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New perspectives are opening up today in the management of diabetes thanks 
to the possibility of measuring, over long periods in daily life, different biomarkers 
likely to improve glycaemic control, such as continuous glucose monitoring 
and time-in-range assessment. This is part of personalized medicine. There is 
therefore a challenge to also benefit from specific biomarkers in the prevention 
and monitoring of polyneuropathy in diabetics, one of the most common type of 
peripheral nerve disorder worldwide. This is now possible with the development 
of connected tools, allowing for example to monitor at home the evolution of 
skin temperature or conductance at the level of the feet. In this article, the current 
use and recent advances in laboratory tools for the early diagnosis and objective 
monitoring of diabetic polyneuropathy and its progression will be presented. The 
follow-up of neuropathies will undoubtedly be significantly modified in clinical 
practice in the future, particularly in the context of diabetes, thanks to the use of 
connected tools and remote monitoring.
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Introduction

Diabetic neuropathy (DN) affects millions of people worldwide, impairing quality of life 
and daily functioning (1, 2). DN is also associated with an increased relative risk of death, 
especially due to the dysfunction of the peripheral autonomic nervous system (3, 4). This 
highly morbid disorder is therefore the cause of major socio-economic problems and very 
significant annual health costs, even only considering the diabetic foot syndrome, a dramatic 
consequence leading to difficult-to-treat ulcers and amputations (5, 6). Diabetic foot syndrome 
is defined by the World Health Organization as an “ulceration of the foot (distally from the 
ankle and including the ankle) associated with neuropathy and different grades of ischemia 
and infection.”

Distal symmetric polyneuropathy (DPN) is the most common form of DN, characterized 
by the progressive damage and loss of various populations of nerve fibers in a symmetrical and 
length-dependent pattern, therefore starting at the feet (7–10). The clinical picture includes a 
variable mix of negative sensory signs and symptoms (hypoesthesia and numbness) and 
positive sensory signs and symptoms (non-painful paresthesias, such as tingling, or painful 
dysesthesias, whether spontaneous or evoked). These sensory features involve large-diameter 
A-beta nerve fibers and small-diameter A-delta and type C nerve fibers. Unmyelinated C fibers 
are also involved in the autonomic part of DPN, mainly at the origin of vasomotor or 
sudomotor dysfunction of the limb extremities (11, 12). In more advanced cases of DPN, this 
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can result in ulcers, infections and amputations in the feet, as well as 
loss or dysfunction of larger-diameter nerve fibers involved in motor 
or proprioceptive function. Ultimately, the patients may show balance 
disorders and an increased risk of falls, unnoticed injuries, and 
fractures (13, 14).

Also, to avoid this deleterious evolution and to prevent morbidity 
and complications, there is an obvious need to develop laboratory 
tools allowing DPN to be diagnosed early, especially because of a 
frequent asymptomatic onset (15), and also to objectively monitor its 
evolution. These tools could be  directed towards the detection of 
neurodegeneration, for example by measuring serum neurofilament 
light chains (sNfL) levels (16–18). However, the value of sNfL 
measurement has been shown to be neither sensitive (19) nor specific 
(with respect to the detection of central nervous system involvement) 
for the diagnosis of DPN (20). Thus, from a more neurophysiological 
perspective, these tools must be  more specifically linked to the 
evaluation of a given type of nerve fibers at the level of the feet, 
repeatable, reproducible, and sensitive to alterations and early changes 
in nerve function.

Different assessment tools for different 
nerve fiber types

Mainly four types of nerve fibers must be assessed: A-beta sensory 
fibers, A-delta sensory fibers, type C sensory fibers, and type C 
autonomic fibers. The various tests that can be used in clinical practice 
to assess impairment of these different types of nerve fibers in the feet 
are presented in Table 1 and Figure 1.

In routine practice, the screening of DPN is based on the 
assessment of large A-beta fibers involved in light touch on three or 
four plantar sites with a 10-g monofilament and involved in vibration 
sense on the dorsal aspect of the great toe (interphalangeal joint) with 
a 128-Hz tuning fork (10). Other simple tools can be used for bedside 
sensory testing, such as the two-point discrimination test (21), which 
appears to measure sensory properties of the foot that differ from light 
touch assessed using monofilaments in diabetic patients (22). In 
addition, small A-delta fibers can be assessed for pinprick sensation 
with a safety pin (e.g., Neurotip® combined with a Neuropen®) (23) 
and for cold temperature sensation with a cold metal object (e.g., Tip 
Therm®) (24).

