

OPEN ACCESS

EDITED BY

Mamede De Carvalho,
University of Lisbon, Portugal

REVIEWED BY Miguel Santos, Santa Maria Hospital, Portugal

*CORRESPONDENCE

Jean-Pascal Lefaucheur

☑ jean-pascal.lefaucheur@hmn.aphp.fr

RECEIVED 04 August 2025 ACCEPTED 07 October 2025 PUBLISHED 21 October 2025

CITATION

Lefaucheur J-P (2025) Screening and monitoring of diabetic polyneuropathy in clinical practice: present and future with connected devices.

Front. Neurol. 16:1679277.
doi: 10.3389/fneur.2025.1679277

COPYRIGHT

© 2025 Lefaucheur. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Screening and monitoring of diabetic polyneuropathy in clinical practice: present and future with connected devices

Jean-Pascal Lefaucheur^{1,2}*

¹Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, AP-HP, Créteil, France, ²EA4391 (ENT), Faculté de Santé, Université Paris Est Créteil, Créteil, France

New perspectives are opening up today in the management of diabetes thanks to the possibility of measuring, over long periods in daily life, different biomarkers likely to improve glycaemic control, such as continuous glucose monitoring and time-in-range assessment. This is part of personalized medicine. There is therefore a challenge to also benefit from specific biomarkers in the prevention and monitoring of polyneuropathy in diabetics, one of the most common type of peripheral nerve disorder worldwide. This is now possible with the development of connected tools, allowing for example to monitor at home the evolution of skin temperature or conductance at the level of the feet. In this article, the current use and recent advances in laboratory tools for the early diagnosis and objective monitoring of diabetic polyneuropathy and its progression will be presented. The follow-up of neuropathies will undoubtedly be significantly modified in clinical practice in the future, particularly in the context of diabetes, thanks to the use of connected tools and remote monitoring.

KEYWORDS

autonomic neuropathy, diabetes, diagnosis, monitoring, polyneuropathy, small fiber neuropathy, smartphone, telemedicine

Introduction

Diabetic neuropathy (DN) affects millions of people worldwide, impairing quality of life and daily functioning (1, 2). DN is also associated with an increased relative risk of death, especially due to the dysfunction of the peripheral autonomic nervous system (3, 4). This highly morbid disorder is therefore the cause of major socio-economic problems and very significant annual health costs, even only considering the diabetic foot syndrome, a dramatic consequence leading to difficult-to-treat ulcers and amputations (5, 6). Diabetic foot syndrome is defined by the World Health Organization as an "ulceration of the foot (distally from the ankle and including the ankle) associated with neuropathy and different grades of ischemia and infection."

Distal symmetric polyneuropathy (DPN) is the most common form of DN, characterized by the progressive damage and loss of various populations of nerve fibers in a symmetrical and length-dependent pattern, therefore starting at the feet (7–10). The clinical picture includes a variable mix of negative sensory signs and symptoms (hypoesthesia and numbness) and positive sensory signs and symptoms (non-painful paresthesias, such as tingling, or painful dysesthesias, whether spontaneous or evoked). These sensory features involve large-diameter A-beta nerve fibers and small-diameter A-delta and type C nerve fibers. Unmyelinated C fibers are also involved in the autonomic part of DPN, mainly at the origin of vasomotor or sudomotor dysfunction of the limb extremities (11, 12). In more advanced cases of DPN, this

can result in ulcers, infections and amputations in the feet, as well as loss or dysfunction of larger-diameter nerve fibers involved in motor or proprioceptive function. Ultimately, the patients may show balance disorders and an increased risk of falls, unnoticed injuries, and fractures (13, 14).

Also, to avoid this deleterious evolution and to prevent morbidity and complications, there is an obvious need to develop laboratory tools allowing DPN to be diagnosed early, especially because of a frequent asymptomatic onset (15), and also to objectively monitor its evolution. These tools could be directed towards the detection of neurodegeneration, for example by measuring serum neurofilament light chains (sNfL) levels (16–18). However, the value of sNfL measurement has been shown to be neither sensitive (19) nor specific (with respect to the detection of central nervous system involvement) for the diagnosis of DPN (20). Thus, from a more neurophysiological perspective, these tools must be more specifically linked to the evaluation of a given type of nerve fibers at the level of the feet, repeatable, reproducible, and sensitive to alterations and early changes in nerve function.

Different assessment tools for different nerve fiber types

Mainly four types of nerve fibers must be assessed: A-beta sensory fibers, A-delta sensory fibers, type C sensory fibers, and type C autonomic fibers. The various tests that can be used in clinical practice to assess impairment of these different types of nerve fibers in the feet are presented in Table 1 and Figure 1.

In routine practice, the screening of DPN is based on the assessment of large A-beta fibers involved in light touch on three or four plantar sites with a 10-g monofilament and involved in vibration sense on the dorsal aspect of the great toe (interphalangeal joint) with a 128-Hz tuning fork (10). Other simple tools can be used for bedside sensory testing, such as the two-point discrimination test (21), which appears to measure sensory properties of the foot that differ from light touch assessed using monofilaments in diabetic patients (22). In addition, small A-delta fibers can be assessed for pinprick sensation with a safety pin (e.g., Neurotip® combined with a Neuropen®) (23) and for cold temperature sensation with a cold metal object (e.g., Tip Therm®) (24).

On the other hand, more complex quantitative sensory testing (QST) can be performed using computerized devices (Table 1; Figure 1). These devices allow sensory thresholds to be quantified as numerical values, more accurately than with conventional bedside testing, which is usually performed in a binary manner (stimulation perceived or not). Some tools are of intermediate use and combine portability (portable devices) with quantification of sensory thresholds. This is the case of the Biothesiometer® or Neurothesiometer® to assess vibration detection threshold (25, 26) or the NerveCheck®, which also assesses cold, warm, and heat pain detection thresholds with simple paradigms (27, 28).

Sensory nerve fibers can also be assessed using electrophysiological techniques of nerve conduction studies (29, 30). In the context of length-dependent diabetic polyneuropathy, sensory nerve action potentials (SNAPs) should be recorded distally in the lower limbs, particularly for the sural nerves. These recordings can be performed using a conventional EMG device, in conjunction with motor nerve

conduction study in this case, or using dedicated devices, such as the DPNCheck®, which is limited to recording SNAPs from the sural nerve to the ankle (31, 32). The measurement of SNAPs is a particularly objective method of assessing large-diameter A-beta sensory nerve fibers in their distal segment, but provides no information on smaller-diameter sensory nerve fibers.

For small-diameter nerve fibers, electrophysiological tests can also be performed routinely, using stimulating devices capable of selectively stimulating this type of nerve fibers (33). The stimulation techniques that can be used for this purpose are based on thermal or electrical stimulation, while the recording of "evoked potentials" is performed using scalp electrodes and based on the averaging of electroencephalographic activities. Thermal stimulation can be radiant heating delivered by a laser or contact heating delivered by a thermode, allowing the recording of laser evoked potentials (LEPs) (34-36) or contact-heat evoked potentials (CHEPs) (37, 38), respectively. Electrical stimulation should aim to deliver a very focal current limited to the epidermis, where only the endings of small diameter nerve fibers are present. Different types of electrodes can be used for this purpose, allowing the recording of intraepidermal evoked potentials (IEEPs) (33). Usual somatosensory evoked potentials (SSEPs), obtained with a large bipolar stimulating electrode (as for SNAP recordings), engage subepidermal endings of large-diameter A-beta sensory fibers. The main limitation of using LEPs, CHEPs, IEEPs for the study of small-diameter A-delta or C fibers is that only brain responses can be recorded with these techniques, which precludes the assessment of a purely peripheral component (unlike SSEPs for large-diameter A-beta fibers) (33).

