression levels of tight at 3 h and 72 h after SAH (104).
T2-weighted MRI hyperintensities could be observed after SAH,
indicating increased BBB permeability in the early stages of SAH (89,
119). The loss of collagen IV mediates perturbations in the
microvascular basal lamina after SAH, promoting the progression of
BBB disruption. The levels of MMP-9 and collagenase activity reach
their highest point 3-6 h after SAH, whereas the expression of
collagen IV decreases in two distinct phases (13, 120). The alterations
in collagen IV expression paralleled the biphasic alterations observed
in the TJ proteins ZO-1 and occludin (104). Collagen IV decreases in
two phases: first at 3-6h post-SAH (driven by initial MMP-9
activation) and second at 24-48 h (due to sustained inflammation),
consistent with TJ protein changes. Furthermore, laminin—a substrate
for MMP-9—decreases at 24 h post-SAH, and endothelial MMP-9
upregulation coincides with reductions in laminin, occludin, and
collagen IV (121-123).

The NF-kB-MMP-9 molecular signaling pathway is implicated in
the regulation of pathophysiological cascades within cerebral
endothelial cells following SAH (124). Inflammation contributes to
the induction of BBB disruption, as indicated by the increased
expressions of toll-like receptor (TLR)-4 and high-mobility group box
1 (HMGBI) following SAH (125, 126). Furthermore, the elevation of
MMP-9 levels can be triggered by the activation of p53 expression
through the NF-kB signaling pathway in brain endothelial cells 24 h
post-SAH. This activation can lead to the degradation of collagen IV
and laminin, subsequently resulting in the degradation of occludin
and disruption of the basal lamina (127). The inflammatory-induced
disruption of T proteins contributes to the onset of vasogenic brain
edema 24 h following SAH (128).

Astrocyte activation and EBI

Astrocytes, which are the predominant cell type in the central
nervous system, play crucial roles in the maturation, viability,
metabolic support, and neurotransmission of neuronal activities
(129). They maintain and repair the BBB by releasing various effector
molecules that induce barrier properties, transporter polarization, and
overall BBB function (130-132). Astrocytes also serve as a cellular link
between neuronal activity and blood vessels, modulating cerebral
blood flow and brain water content in response to neuronal activity
(133, 134). Astrocytic end-feet undergo polarization—functional
proteins (e.g., AQP4) are directionally distributed on the membrane
contacting vessel walls. This polarization is regulated by pericyte-
derived signals, forming a functional interface of the BBB (135).

After SAH, astrocytes exhibit morphological alterations
characterized by dilated end-feet and endothelial protrusions—these
changes compress capillary lumens and disrupt cerebral ultrastructure
(136). These changes lead to compression of the capillary lumen and
disruption of cerebral ultrastructure (136). Astrocytes react to
damage-associated molecular patterns (DAMPs) originating from the
perivascular area, resulting in the production of pro-inflammatory
cytokines, chemokines, growth factors, as well as the attraction and
activation of immune cells from the periphery (137). Astrocytes
express Toll-like receptor 4 (TLR4), which plays a crucial role in the
progression of neuroinflammation (138-140). This function is
exemplified by the increased expression of myeloid differentiation
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primary response protein 88 (MyD88), a crucial mediator for
delivering TLR signals to NF-xB (141). Stimulation of the TLR4/
MyD88 signaling pathway leads to the ubiquitination of tumor
necrosis factor receptor-associated factor 6 (TRAF6). The
ubiquitylation of TRAF6 leads to the degradation of ULK1 or the
prevention of ULK1 phosphorylation. This process exacerbates brain
injury after SAH by inhibiting autophagy (142, 143). Activation of
NF-kB can trigger the upregulation of p65, TNF-a, and IL-1f via the
TLR4/MyD88 signaling pathway. The PI3K/Akt signaling pathway,
which is downstream of the angiogenic factor with G-patch and FHA
domain 1 (Aggfl), attenuates the expression of these pro-inflammatory
molecules. Aggfl in astrocytes exerts a significant influence on the
PI3K/Akt signaling pathway following SAH (144).

