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Screening and monitoring of
diabetic polyneuropathy in
clinical practice: present and
future with connected devices
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New perspectives are opening up today in the management of diabetes thanks
to the possibility of measuring, over long periods in daily life, different biomarkers
likely to improve glycaemic control, such as continuous glucose monitoring
and time-in-range assessment. This is part of personalized medicine. There is
therefore a challenge to also benefit from specific biomarkers in the prevention
and monitoring of polyneuropathy in diabetics, one of the most common type of
peripheral nerve disorder worldwide. This is now possible with the development
of connected tools, allowing for example to monitor at home the evolution of
skin temperature or conductance at the level of the feet. In this article, the current
use and recent advances in laboratory tools for the early diagnosis and objective
monitoring of diabetic polyneuropathy and its progression will be presented. The
follow-up of neuropathies will undoubtedly be significantly modified in clinical
practice in the future, particularly in the context of diabetes, thanks to the use of
connected tools and remote monitoring.
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Introduction

Diabetic neuropathy (DN) affects millions of people worldwide, impairing quality of life
and daily functioning (1, 2). DN is also associated with an increased relative risk of death,
especially due to the dysfunction of the peripheral autonomic nervous system (3, 4). This
highly morbid disorder is therefore the cause of major socio-economic problems and very
significant annual health costs, even only considering the diabetic foot syndrome, a dramatic
consequence leading to difficult-to-treat ulcers and amputations (5, 6). Diabetic foot syndrome
is defined by the World Health Organization as an “ulceration of the foot (distally from the
ankle and including the ankle) associated with neuropathy and different grades of ischemia
and infection”

Distal symmetric polyneuropathy (DPN) is the most common form of DN, characterized
by the progressive damage and loss of various populations of nerve fibers in a symmetrical and
length-dependent pattern, therefore starting at the feet (7-10). The clinical picture includes a
variable mix of negative sensory signs and symptoms (hypoesthesia and numbness) and
positive sensory signs and symptoms (non-painful paresthesias, such as tingling, or painful
dysesthesias, whether spontaneous or evoked). These sensory features involve large-diameter
A-beta nerve fibers and small-diameter A-delta and type C nerve fibers. Unmyelinated C fibers
are also involved in the autonomic part of DPN, mainly at the origin of vasomotor or
sudomotor dysfunction of the limb extremities (11, 12). In more advanced cases of DPN, this
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can result in ulcers, infections and amputations in the feet, as well as
loss or dysfunction of larger-diameter nerve fibers involved in motor
or proprioceptive function. Ultimately, the patients may show balance
disorders and an increased risk of falls, unnoticed injuries, and
fractures (13, 14).

Also, to avoid this deleterious evolution and to prevent morbidity
and complications, there is an obvious need to develop laboratory
tools allowing DPN to be diagnosed early, especially because of a
frequent asymptomatic onset (15), and also to objectively monitor its
evolution. These tools could be directed towards the detection of
neurodegeneration, for example by measuring serum neurofilament
light chains (sNfL) levels (16-18). However, the value of sNfL
measurement has been shown to be neither sensitive (19) nor specific
(with respect to the detection of central nervous system involvement)
for the diagnosis of DPN (20). Thus, from a more neurophysiological
perspective, these tools must be more specifically linked to the
evaluation of a given type of nerve fibers at the level of the feet,
repeatable, reproducible, and sensitive to alterations and early changes
in nerve function.

Different assessment tools for different
nerve fiber types

Mainly four types of nerve fibers must be assessed: A-beta sensory
fibers, A-delta sensory fibers, type C sensory fibers, and type C
autonomic fibers. The various tests that can be used in clinical practice
to assess impairment of these different types of nerve fibers in the feet
are presented in Table 1 and Figure 1.

In routine practice, the screening of DPN is based on the
assessment of large A-beta fibers involved in light touch on three or
four plantar sites with a 10-g monofilament and involved in vibration
sense on the dorsal aspect of the great toe (interphalangeal joint) with
a 128-Hz tuning fork (10). Other simple tools can be used for bedside
sensory testing, such as the two-point discrimination test (21), which
appears to measure sensory properties of the foot that differ from light
touch assessed using monofilaments in diabetic patients (22). In
addition, small A-delta fibers can be assessed for pinprick sensation
with a safety pin (e.g., Neurotip® combined with a Neuropen®) (23)
and for cold temperature sensation with a cold metal object (e.g., Tip
Therm®) (24).