On the other hand, small-diameter sensory nerve endings can be assessed very specifically in the distal lower limbs by measuring intraepidermal nerve fiber density in a small skin biopsy (39–41). However, the representativeness of the measurement on a skin surface as small as a few mm² is questionable. Furthermore, except in dedicated research studies (42), the repeatability of this invasive technique is limited for routine longitudinal monitoring of patients with DPN, particularly due to the increased risk of healing problems. Another technique to study small-diameter sensory innervation is corneal confocal microscopy, with the measurement of intracorneal nerve fiber density, fiber length, or branching density (43, 44). Although these measures may show significant correlations with the existence of more diffuse DPN (45–47), they do not directly assess innervation at the foot level and this technique is therefore less relevant than others for the specific assessment of diabetic foot syndrome.

Small-diameter nerve fibers also include autonomic fibers. Many tests of the autonomic nervous system are applicable in clinical practice (48). However, some tests do not directly assess distal autonomic innervation at the feet, such as cardiac autonomic function tests (Ewing tests) (49). In contrast, other tests specifically assess distal autonomic nerve fibers, which is highly relevant in the context of DPN, and generally rely on the vasomotor or sudomotor aspects of autonomic innervation of the foot (50, 51). There are methods that are easy to implement, but which nevertheless require a fairly long examination time and provide only a semi-quantitative assessment, such as the visualization of local vasoconstriction produced by the cutaneous application of a eutectic mixture of local anesthetics (EMLA test) (52–55) or the Neuropad® plaster test for sudomotor function (56–60). A better quantified assessment of distal autonomic functions can be achieved using more complex, time-consuming, and expensive

TABLE 1 Assessment tools according to the type of peripheral nerve fibers.

Type of assessment tool	A-beta sensory nerve fibers	A-delta sensory nerve fibers	C sensory nerve fibers	C autonomic nerve fibers
10-g monofilament	Light-touch pressure			
von Frey / Semmes-Weinstein monofilaments testing kit (1/10/75-g nylon filament wheel)	Light-touch pressure			
Q-tip, round tip of Neurotip®	Light-touch pressure			
Foam / hair brush	Light-touch pressure			
Two-point discriminator wheel	Light-touch pressure			
128-Hz (Rydel-Seiffer) tuning fork	Vibratory sensation			
Vibrometer [®] , Biothesiometer [®] , Neurothesiometer [®] , VibroSense [®]	Vibration detection threshold (VDT)			
Sensory nerve conduction study (eg, DPNCheck [®])	Sensory nerve action potential (SNAP) amplitude and velocity			
Safety pin (eg, Neurotip [®] combined with a Neuropen [®])		Pinprick sensation		
Wartenberg wheel		Pinprick sensation		
Pin prick* stimulators testing kit		Pinprick sensation		
Metal rods/rollers (eg, Tip Therm [®] , Rolltemp [®])		Cold temperature sensation	Warm temperature sensation	
Syringe with frozen/warm liquid		Cold temperature sensation	Warm temperature sensation	
Cooling pack, digital hand warmer		Cold temperature sensation	Warm temperature sensation	
Quantitative sensory testing machine (NerveCheck [®] , TSA2 [®] , Q-Sense [®] , Case IV [®] , QST Lab [®])	Vibration detection threshold (VDT)	Cold detection threshold (CDT)	Warm/heat pain detection threshold (WDT, HPT)	
Current perception threshold (CPT, Neurometer®)	CPT at 2000 Hz	CPT at 250 Hz	CPT at 5 Hz	
Skin biopsy		Intraepidermal nerve fiber density (IENFD)	Intraepidermal nerve fiber density (IENFD)	
Somatosensory evoked potentials (SSEPs)	SSEP amplitude and latency			
Laser/intraepidermal/contact-heat evoked potentials (LEPs, IEEPs, CHEPs)		LEP/IEEP amplitude and latency	CHEP amplitude and latency	
Laser doppler flowmetry or imaging				Flow or flare measurement
EMLA test				Skin wrinkling measurement
Thermoregulatory sweat test				Color change assessment
Neuropad [®]				Color change assessment
Quantitative sudomotor axon reflex test (QSART®)				Sweat response measurement
Sympathetic skin response (SSR)				SSR amplitude and latency
Electrochemical skin conductance (ESC, Sudoscan®, Body Scan®)				ESC measurement

techniques, such as laser Doppler techniques measuring vasomotor-mediated axon reflexes in response to different types of local cutaneous stimuli using vasoactive drugs, electrical stimulation, or heating (61). Laser Doppler techniques include laser flowmetry (LDF) (62–70) and

flare response imaging (LDI) (71–75), but LDF is characterized by high intra- and inter-individual measurement variability and LDI by the lack of standardized image analysis methods, thus limiting their use in clinical practice.

Part 2. Quantitative sensory testing, skin biopsy, and electrophysiology

Part 3. Autonomic testing

FIGURE 1

Part 1. Bedside sensory testing. a: 10-g monofilament, b: von Frey/Semmes-Weinstein monofilaments testing kit, c: 1/10/75-g nylon filament wheel, d: Q-tip, e: sharp and round tips of Neurotip[®], f: foam brush, g: calibrated hair brush, h: 128-Hz (Rydel-Seiffer) tuning fork, i: two-point discriminator wheel, j: Vibrometer[®], k: Biothesiometer[®], l: VibroSense[®], m: DPNCheck®, n: Wartenberg wheel, o: Pin prick[®] stimulator, p: Tip Therm[®], q:

(Continued)

FIGURE 1 (Continued)

Rolltemp®, r: filled syringe, s: cooling pack, t: digital hand warmer. Part 2. Quantitative sensory testing, skin biopsy, and electrophysiology. a: thermodes, b: TSA2® and Q-Sense®, c: NerveCheck®, d: Case IV®, e: QST. Lab®, f: Neurometer®, g: disposable skin biopsy punch, h; machine for performing nerve conduction study or evoked potentials, i: CO2 laser, j: Nd: YAP laser, k; contact-heat evoked potentials, l: different electrodes for performing intraepidermal evoked potentials. Part 3. Autonomic testing (at foot level). a: Laser doppler flowmetry or imaging, b: EMLA test, c: Neuropad®, d: thermoregulatory sweat test, e: QSART®, f: sympathetic skin response, g: Sudoscan®, h: Body Scan®.

Regarding the assessment of sudomotor function in the limbs, the quantitative sudomotor axon reflex test (QSART), developed in 1983 (76), has been promoted by its inventors as the gold standard technique (77, 78). This technique is based on the measurement, by a sudorometer, of the sweat response to local acetylcholine iontophoresis. However, the QSART technique requires complex expertise, a temperature- and humidity-controlled environment, and a relatively long examination time. In addition, its diagnostic sensitivity is limited by the high variability and low reproducibility of measures performed in the lower limbs (79, 80). Also, another technique, called Sudoscan®, simpler and faster (examination time of 2-3 min) than the QSART, has attracted great interest for quantitatively assessing distal sudomotor autonomic innervation of the extremities in clinical practice. The Sudoscan® technique is based on the principle of chronoamperometry and reverse iontophoresis, with measurement of electrochemical skin conductance (ESC) in microSiemens (μ S). The ESC measurement depends on the current induced by the release of chloride ions from the eccrine sweat glands following activation by a low constant current of the sympathetic C fibers innervating these glands (81, 82). The Sudoscan® test has demonstrated its validity in the diagnosis of distal autonomic C-fiber lesion associated with DPN (83-94) or distal polyneuropathies of other causes (95). This technique does not require complex operator training (96) and has completely replaced the recording of sympathetic skin responses (SSRs), which was previously the routine electrodiagnostic test for assessing distal autonomic innervation of the limbs (97, 98). Indeed, SSR recording is poorly reproducible (99, 100) and is not specific to distal innervation by sympathetic C-fibers, as it is influenced by large-fiber sensory afferents and central reflex processing.