Astrocytes have the ability to differentiate into two distinct
phenotypes following SAH: the pro-inflammatory/harmful Al
phenotype and the anti-inflammatory/ beneficial A2 phenotype (145).
The Al polarization in response to SAH is triggered by the activation
of microglia and the release of pro-inflammatory cytokines (146, 147).
TNF-a induces astrocyte differentiation towards the detrimental Al
phenotype via NF-kB activation. Conversely, TNF-a promotes
astrocyte differentiation towards the advantageous A2 phenotype
through the induction of neuronal-derived prokineticin 2 (PK2)
expression, activating the STATA3 cascade (148). Moreover, the
diminished capacity of astrocytes to remove glutamate from the
synaptic cleft following SAH is attributed to the decreased expression
of glutamate transporter 1 (GLT-1) and EAAT-2 on the astrocytic
membrane, leading to subsequent neuronal harm (149). The
SAH-associated decrease in Akt phosphorylation could explain this
decrease in EAAT-2 expression of GLT-1, which could be affected by
histone deacetylase 2 (HDAC2) (150). These alterations may exert a
detrimental effect on hippocampal synaptogenesis and lead to
cognitive impairment following SAH (151).

Astrocytes play a role in brain damage via an elevated ET-1
expression after SAH, as they are the major source of ET-1 production
(152, 153). However, ET-1 exerts positive effects by promoting the
synthesis of BDNF, GDNE and NT3 (100)—these neurotrophic
factors support neuronal survival, axon regeneration, and synaptic
remodeling, offsetting SAH-induced neuronal damage. Furthermore,
the levels of glial fibrillary acidic protein (GFAP) and heme oxygenase
1 (HO-1) were found to be elevated in astrocytes following SAH. This
increase can be attributed to the passage of PDGF released by platelets
through the endothelium and basal lamina into the brain tissue (149).
Ferritin expression in astrocytes plays a cytoprotective role by
attenuating neuronal Hb toxicity (154). CD163 receptors present on
microglia and neurons are capable of uptaking haptoglobin-Hb
complexes, thereby extracting iron from astrocytes following SAH,
leading to the initiation of brain damage (154-156).

Pericyte dysfunction and EBI

Pericytes are located on the outer surface of microvessels and
are integrated into the vascular basement membrane. They
establish connections with endothelial cells through various types
of junctions, including gaps, adherens junctions, and peg-and-
socket junctions (157, 158). The pericytes in cerebral tissue were
higher than in peripheral tissues, which could regulate angiogenesis
and the extracellular matrix deposition to maintain the endothelial
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cell monolayer (157). Moreover, pericytes were essential for tight
junctions and BBB function in the brain, and pericytes’ contractility
could regulate cerebral blood flow by altering capillary diameter
(158-160).

Given the multifaceted functions of pericytes, which play a crucial
role in the intricate pathophysiology following SAH due to their
unique characteristics (161), picytes can express alpha-smooth muscle
actin (a-SMA) to enhance the constriction of capillary lumens after
SAH (162, 163). Additionally, pericytes with an a-SMA phenotype can
release factors that compromise the integrity of the BBB (164, 165).
The release of Hb from ruptured red blood cells within pericytes can
trigger microvascular constriction through the scavenging of NO
during the initial phase following SAH. Reduced levels of NO after
SAH are strongly associated with pericyte contraction. However,
during the later stages after SAH, pericyte contraction is induced by
decreased expression of eNOS (166, 167).

The upregulation of MMP-9 in pericytes following SAH may
be attributed to the activation of protease-activated receptors (PARs)
by thrombin. This activation triggers the activation of G-protein
coupled receptors and subsequent signaling through the PKCO-Akt
and PKCB-ERK1/2 pathways (168-171). Additionally, MMP-9
expression could be induced by ROS through the activation of the
NF-kB inflammatory pathway (172). Pericytes play a significant role
in the pathophysiological cascade by secreting cyclophilin A (CypA),
and the elevated expression of CypA was co-localized with pericyte
markers (173). Moreover, greater ferritin was localized in pericytes
after SAH, suggesting that pericytes store iron and are associated with
low oxygen tension, high ROS, and acidosis. Fe** could accelerate ROS
production under SAH or ischemic conditions and induce electrolyte
imbalance (174). The DAMPs in the perivascular spaces could activate
pericytes and initiate a local pro-inflammatory response, which could
be related to the infiltration of leukocytes and the degradation of tight
junctions (161).

