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Rationale and objectives: Accurate identification of symptomatic carotid 
plaques remains a clinical challenge, as conventional imaging focuses mainly 
on luminal stenosis and lacks sensitivity to plaque vulnerability and perivascular 
inflammation. This study aimed to develop and validate an explainable machine 
learning model integrating CT-based radiomics features from carotid plaque 
and perivascular adipose tissue (PVAT) to identify symptomatic carotid plaques.
Materials and methods: 324 patients with extracranial carotid atherosclerosis 
and stenosis who had undergone head and neck computed tomography 
angiography (CTA) were retrospectively included. Three-dimensional radiomics 
features were extracted from segmented carotid plaque, PVAT and combined 
carotid plaque and PVAT (CP-PVAT) regions. Independent clinical factors 
were identified using univariate and multivariate logistic regression analyses. A 
combined model integrating the radiomics signature with selected clinical factors 
was developed. Models were developed and underwent internally validated 
using five-fold cross-validation to enhance robustness and minimize overfitting. 
Model interpretability was assessed using Shapley Additive Explanations (SHAP).
Results: The combined model, which integrated CP-PVAT features and clinical 
factors, achieved excellent discriminative performance, with mean AUCs of 
0.903 and 0.904  in the training and testing sets, respectively. It significantly 
outperformed models based solely on carotid plaque, PVAT, CP-PVAT or clinical 
factors (p < 0.05, DeLong’s test). SHAP analysis demonstrated that radiomics 
features provided complementary information, enhancing model interpretability 
and clinical relevance.
Conclusion: This explainable radiomics-based model, combining CP-PVAT 
features with clinical risk factors, may serve as a promising tool for identifying 
symptomatic carotid plaques and supporting individualized cerebrovascular risk 
assessment.
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1 Introduction

Atherosclerosis of the extracranial arteries, particularly the carotid 
arteries, plays a critical role in the pathogenesis of ischemic stroke (1, 
2). While the assessment of vascular stenosis remains a cornerstone of 
clinical risk stratification, it is increasingly recognized that this metric 
alone inadequately reflects the biological complexity of plaques prone 
to rupture. Emerging evidence indicates that localized vascular 
inflammation is a key contributor to plaque formation, progression, 
and rupture. This inflammatory activity not only promotes plaque 
instability but also increases the risk of thrombosis (3).

Perivascular adipose tissue (PVAT) was initially considered a 
passive structure providing mechanical support to blood vessels. 
Over the past decades, however, its role in vascular biology has 
been increasingly recognized. PVAT secretes various vasoactive 
molecules that influence vascular tone and inflammation, and 
responds to signals from the adjacent vessel wall, suggesting a 
bidirectional and dynamic interaction between the two (4–6). In 
coronary artery disease, PVAT has already demonstrated 
significant clinical value. Changes in PVAT composition and CT 
attenuation have been associated with plaque inflammation, 
instability, and future cardiac events, making it a promising 
non-invasive imaging biomarker (7). Moreover, recent studies have 
demonstrated that PVAT in the carotid artery also plays a 
significant role, with changes in PVAT composition and CT 
attenuation found to correlate with carotid plaque vulnerability 
and ischemic stroke risk (8–10). However, despite these findings, 
the predictive value of carotid PVAT has not been fully explored, 
particularly regarding its spatial coupling relationship with 
adjacent plaques.

Computed tomography angiography (CTA) is a widely adopted 
imaging modality for assessing atherosclerosis due to its rapid 
acquisition, non-invasiveness, and broad clinical applicability (11). 
By providing detailed morphological information of arterial 
lesions, CTA offers a rich source of data for radiomic analysis. 
Radiomics enables the extraction of high-dimensional quantitative 
features—such as shape, texture, and intensity—from medical 
images. These features can capture subtle patterns and 
microstructural changes not discernible by human visual 
assessment, thereby supporting non-invasive risk stratification and 
clinical decision-making (12). While previous studies have 
attempted to develop predictive models for plaques or PVAT using 
radiomics, most of these models use two-dimensional region of 
interest (ROI) approaches and fail to incorporate the spatial 
interactions between the two, limiting the precision and clinical 
applicability of these models (13–16).

At the same time, the black-box nature of traditional machine 
learning models remains a major limitation, hindering their clinical 
applicability. The Shapley Additive Explanations (SHAP) method 
offers a solution by providing interpretable insights into feature 
importance and quantifying contributions to both global and 
instance-level predictions (17, 18).