Screening strategy for the early diagnosis of DPN

The risk of developing diabetic foot syndrome and therefore presenting with DPN must be assessed annually in primary care according to international recommendations (9, 101, 102). However, this recommendation faces several difficulties. The first is the absence of a sensitive, objective, and validated strategy for diagnosing early DPN. As stated previously, DPN is routinely screened by semi-objective methods assessing touch, pinprick, and temperature sensations. Binns-Hall et al. showed that the combination of distal investigation of large-diameter sensory fires using the DPNCheck® and small-diameter autonomic fires using the Sudoscan® could be sensitive (95%) and specific (82%) to distinguish between the absence and presence of DPN and risk for diabetic foot syndrome with a strong correlation with clinical questionnaires (103).

However, such a one-stop screening strategy requires a hospital setting and many diabetic patients may encounter difficulties accessing hospital structures due to a lack of supplies or specialized structures. This is the reason why a large-scale project was developed in France to perform Sudoscan® in community health structures, ie more than

400 pharmacies. The measurement of ESC at the feet was combined with the Michigan Neuropathy Screening Instrument (104) with the physical assessment completed by the pharmacist, who was also asked to take eight photographs of the patients' feet from different angles. All these data (ESC values, MNSI scores, and pictures of the feet) were sent by remote transmission to reference diabetology units for analysis. This study showed that reduced ESC in the feet was highly predictive of diabetic foot syndrome, particularly in cases of asymmetric ESC values or ESC values below 50 μ S (unpublished data). A similar project had already been proposed in Canada, but using sural neve conduction measurement with the DPNCheck® in community pharmacies, instead of the ESC as a biomarker of DPN (105). The objective is that the pharmacists use these test results to educate patients on preventing DPN through a better glycaemic control and lifestyle, and improving foot self-care to avoid diabetic foot syndrome.

New perspectives with connected devices and telemedicine

New perspectives for diabetes monitoring are now opening up thanks to the development of connected tools, also adapted in clinical practice as a means of therapeutic education. This is the case of recent innovations such as continuous glucose monitoring (CGM) and time in range (TIR), which are emerging clinical endpoints for improving glycaemic control (106–110).

A variety of approaches have been proposed and studied to improve the management of diabetes by telemedicine (111-116), including the transmission of biomarkers, such as glycaemia (117) or body mass index (118), or telecoaching to improve lifestyle and promote exercise (119-121), or both (122). A telemonitoring program has already been performed in France (EDUC@DOM study) (123, 124), which combined biomedical data measurement with connected objects used at home, including a scale with impedancemetry, actimeter and blood glucose meter, and interactive educational software programs (with artificial intelligence (AI) algorithms). Compared to standard care, the remote monitoring performed by diabetologists with this telemedicine program over one or 2 years tended to result into a greater reduction of HbA1c levels (123) and was significantly cost-saving on socio-economic grounds (124). However, this program did not provide tools or measures to specifically monitor DPN.

It is now possible to measure ESC at the feet using a connected body scale, called Body Scan®. The ESC measurements obtained with the Body Scan® in just 20 s are perfectly consistent with those obtained with the Sudoscan®, thus allowing to consider a similar sensitivity and specificity in the diagnosis of distal autonomic neuropathy (125). Moreover, compared to the Sudoscan®, the advantage of the Body Scan® is that it allows the recording of ESC on a daily basis, at home, by the patients themselves. The

association of this connected tool, more specifically assessing DPN, with other connected tools for assessing glycaemic control, could prove interesting. Indeed, a reduction in TIR and an increase in glycaemic variability revealed by CGM have been associated with progression of DPN and reduced ESC values at the feet measured with the Sudoscan® (126, 127).

On the other hand, ESC asymmetry at the feet > 9.5% was found to have 80% sensitivity and 91% specificity to determine the risk of diabetic foot syndrome (128). Thus, including a valuable biomarker of foot innervation, such as ESC, could be a way to improve the detection and monitoring of DPN, more specifically than the telemedicine strategies previously described. It is therefore tempting to design a large-scale cohort study to determine the adherence to a program of at-home ESC measurements at the feet over a long period of time for the follow-up of diabetic patients and monitoring of DPN, in particular to confirm the predictive value of ESC asymmetry in the development of diabetic foot complication.

A concurrent approach is to monitor foot temperature at home, using an infrared thermometer, a sensor mat, or temperature measuring socks (129). Adherence to this type of monitoring was found to range between 56 and 86% and is even better for socks. When the temperature difference between the feet is greater than 2.2 °C (at the hot spot), the patients are recommended to reduce their daily steps by 50% and notify a healthcare professional or podiatrist as this indicates a significantly increased risk of foot ulcers. Constant monitoring of foot temperature could be combined with plantar pressure measurements using sensors embedded in a wearable insole (130). In one study, it was proposed that patients self-assess the plantar thermal images they took at home using smartphone-based thermography (131). Early detection of diabetic foot complication could benefit from AI for thermographic image analysis in future smartphone apps (132, 133).

Another home-based approach with smartphone-based self-photographs aims to assess the presence or extent of foot ulcers (134, 135) by allowing patients to photograph the plantar surface of their feet unassisted ["foot selfie," (136)] and transmit these images to a remote server. Wound imaging systems with commercial portable devices have already demonstrated high accuracy (137, 138) and are expected to benefit even more from AI and machine-learning algorithms in the future (139–142) to prevent the development of diabetic foot ulcers.

Finally, a novel smartphone-based home monitoring approach to DPN has recently been reported, including patient selfassessment through large fiber sensory testing, including vibration perception and two-point discrimination assessed with 3D-printed accessories, combined with a clinical neuropathy assessment questionnaire (143). In the context of chemotherapy-induced peripheral neuropathy, another group also proposed a smartphone app for neuropathy monitoring, comprising clinical questionnaires and six functional assessments using smartphone sensors to provide information on neurological functions, such as walking, standing, and dexterity (144, 145). In any case, there are increasing perspectives for the use of smart wearable technologies and various types of sensors integrated into smartphones, socks, insoles, or shoes, for continuous or at-home health monitoring, prevention of diabetic foot ulcers or risk of falls, including AI solutions and deep learning models to improve data analysis (146-150).

Conclusion

In conclusion, DN, including DPN, remains a major health problem, with serious consequences such as diabetic foot syndrome. Early and accurate detection of DPN, particularly through specific and sensitive tools targeting different nerve fiber types, is essential for its prevention and improvement of outcomes. Technological advances, notably through connected devices specifically assessing foot innervation by conductance or temperature measurements for example, offer promising perspectives for continuous home monitoring of nerve function in large cohorts of patients. Combined with connected glucose control measures, telemedicine, and patient education, these innovations could significantly transform the management of DPN by improving early diagnosis, disease monitoring, and overall patient care, which could prevent serious complications such foot ulcers and amputations, reduce healthcare costs, and improve the quality of life of diabetic patients worldwide.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