10.3389/fneur.2025.1678839

Therapeutic targets in the BBB

In preclinical models, multiple therapeutic strategies have been
identified to enhance BBB integrity following SAH. However, the
mechanisms underlying these treatments and their specific targets for
BBB disruption have not been examined. Several molecular mediators,
including MMP-9 (175), Nrf2 (176, 177), TLR4 (178, 179), VEGF
(180, 181), and ZO-1 (5), have been observed to contribute to BBB
disruption in SAH-induced EBI. Many studies have explored the
mechanisms and possible therapeutic targets for BBB disruption in
EBI following SAH, and these findings have been summarized in
Table 2.

Microvascular endothelial cells dysfunction

Cerebral capillary endothelial cells maintain BBB function.
However, BBB disruption could occur because of injuries to
endothelial cells caused by aneurysmal rupture. Endothelial cell
apoptosis may be triggered within 24 h of SAH by factors such as
oxidative stress, oxyhemoglobin, and iron overload (68, 91).
Oxyhemoglobin exerts cytotoxic effects on endothelial cells by
activating caspase-3, caspase-8, caspase-9, and MMP-9, elevating
intracellular Ca®* and free radicals (68). Oxidative stress injury,
excessive free radicals, extracellular hemoglobin, and iron overload
following SAH were associated with several endothelial cell damage.
Furthermore, the overproduction of ROS could activate proapoptotic
signals, accelerating cell apoptosis and aggravating BBB disruption
through p53, caspase-3, and caspase-9 (182). Furthermore, the factors
implicated in endothelial cell damage following SAH encompass
heme, thrombin, platelets, fibrinogen, and leukocytes, which have the
potential to activate microglia and TLR4. TLR4 could recognize
damage and induces inflammatory cascades through activation of

TABLE 2 Potential therapeutic targets and agents for early brain injury in the blood—brain barrier.

Components of the BBB

MMP-9

Molecular mediators

Potential therapeutic agents

ApoE-mimetic peptide (193)

Microvascular endothelial cells dysfunction ALOX15

Cepharanthine (194)

Caspases

XIAP, VX-765, and Z-VAD-FMK (195)

Ang-1, MAPK, VEGF-A

Recombinant osteopontin (198)

ATF6/CHOP

Apelin-13 (209)

RIP3/MLKL

Necrostatin-1 (211)

Disruption of tight junctions VASP, occludin, AQP

JNJ16259685 (213)

MMP-9, RIP3, MLKL

Celastrol (175)

HIF-1a, MMP-9, and VEGF

2-Methoxyestradiol (215)

Z0-1, caspase-3, Bax, Bcl-2, TLR2, and TLR4

Cerebrolysin (216)

APQ4

Hydrogen sulfide, p-hydroxybutyrate (54, 217)

protein

Nrf2, ho-1, phospho-AKkt, Bcl-2, Bcl-2-related X

Gastrodin (219)

Astrocytes and pericytes STAT3

Ponesimod (221)

Cdk5

Roscovitine (222)

PI3K/AKT

Recombinant GBP2 protein and LY294002 (223)

ERRY/PGC-1a/SIRT3

DYI131 (225)
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NE-kB, activator protein-1, or both mediated by MAPKSs (46, 141).
ErbB4, a member of the EGFR tyrosine kinase family, also plays a role
in regulating the guidance of axons, the outgrowth of neurites, and the
signaling between synapses (183). Study has demonstrated that ErbB4
can enhance the survival of endothelial cells and maintain the integrity
of the BBB in the presence of oxidative stress injury (184). The
activation of ErbB4 enhances the expression of tight junction proteins,
including occludin and claudin-5, and promotes protective effects
through the ErbB4/YAP/PIK3CB signaling pathway (83). Focal
adhesion kinase (FAK) plays a crucial role in regulating the function
of endothelial cells and maintaining the integrity of the endothelial
barrier. When FAK is absent in endothelial cells, it can lead to the
disruption of barrier integrity and abnormal distribution of vascular
endothelial cadherin (185).