On the other hand, more complex quantitative sensory testing 
(QST) can be  performed using computerized devices (Table  1; 
Figure 1). These devices allow sensory thresholds to be quantified as 
numerical values, more accurately than with conventional bedside 
testing, which is usually performed in a binary manner (stimulation 
perceived or not). Some tools are of intermediate use and combine 
portability (portable devices) with quantification of sensory 
thresholds. This is the case of the Biothesiometer® or 
Neurothesiometer® to assess vibration detection threshold (25, 26) or 
the NerveCheck®, which also assesses cold, warm, and heat pain 
detection thresholds with simple paradigms (27, 28).

Sensory nerve fibers can also be assessed using electrophysiological 
techniques of nerve conduction studies (29, 30). In the context of 
length-dependent diabetic polyneuropathy, sensory nerve action 
potentials (SNAPs) should be recorded distally in the lower limbs, 
particularly for the sural nerves. These recordings can be performed 
using a conventional EMG device, in conjunction with motor nerve 

conduction study in this case, or using dedicated devices, such as the 
DPNCheck®, which is limited to recording SNAPs from the sural 
nerve to the ankle (31, 32). The measurement of SNAPs is a 
particularly objective method of assessing large-diameter A-beta 
sensory nerve fibers in their distal segment, but provides no 
information on smaller-diameter sensory nerve fibers.

For small-diameter nerve fibers, electrophysiological tests can also 
be  performed routinely, using stimulating devices capable of 
selectively stimulating this type of nerve fibers (33). The stimulation 
techniques that can be used for this purpose are based on thermal or 
electrical stimulation, while the recording of “evoked potentials” is 
performed using scalp electrodes and based on the averaging of 
electroencephalographic activities. Thermal stimulation can be radiant 
heating delivered by a laser or contact heating delivered by a thermode, 
allowing the recording of laser evoked potentials (LEPs) (34–36) or 
contact-heat evoked potentials (CHEPs) (37, 38), respectively. 
Electrical stimulation should aim to deliver a very focal current 
limited to the epidermis, where only the endings of small diameter 
nerve fibers are present. Different types of electrodes can be used for 
this purpose, allowing the recording of intraepidermal evoked 
potentials (IEEPs) (33). Usual somatosensory evoked potentials 
(SSEPs), obtained with a large bipolar stimulating electrode (as for 
SNAP recordings), engage subepidermal endings of large-diameter 
A-beta sensory fibers. The main limitation of using LEPs, CHEPs, 
IEEPs for the study of small-diameter A-delta or C fibers is that only 
brain responses can be  recorded with these techniques, which 
precludes the assessment of a purely peripheral component (unlike 
SSEPs for large-diameter A-beta fibers) (33).

On the other hand, small-diameter sensory nerve endings can 
be assessed very specifically in the distal lower limbs by measuring 
intraepidermal nerve fiber density in a small skin biopsy (39–41). 
However, the representativeness of the measurement on a skin surface 
as small as a few mm2 is questionable. Furthermore, except in dedicated 
research studies (42), the repeatability of this invasive technique is 
limited for routine longitudinal monitoring of patients with DPN, 
particularly due to the increased risk of healing problems. Another 
technique to study small-diameter sensory innervation is corneal 
confocal microscopy, with the measurement of intracorneal nerve fiber 
density, fiber length, or branching density (43, 44). Although these 
measures may show significant correlations with the existence of more 
diffuse DPN (45–47), they do not directly assess innervation at the foot 
level and this technique is therefore less relevant than others for the 
specific assessment of diabetic foot syndrome.

Small-diameter nerve fibers also include autonomic fibers. Many 
tests of the autonomic nervous system are applicable in clinical 
practice (48). However, some tests do not directly assess distal 
autonomic innervation at the feet, such as cardiac autonomic function 
tests (Ewing tests) (49). In contrast, other tests specifically assess distal 
autonomic nerve fibers, which is highly relevant in the context of 
DPN, and generally rely on the vasomotor or sudomotor aspects of 
autonomic innervation of the foot (50, 51). There are methods that are 
easy to implement, but which nevertheless require a fairly long 
examination time and provide only a semi-quantitative assessment, 
such as the visualization of local vasoconstriction produced by the 
cutaneous application of a eutectic mixture of local anesthetics (EMLA 
test) (52–55) or the Neuropad® plaster test for sudomotor function 
(56–60). A better quantified assessment of distal autonomic functions 
can be achieved using more complex, time-consuming, and expensive 

https://doi.org/10.3389/fneur.2025.1679277
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lefaucheur� 10.3389/fneur.2025.1679277

Frontiers in Neurology 03 frontiersin.org

techniques, such as laser Doppler techniques measuring vasomotor-
mediated axon reflexes in response to different types of local cutaneous 
stimuli using vasoactive drugs, electrical stimulation, or heating (61). 
Laser Doppler techniques include laser flowmetry (LDF) (62–70) and 

flare response imaging (LDI) (71–75), but LDF is characterized by 
high intra- and inter-individual measurement variability and LDI by 
the lack of standardized image analysis methods, thus limiting their 
use in clinical practice.

