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adipose tissue for predicting
symptomatic plaques
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Rationale and objectives: Accurate identification of symptomatic carotid
plaques remains a clinical challenge, as conventional imaging focuses mainly
on luminal stenosis and lacks sensitivity to plaque vulnerability and perivascular
inflammation. This study aimed to develop and validate an explainable machine
learning model integrating CT-based radiomics features from carotid plaque
and perivascular adipose tissue (PVAT) to identify symptomatic carotid plaques.
Materials and methods: 324 patients with extracranial carotid atherosclerosis
and stenosis who had undergone head and neck computed tomography
angiography (CTA) were retrospectively included. Three-dimensional radiomics
features were extracted from segmented carotid plaque, PVAT and combined
carotid plaque and PVAT (CP-PVAT) regions. Independent clinical factors
were identified using univariate and multivariate logistic regression analyses. A
combined modelintegrating the radiomics signature with selected clinical factors
was developed. Models were developed and underwent internally validated
using five-fold cross-validation to enhance robustness and minimize overfitting.
Model interpretability was assessed using Shapley Additive Explanations (SHAP).
Results: The combined model, which integrated CP-PVAT features and clinical
factors, achieved excellent discriminative performance, with mean AUCs of
0.903 and 0.904 in the training and testing sets, respectively. It significantly
outperformed models based solely on carotid plaque, PVAT, CP-PVAT or clinical
factors (p < 0.05, DelLong’s test). SHAP analysis demonstrated that radiomics
features provided complementary information, enhancing model interpretability
and clinical relevance.

Conclusion: This explainable radiomics-based model, combining CP-PVAT
features with clinical risk factors, may serve as a promising tool for identifying
symptomatic carotid plaques and supporting individualized cerebrovascular risk
assessment.
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carotid plaque, atherosclerosis, perivascular adipose tissue, radiomics, Shapley
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1 Introduction

Atherosclerosis of the extracranial arteries, particularly the carotid
arteries, plays a critical role in the pathogenesis of ischemic stroke (1,
2). While the assessment of vascular stenosis remains a cornerstone of
clinical risk stratification, it is increasingly recognized that this metric
alone inadequately reflects the biological complexity of plaques prone
to rupture. Emerging evidence indicates that localized vascular
inflammation is a key contributor to plaque formation, progression,
and rupture. This inflammatory activity not only promotes plaque
instability but also increases the risk of thrombosis (3).

Perivascular adipose tissue (PVAT) was initially considered a
passive structure providing mechanical support to blood vessels.
Over the past decades, however, its role in vascular biology has
been increasingly recognized. PVAT secretes various vasoactive
molecules that influence vascular tone and inflammation, and
responds to signals from the adjacent vessel wall, suggesting a
bidirectional and dynamic interaction between the two (4-6). In
coronary artery disease, PVAT has already demonstrated
significant clinical value. Changes in PVAT composition and CT
attenuation have been associated with plaque inflammation,
instability, and future cardiac events, making it a promising
non-invasive imaging biomarker (7). Moreover, recent studies have
demonstrated that PVAT in the carotid artery also plays a
significant role, with changes in PVAT composition and CT
attenuation found to correlate with carotid plaque vulnerability
and ischemic stroke risk (8-10). However, despite these findings,
the predictive value of carotid PVAT has not been fully explored,
particularly regarding its spatial coupling relationship with
adjacent plaques.

Computed tomography angiography (CTA) is a widely adopted
imaging modality for assessing atherosclerosis due to its rapid
acquisition, non-invasiveness, and broad clinical applicability (11).
By providing detailed morphological information of arterial
lesions, CTA offers a rich source of data for radiomic analysis.
Radiomics enables the extraction of high-dimensional quantitative
features—such as shape, texture, and intensity—from medical
images. These features can capture subtle patterns and
microstructural changes not discernible by human visual
assessment, thereby supporting non-invasive risk stratification and
clinical decision-making (12). While previous studies have
attempted to develop predictive models for plaques or PVAT using
radiomics, most of these models use two-dimensional region of
interest (ROI) approaches and fail to incorporate the spatial
interactions between the two, limiting the precision and clinical
applicability of these models (13-16).