EBI can occur due to the leakage of blood into the subarachnoid
space and subsequent dissemination through the cerebrospinal fluid
surrounding the brain. This can lead to a sudden increase in
intracranial pressure, reduced cerebral blood flow, cerebral edema,
acute vasospasm, global cerebral ischemia, and impaired
autoregulation (186, 187). These instabilities are significantly
associated with the prognosis of SAH (5, 188). The large and small
cerebral vessel constriction occurs immediately after SAH, and the
vasoconstriction-mediating endothelial cell receptors, endothelin B or
serotonin receptors (5-HT1B), were upregulated. However, the
expression of the vasodilator NO in the cerebral arteries was reduced
(189-191). The hyper-responsive endothelial cells could activate
smooth muscle cells (192). Several studies have illustrated the
underlying molecular changes of endothelial cell dysfunction for EBI
(193-195). Pang et al. (193) discovered that the administration of
ApoE-mimetic peptides could effectively suppress endothelial cell
apoptosis and enhance the prognosis of EBI. This treatment approach
resulted in several beneficial outcomes, including decreased brain
edema and neuronal apoptosis, enhanced cerebral glucose uptake, and
improved neurological functions. These effects were achieved by
inhibiting the pro-inflammatory activators of MMP-9. Gao et al. (194)
provided evidence of ferroptosis induction in microglia and
endothelial cells following SAH, accompanied by an upregulation of
15-lipoxygenase-1 (ALOX15) expression. Cepharanthine exerts an
inhibitory effect on ferroptosis by suppressing the expression of
ALOXI15. Finally, caspases were involved in endothelial cell apoptosis
at the early stages after SAH, and caspase inhibitors (XIAP, VX-765,
and Z-VAD-FMK) could ameliorate EBI after SAH (195).

Disruption of tight junctions

The integrity and permeability of the BBB may be compromised
due to endothelial cell contraction and disassembly of T7s, leading to
the development of brain edema following SAH (68). Substances
transport across the BBB through the paracellular and transcellular
pathways. The disruption of TJs may result in the leakage of exudate
into the brain’s extracellular space, leading to the accumulation of
extracellular fluid (196). The phosphorylation of TJ proteins can
modulate the interaction, redistribution, and subcellular localization
of transmembrane proteins, such as occludin, ZO-1, and claudin-5
(104). The downregulation of occludin and ZO-1 in tight junctions
could cause capillary leakage, thereby increasing BBB permeability
(186, 197). The role of MMP-9 in the early stages of BBB disruption
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after SAH has been illustrated. Inflammatory cytokines and ROS can
stimulate the production of MMP-9, which can result in the
breakdown of the extracellular matrix surrounding cerebral
microvessels and the disruption of TJ proteins between endothelial
cells (121). NF-kB activation facilitates the transcription of MMP-9
and tissue inhibitor of MMP-1. The dynamic interplay between
MMP-9 and tissue inhibitor of MMP-1 plays a crucial role in
determining the extent of BBB disruption following SAH (198, 199).
Additionally, the activation of MAPK signaling pathway may facilitate
the activation of MMP-9, while the disruption of ZO-1 in endothelial
cells could lead to the upregulation of tenascin-C and periostin
matricellular proteins (200-202). Furthermore, galectin-3 could
activate MMP-9 in endothelial cells and affect BBB disruption through
the MAPK signaling pathway (203, 204).