J-PL: Conceptualization, Formal analysis, Methodology, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author declares that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. *Nat Rev Endocrinol.* (2021) 17:400–20. doi: 10.1038/s41574-021-00496-z
- 2. Ziegler D, Gries FA, Spüler M, Lessmann F. The epidemiology of diabetic neuropathy DiaCAN Multicenter Study Group. *Diabet Med.* (1993) 10:82S–68.
- 3. Fang M, Hu J, Jeon Y, Matsushita K, Selvin E, Hicks CW. Diabetic foot disease and the risk of major clinical outcomes. *Diabetes Res Clin Pract.* (2023) 202:110778. doi: 10.1016/j.diabres.2023.110778
- 4. Gill G, Moulik P. Mortality and diabetic neuropathy. $\it Diabet\ Med.\ (2005)\ 22:1289.$ doi: 10.1111/j.1464-5491.2005.01729.x
- 5. Kerr M, Barron E, Chadwick P, Evans T, Kong WM, Rayman G, et al. The cost of diabetic foot ulcers and amputations to the National Health Service in England. *Diabet Med.* (2019) 36:995–1002. doi: 10.1111/dme.13973
- 6. Sorber R, Abularrage CJ. Diabetic foot ulcers: epidemiology and the role of multidisciplinary care teams. Semin Vasc Surg. (2021) 34:47–53. doi: 10.1053/j.semvascsurg.2021.02.006
- 7. Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, Feldman EL, et al. The conundrum of diabetic neuropathies-past, present, and future. *J Diabetes Complicat*. (2022) 36:108334. doi: 10.1016/j.jdiacomp.2022.108334
- 8. Bondar A, Popa AR, Papanas N, Popoviciu M, Vesa CM, Sabau M, et al. Diabetic neuropathy: a narrative review of risk factors, classification, screening and current pathogenic treatment options (review). *Exp Ther Med.* (2021) 22:690. doi: 10.3892/etm.2021.10122
- 9. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. *Diabetes Care*. (2017) 40:136–54. doi: 10.2337/dc16-2042
- 10. Ziegler D, Tesfaye S, Spallone V, Gurieva I, Al Kaabi J, Mankovsky B, et al. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: international expert consensus recommendations. *Diabetes Res Clin Pract.* (2022) 186:109063. doi: 10.1016/j.diabres.2021.109063
- 11. Boulton AJ. Diabetic neuropathy and foot complications. *Handb Clin Neurol.* (2014) 126:97–107. doi: 10.1016/B978-0-444-53480-4.00008-4
- 12. Kim J. The pathophysiology of diabetic foot: a narrative review. J Yeungnam Med Sci. (2023) 40:328–34. doi: 10.12701/jyms.2023.00731
- 13. Neville RF, Kayssi A, Buescher T, Stempel MS. The diabetic foot. Curr Probl Surg. (2016) 53:408–37. doi: 10.1067/j.cpsurg.2016.07.003
- 14. Allen L, Powell-Cope G, Mbah A, Bulat T, Njoh E. A retrospective review of adverse events related to diabetic foot ulcers. *Ostomy Wound Manage*. (2017) 63:30–3.
- 15. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. *Diabetes Care*. (2005) 28:956–62. doi: 10.2337/diacare.28.4.956
- 16. Kender Z, Jende JME, Kurz FT, Tsilingiris D, Schimpfle L, Sulaj A, et al. Sciatic nerve fractional anisotropy and neurofilament light chain protein are related to sensorimotor deficit of the upper and lower limbs in patients with type 2 diabetes. *Front Endocrinol.* (2023) 14:1046690. doi: 10.3389/fendo.2023.1046690
- 17. Maalmi H, Nguyen PBH, Strom A, Bönhof GJ, Rathmann W, Ziegler D, et al. Prediction model for polyneuropathy in recent-onset diabetes based on serum neurofilament light chain, fibroblast growth Factor-19 and standard anthropometric and clinical variables. *Diabetes Metab Res Rev.* (2024) 40:e70009. doi: 10.1002/dmrr.70009
- 18. Määttä LL, Andersen ST, Parkner T, Hviid CVB, Bjerg L, Kural MA, et al. Longitudinal change in serum neurofilament light chain in type 2 diabetes and early diabetic polyneuropathy: ADDITION-Denmark. *Diabetes Care*. (2024) 47:986–94. doi: 10.2337/dc23-2208
- 19. Thrysøe M, Parkner T, Tankisi H, Nyengaard JR, Vestergaard ET, Kristensen K, et al. Biochemical use of neurofilament light polypeptide and vitamin B12 in relation to diabetic polyneuropathy in Danish adolescents with type 1 diabetes: a cross-sectional study. *BMJ Open*. (2025) 15:e085749. doi: 10.1136/bmjopen-2024-085749
- 20. Ciardullo S, Muraca E, Bianconi E, Cannistraci R, Perra S, Zerbini F, et al. Diabetes mellitus is associated with higher serum neurofilament light chain levels in the general US population. *J Clin Endocrinol Metab*. (2023) 108:361–7. doi: 10.1210/clinem/dgac580
- 21. Eryilmaz M, Koçer A, Kocaman G, Dikici S. Two-point discrimination in diabetic patients. $\it J$ Diabetes. (2013) 5:442–8. doi: 10.1111/1753-0407.12055
- 22. Periyasamy R, Maniyannan M, Narayanamurthy VB. Correlation between two-point discrimination with other measures of sensory loss in diabetes mellitus patients. *Int J Diabetes Dev Ctries*. (2008) 28:71–8. doi: 10.4103/0973-3930.44076

- 23. Paisley A, Abbott C, van Schie C, Boulton A. A comparison of the Neuropen against standard quantitative sensory-threshold measures for assessing peripheral nerve function. *Diabet Med.* (2002) 19:400–5. doi: 10.1046/j.1464-5491.2002.00706.x
- 24. Viswanathan V, Snehalatha C, Seena R, Ramachandran A. Early recognition of diabetic neuropathy: evaluation of a simple outpatient procedure using thermal perception. *Postgrad Med J.* (2002) 78:541–2. doi: 10.1136/pmj.78.923.541
- 25. Bloom S, Till S, Sönksen P, Smith S. Use of a biothesiometer to measure individual vibration thresholds and their variation in 519 non-diabetic subjects. *Br Med J.* (1984) 288:1793–5. doi: 10.1136/bmj.288.6433.1793
- 26. Young MJ, Every N, Boulton AJ. A comparison of the neurothesiometer and biothesiometer for measuring vibration perception in diabetic patients. *Diabetes Res Clin Pract.* (1993) 20:129–31. doi: 10.1016/0168-8227(93)90006-Q
- 27. Ponirakis G, Odriozola MN, Odriozola S, Petropoulos IN, Azmi S, Fadavi H, et al. NerveCheck: an inexpensive quantitative sensory testing device for patients with diabetic neuropathy. *Diabetes Res Clin Pract.* (2016) 113:101–7. doi: 10.1016/j.diabres.2015.12.023
- 28. Ponirakis G, Odriozola MN, Odriozola S, Petropoulos IN, Azmi S, Ferdousi M, et al. NerveCheck for the detection of sensory loss and neuropathic pain in diabetes. *Diabetes Technol Ther.* (2016) 18:800–5. doi: 10.1089/dia.2016.0279
- 29. Perkins B, Bril V. Electrophysiologic testing in diabetic neuropathy. *Handb Clin Neurol.* (2014) 126:235–48. doi: 10.1016/B978-0-444-53480-4.00018-7
- 30. Shabeeb D, Najafi M, Hasanzadeh G, Hadian MR, Musa AE, Shirazi A. Electrophysiological measurements of diabetic peripheral neuropathy: a systematic review. *Diabetes Metab Syndr*. (2018) 12:591–600. doi: 10.1016/j.dsx.2018.03.026
- 31. Chatzikosma G, Pafili K, Demetriou M, Vadikolias K, Maltezos E, Papanas N. Evaluation of sural nerve automated nerve conduction study in the diagnosis of peripheral neuropathy in patients with type 2 diabetes mellitus. *Arch Med Sci.* (2016) 12:390–3. doi: 10.5114/aoms.2016.59265
- 32. Shibata Y, Himeno T, Kamiya T, Tani H, Nakayama T, Kojima C, et al. Validity and reliability of a point-of-care nerve conduction device in diabetes patients. *J Diabetes Investig.* (2019) 10:1291–8. doi: 10.1111/jdi.13007
- 33. Lefaucheur JP. Clinical neurophysiology of pain. $\it Handb$ Clin Neurol. (2019) 161:121–48. doi: 10.1016/B978-0-444-64142-7.00045-X
- 34. Agostino R, Cruccu G, Romaniello A, Innocenti P, Inghilleri M, Manfredi M. Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. *Clin Neurophysiol.* (2000) 111:270–6. doi: 10.1016/S1388-2457(99)00247-3
- 35. Ragé M, Van Acker N, Knaapen MW, Timmers M, Streffer J, Hermans MP, et al. Asymptomatic small fiber neuropathy in diabetes mellitus: investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials. *J Neurol.* (2011) 258:1852–64. doi: 10.1007/s00415-011-6031-z
- 36. Di Stefano G, La Cesa S, Leone C, Pepe A, Galosi E, Fiorelli M, et al. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy. Pain. (2017) 158:1100–7. doi: 10.1097/j.pain.00000000000000889
- 37. Chao CC, Tseng MT, Lin YJ, Yang WS, Hsieh SC, Lin YH, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. *Diabetes Care*. (2010) 33:2654–9. doi: 10.2337/dc10-1135
- 38. Wong MC, Chung JW. Feasibility of contact heat evoked potentials for detection of diabetic neuropathy. *Muscle Nerve*. (2011) 44:902–6. doi: 10.1002/mus.22192
- 39. Beiswenger KK, Calcutt NA, Mizisin AP. Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. *Acta Histochem.* (2008) 110:351-62. doi: 10.1016/j.acthis.2007.12.004
- 40. Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, et al. European Federation of Neurological Societies/peripheral nerve society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the peripheral nerve society. *Eur J Neurol.* (2010) 17:e44–9. doi: 10.1111/j.1468-1331.2010.03023.x
- 41. Mellgren SI, Nolano M, Sommer C. The cutaneous nerve biopsy: technical aspects, indications, and contribution. *Handb Clin Neurol.* (2013) 115:171–88. doi: 10.1016/B978-0-444-52902-2.00010-2
- 42. Khoshnoodi MA, Truelove S, Burakgazi A, Hoke A, Mammen AL, Polydefkis M. Longitudinal assessment of small Fiber neuropathy: evidence of a non-length-dependent distal axonopathy. *JAMA Neurol.* (2016) 73:684–90. doi: 10.1001/jamaneurol.2016.0057
- 43. Petropoulos IN, Bitirgen G, Ferdousi M, Kalteniece A, Azmi S, D'Onofrio L, et al. Corneal confocal microscopy to image small nerve Fiber degeneration: ophthalmology meets neurology. *Front Pain Res.* (2021) 2:725363. doi: 10.3389/fpain.2021.725363