At the same time, the black-box nature of traditional machine
learning models remains a major limitation, hindering their clinical
applicability. The Shapley Additive Explanations (SHAP) method
offers a solution by providing interpretable insights into feature
importance and quantifying contributions to both global and
instance-level predictions (17, 18).

To address these challenges, this study develops and validates a
model that integrates radiomic features from carotid plaques and
PVAT to enhance high-risk plaque identification and differentiate
between symptomatic and asymptomatic lesions. Incorporating SHAP
explanation mechanisms, the model also aims to improve
interpretability and clinical utility.

Frontiers in Neurology

10.3389/fneur.2025.1679861

2 Materials and methods
2.1 Patients

Patients who had undergone head and neck CTA from May 2017
to January 2025 at our hospital were included. This study was
conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the First Affiliated
Hospital of Wenzhou Medical University on December 11, 2024
(KY2024-R313). The requirement for informed consent was waived
by the ethics committee due to the retrospective nature of the study.
Inclusion criteria were as follows: (1) a diagnosis of extracranial
carotid atherosclerosis and stenosis on CTA images according to the
North American Symptomatic Carotid Endarterectomy Trial criteria;
(2) CTA images meeting diagnostic quality standards. The exclusion
criteria: (1) ischemic stroke or transient ischemic attack (TIA)
attributed to intracranial arterial stenosis >50%, cardiogenic, lacunar,
or cryptogenic origins; (2) symptoms related to posterior circulation;
(3) cerebral hemorrhage, meningioma, previous craniotomy,
arteriovenous fistula, temporal lobectomy, moyamoya disease,
reversible cerebral vasoconstriction syndrome, arteritis, carotid artery
dissection, aneurysms, or vascular webs; (4) incomplete clinical data
(see Figure 1).

Patients were classified into symptomatic and asymptomatic
groups based on the presence of neurological symptoms within
2 weeks prior to CTA and/or radiological evidence of acute or
subacute cerebral infarction identified on MRI. The symptomatic
group included patients presenting with classical TIAs, ischemic
events confined to the anterior circulation (i.e., the carotid artery
territory), or monocular visual disturbances ipsilateral to the affected
carotid plaques, such as amaurosis fugax or central retinal artery
occlusion (19, 20). Classical TIA was defined as a transient episode of
focal neurological dysfunction that completely resolved within 24 h,
while ischemic stroke was characterized by a sudden onset of focal
neurological deficits lasting more than 24 h.

2.2 Clinical data collection

Demographic and clinical information included sex, plaque type,
age, body mass index (BMI), hyperlipidemia, history of alcohol use,
smoking history, hypertension, diabetes, antihypertensive use, statin
use, and antiplatelet use.

2.3 Segmentation on CT images

ROIs were segmented by an experienced radiologist who was
blinded to patients’ clinical information. ROI delineation was
performed using 3D Slicer (version 5.6.1, www.slicer.org). All CT
image voxels were resampled to 1 x 1 x 1 mm to mitigate the impact
of different acquisition equipment. Three ROIs were defined in this
study: carotid plaque, PVAT, and the combination of carotid plaque
and PVAT (CP-PVAT). Carotid plaque refers to all plaques identified
in the target vessel on the axial images, with manual contouring used
to accurately delineate plaque boundaries while excluding adjacent
normal tissues. PVAT is defined as the adipose tissue located radially
outside the vessel wall at a distance equal to the vessel diameter, with
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511 patients who had undergone head and neck computed
tomography angiography (CTA) from May 2017 to January 2025
at our hospital.
(1)Ischemic stroke or transient ischemic
attack (TIA) attributed to intracranial
arterial stenosis >50%, cardiogenic,
Excluded | lacunar, unknown, or cryptogenic origins
Cd
(n=85);
(2) Symptoms related to posterior
circulation (n=37);
v
(3) Cerebral hemorrhage, meningioma,
Patient population (n=324) previous craniotomy, arteriovenous fistula,
temporal lobectomy, moyamoya disease,
reversible cerebral vasoconstriction
syndrome, arteritis, carotid artery
dissection, aneurysms, or vascular webs
(n=43);
(4) Incomplete clinical information (n=22).
A4
Five-fold cross-validation
FIGURE 1
Patient selection flowchart.