Heat shock protein 70 (HSP 70) significantly reduces MMP-9
activity, and BBB disruption and cell death could be mediated via
aberrant proteolysis, which regulates inflammation and brain edema
during EBI (205). Moreover, NF-kB and MAPKSs could be activated
by TLR4 after SAH, resulting in the upregulation of pro-inflammatory
cytokines and mediators (201). Studies have demonstrated that
several molecules can be stimulated at different phases of BBB
disruption, such as VEGF-A, VEGF-B, angiopoietin-1 (Ang-1),
angiopoietin-2 (Ang-2), MAPKs, and MAPK phosphatase-1 (206).
VEGF-A has the potential to disrupt the BBB, whereas VEGF-B and
Ang-1 have the ability to counteract the effects of VEGF-A by
regulating MAPK signaling pathway. MAPK phosphatase-1 is
recognized as an intrinsic inhibitor of MAPK, while Ang-2 functions
as an endogenous antagonist of Ang-1 (207, 208). Thus, the decrease
in Ang-1 and MAPK phosphatase-1 expression, along with the
increase in MAPKs and VEGF-A expression, contributed to the
disruption of the BBB following SAH. Conversely, the upregulation
of MAPK phosphatase-1, inactivation of MAPKs, and
downregulation of VEGF-A could ameliorate BBB damage (206).
These molecules could be regulated by recombinant osteopontin to
restore BBB function, whereas Ang-2 and VEGF-B were not altered
(206). Additionally, BBB disruption could be regulated by the
hypoxia-HIF-1a-LCN2-VEGEF-A signaling pathway (119, 208). The
expression of activating transcription factor 6 (ATF6) is strongly
associated with BBB disruption and is increased during EBI. On the
other hand, the administration of apelin-13 has been shown to
suppress the ATF6/CHOP signaling pathway, thereby ameliorating
BBB damage (209). The activation of the Wnt/p-catenin signaling
pathway could be a potential therapeutic target for enhancing the
integrity of the BBB. p-catenin, an adherens junction protein and a
transducer of the Wnt pathway, plays a role in the endogenous
protective mechanism that regulates BBB function. Disruption of
fB-catenin is associated with decreased levels of tight junction
proteins, which are crucial for maintaining BBB integrity. However,
activation of the Wnt/f-catenin signaling pathway can attenuate this
disruption and promote the expression of tight junction proteins,
thereby improving BBB integrity (210). The tropomyosin-related
kinase receptor B (TrkB) activation could ameliorate EBI by restoring
the TJ protein ZO-1 via the activated Wnt/B-catenin signaling
pathway (196).

Recent studies have elucidated the underlying molecular changes
in tight junction disruption during EBI. The utilization of
necrostatin-1, a selective inhibitor of receptor-interacting protein
kinase 1 (RIP1), may mitigate albumin leakage and degradation of TJ
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proteins, serving as a neuroprotective agent following SAH through
the inhibition of RIP3/MLKL signaling pathway activity (211, 212).
The administration of the metabotropic glutamate receptor 1
JNJ16259685 via
intraperitoneal injection at 72 h post-SAH could lead to an increase

(mGluR1) negative allosteric modulator
in phosphorylation of the vasodilator-stimulated phosphoprotein
(VASP) and occludin, as well as a reduction in aquaporin (AQP) levels
(213). In addition, celastrol has the potential to improve the leakage
of albumin and degradation of TJ proteins in order to preserve the
integrity of the BBB. This is achieved by inhibiting the expression of
MMP-9 and exerting anti-neuroinflammatory effects. Furthermore,
celastrol has the ability to decrease the levels of RIP3 and MLKL,
which are proteins associated with necroptosis, and reduce the
presence of propidium iodide-positive cells in the basal cortex (175).
The inhibition of NLRP3 was linked to reduced cerebral edema,
preservation of tight junction integrity, prevention of microthrombosis,
and modulation of microglial reactive morphology (214). Hu et al.
(215) discovered that the administration of 2-Methoxyestradiol
demonstrated a potential to ameliorate the disruption of tight junction
proteins and suppress the expression of HIF-la, MMP-9, and
VEGE Consequently, this led to an improvement in the inflammatory
response to EBI and BBB disruption following SAH. Finally,
cerebrolysin could upregulate ZO-1 levels, reduce the protein
expression of caspase-3 or Bax, and increase the Bcl-2 expression level.
The TLR2 and TLR4 levels were also reduced after cerebrolysin
treatment (216).