- 44. Lukashenko MV, Gavrilova NY, Bregovskaya AV, Soprun LA, Churilov LP, Petropoulos IN, et al. Corneal confocal microscopy in the diagnosis of small fiber neuropathy: faster, easier, and more efficient than skin biopsy? *Pathophysiology*. (2021) 29:1–8. doi: 10.3390/pathophysiology29010001
- 45. Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. *Diabetologia*. (2003) 46:683–8. doi: 10.1007/s00125-003-1086-8
- 46. Tavakoli M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. *J Diabetes Sci Technol.* (2013) 7:1179–89. doi: 10.1177/193229681300700509
- 47. Gad H, Petropoulos IN, Khan A, Ponirakis G, MacDonald R, Alam U, et al. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: a systematic review and meta-analysis. *J Diabetes Investig.* (2022) 13:134–47. doi: 10.1111/jdi.13643
- 48. Illigens BMW, Gibbons CH. Autonomic testing, methods and techniques. *Handb Clin Neurol.* (2019) 160:419–33. doi: 10.1016/B978-0-444-64032-1.00028-X
- 49. Fisher VL, Tahrani AA. Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. *Diabetes Metab Syndr Obes*. (2017) 10:419–34. doi: 10.2147/DMSO.S129797
- 50. Lefaucheur JP. Assessment of autonomic nervous system dysfunction associated with peripheral neuropathies in the context of clinical neurophysiology practice. *Neurophysiol Clin.* (2023) 53:102858. doi: 10.1016/j.neucli.2023.102858
- 51. Zouari HG, Ng Wing Tin S, Wahab A, Damy T, Lefaucheur JP. Assessment of autonomic innervation of the foot in familial amyloid polyneuropathy. *Eur J Neurol.* (2019) 26:94–e10. doi: 10.1111/ene.13774
- 52. Wilder-Smith E, Chow A. Water immersion and EMLA cause similar digit skin wrinkling and vasoconstriction. *Microvasc Res.* (2003) 66:68–72. doi: 10.1016/S0026-2862(03)00020-7
- 53. Teoh HL, Chow A, Wilder-Smith EP. Skin wrinkling for diagnosing small fibre neuropathy: comparison with epidermal nerve density and sympathetic skin response. *J Neurol Neurosurg Psychiatry*. (2008) 79:835–7. doi: 10.1136/jnnp.2007.140947
- 54. Ping Ng KW, Ong JJ, Nyein Nyein TD, Liang S, Chan YC, Lee KO, et al. EMLA-induced skin wrinkling for the detection of diabetic neuropathy. *Front Neurol.* (2013) 4:126. doi: 10.3389/fneur.2013.00126
- 55. Wilder-Smith EP. Stimulated skin wrinkling as an indicator of limb sympathetic function. *Clin Neurophysiol.* (2015) 126:10–6. doi: 10.1016/j.clinph.2014.08.007
- 56. Papanas N, Papatheodorou K, Christakidis D, Papazoglou D, Giassakis G, Piperidou H, et al. Evaluation of a new indicator test for sudomotor function (Neuropad) in the diagnosis of peripheral neuropathy in type 2 diabetic patients. *Exp Clin Endocrinol Diabetes*. (2005) 113:195–8. doi: 10.1055/s-2005-837735
- 57. Quattrini C, Jeziorska M, Tavakoli M, Begum P, Boulton AJ, Malik RA. The neuropad test: a visual indicator test for human diabetic neuropathy. *Diabetologia*. (2008) 51:1046–50. doi: 10.1007/s00125-008-0987-y
- 58. Spallone V, Morganti R, Siampli M, Fedele T, D'Amato C, Cacciotti L, et al. Neuropad as a diagnostic tool for *diabetic* autonomic and sensorimotor neuropathy. *Diabet Med.* (2009) 26:686–92. doi: 10.1111/j.1464-5491.2009.02760.x
- 59. Papanas N, Boulton AJ, Malik RA, Manes C, Schnell O, Spallone V, et al. A simple new non-invasive sweat indicator test for the diagnosis of diabetic neuropathy. *Diabet Med.* (2013) 30:525–34. doi: 10.1111/dme.12000
- 60. Ponirakis G, Petropoulos IN, Fadavi H, Alam U, Asghar O, Marshall A, et al. The diagnostic accuracy of Neuropad for assessing large and small fibre diabetic neuropathy. *Diabet Med.* (2014) 31:1673–80. doi: 10.1111/dme.12536
- 61. Kubasch ML, Kubasch AS, Torres Pacheco J, Buchmann SJ, Illigens BM, Barlinn K, et al. Laser doppler assessment of vasomotor axon reflex responsiveness to evaluate neurovascular function. *Front Neurol.* (2017) 8:370. doi: 10.3389/fneur.2017.00370
- 62. Parkhouse N, Le P, Quesne M. Impaired neurogenic vascular response in patients with diabetes and neuropathic foot lesions. $N\ Engl\ J\ Med.$ (1988) 318:1306–9. doi: 10.1056/NEJM198805193182005
- 63. Newrick PG, Cochrane T, Betts RP, Ward JD, Boulton AJ. Reduced hyperaemic response under the diabetic neuropathic foot. *Diabet Med.* (1988) 5:570–3. doi: 10.1111/j.1464-5491.1988.tb01053.x
- 64. Flynn MD, Edmonds ME, Tooke JE, Watkins PJ. Direct measurement of capillary blood flow in the diabetic neuropathic foot. *Diabetologia*. (1988) 31:652–6. doi: 10.1007/BF00278747
- 65. Obeid AN, Barnett NJ, Dougherty G, Ward G. A critical review of laser doppler flowmetry. J Med Eng Technol. (1990) 14:178–81. doi: 10.3109/03091909009009955
- 66. Wilson SB, Jennings PE, Belch JJ. Detection of microvascular impairment in type I diabetics by laser doppler flowmetry. *Clin Physiol.* (1992) 12:195–208. doi: 10.1111/j.1475-097X.1992.tb00306.x
- 67. Forst T, Pfützner A, Kunt T, Pohlmann T, Schenk U, Bauersachs R, et al. Skin microcirculation in patients with type I diabetes with and without neuropathy after neurovascular stimulation. *Clin Sci (Lond)*. (1998) 94:255–61. doi: 10.1042/cs0940255
- 68. Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. *Diabetes Care.* (2007) 30:655–9. doi: 10.2337/dc06-2154