a Hounsfield unit (HU) value ranging from —190 to —30 HU (6, 21).
To improve delineation accuracy, a semi-automatic delineation
method based on attenuation thresholds was applied to identify
PVAT. CP-PVAT refers to the combined ROI encompassing both the
carotid plaque and PVAT. CTA scanning parameters are presented in
Supplementary Appendix A.

2.4 Feature extraction and selection

Radiomic features were extracted using the PyRadiomics package
integrated into 3D Slicer. Extracted features encompassed shape, first-
order statistics, and texture features, including those derived from the
gray level co-occurrence matrix (GLCM), gray level dependence
matrix (GLDM), gray level run length matrix (GLRLM), gray level size
zone matrix (GLSZM), neighborhood gray tone difference matrix
(NGTDM), and wavelet-transformed images.

We evaluated both intra-rater and inter-rater reliability using the
Intra-class Correlation Coefficient (ICC) on a random subset of 40
patients. For the intra-rater assessment, the primary radiologist
re-segmented the plaques for these 40 cases after a two-week interval
to minimize recall bias. For the inter-rater assessment, a second,
independent radiologist, blinded to the initial results, segmented the
same 40 cases. ICC values were calculated for all features. Only
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features that achieved excellent agreement (ICC > 0.8) in both the
intra- and inter-rater assessments were carried forward for model
development. This rigorous two-step validation ensures that our final
feature set is highly robust and reproducible.

Prior to further analysis, all radiomic features were standardized
using Z-score normalization. The maximal relevance minimum
redundancy (mRMR) algorithm was applied to the remaining features
to eliminate redundancy, followed by Least Absolute Shrinkage and
Selection Operator (LASSO) regression for dimensionality reduction.
Feature selection based on the mRMR and LASSO algorithms was
performed using the uAl Research Portal (United Imaging
Intelligence, China).

2.5 Development and validation of models

To minimize overfitting and fully utilize the available samples,
five-fold cross-validation was conducted. This approach enabled each
sample to be used for both training and testing, thereby enhancing the
robustness and reliability of the model performance estimates. Among
various machine learning algorithms, stochastic gradient descent
(SGD) was selected to build models based on carotid plaque, PVAT,
CP-PVAT, and a combined model. SHAP analysis was employed to
interpret feature contributions within the models. The magnitude of
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each SHAP value reflects the strength of features’ impact on the
prediction, while the sign indicates the direction of the effect.

Clinical factors selection was performed using univariate and
multivariate logistic regression. To prevent data leakage and ensure an
unbiased performance evaluation, variable selection was strictly
conducted within the training folds during the five-fold cross-
validation process. In each fold, univariate logistic regression was first
applied to identify clinical factors with a p-value < 0.05, which were
then included in the multivariate regression analysis. Factors with a
p-value < 0.05 in the multivariate analysis were retained for subsequent
steps. To ensure stability, features selected in at least three of the five
folds were considered for final inclusion in the model training process.
Model construction based on the SGD algorithm was carried out
using the uAl Research Portal (United Imaging Intelligence, China),
whereas SHAP analysis was performed using Python 3. The workflow
of the study is shown in Figure 2.