On the other hand, more complex quantitative sensory testing
(QST) can be performed using computerized devices (Table 1;
Figure 1). These devices allow sensory thresholds to be quantified as
numerical values, more accurately than with conventional bedside
testing, which is usually performed in a binary manner (stimulation
perceived or not). Some tools are of intermediate use and combine
portability (portable devices) with quantification of sensory
thresholds. This is the case of the
Neurothesiometer® to assess vibration detection threshold (25, 26) or

Biothesiometer® or

the NerveCheck®, which also assesses cold, warm, and heat pain
detection thresholds with simple paradigms (27, 28).

Sensory nerve fibers can also be assessed using electrophysiological
techniques of nerve conduction studies (29, 30). In the context of
length-dependent diabetic polyneuropathy, sensory nerve action
potentials (SNAPs) should be recorded distally in the lower limbs,
particularly for the sural nerves. These recordings can be performed
using a conventional EMG device, in conjunction with motor nerve
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conduction study in this case, or using dedicated devices, such as the
DPNCheck®, which is limited to recording SNAPs from the sural
32). The measurement of SNAPs is a
particularly objective method of assessing large-diameter A-beta

nerve to the ankle (31,

sensory nerve fibers in their distal segment, but provides no
information on smaller-diameter sensory nerve fibers.

For small-diameter nerve fibers, electrophysiological tests can also
be performed routinely, using stimulating devices capable of
selectively stimulating this type of nerve fibers (33). The stimulation
techniques that can be used for this purpose are based on thermal or
electrical stimulation, while the recording of “evoked potentials” is
performed using scalp electrodes and based on the averaging of
electroencephalographic activities. Thermal stimulation can be radiant
heating delivered by a laser or contact heating delivered by a thermode,
allowing the recording of laser evoked potentials (LEPs) (34-36) or
contact-heat evoked potentials (CHEPs) (37, 38), respectively.
Electrical stimulation should aim to deliver a very focal current
limited to the epidermis, where only the endings of small diameter
nerve fibers are present. Different types of electrodes can be used for
this purpose, allowing the recording of intraepidermal evoked
potentials (IEEPs) (33). Usual somatosensory evoked potentials
(SSEPs), obtained with a large bipolar stimulating electrode (as for
SNAP recordings), engage subepidermal endings of large-diameter
A-beta sensory fibers. The main limitation of using LEPs, CHEPs,
IEEPs for the study of small-diameter A-delta or C fibers is that only
brain responses can be recorded with these techniques, which
precludes the assessment of a purely peripheral component (unlike
SSEPs for large-diameter A-beta fibers) (33).

On the other hand, small-diameter sensory nerve endings can
be assessed very specifically in the distal lower limbs by measuring
intraepidermal nerve fiber density in a small skin biopsy (39-41).
However, the representativeness of the measurement on a skin surface
as small as a few mm?” is questionable. Furthermore, except in dedicated
research studies (42), the repeatability of this invasive technique is
limited for routine longitudinal monitoring of patients with DPN,
particularly due to the increased risk of healing problems. Another
technique to study small-diameter sensory innervation is corneal
confocal microscopy, with the measurement of intracorneal nerve fiber
density, fiber length, or branching density (43, 44). Although these
measures may show significant correlations with the existence of more
diffuse DPN (45-47), they do not directly assess innervation at the foot
level and this technique is therefore less relevant than others for the
specific assessment of diabetic foot syndrome.

Small-diameter nerve fibers also include autonomic fibers. Many
tests of the autonomic nervous system are applicable in clinical
practice (48). However, some tests do not directly assess distal
autonomic innervation at the feet, such as cardiac autonomic function
tests (Ewing tests) (49). In contrast, other tests specifically assess distal
autonomic nerve fibers, which is highly relevant in the context of
DPN, and generally rely on the vasomotor or sudomotor aspects of
autonomic innervation of the foot (50, 51). There are methods that are
easy to implement, but which nevertheless require a fairly long
examination time and provide only a semi-quantitative assessment,
such as the visualization of local vasoconstriction produced by the
cutaneous application of a eutectic mixture of local anesthetics (EMLA
test) (52-55) or the Neuropad® plaster test for sudomotor function
(56-60). A better quantified assessment of distal autonomic functions
can be achieved using more complex, time-consuming, and expensive
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TABLE 1 Assessment tools according to the type of peripheral nerve fibers.