To address these challenges, this study develops and validates a 
model that integrates radiomic features from carotid plaques and 
PVAT to enhance high-risk plaque identification and differentiate 
between symptomatic and asymptomatic lesions. Incorporating SHAP 
explanation mechanisms, the model also aims to improve 
interpretability and clinical utility.

2 Materials and methods

2.1 Patients

Patients who had undergone head and neck CTA from May 2017 
to January 2025 at our hospital were included. This study was 
conducted in accordance with the Declaration of Helsinki, and the 
protocol was approved by the Ethics Committee of the First Affiliated 
Hospital of Wenzhou Medical University on December 11, 2024 
(KY2024-R313). The requirement for informed consent was waived 
by the ethics committee due to the retrospective nature of the study. 
Inclusion criteria were as follows: (1) a diagnosis of extracranial 
carotid atherosclerosis and stenosis on CTA images according to the 
North American Symptomatic Carotid Endarterectomy Trial criteria; 
(2) CTA images meeting diagnostic quality standards. The exclusion 
criteria: (1) ischemic stroke or transient ischemic attack (TIA) 
attributed to intracranial arterial stenosis >50%, cardiogenic, lacunar, 
or cryptogenic origins; (2) symptoms related to posterior circulation; 
(3) cerebral hemorrhage, meningioma, previous craniotomy, 
arteriovenous fistula, temporal lobectomy, moyamoya disease, 
reversible cerebral vasoconstriction syndrome, arteritis, carotid artery 
dissection, aneurysms, or vascular webs; (4) incomplete clinical data 
(see Figure 1).

Patients were classified into symptomatic and asymptomatic 
groups based on the presence of neurological symptoms within 
2 weeks prior to CTA and/or radiological evidence of acute or 
subacute cerebral infarction identified on MRI. The symptomatic 
group included patients presenting with classical TIAs, ischemic 
events confined to the anterior circulation (i.e., the carotid artery 
territory), or monocular visual disturbances ipsilateral to the affected 
carotid plaques, such as amaurosis fugax or central retinal artery 
occlusion (19, 20). Classical TIA was defined as a transient episode of 
focal neurological dysfunction that completely resolved within 24 h, 
while ischemic stroke was characterized by a sudden onset of focal 
neurological deficits lasting more than 24 h.

2.2 Clinical data collection

Demographic and clinical information included sex, plaque type, 
age, body mass index (BMI), hyperlipidemia, history of alcohol use, 
smoking history, hypertension, diabetes, antihypertensive use, statin 
use, and antiplatelet use.

2.3 Segmentation on CT images

ROIs were segmented by an experienced radiologist who was 
blinded to patients’ clinical information. ROI delineation was 
performed using 3D Slicer (version 5.6.1, www.slicer.org). All CT 
image voxels were resampled to 1 × 1 × 1 mm to mitigate the impact 
of different acquisition equipment. Three ROIs were defined in this 
study: carotid plaque, PVAT, and the combination of carotid plaque 
and PVAT (CP-PVAT). Carotid plaque refers to all plaques identified 
in the target vessel on the axial images, with manual contouring used 
to accurately delineate plaque boundaries while excluding adjacent 
normal tissues. PVAT is defined as the adipose tissue located radially 
outside the vessel wall at a distance equal to the vessel diameter, with 
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a Hounsfield unit (HU) value ranging from −190 to −30 HU (6, 21). 
To improve delineation accuracy, a semi-automatic delineation 
method based on attenuation thresholds was applied to identify 
PVAT. CP-PVAT refers to the combined ROI encompassing both the 
carotid plaque and PVAT. CTA scanning parameters are presented in 
Supplementary Appendix A.

2.4 Feature extraction and selection

Radiomic features were extracted using the PyRadiomics package 
integrated into 3D Slicer. Extracted features encompassed shape, first-
order statistics, and texture features, including those derived from the 
gray level co-occurrence matrix (GLCM), gray level dependence 
matrix (GLDM), gray level run length matrix (GLRLM), gray level size 
zone matrix (GLSZM), neighborhood gray tone difference matrix 
(NGTDM), and wavelet-transformed images.