- 69. Au M, Rattigan S. Barriers to the management of diabetes mellitus is there a future role for laser doppler flowmetry? *Australas Med J.* (2012) 5:627–32. doi: 10.4066/AMI.2012.1526
- 70. Lal C, Unni SN. Correlation analysis of laser doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus. *Med Biol Eng Comput.* (2015) 53:557–66. doi: 10.1007/s11517-015-1266-y
- 71. Bickel A, Krämer HH, Hilz MJ, Birklein F, Neundörfer B, Schmelz M. Assessment of the neurogenic flare reaction in small-fiber neuropathies. *Neurology*. (2002) 59:917–9. doi: 10.1212/WNL.59.6.917
- 72. Krämer HH, Schmelz M, Birklein F, Bickel A. Electrically stimulated axon reflexes are diminished in diabetic small fiber neuropathies. *Diabetes*. (2004) 53:769–74. doi: 10.2337/diabetes.53.3.769
- 73. Krishnan ST, Rayman G. The ldiflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care. (2004) 27:2930–5. doi: 10.2337/diacare.27.12.2930
- 74. Baker N, Green A, Krishnan S, Rayman G. Microvascular and C-fiber function in diabetic charcot neuroarthropathy and diabetic peripheral neuropathy. *Diabetes Care*. (2007) 30:3077–9. doi: 10.2337/dc07-1063
- 75. Illigens BM, Siepmann T, Roofeh J, Gibbons CH. Laser doppler imaging in the detection of peripheral neuropathy. *Auton Neurosci.* (2013) 177:286–90. doi: 10.1016/j.autneu.2013.06.006
- 76. Low PA, Caskey PE, Tuck RR, Fealey RD, Dyck PJ. Quantitative sudomotor axon reflex test in normal and neuropathic subjects. *Ann Neurol.* (1983) 14:573–80. doi: 10.1002/ana.410140513
- 77. Low PA. Autonomic nervous system function. J Clin Neurophysiol. (1993) 10:14–27. doi: 10.1097/00004691-199301000-00003
- 78. Low PA, Tomalia VA, Park KJ. Autonomic function tests: some clinical applications. *J Clin Neurol.* (2013) 9:1–8. doi: 10.3988/jcn.2013.9.1.1
- 79. Peltier A, Smith AG, Russell JW, Sheikh K, Bixby B, Howard J, et al. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. *Muscle Nerve.* (2009) 39:529–35. doi: 10.1002/mus.21210
- 80. Berger MJ, Kimpinski K. Test-retest reliability of quantitative sudomotor axon reflex testing. *J Clin Neurophysiol.* (2013) 30:308–12. doi: 10.1097/WNP.0b013e3182873254
- 81. Novak P. Electrochemical skin conductance: a systematic review. *Clin Auton Res.* (2019) 29:17–29. doi: 10.1007/s10286-017-0467-x
- 82. Vittrant B, Ayoub H, Brunswick P. From Sudoscan to bedside: theory, modalities, and application of electrochemical skin conductance in medical diagnostics. *Front Neuroanat.* (2024) 18:1454095. doi: 10.3389/fnana.2024.1454095
- 83. Mayaudon H, Miloche PO, Bauduceau B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. *Diabetes Metab*. (2010) 36:450–4. doi: 10.1016/j.diabet.2010.05.004
- 84. Gin H, Baudoin R, Raffaitin CH, Rigalleau V, Gonzalez C. Non-invasive and quantitative assessment of sudomotor function for peripheral diabetic neuropathy evaluation. *Diabetes Metab.* (2011) 37:527–32. doi: 10.1016/j.diabet.2011.05.003
- 85. Yajnik CS, Kantikar VV, Pande AJ, Deslypere JP. Quick and simple evaluation of sudomotor function for screening of diabetic neuropathy. *ISRN Endocrinol.* (2012) 2012:103714. doi: 10.5402/2012/103714
- 86. Calvet JH, Dupin J, Winiecki H, Schwarz PE. Assessment of small fiber neuropathy through a quick, simple and non invasive method in a German diabetes outpatient clinic. *Exp Clin Endocrinol Diabetes*. (2013) 121:80–3. doi: 10.1055/s-0032-1323777
- 87. Casellini CM, Parson HK, Richardson MS, Nevoret ML, Vinik AI. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. *Diabetes Technol Ther*. (2013) 15:948–53. doi: 10.1089/dia.2013.0129
- 88. Smith AG, Lessard M, Reyna S, Doudova M, Singleton JR. The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. *J Diabetes Complicat.* (2014) 28:511–6. doi: 10.1016/j.jdiacomp.2014.02.013
- 89. Selvarajah D, Cash T, Davies J, Sankar A, Rao G, Grieg M, et al. SUDOSCAN: a simple, rapid, and objective method with potential for screening for diabetic peripheral neuropathy. *PLoS One.* (2015) 10:e0138224. doi: 10.1371/journal.pone.0138224
- 90. Mao F, Liu S, Qiao X, Zheng H, Xiong Q, Wen J, et al. Sudoscan is an effective screening method for asymptomatic diabetic neuropathy in Chinese type 2 diabetes mellitus patients. *J Diabetes Investig.* (2017) 8:363–8. doi: 10.1111/jdi.12575
- 91. Jin J, Wang W, Gu T, Chen W, Lu J, Bi Y, et al. The application of SUDOSCAN for screening diabetic peripheral neuropathy in Chinese population. *Exp Clin Endocrinol Diabetes*. (2018) 126:472–7. doi: 10.1055/s-0043-116673
- 92. Carbajal-Ramírez A, Hernández-Domínguez JA, Molina-Ayala MA, Rojas-Uribe MM, Chávez-Negrete A. Early identification of peripheral neuropathy based on sudomotor dysfunction in Mexican patients with type 2 diabetes. *BMC Neurol*. (2019) 19:109. doi: 10.1186/s12883-019-1332-4
- 93. Veloso DLC, Nascimento RCG, Leite EB, de Avila Santana L, Amato AA. Predictors of sudomotor dysfunction in patients with type 1 diabetes without clinical evidence of peripheral neuropathy. *Diabetes Res Clin Pract.* (2020) 170:108500. doi: 10.1016/j.diabres.2020.108500