Astrocytes and pericytes

Astrocytes and pericytes are crucial for maintaining the integrity
of the BBB. However, there is limited research on the mechanisms and
potential therapeutic targets involving astrocytes and pericytes in EBI
following SAH. Hydrogen sulfide has the potential to reduce the
formation of brain edema by protecting the BBB and reducing the
expression of AQP4 on astrocytes through the inhibition of glial cell
activation and the secretion of pro-inflammatory cytokines (217).

Moreover, the pathological process of EBI after SAH could
be affected by Nox4, whereas there is no overlay effect of Nox2
inhibition and Nox4 inhibition for preventing EBI after SAH (218).
SAH could induce microglial activation, astrocyte activation, and
neuronal apoptosis, and the use of gastrodin could suppress these
molecular changes. Additionally, it could reduce oxidative stress and
inflammatory response, upregulate the Nrf2, ho-1, phospho-Akt, or
Bcl-2, and downregulate the Bcl-2-related X protein and cleaved
caspase-3 (219). Promoting PK2 expression and utilizing recombinant
PK2 can selectively regulate astrocytic polarization, inducing a
protective phenotype following SAH (148). The upregulated
expression of the calcium-sensing receptor in neurons, astrocytes, and
microglia after SAH could promote EBI via the CaMKII/NLRP3
signaling pathway (220). Furthermore, ponesimod could prevent
astrocytic polarization to the Al phenotype, and ponesimod could
mediate astrocytic response via the STAT3 signaling pathway (221).
The expression of cyclin-dependent kinase 5 (Cdk5) was observed in
both neurons and astrocytes following SAH. Treatment with
roscovitine resulted in the improvement of EBI and reduction of
cerebral edema after SAH by inhibiting the activity of Cdk5 (222). The
6-gingerol could activate PI3K/AKT signaling pathway, and
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recombinant GBP2 protein and LY294002 (PI3K inhibitor) could
reverse the effects of 6-gingerol (223). Furthermore, miR-26b may
exacerbate EBI and the inflammatory response following SAH,
promoting hemoglobin-induced apoptosis in astrocytes. Conversely,
the suppression of miR-26b could alleviate EBI after SAH by
modulating the KLF4/STAT3/HMGBI signaling pathway (224).
Activation of Estrogen-related receptor y (ERRy) using DY131 may
enhance the reduction of oxidative stress and neuronal apoptosis
following SAH through the ERRy/PGC-1a/SIRT3 signaling pathway.
This pathway could potentially be targeted as a novel therapeutic
approach to mitigate EBI after SAH (225).

The regulatory pathways of pericyte involved in SAH include
the PDGF pathway (226), the Notch pathway (227), the canonical
Wnt/p-catenin pathway (228), and new players in the pericyte
signaling pathway, such as miRNA, exosome, and IncRNA (161).
Moreover, the pericyte a-SMA phenotype could inhibit the NO/
cGMP signaling pathway to mediate acute microvessel
constriction after SAH, and the eNOS or the pericyte a-SMA
phenotype could be considered therapeutic targets (167). ApoE
deficiency could activate the CypA-NF-kB-MMP-9 pathway and
induce the degradation of N-cadherin, resulting in greater
pericytes loss, which is significantly associated with EBI after SAH
(229). Furthermore, the glial limitans formation and neurological
function could be regulated by pericytes through EphA4/
EphrinB2 signaling pathway, and the intervention should
be applied as a novel treatment target for improving EBI after
SAH (230).