Type of assessment tool

A-beta sensory
nerve fibers

A-delta sensory
nerve fibers

C sensory nerve
fibers

10.3389/fneur.2025.1679277

C autonomic nerve
fibers

10-g monofilament

Light-touch pressure

von Frey / Semmes-Weinstein
monofilaments testing kit (1/10/75-g nylon

filament wheel)

Light-touch pressure

Q-tip, round tip of Neurotip®

Light-touch pressure

Foam / hair brush

Light-touch pressure

Two-point discriminator wheel

Light-touch pressure

128-Hz (Rydel-Seiffer) tuning fork

Vibratory sensation

Vibrometer®, Biothesiometer®,

Neurothesiometer®, VibroSense®

Vibration detection

threshold (VDT)

Sensory nerve conduction study (eg,
DPNCheck®)

Sensory nerve action
potential (SNAP)

amplitude and velocity

® Pinprick sensation
Safety pin (eg, Neurotip~ combined with a
Neuropen®)
Wartenberg wheel Pinprick sensation

Pin prick® stimulators testing kit

Pinprick sensation

Metal rods/rollers (eg, Tip Therm®,
Rolltemp®)

Cold temperature sensation

‘Warm temperature sensation

Syringe with frozen/warm liquid

Cold temperature sensation

Warm temperature sensation

Cooling pack, digital hand warmer

Cold temperature sensation

‘Warm temperature sensation

Quantitative sensory testing machine

Vibration detection

Cold detection threshold

‘Warm/heat pain detection

(NerveCheck®, TSA2®, Q-Sense®, Case threshold (VDT) (cDpT) threshold (WDT, HPT)
Iv®, QST Lab®)
Current perception threshold (CPT, CPT at 2000 Hz CPT at 250 Hz CPT at 5 Hz
Neurometer®)
Skin biopsy Intraepidermal nerve fiber Intraepidermal nerve fiber
density (IENFD) density (IENFD)

Somatosensory evoked potentials (SSEPs) SSEP amplitude and

latency
Laser/intraepidermal/contact-heat evoked LEP/IEEP amplitude and CHEP amplitude and latency
potentials (LEPs, IEEPs, CHEPs) latency

Laser doppler flowmetry or imaging

Flow or flare measurement

EMLA test

Skin wrinkling measurement

Thermoregulatory sweat test

Color change assessment

Neuropad®

Color change assessment

Quantitative sudomotor axon reflex test

(QSART®)

Sweat response measurement

Sympathetic skin response (SSR)

SSR amplitude and latency

Electrochemical skin conductance (ESC,

Sudoscan®, Body Scan®)

ESC measurement

techniques, such as laser Doppler techniques measuring vasomotor-  flare response imaging (LDI) (71-75), but LDF is characterized by

mediated axon reflexes in response to different types of local cutaneous  high intra- and inter-individual measurement variability and LDI by
stimuli using vasoactive drugs, electrical stimulation, or heating (61).  the lack of standardized image analysis methods, thus limiting their

Laser Doppler techniques include laser flowmetry (LDF) (62-70) and  use in clinical practice.
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Part 1. Bedside sensory testing

S O
i,

Part 2. Quantitative sensory testing, skin biopsy, and electrophysiology
B,

FIGURE 1

Part 1. Bedside sensory testing. a: 10-g monofilament, b: von Frey/Semmes-Weinstein monofilaments testing kit, c: 1/10/75-g nylon filament wheel, d:
Q-tip, e: sharp and round tips of Neurotip®, f: foam brush, g: calibrated hair brush, h: 128-Hz (Rydel-Seiffer) tuning fork, i: two-point discriminator
wheel, j: Vibrometer®, k: Biothesiometer®, : VibroSense®, m: DPNCheck®, n: Wartenberg wheel, o: Pin prick® stimulator, p: Tip Therm®, q:

(Continued)
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FIGURE 1 (Continued)

RoHtemp®, r: filled syringe, s: cooling pack, t: digital hand warmer. Part 2. Quantitative sensory testing, skin biopsy, and electrophysiology. a:
thermodes, b: TSA2® and Q-Sense®, c: NerveCheck®, d: Case IV®, e: QST. Lab®, f: Neurometer®, g: disposable skin biopsy punch, h; machine for
performing nerve conduction study or evoked potentials, i: CO2 laser, j: Nd: YAP laser, k; contact-heat evoked potentials, l: different electrodes for
performing intraepidermal evoked potentials. Part 3. Autonomic testing (at foot level). a: Laser doppler flowmetry or imaging, b: EMLA test, c:
Neuropad®, d: thermoregulatory sweat test, e: QSART®, 1: sympathetic skin response, g Sudoscan®, h: Body Scan®.