We evaluated both intra-rater and inter-rater reliability using the 
Intra-class Correlation Coefficient (ICC) on a random subset of 40 
patients. For the intra-rater assessment, the primary radiologist 
re-segmented the plaques for these 40 cases after a two-week interval 
to minimize recall bias. For the inter-rater assessment, a second, 
independent radiologist, blinded to the initial results, segmented the 
same 40 cases. ICC values were calculated for all features. Only 

features that achieved excellent agreement (ICC > 0.8) in both the 
intra- and inter-rater assessments were carried forward for model 
development. This rigorous two-step validation ensures that our final 
feature set is highly robust and reproducible.

Prior to further analysis, all radiomic features were standardized 
using Z-score normalization. The maximal relevance minimum 
redundancy (mRMR) algorithm was applied to the remaining features 
to eliminate redundancy, followed by Least Absolute Shrinkage and 
Selection Operator (LASSO) regression for dimensionality reduction. 
Feature selection based on the mRMR and LASSO algorithms was 
performed using the uAI Research Portal (United Imaging 
Intelligence, China).

2.5 Development and validation of models

To minimize overfitting and fully utilize the available samples, 
five-fold cross-validation was conducted. This approach enabled each 
sample to be used for both training and testing, thereby enhancing the 
robustness and reliability of the model performance estimates. Among 
various machine learning algorithms, stochastic gradient descent 
(SGD) was selected to build models based on carotid plaque, PVAT, 
CP–PVAT, and a combined model. SHAP analysis was employed to 
interpret feature contributions within the models. The magnitude of 

FIGURE 1

Patient selection flowchart.
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each SHAP value reflects the strength of features’ impact on the 
prediction, while the sign indicates the direction of the effect.

Clinical factors selection was performed using univariate and 
multivariate logistic regression. To prevent data leakage and ensure an 
unbiased performance evaluation, variable selection was strictly 
conducted within the training folds during the five-fold cross-
validation process. In each fold, univariate logistic regression was first 
applied to identify clinical factors with a p-value < 0.05, which were 
then included in the multivariate regression analysis. Factors with a 
p-value < 0.05 in the multivariate analysis were retained for subsequent 
steps. To ensure stability, features selected in at least three of the five 
folds were considered for final inclusion in the model training process. 
Model construction based on the SGD algorithm was carried out 
using the uAI Research Portal (United Imaging Intelligence, China), 
whereas SHAP analysis was performed using Python 3. The workflow 
of the study is shown in Figure 2.

2.6 Model evaluation

Receiver operating characteristic (ROC) curves were generated 
for each ROI, and the area under the curve (AUC) was used to 
evaluate model performance. The optimal cutoff point was determined 
by highest Youden’s index, after which sensitivity, specificity, and 
accuracy were calculated. Statistical comparisons of AUCs were 
conducted using DeLong’s test. Calibration curves were used to assess 

agreement between predicted and observed symptomatic cases, while 
the integrated Brier score (IBS) quantified the average squared 
difference between predicted and observed probabilities (22). Lower 
IBS values indicated better model performance. Additionally, decision 
curve analysis (DCA) was employed to evaluate the clinical utility and 
net benefit of the models.

2.7 Statistical analysis

Statistical analyses were performed using R software (version 
4.4.0, http://www.R-project.org) and IBM SPSS Statistics (version 25). 
A two-sided p-value < 0.05 was considered statistically significant. The 
Shapiro–Wilk test was used to assess normality. Continuous variables 
were compared using the Student’s t-test or the Mann–Whitney U test, 
as appropriate. Categorical variables were analyzed using the 
chi-square test or Fisher’s exact test.

3 Result

3.1 Patient characteristics

A total of 324 patients were stratified into two groups based on the 
presence or absence of clinical neurological manifestations: 
symptomatic (n = 82) and asymptomatic (n = 242). The clinical 

FIGURE 2

The workflow of study.
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characteristics of the patients are summarized in Table 1. In the five-
fold cross-validation, smoking history was found to be statistically 
significant in four folds in both univariate and multivariate logistic 
regression analyses. Age and antiplatelet use were significant in three 
out of the five folds (Table 2). These three factors were subsequently 
incorporated into the Clinical model.