TABLE 1  Assessment tools according to the type of peripheral nerve fibers.

Type of assessment tool A-beta sensory 
nerve fibers

A-delta sensory 
nerve fibers

C sensory nerve 
fibers

C autonomic nerve 
fibers

10-g monofilament Light-touch pressure

von Frey / Semmes-Weinstein 

monofilaments testing kit (1/10/75-g nylon 

filament wheel)

Light-touch pressure

Q-tip, round tip of Neurotip® Light-touch pressure

Foam / hair brush Light-touch pressure

Two-point discriminator wheel Light-touch pressure

128-Hz (Rydel-Seiffer) tuning fork Vibratory sensation

Vibrometer®, Biothesiometer®, 

Neurothesiometer®, VibroSense®
Vibration detection 

threshold (VDT)

Sensory nerve conduction study (eg, 

DPNCheck®)

Sensory nerve action 

potential (SNAP) 

amplitude and velocity

Safety pin (eg, Neurotip® combined with a 

Neuropen®)

Pinprick sensation

Wartenberg wheel Pinprick sensation

Pin prick® stimulators testing kit Pinprick sensation

Metal rods/rollers (eg, Tip Therm®, 

Rolltemp®)

Cold temperature sensation Warm temperature sensation

Syringe with frozen/warm liquid Cold temperature sensation Warm temperature sensation

Cooling pack, digital hand warmer Cold temperature sensation Warm temperature sensation

Quantitative sensory testing machine 

(NerveCheck®, TSA2®, Q-Sense®, Case 

IV®, QST Lab®)

Vibration detection 

threshold (VDT)

Cold detection threshold 

(CDT)

Warm/heat pain detection 

threshold (WDT, HPT)

Current perception threshold (CPT, 

Neurometer®)

CPT at 2000 Hz CPT at 250 Hz CPT at 5 Hz

Skin biopsy Intraepidermal nerve fiber 

density (IENFD)

Intraepidermal nerve fiber 

density (IENFD)

Somatosensory evoked potentials (SSEPs) SSEP amplitude and 

latency

Laser/intraepidermal/contact-heat evoked 

potentials (LEPs, IEEPs, CHEPs)

LEP/IEEP amplitude and 

latency

CHEP amplitude and latency

Laser doppler flowmetry or imaging Flow or flare measurement

EMLA test Skin wrinkling measurement

Thermoregulatory sweat test Color change assessment

Neuropad® Color change assessment

Quantitative sudomotor axon reflex test 

(QSART®)

Sweat response measurement

Sympathetic skin response (SSR) SSR amplitude and latency

Electrochemical skin conductance (ESC, 

Sudoscan®, Body Scan®)

ESC measurement
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FIGURE 1

Part 1. Bedside sensory testing. a: 10-g monofilament, b: von Frey/Semmes-Weinstein monofilaments testing kit, c: 1/10/75-g nylon filament wheel, d: 
Q-tip, e: sharp and round tips of Neurotip®, f: foam brush, g: calibrated hair brush, h: 128-Hz (Rydel-Seiffer) tuning fork, i: two-point discriminator 
wheel, j: Vibrometer®, k: Biothesiometer®, l: VibroSense®, m: DPNCheck®, n: Wartenberg wheel, o: Pin prick® stimulator, p: Tip Therm®, q: 

(Continued)
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Regarding the assessment of sudomotor function in the limbs, the 
quantitative sudomotor axon reflex test (QSART), developed in 1983 
(76), has been promoted by its inventors as the gold standard technique 
(77, 78). This technique is based on the measurement, by a sudorometer, 
of the sweat response to local acetylcholine iontophoresis. However, the 
QSART technique requires complex expertise, a temperature- and 
humidity-controlled environment, and a relatively long examination 
time. In addition, its diagnostic sensitivity is limited by the high 
variability and low reproducibility of measures performed in the lower 
limbs (79, 80). Also, another technique, called Sudoscan®, simpler and 
faster (examination time of 2–3 min) than the QSART, has attracted 
great interest for quantitatively assessing distal sudomotor autonomic 
innervation of the extremities in clinical practice. The Sudoscan® 
technique is based on the principle of chronoamperometry and reverse 
iontophoresis, with measurement of electrochemical skin conductance 
(ESC) in microSiemens (μS). The ESC measurement depends on the 
current induced by the release of chloride ions from the eccrine sweat 
glands following activation by a low constant current of the sympathetic 
C fibers innervating these glands (81, 82). The Sudoscan® test has 
demonstrated its validity in the diagnosis of distal autonomic C-fiber 
lesion associated with DPN (83–94) or distal polyneuropathies of other 
causes (95). This technique does not require complex operator training 
(96) and has completely replaced the recording of sympathetic skin 
responses (SSRs), which was previously the routine electrodiagnostic 
test for assessing distal autonomic innervation of the limbs (97, 98). 
Indeed, SSR recording is poorly reproducible (99, 100) and is not 
specific to distal innervation by sympathetic C-fibers, as it is influenced 
by large-fiber sensory afferents and central reflex processing.