Regarding the assessment of sudomotor function in the limbs, the
quantitative sudomotor axon reflex test (QSART), developed in 1983
(76), has been promoted by its inventors as the gold standard technique
(77, 78). This technique is based on the measurement, by a sudorometer,
of the sweat response to local acetylcholine iontophoresis. However, the
QSART technique requires complex expertise, a temperature- and
humidity-controlled environment, and a relatively long examination
time. In addition, its diagnostic sensitivity is limited by the high
variability and low reproducibility of measures performed in the lower
limbs (79, 80). Also, another technique, called Sudoscan®, simpler and
faster (examination time of 2-3 min) than the QSART, has attracted
great interest for quantitatively assessing distal sudomotor autonomic
innervation of the extremities in clinical practice. The Sudoscan®
technique is based on the principle of chronoamperometry and reverse
iontophoresis, with measurement of electrochemical skin conductance
(ESC) in microSiemens (uS). The ESC measurement depends on the
current induced by the release of chloride ions from the eccrine sweat
glands following activation by a low constant current of the sympathetic
C fibers innervating these glands (81, 82). The Sudoscan® test has
demonstrated its validity in the diagnosis of distal autonomic C-fiber
lesion associated with DPN (83-94) or distal polyneuropathies of other
causes (95). This technique does not require complex operator training
(96) and has completely replaced the recording of sympathetic skin
responses (SSRs), which was previously the routine electrodiagnostic
test for assessing distal autonomic innervation of the limbs (97, 98).
Indeed, SSR recording is poorly reproducible (99, 100) and is not
specific to distal innervation by sympathetic C-fibers, as it is influenced
by large-fiber sensory afferents and central reflex processing.

Screening strategy for the early diagnosis
of DPN

The risk of developing diabetic foot syndrome and therefore
presenting with DPN must be assessed annually in primary care
according to international recommendations (9, 101, 102). However,
this recommendation faces several difficulties. The first is the absence
of a sensitive, objective, and validated strategy for diagnosing early
DPN. As stated previously, DPN is routinely screened by semi-objective
methods assessing touch, pinprick, and temperature sensations. Binns-
Hall et al. showed that the combination of distal investigation of large-
diameter sensory fires using the DPNCheck® and small-diameter
autonomic fires using the Sudoscan® could be sensitive (95%) and
specific (82%) to distinguish between the absence and presence of DPN
and risk for diabetic foot syndrome with a strong correlation with
clinical questionnaires (103).

However, such a one-stop screening strategy requires a hospital
setting and many diabetic patients may encounter difficulties accessing
hospital structures due to a lack of supplies or specialized structures.
This is the reason why a large-scale project was developed in France
to perform Sudoscan® in community health structures, ie more than
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400 pharmacies. The measurement of ESC at the feet was combined
with the Michigan Neuropathy Screening Instrument (104) with the
physical assessment completed by the pharmacist, who was also asked
to take eight photographs of the patients’ feet from different angles.
All these data (ESC values, MNSI scores, and pictures of the feet) were
sent by remote transmission to reference diabetology units for
analysis. This study showed that reduced ESC in the feet was highly
predictive of diabetic foot syndrome, particularly in cases of
asymmetric ESC values or ESC values below 50 pS (unpublished data).
A similar project had already been proposed in Canada, but using
sural neve conduction measurement with the DPNCheck® in
community pharmacies, instead of the ESC as a biomarker of DPN
(105). The objective is that the pharmacists use these test results to
educate patients on preventing DPN through a better glycaemic
control and lifestyle, and improving foot self-care to avoid diabetic
foot syndrome.

New perspectives with connected devices
and telemedicine

New perspectives for diabetes monitoring are now opening up
thanks to the development of connected tools, also adapted in clinical
practice as a means of therapeutic education. This is the case of recent
innovations such as continuous glucose monitoring (CGM) and time
in range (TIR), which are emerging clinical endpoints for improving
glycaemic control (106-110).

A variety of approaches have been proposed and studied to
improve the management of diabetes by telemedicine (111-116),
including the transmission of biomarkers, such as glycaemia (117) or
body mass index (118), or telecoaching to improve lifestyle and
promote exercise (119-121), or both (122). A telemonitoring program
has already been performed in France (EDUC@DOM study) (123,
124), which combined biomedical data measurement with connected
objects used at home, including a scale with impedancemetry,
actimeter and blood glucose meter, and interactive educational
software programs (with artificial intelligence (AI) algorithms).
Compared to standard care, the remote monitoring performed by
diabetologists with this telemedicine program over one or 2 years
tended to result into a greater reduction of HbAlclevels (123) and was
significantly cost-saving on socio-economic grounds (124). However,
this program did not provide tools or measures to specifically
monitor DPN.