3.2 Feature selection and model 
construction

From each of the four ROIs, 851 radiomics features were extracted. 
Among them, 803 features from the carotid plaque, 799 from the 
PVAT, and 785 from the combined CP-PVAT regions demonstrated 
high reproducibility, with both intra- and inter-observer ICCs 
exceeding 0.8. Redundant and irrelevant features were eliminated 
using mRMR and LASSO regression. Ultimately, 8, 13, and 11 features 
were selected to construct the carotid plaque, PVAT, and CP-PVAT 
models, respectively.

3.3 Model performance

The carotid plaque model achieved a mean AUC of 0.826 (95% CI: 
0.815–0.837) in the training set and 0.828 (95% CI: 0.787–0.869) in 
the testing set (Figures 3a,b). The PVAT model yielded mean AUCs of 
0.853 (95% CI: 0.842–0.864) and 0.834 (95% CI: 0.800–0.867) in the 
training and testing sets, respectively. The CP-PVAT model 
demonstrated the highest performance, with a mean AUC of 0.887 

(95% CI: 0.881–0.893) in the training set and 0.882 (95% CI: 0.865–
0.899) in the testing set (Table 3). DeLong’s test revealed the CP-PVAT 
model significantly outperformed both the carotid plaque model and 
the PVAT model (Supplementary Table S1).

The Clinical model, constructed using age, smoking history, and 
antiplatelet use, achieved a mean AUC of 0.667 (95% CI: 0.630–0.704) 
in the training set and 0.649 (95% CI: 0.533–0.765) in the testing set. 
The Combined model, incorporating both clinical factors and 
CP-PVAT radiomic features, achieving the highest performance, with 
a mean AUC of 0.903 (95% CI: 0.894–0.911) in the training set and 
0.904 (95% CI: 0.880–0.928) in the testing set (Figures 3a,b).

DeLong’s test further confirmed that the combined model 
significantly outperformed all other models in both sets (all p < 0.05), 
including a notable improvement over the CP-PVAT model alone 
(Supplementary Table S1). Within each model group, DeLong’s test 
revealed no statistically significant performance difference across 
cross-validation folds (all p > 0.05), suggesting robust generalizability 
without overfitting (Table 3).

The Combined model’s predicted probabilities were closely 
aligned with observed outcomes in both the training and testing sets, 
as demonstrated by low IBS values (Figures 4a,b). Furthermore, DCA 
showed that the combined model provided the greatest net clinical 
benefit (Figures 4c,d).

3.4 Model interpretation

The computation of SHAP values provided a transparent 
interpretation of the combined model’s predictions, further reinforcing 

TABLE 1  Clinical characteristics of patients.

Characteristic Patients (n = 324)

Overall (n = 324) Asymptomatic (n = 242) Symptomatic (n = 82) p value

Sex 0.048

 � Male 214 (66.05%) 152 (62.81%) 62 (75.61%)

 � Female 110 (33.95%) 90 (37.19%) 20 (24.39%)

Plaque Type <0.001

 � Calcified plaque 120 (37.04%) 117 (48.35%) 3 (3.66%)

 � Mixed plaque 155 (47.84%) 96 (39.67%) 59 (71.95%)

 � Non-calcified plaque 49 (15.12%) 29 (11.98%) 20 (24.39%)

Mean age (y)a 67.37 ± 9.01 66.67 ± 9.15 69.36 ± 8.30 0.011

BMI, kg/m2a 23.75 ± 3.05 23.75 ± 3.09 23.77 ± 2.95 0.940

Hyperlipidemia 112 (34.57%) 82 (33.88%) 30 (36.59%) 0.756

Smoking history 115 (35.49%) 73 (30.17%) 42 (51.22%) <0.001

History of alcohol use 108 (33.33%) 76 (31.40%) 32 (39.02%) 0.259

Hypertension 187 (57.72%) 138 (57.02%) 49 (59.76%) 0.762

Diabetes 104 (32.10%) 75 (30.99%) 29 (35.37%) 0.551

Antihypertensive use 182 (56.17%) 134 (55.37%) 48(58.54%) 0.711

Statin use 113 (34.88%) 77 (31.82%) 36 (43.90%) 0.064

Antiplatelet use 91 (28.09%) 57 (23.55%) 34 (41.36%) 0.003

BMI, body mass index.
aData are mean ± standard deviation.
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its potential value in clinical decision-making. In the overall model 
visualization, the bar plot highlights the relative importance of each 
feature, with original_shape_LeastAxisLength exhibiting the highest 
contribution (Figure 5a). The beeswarm plot illustrates the individual 
impact of each feature on the predicted probability, where red and blue 
denote positive and negative influences, respectively (Figure  5b). 
Additionally, the decision plot provides a cumulative view of how each 
feature drives the model’s prediction across individual cases 
(Figure 5c).