- 94. Gautier JF, Riveline JP, Potier L, Bourron O, Bordier L, Vittrant B, et al. Electrochemical skin conductance: a tool for risk stratification and early anticipation of diabetic foot ulcers. Front Endocrinol. (2025) 16:1437858. doi: 10.3389/fendo.2025.1437858
- 95. Lefaucheur JP. The value of electrochemical skin conductance measurement by Sudoscan for assessing autonomic dysfunction in peripheral neuropathies beyond diabetes. Neurophysiol Clin. (2023) 53:102859. doi: 10.1016/j.neucli.2023.102859
- 96. Bordier L, Dolz M, Monteiro L, Névoret ML, Calvet JH, Bauduceau B. Accuracy of a rapid and non-invasive method for the assessment of small Fiber neuropathy based on measurement of electrochemical skin Conductances. *Front Endocrinol.* (2016) 7:18. doi: 10.3389/fendo.2016.00018
- 97. Shahani BT, Halperin JJ, Boulu P, Cohen J. Sympathetic skin response--a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. *J Neurol Neurosurg Psychiatry*. (1984) 47:536–42. doi: 10.1136/jnnp.47.5.536
- 98. Claus D, Schondorf R. Sympathetic skin response. *Electroencephalogr Clin Neurophysiol.* (1999) 52:277–82.
- 99. Hoeldtke RD, Davis KM, Hshieh PB, Gaspar SR, Dworkin GE. Autonomic surface potential analysis: assessment of reproducibility and sensitivity. *Muscle Nerve.* (1992) 15:926–31. doi: 10.1002/mus.880150810
- 100. Toyokura M, Murakami K. Reproducibility of sympathetic skin response. *Muscle Nerve*. (1996) 19:1481. doi: 10.1002/(SICI)1097-4598(199611)19:11<>3.0.CO;2-W
- 101. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. *Diabetes Care*. (2010) 33:2285–93. doi: 10.2337/dc10-1303
- 102. Bril V, Perkins B, Toth CCanadian Diabetes Association Clinical Practice Guidelines Expert Committee. Neuropathy. *Can J Diabetes*. (2013) 37:S142–4. doi: 10.1016/j.jcjd.2013.01.039
- 103. Binns-Hall O, Selvarajah D, Sanger D, Walker J, Scott A, Tesfaye S. One-stop microvascular screening service: an effective model for the early detection of diabetic peripheral neuropathy and the high-risk foot. *Diabet Med.* (2018) 35:887–94. doi: 10.1111/dme.13630
- 104. Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. *Diabetes Care*. (1994) 17:1281–9. doi: 10.2337/diacare.17.11.1281
- 105. Poulose S, Cheriyan E, Poulose A, Cheriyan R, Vadakkanezath B, Ziemer P. Usefulness of the NC-stat DPNCheck nerve conduction test in a community pharmacy as an educational tool for patients with diabetes. *Can Pharm J.* (2015) 148:17–20. doi: 10.1177/1715163514561055
- 106. American Diabetes Association. Glycemic targets: standards of medical care in Diabetes-2020. *Diabetes Care*. (2020) 43:S66–76. doi: 10.2337/dc20-S006
- 107. Azizi F, Diehl K, Enser L, Heacock S. Achievement of time in range goals among patients with diabetes using continuous glucose monitoring. *J Am Pharm Assoc.* (2025) 8:102924. doi: 10.1016/j.japh.2025.102924
- 108. Alfadli SF, Alotaibi YS, Aqdi MJ, Almozan LA, Alzubaidi ZB, Altemani HA, et al. Effectiveness of continuous glucose monitoring systems on glycemic control in adults with type 1 diabetes: a systematic review and meta-analysis. *Metabol Open.* (2025) 27:100382. doi: 10.1016/j.metop.2025.100382
- 109. Savoy A, Barboi C, Thomas MR, Weiner M. Usability of continuous glucose monitoring for older adults with type 2 diabetes: a systematic review. *Diabetes Technol Ther.* (2025) in press). doi: 10.1177/15209156251369021
- 110. Maiorino MI, Di Martino N, Angelino S, Maio A, Caruso P, Petrizzo M, et al. The therapeutic efficacy of continuous glucose monitoring in diabetes: an updated meta-analysis with meta-regression. $\it Endocrine.$ (2025). doi: 10.1007/s12020-025-04405-6
- 111. Holtz B, Lauckner C. Diabetes management via mobile phones: a systematic review. *Telemed J E Health.* (2012) 18:175–84. doi: 10.1089/tmj.2011.0119
- 112. Siriwardena LS, Wickramasinghe WA, Perera KL, Marasinghe RB, Katulanda P, Hewapathirana R. A review of telemedicine interventions in diabetes care. *J Telemed Telecare*. (2012) 18:164–8. doi: 10.1258/jtt.2012.SFT110
- 113. Marcolino MS, Maia JX, Alkmim MB, Boersma E, Ribeiro AL. Telemedicine application in the care of diabetes patients: systematic review and meta-analysis. *PLoS One.* (2013) 8:e79246. doi: 10.1371/journal.pone.0079246
- 114. Fu H, McMahon SK, Gross CR, Adam TJ, Wyman JF. Usability and clinical efficacy of diabetes mobile applications for adults with type 2 diabetes: a systematic review. *Diabetes Res Clin Pract.* (2017) 131:70–81. doi: 10.1016/j.diabres.2017.06.016
- 115. Lee SWH, Chan CKY, Chua SS, Chaiyakunapruk N. Comparative effectiveness of telemedicine strategies on type 2 diabetes management: a systematic review and network meta-analysis. *Sci Rep.* (2017) 7:12680. doi: 10.1038/s41598-017-12987-z
- 116. Wang G, Zhang Z, Feng Y, Sun L, Xiao X, Wang G, et al. Telemedicine in the Management of Type 2 diabetes mellitus. *Am J Med Sci.* (2017) 353:1–5. doi: 10.1016/j.amjms.2016.10.008
- 117. Lee PA, Greenfield G, Pappas Y. The impact of telehealth remote patient monitoring on glycemic control in type 2 diabetes: a systematic review and meta-analysis of systematic reviews of randomised controlled trials. *BMC Health Serv Res.* (2018) 18:495. doi: 10.1186/s12913-018-3274-8