2.6 Model evaluation

Receiver operating characteristic (ROC) curves were generated
for each ROI, and the area under the curve (AUC) was used to
evaluate model performance. The optimal cutoff point was determined
by highest Youden’s index, after which sensitivity, specificity, and
accuracy were calculated. Statistical comparisons of AUCs were
conducted using DeLong’s test. Calibration curves were used to assess

10.3389/fneur.2025.1679861

agreement between predicted and observed symptomatic cases, while
the integrated Brier score (IBS) quantified the average squared
difference between predicted and observed probabilities (22). Lower
IBS values indicated better model performance. Additionally, decision
curve analysis (DCA) was employed to evaluate the clinical utility and
net benefit of the models.

2.7 Statistical analysis

Statistical analyses were performed using R software (version
4.4.0, http://www.R-project.org) and IBM SPSS Statistics (version 25).
A two-sided p-value < 0.05 was considered statistically significant. The
Shapiro-Wilk test was used to assess normality. Continuous variables
were compared using the Student’s t-test or the Mann-Whitney U test,
as appropriate. Categorical variables were analyzed using the
chi-square test or Fisher’s exact test.

3 Result
3.1 Patient characteristics
A total of 324 patients were stratified into two groups based on the

presence or absence of clinical neurological manifestations:
symptomatic (n =82) and asymptomatic (n =242). The clinical
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characteristics of the patients are summarized in Table 1. In the five-
fold cross-validation, smoking history was found to be statistically
significant in four folds in both univariate and multivariate logistic
regression analyses. Age and antiplatelet use were significant in three
out of the five folds (Table 2). These three factors were subsequently
incorporated into the Clinical model.

3.2 Feature selection and model
construction

From each of the four ROIs, 851 radiomics features were extracted.
Among them, 803 features from the carotid plaque, 799 from the
PVAT, and 785 from the combined CP-PVAT regions demonstrated
high reproducibility, with both intra- and inter-observer ICCs
exceeding 0.8. Redundant and irrelevant features were eliminated
using mRMR and LASSO regression. Ultimately, 8, 13, and 11 features
were selected to construct the carotid plaque, PVAT, and CP-PVAT
models, respectively.

3.3 Model performance

The carotid plaque model achieved a mean AUC of 0.826 (95% CI:
0.815-0.837) in the training set and 0.828 (95% CI: 0.787-0.869) in
the testing set (Figures 3a,b). The PVAT model yielded mean AUCs of
0.853 (95% CI: 0.842-0.864) and 0.834 (95% CI: 0.800-0.867) in the
training and testing sets, respectively. The CP-PVAT model
demonstrated the highest performance, with a mean AUC of 0.887

TABLE 1 Clinical characteristics of patients.

Characteristic

10.3389/fneur.2025.1679861

(95% CI: 0.881-0.893) in the training set and 0.882 (95% CI: 0.865—
0.899) in the testing set (Table 3). DeLong’s test revealed the CP-PVAT
model significantly outperformed both the carotid plaque model and
the PVAT model (Supplementary Table S1).

The Clinical model, constructed using age, smoking history, and
antiplatelet use, achieved a mean AUC of 0.667 (95% CI: 0.630-0.704)
in the training set and 0.649 (95% CI: 0.533-0.765) in the testing set.
The Combined model, incorporating both clinical factors and
CP-PVAT radiomic features, achieving the highest performance, with
a mean AUC of 0.903 (95% CI: 0.894-0.911) in the training set and
0.904 (95% CI: 0.880-0.928) in the testing set (Figures 3a,b).

DeLong’s test further confirmed that the combined model
significantly outperformed all other models in both sets (all p < 0.05),
including a notable improvement over the CP-PVAT model alone
(Supplementary Table S1). Within each model group, DeLong’s test
revealed no statistically significant performance difference across
cross-validation folds (all p > 0.05), suggesting robust generalizability
without overfitting (Table 3).