It is now possible to measure ESC at the feet using a connected
body scale, called Body Scan®. The ESC measurements obtained
with the Body Scan® in just 20 s are perfectly consistent with those
obtained with the Sudoscan®, thus allowing to consider a similar
sensitivity and specificity in the diagnosis of distal autonomic
neuropathy (125). Moreover, compared to the Sudoscan®, the
advantage of the Body Scan® is that it allows the recording of ESC
on a daily basis, at home, by the patients themselves. The
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association of this connected tool, more specifically assessing DPN,
with other connected tools for assessing glycaemic control, could
prove interesting. Indeed, a reduction in TIR and an increase in
glycaemic variability revealed by CGM have been associated with
progression of DPN and reduced ESC values at the feet measured
with the Sudoscan® (126, 127).

On the other hand, ESC asymmetry at the feet > 9.5% was found
to have 80% sensitivity and 91% specificity to determine the risk of
diabetic foot syndrome (128). Thus, including a valuable biomarker of
foot innervation, such as ESC, could be a way to improve the detection
and monitoring of DPN, more specifically than the telemedicine
strategies previously described. It is therefore tempting to design a
large-scale cohort study to determine the adherence to a program of
at-home ESC measurements at the feet over a long period of time for
the follow-up of diabetic patients and monitoring of DPN, in
particular to confirm the predictive value of ESC asymmetry in the
development of diabetic foot complication.

A concurrent approach is to monitor foot temperature at home,
using an infrared thermometer, a sensor mat, or temperature
measuring socks (129). Adherence to this type of monitoring was
found to range between 56 and 86% and is even better for socks. When
the temperature difference between the feet is greater than 2.2 °C (at
the hot spot), the patients are recommended to reduce their daily steps
by 50% and notify a healthcare professional or podiatrist as this
indicates a significantly increased risk of foot ulcers. Constant
monitoring of foot temperature could be combined with plantar
pressure measurements using sensors embedded in a wearable insole
(130). In one study, it was proposed that patients self-assess the plantar
thermal images they took at home using smartphone-based
thermography (131). Early detection of diabetic foot complication
could benefit from Al for thermographic image analysis in future
smartphone apps (132, 133).

Another home-based approach with smartphone-based self-
photographs aims to assess the presence or extent of foot ulcers (134,
135) by allowing patients to photograph the plantar surface of their
feet unassisted [“foot selfie,” (136)] and transmit these images to a
remote server. Wound imaging systems with commercial portable
devices have already demonstrated high accuracy (137, 138) and are
expected to benefit even more from Al and machine-learning
algorithms in the future (139-142) to prevent the development of
diabetic foot ulcers.

Finally, a novel smartphone-based home monitoring approach
to DPN has recently been reported, including patient self-
assessment through large fiber sensory testing, including vibration
perception and two-point discrimination assessed with 3D-printed
accessories, combined with a clinical neuropathy assessment
questionnaire (143). In the context of chemotherapy-induced
peripheral neuropathy, another group also proposed a smartphone
app for neuropathy monitoring, comprising clinical questionnaires
and six functional assessments using smartphone sensors to
provide information on neurological functions, such as walking,
standing, and dexterity (144, 145). In any case, there are increasing
perspectives for the use of smart wearable technologies and various
types of sensors integrated into smartphones, socks, insoles, or
shoes, for continuous or at-home health monitoring, prevention of
diabetic foot ulcers or risk of falls, including AI solutions and deep
learning models to improve data analysis (146-150).

Frontiers in Neurology

10.3389/fneur.2025.1679277

Conclusion

In conclusion, DN, including DPN, remains a major health
problem, with serious consequences such as diabetic foot
syndrome. Early and accurate detection of DPN, particularly
through specific and sensitive tools targeting different nerve fiber
types, is essential for its prevention and improvement of outcomes.
Technological advances, notably through connected devices
specifically assessing foot innervation by conductance or
temperature measurements for example, offer promising
perspectives for continuous home monitoring of nerve function
in large cohorts of patients. Combined with connected glucose
control measures, telemedicine, and patient education, these
innovations could significantly transform the management of
DPN by improving early diagnosis, disease monitoring, and
overall patient care, which could prevent serious complications
foot
healthcare costs, and improve the quality of life of diabetic

such as ulcers and amputations, reduce

patients worldwide.
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