4 Discussion

In this study, we developed a radiomics-based model integrating 
carotid plaque and PVAT features with clinical factors to identify 

symptomatic carotid plaques. The Combined model achieved excellent 
discriminative performance. Notably, ROI was jointly delineated to 
encompass both plaque and surrounding PVAT, enabling the 
extraction of spatially coupled radiomic features that reflect both 
structural vulnerability and inflammatory status. These results support 
the utility of anatomically integrated radiomics for noninvasive risk 
stratification in cerebrovascular disease.

Increasing evidence has highlighted the pivotal pathophysiological 
role of PVAT in the development and progression of atherosclerosis 
(23–25). Under inflammatory conditions, oxidative products and 
pro-inflammatory mediators released from the arterial wall can 
diffuse into the adjacent PVAT, inducing phenotypic alterations in 
adipocytes characterized by a shift toward pro-inflammatory and 
lipolytic profiles (23, 26). This activated state of PVAT not only 
contributes to vascular dysfunction and plaque instability through the 

TABLE 2  Univariable and multivariable logistic regression analysis of factors.

Factors Univariable logistic regression Multivariable logistic regression

p value p value

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Age (y) 0.010 0.030 0.060 0.080 0.010 0.010 0.020 0.010

Sex 0.140 0.030 0.080 0.020 0.100 0.480 0.130

Smoking history 0.010 <0.001 <0.001 0.020 <0.001 0.010 <0.001 <0.001 0.150 <0.001

Hypertension 0.610 0.420 0.800 0.970 0.680

Diabetes 0.220 0.800 0.240 0.840 0.710

BMI 0.860 0.420 0.940 0.870 0.680

Hyperlipidemia 0.640 0.030 0.660 0.470 0.970

History of alcohol use 0.320 0.240 0.210 0.340 0.210

Antihypertensive use 0.560 0.420 0.640 0.970 0.680

Statin use 0.100 0.030 0.060 0.240 0.060 0.790

Antiplatelet use 0.010 <0.001 <0.001 0.070 <0.001 0.020 0.070 <0.001 0.010

BMI, body mass index.

FIGURE 3

Receiver operating characteristic (ROC) curves of various models in the (a) training and (b) testing sets. Solid lines represent mean ROC curves; shaded 
areas represent the 95% confidence intervals.

https://doi.org/10.3389/fneur.2025.1679861
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al.� 10.3389/fneur.2025.1679861

Frontiers in Neurology 07 frontiersin.org

TABLE 3  Prediction performance of carotid plaque, PVAT, CP-PVAT, clinical, and combined models.

Models Training set Testing set Cutoff DeLong’s 
test 

between 
training and 
testing sets 

(p value)

Mean 
AUC 

(95% CI)

Acc Sen Spe Mean 
AUC 

(95% CI)

Acc Sen Spe

Carotid plaque 0.826 

(0.815–

0.837)

0.782 0.857 0.840 0.828 

(0.787–

0.869)

0.775 0.822 0.851 0.457 0.271

PVAT 0.853 

(0.842–

0.864)

0.796 0.793 0.798 0.834 

(0.800–

0.867)

0.787 0.768 0.793 0.567 0.498

CP-PVAT 0.887 

(0.881–

0.893)

0.819 0.863 0.804 0.882 

(0.865–

0.899)

0.812 0.853 0.789 0.664 0.702

Clinical 0.667 

(0.630–

0.704)

0.571 0.664 0.539 0.649 

(0.533–

0.765)

0.579 0.673 0.566 0.265 0.765

Combined 0.903 

(0.894–

0.911)

0.813 0.896 0.784 0.904 

(0.880–

0.928)

0.815 0.890 0.789 0.680 0.689

PVAT, Perivascular adipose tissue; CP-PVAT, carotid plaque and PVAT; Acc, accuracy; AUC, area under curve; CI, confidence interval; Sen, sensitivity; Spe, specificity.