The Combined model’s predicted probabilities were closely
aligned with observed outcomes in both the training and testing sets,
as demonstrated by low IBS values (Figures 4a,b). Furthermore, DCA
showed that the combined model provided the greatest net clinical
benefit (Figures 4c,d).

3.4 Model interpretation

The computation of SHAP values provided a transparent
interpretation of the combined model’s predictions, further reinforcing

Patients (n = 324)

Overall (n = 324) Asymptomatic (n = 242) Symptomatic (n = 82) p value

Sex 0.048

Male 214 (66.05%) 152 (62.81%) 62 (75.61%)

Female 110 (33.95%) 90 (37.19%) 20 (24.39%)
Plaque Type <0.001

Calcified plaque 120 (37.04%) 117 (48.35%) 3 (3.66%)

Mixed plaque 155 (47.84%) 96 (39.67%) 59 (71.95%)

Non-calcified plaque 49 (15.12%) 29 (11.98%) 20 (24.39%)
Mean age (y)* 67.37 £9.01 66.67 £9.15 69.36 + 8.30 0.011
BMI, kg/m* 23.75+3.05 23.75+3.09 23.77 £2.95 0.940
Hyperlipidemia 112 (34.57%) 82 (33.88%) 30 (36.59%) 0.756
Smoking history 115 (35.49%) 73 (30.17%) 42 (51.22%) <0.001
History of alcohol use 108 (33.33%) 76 (31.40%) 32 (39.02%) 0.259
Hypertension 187 (57.72%) 138 (57.02%) 49 (59.76%) 0.762
Diabetes 104 (32.10%) 75 (30.99%) 29 (35.37%) 0.551
Antihypertensive use 182 (56.17%) 134 (55.37%) 48(58.54%) 0.711
Statin use 113 (34.88%) 77 (31.82%) 36 (43.90%) 0.064
Antiplatelet use 91 (28.09%) 57 (23.55%) 34 (41.36%) 0.003

BMI, body mass index.
“Data are mean + standard deviation.
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TABLE 2 Univariable and multivariable logistic regression analysis of factors.

10.3389/fneur.2025.1679861

Factors Univariable logistic regression Multivariable logistic regression
p value p value
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Age (y) 0.010 0.030 0.060 0.080 0.010 0.010 0.020 0.010
Sex 0.140 0.030 0.080 0.020 0.100 0.480 0.130
Smoking history 0.010 <0.001 <0.001 0.020 <0.001 0.010 <0.001 <0.001 0.150 <0.001
Hypertension 0.610 0.420 0.800 0.970 0.680
Diabetes 0.220 0.800 0.240 0.840 0.710
BMI 0.860 0.420 0.940 0.870 0.680
Hyperlipidemia 0.640 0.030 0.660 0.470 0.970
History of alcohol use 0.320 0.240 0.210 0.340 0.210
Antihypertensive use 0.560 0.420 0.640 0.970 0.680
Statin use 0.100 0.030 0.060 0.240 0.060 0.790
Antiplatelet use 0.010 <0.001 <0.001 0.070 <0.001 0.020 0.070 <0.001 0.010
BMI, body mass index.
ROC Curve of Training Set ROC Curve of Testing Set
10 10
08 0.8
v Q
s E:
T 06 = 06
2 2
& &
v v
2 04 204
= . = .
__ Model Clinical __ Model Clinical
AUC: 0.667 (95% Cl: 0.630-0.704) AUC: 0.649 (95% CI: 0.533-0.765)
Model PVAT Model PVAT
AUC: 0.853 (95% CI: 0.842-0.864) AUC: 0.834 (95% CI: 0.800-0.867)
0.2 ___ Model CP-PVAT 0.2 ___ Model CP-PVAT
AUC: 0.887 (95% CI: 0.881-0.893) AUC: 0.882 (95% Cl: 0.865-0.899)
___ Model Carotid-plaque ___ Model Carotid-plaque
AUC: 0.826 (95% CI: 0.815-0.837) AUC: 0.828 (95% CI: 0.787-0.869)
— Model Combined ___ Model Combined
AUC: 0.903 (95% CI: 0.894-0.911) AUC: 0.904 (95% CI: 0.880-0.928)
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(a) False Positive Rate (b) False Positive Rate
FIGURE 3
Receiver operating characteristic (ROC) curves of various models in the (a) training and (b) testing sets. Solid lines represent mean ROC curves; shaded
areas represent the 95% confidence intervals.