Screening strategy for the early diagnosis 
of DPN

The risk of developing diabetic foot syndrome and therefore 
presenting with DPN must be  assessed annually in primary care 
according to international recommendations (9, 101, 102). However, 
this recommendation faces several difficulties. The first is the absence 
of a sensitive, objective, and validated strategy for diagnosing early 
DPN. As stated previously, DPN is routinely screened by semi-objective 
methods assessing touch, pinprick, and temperature sensations. Binns-
Hall et al. showed that the combination of distal investigation of large-
diameter sensory fires using the DPNCheck® and small-diameter 
autonomic fires using the Sudoscan® could be  sensitive (95%) and 
specific (82%) to distinguish between the absence and presence of DPN 
and risk for diabetic foot syndrome with a strong correlation with 
clinical questionnaires (103).

However, such a one-stop screening strategy requires a hospital 
setting and many diabetic patients may encounter difficulties accessing 
hospital structures due to a lack of supplies or specialized structures. 
This is the reason why a large-scale project was developed in France 
to perform Sudoscan® in community health structures, ie more than 

400 pharmacies. The measurement of ESC at the feet was combined 
with the Michigan Neuropathy Screening Instrument (104) with the 
physical assessment completed by the pharmacist, who was also asked 
to take eight photographs of the patients’ feet from different angles. 
All these data (ESC values, MNSI scores, and pictures of the feet) were 
sent by remote transmission to reference diabetology units for 
analysis. This study showed that reduced ESC in the feet was highly 
predictive of diabetic foot syndrome, particularly in cases of 
asymmetric ESC values or ESC values below 50 μS (unpublished data). 
A similar project had already been proposed in Canada, but using 
sural neve conduction measurement with the DPNCheck® in 
community pharmacies, instead of the ESC as a biomarker of DPN 
(105). The objective is that the pharmacists use these test results to 
educate patients on preventing DPN through a better glycaemic 
control and lifestyle, and improving foot self-care to avoid diabetic 
foot syndrome.

New perspectives with connected devices 
and telemedicine

New perspectives for diabetes monitoring are now opening up 
thanks to the development of connected tools, also adapted in clinical 
practice as a means of therapeutic education. This is the case of recent 
innovations such as continuous glucose monitoring (CGM) and time 
in range (TIR), which are emerging clinical endpoints for improving 
glycaemic control (106–110).

A variety of approaches have been proposed and studied to 
improve the management of diabetes by telemedicine (111–116), 
including the transmission of biomarkers, such as glycaemia (117) or 
body mass index (118), or telecoaching to improve lifestyle and 
promote exercise (119–121), or both (122). A telemonitoring program 
has already been performed in France (EDUC@DOM study) (123, 
124), which combined biomedical data measurement with connected 
objects used at home, including a scale with impedancemetry, 
actimeter and blood glucose meter, and interactive educational 
software programs (with artificial intelligence (AI) algorithms). 
Compared to standard care, the remote monitoring performed by 
diabetologists with this telemedicine program over one or 2 years 
tended to result into a greater reduction of HbA1c levels (123) and was 
significantly cost-saving on socio-economic grounds (124). However, 
this program did not provide tools or measures to specifically 
monitor DPN.

It is now possible to measure ESC at the feet using a connected 
body scale, called Body Scan®. The ESC measurements obtained 
with the Body Scan® in just 20 s are perfectly consistent with those 
obtained with the Sudoscan®, thus allowing to consider a similar 
sensitivity and specificity in the diagnosis of distal autonomic 
neuropathy (125). Moreover, compared to the Sudoscan®, the 
advantage of the Body Scan® is that it allows the recording of ESC 
on a daily basis, at home, by the patients themselves. The 

Rolltemp®, r: filled syringe, s: cooling pack, t: digital hand warmer. Part 2. Quantitative sensory testing, skin biopsy, and electrophysiology. a: 
thermodes, b: TSA2® and Q-Sense®, c: NerveCheck®, d: Case IV®, e: QST. Lab®, f: Neurometer®, g: disposable skin biopsy punch, h; machine for 
performing nerve conduction study or evoked potentials, i: CO2 laser, j: Nd: YAP laser, k; contact-heat evoked potentials, l: different electrodes for 
performing intraepidermal evoked potentials. Part 3. Autonomic testing (at foot level). a: Laser doppler flowmetry or imaging, b: EMLA test, c: 
Neuropad®, d: thermoregulatory sweat test, e: QSART®, f: sympathetic skin response, g: Sudoscan®, h: Body Scan®.