FIGURE 4

Calibration curves and DCA curves. Calibration curves revealed satisfactory calibration of the combined model with lowest Brier score in the training 
(a) and testing (b) sets. The y-axis measures the actual positive rate. The x-axis measures the model predicted probability. DCA of the prediction model 
in the training (c) and testing (d) sets showed the combined model provided a better net benefit than other radiomics models for the most of the 
threshold range. The y-axis measures the net benefit. The x-axis measures the threshold probability.
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FIGURE 5

Global interpretability of the model using SHAP values. The SHAP summary bar plot depicts the overall importance of each feature in the model, 
ranked by mean absolute SHAP values (a). The SHAP beeswarm plot displays the distribution and directional influence of individual feature values on 
prediction probability, with red indicating a positive effect and blue indicating a negative effect (b). The SHAP decision plot visualizes 20 representative 
cases, including 10 correctly predicted negative cases on the left (blue lines) and 10 correctly predicted positive cases (red lines) on the right (c).
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paracrine secretion of inflammatory cytokines, but also exhibits a 
spatial gradient in adipocyte size and composition, reflecting the local 
intensity of vascular inflammation. Compared with stable plaques, 
symptomatic plaques are more frequently associated with such an 
inflamed and remodeled PVAT microenvironment, suggesting a close 
pathogenic link between PVAT activation and plaque 
vulnerability (27).

Carotid artery CTA enables quantitative assessment of vulnerable 
plaque characteristics through morphological analysis, with these 
pathomorphological features demonstrating significant correlations 
with the occurrence of cerebral ischemic events (28). Furthermore, 
emerging evidence suggests that radiomics-based multidimensional 
feature extraction from CTA imaging datasets exhibits promising 
potential for constructing predictive models of adverse cardiovascular 
outcomes, thereby offering quantifiable parameters for clinical 
risk stratification.

Previous studies have developed radiomics-based models to assess 
plaque vulnerability with varying approaches. Zhang et  al. (29) 
proposed a CT-based radiomics nomogram to detect intraplaque 
hemorrhage, achieving AUCs of 0.743 and 0.811 in the training and 
testing cohorts, respectively. Nie et al. (16) focused solely on PVAT 
features to identify symptomatic plaques, reporting AUCs of 0.831 and 
0.820. While these models demonstrate potential, they either lack 
integration of plaque morphology or provide limited insight into 
lesion complexity. In contrast, our Combined model integrates both 
clinical features and a novel CP-PVAT radiomics signature that 
synergistically captures both the inflammatory microenvironment (via 
PVAT) and intraplaque morphological heterogeneity. This approach 
achieved superior and more stable predictive performance. Although 
Chen et al. (30) attempted to integrate both plaque and PVAT features 
into a radiomics model (achieving AUCs of 0.883 and 0.840), their 
ROI was confined to the maximal cross-sectional area of the plaque. 
This two-dimensional segmentation may inadequately reflect the 
three-dimensional complexity and spatial heterogeneity inherent to 
atherosclerotic lesions. A key methodological strength of our study is 
the adoption of a 3D whole-volume segmentation approach. Although 
computationally simpler, the traditional 2D method—typically 
segmenting the plaque on its thickest cross-section—has inherent 
limitations: it is vulnerable to operator-dependent slice-selection bias 
and, more importantly, cannot capture the plaque’s full three-
dimensional heterogeneity. Atherosclerotic plaques are complex 
structures with substantial spatial variation in volume, morphology, 
and composition; a single slice offers only a narrow snapshot and may 
miss information relevant to overall plaque burden and instability. By 
contrast, our 3D whole-volume analysis provides a holistic 
representation of the lesion, encompassing global volumetric, 
morphological, and textural features. This design reduces information 
loss and contributes to the model’s robust predictive performance, 
offering a superior strategy for future radiomics-based plaque risk 
stratification. Consistent with this rationale, our 3D whole-volume 
pipeline achieved superior discrimination relative to 2D slice-based 
analyses in both the training and testing sets, underscoring the 
methodological soundness of our approach.

The lack of interpretability has long been a major barrier to the 
clinical adoption of traditional machine learning models, significantly 
limiting clinicians’ understanding and trust in model predictions. In 
our study, SHAP was employed to interpret the model’s predictions of 
symptomatic carotid plaques. The SHAP bar plot indicated that 

original_shape_LeastAxisLength was the most influential feature in 
the model. This variable reflects the geometric configuration of 
carotid plaques, with greater values potentially representing larger 
plaque volumes, which are associated with hemodynamic 
disturbances and an increased risk of symptomatic cerebrovascular 
events. The SHAP beeswarm plot provided an overview of the 
directionality and magnitude of features’ impact on model predictions 
across all patients. While the SHAP decision plot demonstrated how 
individual features cumulatively influenced model predictions on a 
per-patient basis. These tools collectively provide transparent and 
clinically meaningful explanations for otherwise complex 
model outputs.