its potential value in clinical decision-making. In the overall model
visualization, the bar plot highlights the relative importance of each
feature, with original_shape_LeastAxisLength exhibiting the highest
contribution (Figure 5a). The beeswarm plot illustrates the individual
impact of each feature on the predicted probability, where red and blue
denote positive and negative influences, respectively (Figure 5b).
Additionally, the decision plot provides a cumulative view of how each
feature drives the model's prediction across individual cases
(Figure 5¢).

4 Discussion

In this study, we developed a radiomics-based model integrating
carotid plaque and PVAT features with clinical factors to identify

Frontiers in Neurology

symptomatic carotid plaques. The Combined model achieved excellent
discriminative performance. Notably, ROI was jointly delineated to
encompass both plaque and surrounding PVAT, enabling the
extraction of spatially coupled radiomic features that reflect both
structural vulnerability and inflammatory status. These results support
the utility of anatomically integrated radiomics for noninvasive risk
stratification in cerebrovascular disease.

Increasing evidence has highlighted the pivotal pathophysiological
role of PVAT in the development and progression of atherosclerosis
(23-25). Under inflammatory conditions, oxidative products and
pro-inflammatory mediators released from the arterial wall can
diffuse into the adjacent PVAT, inducing phenotypic alterations in
adipocytes characterized by a shift toward pro-inflammatory and
lipolytic profiles (23, 26). This activated state of PVAT not only
contributes to vascular dysfunction and plaque instability through the
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TABLE 3 Prediction performance of carotid plaque, PVAT, CP-PVAT, clinical, and combined models.

Models Training set Testing set Cutoff Delong's
test
Mean Acc Sen Spe Mean Acc Sen SEEET
AUC AUC training and
95% Cl) (95% CI) e
(95% ° testing sets
(p value)
Carotid plaque 0.826 0.782 0.857 0.840 0.828 0.775 0.822 0.851 0.457 0271
(0.815- (0.787-
0.837) 0.869)
PVAT 0.853 0.796 0.793 0.798 0.834 0.787 0.768 0.793 0.567 0.498
(0.842- (0.800-
0.864) 0.867)
CP-PVAT 0.887 0.819 0.863 0.804 0.882 0.812 0.853 0.789 0.664 0.702
(0.881- (0.865-
0.893) 0.899)
Clinical 0.667 0571 0.664 0.539 0.649 0.579 0.673 0.566 0.265 0.765
(0.630- (0.533-
0.704) 0.765)
Combined 0.903 0.813 0.896 0.784 0.904 0.815 0.890 0.789 0.680 0.689
(0.894- (0.880-
0.911) 0.928)

PVAT, Perivascular adipose tissue; CP-PVAT, carotid plaque and PVAT; Acc, accuracy; AUC, area under curve; CI, confidence interval; Sen, sensitivity; Spe, specificity.
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Calibration curves and DCA curves. Calibration curves revealed satisfactory calibration of the combined model with lowest Brier score in the training
(a) and testing (b) sets. The y-axis measures the actual positive rate. The x-axis measures the model predicted probability. DCA of the prediction model
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FIGURE 5

Global interpretability of the model using SHAP values. The SHAP summary bar plot depicts the overall importance of each feature in the model,
ranked by mean absolute SHAP values (a). The SHAP beeswarm plot displays the distribution and directional influence of individual feature values on
prediction probability, with red indicating a positive effect and blue indicating a negative effect (b). The SHAP decision plot visualizes 20 representative
cases, including 10 correctly predicted negative cases on the left (blue lines) and 10 correctly predicted positive cases (red lines) on the right (c).
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paracrine secretion of inflammatory cytokines, but also exhibits a
spatial gradient in adipocyte size and composition, reflecting the local
intensity of vascular inflammation. Compared with stable plaques,
symptomatic plaques are more frequently associated with such an
inflamed and remodeled PVAT microenvironment, suggesting a close
pathogenic  link between PVAT activation and plaque
vulnerability (27).