FIGURE 1 (Continued)
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association of this connected tool, more specifically assessing DPN, 
with other connected tools for assessing glycaemic control, could 
prove interesting. Indeed, a reduction in TIR and an increase in 
glycaemic variability revealed by CGM have been associated with 
progression of DPN and reduced ESC values at the feet measured 
with the Sudoscan® (126, 127).

On the other hand, ESC asymmetry at the feet > 9.5% was found 
to have 80% sensitivity and 91% specificity to determine the risk of 
diabetic foot syndrome (128). Thus, including a valuable biomarker of 
foot innervation, such as ESC, could be a way to improve the detection 
and monitoring of DPN, more specifically than the telemedicine 
strategies previously described. It is therefore tempting to design a 
large-scale cohort study to determine the adherence to a program of 
at-home ESC measurements at the feet over a long period of time for 
the follow-up of diabetic patients and monitoring of DPN, in 
particular to confirm the predictive value of ESC asymmetry in the 
development of diabetic foot complication.

A concurrent approach is to monitor foot temperature at home, 
using an infrared thermometer, a sensor mat, or temperature 
measuring socks (129). Adherence to this type of monitoring was 
found to range between 56 and 86% and is even better for socks. When 
the temperature difference between the feet is greater than 2.2 °C (at 
the hot spot), the patients are recommended to reduce their daily steps 
by 50% and notify a healthcare professional or podiatrist as this 
indicates a significantly increased risk of foot ulcers. Constant 
monitoring of foot temperature could be  combined with plantar 
pressure measurements using sensors embedded in a wearable insole 
(130). In one study, it was proposed that patients self-assess the plantar 
thermal images they took at home using smartphone-based 
thermography (131). Early detection of diabetic foot complication 
could benefit from AI for thermographic image analysis in future 
smartphone apps (132, 133).

Another home-based approach with smartphone-based self-
photographs aims to assess the presence or extent of foot ulcers (134, 
135) by allowing patients to photograph the plantar surface of their 
feet unassisted [“foot selfie,” (136)] and transmit these images to a 
remote server. Wound imaging systems with commercial portable 
devices have already demonstrated high accuracy (137, 138) and are 
expected to benefit even more from AI and machine-learning 
algorithms in the future (139–142) to prevent the development of 
diabetic foot ulcers.

Finally, a novel smartphone-based home monitoring approach 
to DPN has recently been reported, including patient self-
assessment through large fiber sensory testing, including vibration 
perception and two-point discrimination assessed with 3D-printed 
accessories, combined with a clinical neuropathy assessment 
questionnaire (143). In the context of chemotherapy-induced 
peripheral neuropathy, another group also proposed a smartphone 
app for neuropathy monitoring, comprising clinical questionnaires 
and six functional assessments using smartphone sensors to 
provide information on neurological functions, such as walking, 
standing, and dexterity (144, 145). In any case, there are increasing 
perspectives for the use of smart wearable technologies and various 
types of sensors integrated into smartphones, socks, insoles, or 
shoes, for continuous or at-home health monitoring, prevention of 
diabetic foot ulcers or risk of falls, including AI solutions and deep 
learning models to improve data analysis (146–150).

Conclusion

In conclusion, DN, including DPN, remains a major health 
problem, with serious consequences such as diabetic foot 
syndrome. Early and accurate detection of DPN, particularly 
through specific and sensitive tools targeting different nerve fiber 
types, is essential for its prevention and improvement of outcomes. 
Technological advances, notably through connected devices 
specifically assessing foot innervation by conductance or 
temperature measurements for example, offer promising 
perspectives for continuous home monitoring of nerve function 
in large cohorts of patients. Combined with connected glucose 
control measures, telemedicine, and patient education, these 
innovations could significantly transform the management of 
DPN by improving early diagnosis, disease monitoring, and 
overall patient care, which could prevent serious complications 
such as foot ulcers and amputations, reduce 
healthcare costs, and improve the quality of life of diabetic 
patients worldwide.
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