Among the clinical variables evaluated, smoking history, advanced 
age, and antiplatelet use were independently associated with the 
presence of symptomatic carotid plaques. Smoking is a well-
established contributor to atherogenesis, promoting endothelial 
injury, oxidative stress, and vascular inflammation. These processes 
accelerate monocyte infiltration and foam cell formation, ultimately 
destabilizing atherosclerotic plaques and increasing the risk of 
cerebrovascular events (31–36). Advancing age similarly reflects 
cumulative vascular degeneration, characterized by increased arterial 
stiffness, impaired endothelial function, and heightened 
pro-inflammatory activity, all of which contribute to the development 
of complex and rupture-prone plaques. Interestingly, antiplatelet 
therapy—though intended to reduce thrombotic risk—was also 
significantly associated with symptomatic plaque (37, 38). This finding 
likely reflects a treatment-selection bias, whereby patients with more 
advanced carotid atherosclerosis are more frequently prescribed 
antiplatelet agents. Collectively, these results highlight the 
multifactorial nature of plaque vulnerability, where both intrinsic 
biological aging processes and modifiable behavioral or therapeutic 
factors synergistically shape clinical risk. Their inclusion in predictive 
modeling enhances its relevance to real-world clinical 
decision-making.

The clinical utility of our model is to supplement current risk 
assessments. Its ability to integrate radiomic features from both the 
carotid plaque and perivascular adipose tissue on standard CTA scans 
provides a non-invasive approach to potentially identify high-risk 
asymptomatic patients who may be missed when relying solely on 
luminal stenosis. Crucially, our use of SHAP analysis adds a layer of 
transparency by illustrating the radiomics features that drive each 
prediction, thereby building the confidence necessary for its potential 
adoption as a clinical decision-support tool.

This study has several limitations. First, it was conducted at a 
single center without external validation, which may limit the 
generalizability of the findings. Although five-fold cross-validation 
was employed to reduce overfitting and enhance internal robustness, 
external validation using multi-center cohorts is necessary to confirm 
the model’s performance across diverse clinical settings. Second, 
although ROI segmentation showed high inter- and intra-observer 
agreement, manual delineation remains inherently subjective—
particularly in regions with ambiguous boundaries—and may 
compromise feature reproducibility. In addition, the model did not 
incorporate serological biomarkers, which may limit its biological 
interpretability in capturing mechanisms underlying plaque 
vulnerability. Future studies should consider integrating multimodal 
clinical and molecular data to strengthen the model’s 
pathophysiological relevance and prognostic utility.
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5 Conclusion

This study presents a radiomics-based model that integrates 
spatially coupled features from carotid plaque and PVAT, along 
with clinical factors, for the identification of symptomatic carotid 
plaques. The Combined model showed robust performance in both 
training and testing sets, with added value from the joint 
assessment of vascular structure and perivascular inflammation. 
SHAP-based interpretability enhanced transparency and clinical 
insight. These findings indicate that anatomically informed 
radiomics models hold promise for noninvasive cerebrovascular 
risk stratification.
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Glossary

PVAT - Perivascular adipose tissue

CTA - Computed tomography angiography

ROI - Region of interest

SHAP - Shapley Additive Explanations

TIA - Transient ischemic attack

BMI - Body mass index

CP-PVAT - Carotid plaque and PVAT

HU - Hounsfield unit

GLCM - Gray level co-occurrence matrix

GLDM - Gray level dependence matrix

GLRLM - Gray level run length matrix

GLSZM - Gray level size zone matrix

NGTDM - Neighborhood gray tone difference matrix

ICC - Intraclass correlation coefficient

mRMR - Maximal relevance minimum redundancy

LASSO - Least Absolute Shrinkage and Selection Operator

SGD - Stochastic gradient descent

ROC - Receiver operating characteristic

AUC - Area under the curve

IBS - Integrated Brier score

DCA - Decision curve analysis
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