Carotid artery CTA enables quantitative assessment of vulnerable
plaque characteristics through morphological analysis, with these
pathomorphological features demonstrating significant correlations
with the occurrence of cerebral ischemic events (28). Furthermore,
emerging evidence suggests that radiomics-based multidimensional
feature extraction from CTA imaging datasets exhibits promising
potential for constructing predictive models of adverse cardiovascular
outcomes, thereby offering quantifiable parameters for clinical
risk stratification.

Previous studies have developed radiomics-based models to assess
plaque vulnerability with varying approaches. Zhang et al. (29)
proposed a CT-based radiomics nomogram to detect intraplaque
hemorrhage, achieving AUCs of 0.743 and 0.811 in the training and
testing cohorts, respectively. Nie et al. (16) focused solely on PVAT
features to identify symptomatic plaques, reporting AUCs of 0.831 and
0.820. While these models demonstrate potential, they either lack
integration of plaque morphology or provide limited insight into
lesion complexity. In contrast, our Combined model integrates both
clinical features and a novel CP-PVAT radiomics signature that
synergistically captures both the inflammatory microenvironment (via
PVAT) and intraplaque morphological heterogeneity. This approach
achieved superior and more stable predictive performance. Although
Chen etal. (30) attempted to integrate both plaque and PVAT features
into a radiomics model (achieving AUCs of 0.883 and 0.840), their
ROI was confined to the maximal cross-sectional area of the plaque.
This two-dimensional segmentation may inadequately reflect the
three-dimensional complexity and spatial heterogeneity inherent to
atherosclerotic lesions. A key methodological strength of our study is
the adoption of a 3D whole-volume segmentation approach. Although
computationally simpler, the traditional 2D method—typically
segmenting the plaque on its thickest cross-section—has inherent
limitations: it is vulnerable to operator-dependent slice-selection bias
and, more importantly, cannot capture the plaques full three-
dimensional heterogeneity. Atherosclerotic plaques are complex
structures with substantial spatial variation in volume, morphology,
and composition; a single slice offers only a narrow snapshot and may
miss information relevant to overall plaque burden and instability. By
contrast, our 3D whole-volume analysis provides a holistic
representation of the lesion, encompassing global volumetric,
morphological, and textural features. This design reduces information
loss and contributes to the model’s robust predictive performance,
offering a superior strategy for future radiomics-based plaque risk
stratification. Consistent with this rationale, our 3D whole-volume
pipeline achieved superior discrimination relative to 2D slice-based
analyses in both the training and testing sets, underscoring the
methodological soundness of our approach.

The lack of interpretability has long been a major barrier to the
clinical adoption of traditional machine learning models, significantly
limiting clinicians’ understanding and trust in model predictions. In
our study, SHAP was employed to interpret the model’s predictions of
symptomatic carotid plaques. The SHAP bar plot indicated that
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original_shape_LeastAxisLength was the most influential feature in
the model. This variable reflects the geometric configuration of
carotid plaques, with greater values potentially representing larger
plaque volumes, which are associated with hemodynamic
disturbances and an increased risk of symptomatic cerebrovascular
events. The SHAP beeswarm plot provided an overview of the
directionality and magnitude of features’ impact on model predictions
across all patients. While the SHAP decision plot demonstrated how
individual features cumulatively influenced model predictions on a
per-patient basis. These tools collectively provide transparent and
clinically meaningful explanations for otherwise complex
model outputs.