- 118. Izquierdo R, Lagua CT, Meyer S, Ploutz-Snyder RJ, Palmas W, Eimicke JP, et al. Telemedicine intervention effects on waist circumference and body mass index in the IDEATel project. *Diabetes Technol Ther.* (2010) 12:213–20. doi: 10.1089/dia.2009.0102
- 119. Holmen H, Torbjørnsen A, Wahl AK, Jenum AK, Småstuen MC, Arsand E, et al. A Mobile health intervention for self-management and lifestyle change for persons with type 2 diabetes, part 2: one-year results from the Norwegian randomized controlled trial RENEWING HEALTH. *JMIR Mhealth Uhealth*. (2014) 2:e57. doi: 10.2196/mhealth.3882
- 120. de Vasconcelos HCA, Lira Neto JCG, de Araújo MFM, Carvalho GCN, de Souza Teixeira CR, de Freitas RWJF, et al. Telecoaching programme for type 2 diabetes control: a randomised clinical trial. *Br J Nurs.* (2018) 27:1115–20. doi: 10.12968/bjon.2018.27.19.1115
- 121. Ng Wing Tin S, Zouari HG, Ayache SS, Tropeano AI, Ajzenberg C, Xhaxho J, et al. Coaching of lifestyle recommendations improves sensory neurophysiological parameters in neuropathies related to glycemic disorder or metabolic syndrome. A pilot study. *Neurophysiol Clin.* (2019) 49:59–67. doi: 10.1016/j.neucli.2018.12.004
- 122. Bollyky JB, Bravata D, Yang J, Williamson M, Schneider J. Remote lifestyle coaching plus a connected glucose meter with certified diabetes educator support improves glucose and weight loss for people with type 2 diabetes. *J Diabetes Res.* (2018) 2018;3961730. doi: 10.1155/2018/3961730
- 123. Turnin MC, Gourdy P, Martini J, Buisson JC, Chauchard MC, Delaunay J, et al. Impact of a remote monitoring programme including lifestyle education software in type 2 diabetes: results of the Educ@dom randomised multicentre study. *Diabetes Ther*. (2021) 12:2059–75. doi: 10.1007/s13300-021-01095-x
- 124. Mounié M, Costa N, Gourdy P, Latorre C, Schirr-Bonnans S, Lagarrigue JM, et al. Cost-effectiveness evaluation of a remote monitoring programme including lifestyle education software in type 2 diabetes: results of the Educ@dom study. *Diabetes Ther.* (2022) 13:693–708. doi: 10.1007/s13300-022-01207-1
- 125. Riveline JP, Mallone R, Tiercelin C, Yaker F, Alexandre-Heymann L, Khelifaoui L, et al. Validation of the body scan an ew device to detect small fiber neuropathy by assessment of the sudomotor function. Agreement with the Sudoscan *Front Neurol.* (2023) 14:1256984. doi: 10.3389/fneur.2023.1256984
- 126. Feng ZQ, Guo QY, Wang W, Yuan YY, Jin XG, Zhou H, et al. Time in range, especially overnight time in range, is associated with sudomotor dysfunction in patients with type 1 diabetes. $Diabetol\ Metab\ Syndr.\ (2021)\ 13:119.\ doi: 10.1186/s13098-021-00739-z$
- 127. Guo QY, Lu B, Guo ZH, Feng ZQ, Yuan YY, Jin XG, et al. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. *World J Diabetes*. (2020) 11:489–500. doi: 10.4239/wjd.v11.i11.489
- 128. Gatev T, Gateva A, Assyov Y, Nacheva S, Petrova J, Poromanski I, et al. The role of Sudoscan feet asymmetry in the diabetic foot. *Prim Care Diabetes*. (2020) 14:47–52. doi: 10.1016/j.pcd.2019.05.003
- 129. Jones PJ, Lavery L, Davies MJ, Webb D, Rowlands AV. Hotspots: adherence in home foot temperature monitoring interventions for at-risk feet with diabetes-a narrative review. *Diabet Med.* (2023) 40:e15189. doi: 10.1111/dme.15189
- 130. Khandakar A, Mahmud S, Chowdhury MEH, Reaz MBI, Kiranyaz S, Mahbub ZB, et al. Design and implementation of a smart insole system to measure plantar pressure and temperature. *Sensors*. (2022) 22:7599. doi: 10.3390/s22197599
- 131. Qin Q, Nakagami G, Ohashi Y, Dai M, Sanada H, Oe M. Development of a self-monitoring tool for diabetic foot prevention using smartphone-based thermography: plantar thermal pattern changes and usability in the home environment. *Drug Discov Ther.* (2022) 16:169–76. doi: 10.5582/ddt.2022.01050
- 132. Wartakusumah R, Yamada A, Noguchi H, Oe M. Analysis of foot thermography images of diabetic patients using artificial intelligence: a scoping review. *Diabetes Res Clin Pract.* (2025) 228:112446. doi: 10.1016/j.diabres.2025.112446
- 133. Khandakar A, Chowdhury MEH, Ibne Reaz MB, Md Ali SH, Hasan MA, Kiranyaz S, et al. A machine learning model for early detection of diabetic foot using thermogram images. *Comput Biol Med.* (2021) 137:104838. doi: 10.1016/j.compbiomed.2021.104838
- 134. Kuang B, Pena G, Szpak Z, Edwards S, Battersby R, Cowled P, et al. Assessment of a smartphone-based application for diabetic foot ulcer measurement. *Wound Repair Regen.* (2021) 29:460–5. doi: 10.1111/wrr.12905
- 135. Pak C, In Jeon J, Kim H, Kim J, Park S, Ahn KH, et al. A smartphone-based teleconsultation system for the management of chronic pressure injuries. *Wound Repair Regen.* (2018) 26:S19–26. doi: 10.1111/wrr.2
- 136. Swerdlow M, Shin L, D'Huyvetter K, Mack WJ. Armstrong Armstrong, DG. Initial clinical experience with a simple, home system for early detection and monitoring of diabetic foot ulcers: the foot selfie. *J Diabetes Sci Technol.* (2023) 17:79–88. doi: 10.1177/19322968211053348
- 137. Chan KS, Lo ZJ. Wound assessment, imaging and monitoring systems in diabetic foot ulcers: a systematic review. *Int Wound J.* (2020) 17:1909–23. doi: 10.1111/iwi.13481
- 138. Kairys A, Pauliukiene R, Raudonis V, Ceponis J. Towards home-based diabetic foot ulcer monitoring: a systematic review. *Sensors (Basel)*. (2023) 23:3618. doi: 10.3390/s23073618

139. Zoppo G, Marrone F, Pittarello M, Farina M, Uberti A, Demarchi D, et al. AI technology for remote clinical assessment and monitoring. *J Wound Care.* (2020) 29:692–706. doi: 10.12968/jowc.2020.29.12.692

- 140. Lucas Y, Niri R, Treuillet S, Douzi H, Castaneda B. Wound size imaging: ready for smart assessment and monitoring. *Adv Wound Care*. (2021) 10:641–61. doi: 10.1089/wound.2018.0937
- 141. Chan KS, Chan YM, Tan AHM, Liang S, Cho YT, Hong Q, et al. Clinical validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. *Int Wound J.* (2022) 19:114–24. doi: 10.1111/iwj.13603
- 142. Cassidy B, Hoon Yap M, Pappachan JM, Ahmad N, Haycocks S, O'Shea C, et al. Artificial intelligence for automated detection of diabetic foot ulcers: a real-world proof-of-concept clinical evaluation. *Diabetes Res Clin Pract.* (2023) 205:110951. doi: 10.1016/j.diabres.2023.110951
- 143. Piaggio D, Castaldo R, Garibizzo G, Iadanza E, Pecchia L. A smartphone-based tool for screening diabetic neuropathies: a mHealth and 3D printing approach. *Biomed Signal Process Control.* (2024) 97:106719. doi: 10.1016/j.bspc.2023.105807
- 144. Chen CS, Kim J, Garg N, Guntupalli H, Jagsi R, Griggs JJ, et al. Chemotherapy-induced peripheral neuropathy detection via a smartphone app: cross-sectional pilot study. *JMIR Mhealth Uhealth*. (2021) 9:e27502. doi: 10.2196/27502

- 145. Chen CS, Dorsch MP, Alsomairy S, Griggs JJ, Jagsi R, Sabel M, et al. Remote monitoring of chemotherapy-induced peripheral neuropathy by the NeuroDetect iOS app: observational cohort study of patients with Cancer. *J Med Internet Res.* (2025) 27:e55615. doi: 10.2196/65615
- 146. Sendilraj V, Pilcher W, Choi D, Bhasin A, Bhadada A, Bhadadaa SK, et al. DFUCare: deep learning platform for diabetic foot ulcer detection, analysis, and monitoring. Front Endocrinol. (2024) 15:1386613. doi: 10.3389/fendo.2024.1386613
- 147. Rukmini PG, Hegde RB, Basavarajappa BK, Bhat AK, Pujari AN, Gargiulo GD, et al. Recent innovations in footwear and the role of smart footwear in healthcare-a survey. *Sensors*. (2024) 24:4301. doi: 10.3390/s24134301
- 148. Zhao X, Zhang Y, Huang Z, Wu X, Lin J. Innovative therapies for diabetic foot ulcers: application and prospects of smart dressings. *Biomed Pharmacother*. (2025) 191:118498. doi: 10.1016/j.biopha.2025.118498
- 149. Kosaji D, Awad MI, Katmah R, Jelinek HF, Domingues MF, Baguneid M, et al. Diabetic foot prevention, assessment, and management using innovative smart wearable technology: a systematic review. *J Neuroeng Rehabil.* (2025) 22:168. doi: 10.1186/s12984-025-01695-9
- 150. Lin PC, Li TC, Huang TH, Hsu YL, Ho WC, Xu JL, et al. Machine learning for diabetic foot care: accuracy trends and emerging directions in healthcare AI. *Front Public Health.* (2025) 13:1613946. doi: 10.3389/fpubh.2025.1613946