Glymphatic system impairment and EBI

Subarachnoid hemorrhage (SAH) impairs meningeal lymphatic
system function. Evaluations using gadopentetate dimeglumine
distribution reveal reduced cerebrospinal fluid inflow post-SAH, more
prominently in the ipsilateral hemisphere, persisting for 1 week with
partial recovery by the second week. Under physiological conditions,
gadopentetate dimeglumine rapidly fills regions like the olfactory bulb
and optic nerve, while SAH induces delayed and diminished outflow
in these areas, indicating lymphatic clearance dysfunction.
Additionally, intermittent cerebellomedullary cistern cerebrospinal
fluid drainage markedly improves glymphatic and meningeal
lymphatic system function following SAH (56).

A study integrating single-cell RNA sequencing, spatial
transcriptomics, and in vivo/in vitro experiments delineated the spatial
and cellular alterations of meningeal lymphatic vessels (mLVs) in the
early phase after SAH. It demonstrated that THBSI overexpression
and its interaction with CD47 may induce meningeal lymphatic
endothelial cell (mLEC) apoptosis via the STAT3/Bcl-2 signaling
pathway. Concurrently, S100x6 was identified as associated with poor
prognosis, potentially serving as a novel biomarker for meningeal
lymphatic injury, with a linear relationship to THBS1 expression (231).

Th17 cells are linked to post-SAH brain injury, though their
cerebral clearance mechanism remains unclear (232). SAH model
mice exhibit significant behavioral abnormalities, brain injury, and
cerebral immune cell accumulation. Further investigations show that
laser ablation of the meningeal lymphatic system or CCR7 knockout
leads to meningeal Th17 cell accumulation, reduced neurological
scores, and elevated inflammatory factor levels. Conversely, VEGF-C
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or CCL21 protein injection promotes Th17 cell drainage to lymph
nodes, improves neurological scores, and lowers inflammatory factor
levels (233).

Another study reported increased aquaporin 4 (AQP4) expression
post-SAH (234). Notably, SNTAI knockout reduces AQP4
polarization, implying a association between AQP4 polarization and
SNTAL1 expression (235). Western blot and immunofluorescence
analyses indicated that post-SAH, AQP4 expression increases while
polarization decreases, with concurrent SNTA1 upregulation. BHB
treatment restores AQP4 polarization by upregulating SNTAI,
enhances meningeal lymphatic system function, mitigates
neuroinflammation, and thereby ameliorates neurological deficits in
SAH mice (54).

Meningeal lymphatic vessels also play a key role in Alzheimer’s
disease (AD) by modulating p-amyloid (Af) clearance, microglial
activation, and immunotherapeutic efficacy (236). Post-SAH early
brain injury and delayed cerebral ischemia trigger neuroinflammatory
responses, which are closely linked to AD neurodegeneration (237,
238). Deep cervical lymphatic-venous anastomosis (LVA) is safe and
effective, significantly improving AD patients’ cognitive function as
evidenced by pre- and post-surgical Mini-Mental Status Examination,
though its long-term efficacy requires verification through large-scale

clinical trials and prolonged follow-up (55, 239).

Perspective

There are multiple pathological and molecular processes that
contribute to the breakdown of the BBB following SAH, while the
precise mechanisms and potential therapeutic targets for EBI after
SAH in the BBB are still not fully understood. Currently, the majority
of therapeutic interventions aim to enhance endothelial cell
dysfunction and restore T] integrity following SAH, but these
interventions have not yet been successfully translated into clinical
practice. Moreover, the complex pathogeneses of BBB disruption after
SAH and its role in causing EBI makes it difficult to alleviate by
inhibiting a single pathway or molecule. Therefore, it is essential to
investigate the underlying mechanisms and identify potential
therapeutic molecular targets for the BBB to enhance EBI following
SAH. Additional studies should be performed to identify potential
therapeutic targets against BBB disruption and improve the EBI after
SAH. Notably, the neurodegenerative process in Alzheimer’s disease
(AD) is closely linked to that following subarachnoid hemorrhage
(SAH). Deep cervical lymphatic-venous anastomosis (LVA), as an
emerging therapeutic technique for improving cognitive function in
AD patients, remains to be validated through large-scale clinical trials
and long-term follow-up investigations.
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