Among the clinical variables evaluated, smoking history, advanced
age, and antiplatelet use were independently associated with the
presence of symptomatic carotid plaques. Smoking is a well-
established contributor to atherogenesis, promoting endothelial
injury, oxidative stress, and vascular inflammation. These processes
accelerate monocyte infiltration and foam cell formation, ultimately
destabilizing atherosclerotic plaques and increasing the risk of
cerebrovascular events (31-36). Advancing age similarly reflects
cumulative vascular degeneration, characterized by increased arterial
endothelial and heightened

pro-inflammatory activity, all of which contribute to the development

stiffness, impaired function,
of complex and rupture-prone plaques. Interestingly, antiplatelet
therapy—though intended to reduce thrombotic risk—was also
significantly associated with symptomatic plaque (37, 38). This finding
likely reflects a treatment-selection bias, whereby patients with more
advanced carotid atherosclerosis are more frequently prescribed
Collectively, these results highlight the

multifactorial nature of plaque vulnerability, where both intrinsic

antiplatelet agents.

biological aging processes and modifiable behavioral or therapeutic
factors synergistically shape clinical risk. Their inclusion in predictive
modeling enhances its relevance to real-world clinical
decision-making.

The clinical utility of our model is to supplement current risk
assessments. Its ability to integrate radiomic features from both the
carotid plaque and perivascular adipose tissue on standard CTA scans
provides a non-invasive approach to potentially identify high-risk
asymptomatic patients who may be missed when relying solely on
luminal stenosis. Crucially, our use of SHAP analysis adds a layer of
transparency by illustrating the radiomics features that drive each
prediction, thereby building the confidence necessary for its potential
adoption as a clinical decision-support tool.

This study has several limitations. First, it was conducted at a
single center without external validation, which may limit the
generalizability of the findings. Although five-fold cross-validation
was employed to reduce overfitting and enhance internal robustness,
external validation using multi-center cohorts is necessary to confirm
the model’s performance across diverse clinical settings. Second,
although ROI segmentation showed high inter- and intra-observer
agreement, manual delineation remains inherently subjective—
particularly in regions with ambiguous boundaries—and may
compromise feature reproducibility. In addition, the model did not
incorporate serological biomarkers, which may limit its biological
interpretability in capturing mechanisms underlying plaque
vulnerability. Future studies should consider integrating multimodal
data to

pathophysiological relevance and prognostic utility.

clinical and molecular strengthen the models
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5 Conclusion

This study presents a radiomics-based model that integrates
spatially coupled features from carotid plaque and PVAT, along
with clinical factors, for the identification of symptomatic carotid
plaques. The Combined model showed robust performance in both
training and testing sets, with added value from the joint
assessment of vascular structure and perivascular inflammation.
SHAP-based interpretability enhanced transparency and clinical
insight. These findings indicate that anatomically informed
radiomics models hold promise for noninvasive cerebrovascular
risk stratification.
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Glossary

PVAT - Perivascular adipose tissue

CTA - Computed tomography angiography
ROI - Region of interest

SHAP - Shapley Additive Explanations
TIA - Transient ischemic attack

BMI - Body mass index

CP-PVAT - Carotid plaque and PVAT

HU - Hounsfield unit

GLCM - Gray level co-occurrence matrix

GLDM - Gray level dependence matrix
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GLRLM - Gray level run length matrix

GLSZM - Gray level size zone matrix

NGTDM - Neighborhood gray tone difference matrix
ICC - Intraclass correlation coefficient

mRMR - Maximal relevance minimum redundancy
LASSO - Least Absolute Shrinkage and Selection Operator
SGD - Stochastic gradient descent

ROC - Receiver operating characteristic

AUC - Area under the curve

IBS - Integrated Brier score

DCA - Decision curve analysis
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