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Introduction: Serum glial fibrillary acidic protein (sGFAP) is a promising 
biomarker, but its quantification mainly relies on SIMOA, a technology not 
widely available in clinical practice.
Objectives: To evaluate the analytical performance of two high-throughput 
automated platforms—Alinity® i (Abbott) and Lumipulse® G1200 (Fujirebio)—for 
sGFAP quantification.
Methods: A retrospective longitudinal study included 107 serum samples from 
23 MS patients. sGFAP was measured with SIMOA SR-X®, Lumipulse® G1200, 
and Alinity® i. Data were log-transformed. Agreement was assessed using 
Pearson correlations, Passing–Bablok regression, Bland–Altman analysis, and 
Δlog correlations between visits. Longitudinal differences across platforms were 
tested with a linear mixed-effects model (platform as fixed effect, SIMOA as 
reference). Moreover, ΔSIMOA was modeled against ΔLumipulse and ΔAlinity, 
adjusting for ΔEDSS, phenotype, relapses and new MRI lesions.
Results: Passing–Bablok regression yielded slopes of 0.85 (SIMOA–Lumipulse), 
0.81 (SIMOA–Alinity), and 0.95 (Lumipulse–Alinity), with intercepts of 
−0.32, −0.35, and −0.05. Mean log-biases were −0.622, −0.733, and 0.109. 
Correlations between log-means and log-differences were r = 0.26 (p = 0.006), 
0.44 (p < 0.0001), and 0.15 (p = 0.13). The mixed-effects model showed 
no significant Δlog differences relative to SIMOA (p > 0.1). When modeling 
ΔSIMOA, ΔLumipulse was a significant predictor (β = 0.51; p = 0.002), whereas 
ΔAlinity showed only a trend (β = 0.31; p = 0.051). No clinical covariates were 
significantly associated.
Conclusion: Automated platforms, particularly Lumipulse, showed strong 
concordance with SIMOA supporting the role in analytical monitoring.
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Introduction

Serum biomarkers are transforming neurology by offering 
minimally invasive tools for diagnosis, prognosis, and disease 
monitoring. Among these, serum glial fibrillary acidic protein 
(sGFAP)—a 50-kDa astrocytic filament protein—has emerged as a 
promising marker of reactive astrogliosis and astrocytic injury (1–3).

Elevated sGFAP has been linked to progressive multiple sclerosis 
(MS), where it correlates with greater disease burden and aggressive 
phenotypes (4–6), as well as to amyloid/tau pathology and cognitive 
decline in Alzheimer’s disease (7–10). Increased levels have also been 
reported in Neuromyelitis Optica Spectrum Disorder (NMOSD), 
reflecting relapse severity (11, 12), and in amyotrophic lateral sclerosis, 
particularly with coexisting Alzheimer’s pathology (13).

Quantification of sGFAP is most frequently performed using the 
ultrasensitive SIMOA® (Single Molecule Array) platform (Quanterix 
Corporation, Massachusetts, United States), a digital ELISA-based 
technology. However, its technical complexity and operational 
demands limit its implementation to specialized laboratories and 
tertiary care centers (14–16).

More recently, fully automated systems such as Lumipulse® 
(Fujirebio Inc., Tokyo, Japan) and Alinity® i  (Abbott Laboratories, 
Illinois, United  States) have introduced sGFAP assays designed for 
integration into high-throughput clinical workflows. The Lumipulse 
platform has already demonstrated strong concordance with SIMOA for 
other neurological biomarkers, including pTau181 (17) and total Tau, 
Aβ42 and Aβ40 (18, 19), as well as neurofilament light chain (20). In 
parallel, the Alinity platform has been incorporated into diagnostic 
algorithms for traumatic brain injury, in combination with Ubiquitin 
C-terminal Hydrolase L1, to support rapid decision-making in 
emergency care settings (21–23). Although preliminary reference ranges 
for Lumipulse have been reported (24), no head-to-head comparisons 
across automated platforms and SIMOA have yet been conducted in MS.

The present study aimed to directly compare sGFAP concentrations 
measured by SIMOA, Lumipulse, and Alinity in patients with MS, in 
order to evaluate their analytical agreement and clinical interoperability.

Materials and methods

A retrospective study was conducted using longitudinal serum 
samples from patients with clinically confirmed MS, recruited at the 
Department of Neurology, Hospital Universitari i  Politècnic La Fe 
(Valencia, Spain). Patients were followed prospectively for 2 years, with 
serum collected every 4 months, yielding 105 samples from 23 
individuals. Inclusion criteria were: (i) MS diagnosis according to the 
2017 revised McDonald criteria (25), established by three experienced 
neurologists specialized in MS; (ii) systematic exclusion of alternative 
motor neuron and other neurological disorders through detailed clinical 
assessment and complementary investigations; (iii) signed informed 
consent; and (iv) availability of at least two longitudinal serum samples.

Clinical variables included age, sex, disease duration, disease-
modifying therapy (DMT), Expanded Disability Status Scale (EDSS), 
relapses, new magnetic resonance imaging (MRI) lesions, and EDSS 
worsening defined by harmonized criteria for both magnitude and 
temporal confirmation of clinically meaningful and sustained 
progression (26). Relapses and new MRI lesions were assigned to the 
serum sampling time point closest to the clinical event or lesion 
detection, respectively.

Sample collection

Serum samples were obtained by venipuncture into gel-separator 
tubes, centrifuged at 2000 g for 10 min after 30 min at room 
temperature, aliquoted, stored at 4 °C for <24 h, and frozen at −80 °C 
until analysis. All samples were provided by the Neuroimmunology 
Research Group, Hospital Universitari i  Politècnic La Fe 
(Valencia, Spain).

Laboratory analysis

On the SIMOA platform, the Neurology 2-Plex B kit (Ref#: 
103520) was used with the SIMOA SR-X® system. This method 
employs a digital sandwich ELISA in which sGFAP present in the 
sample binds to paramagnetic beads coated with specific monoclonal 
antibodies, followed by a biotinylated detector antibody. After a wash 
step, streptavidin-β-galactosidase is introduced, binding to biotin and 
catalyzing the conversion of a fluorescent substrate 
(β-D-galactopyranoside). Beads are individually compartmentalized 
into thousands of femtoliter-sized microwells and scanned to detect 
single-molecule fluorescence signals, enabling ultra-sensitive 
quantification. The functional lower limit of quantification (LLOQ) 
was 16.6 pg./mL, with a validated dynamic range of 16.6–
40,000 pg./mL.

In the case of Lumipulse, analyses were conducted on the 
Lumipulse® G1200 system using the Lumipulse® G GFAP assay (Ref#: 
261255). This is a two-step chemiluminescent sandwich immunoassay. 
Initially, sGFAP in the sample binds to microparticles coated with 
murine monoclonal anti-GFAP antibodies. After washing, a second 
murine monoclonal antibody conjugated to alkaline phosphatase 
(ALP) is added. The resulting chemiluminescent signal, produced 
through ALP-mediated hydrolysis of AMPPD 
(3-(2′-spiroadamantane)-4-methoxy-4-(3″-phosphoryloxy) phenyl-
1,2-dioxetane disodium salt), is directly proportional to sGFAP 
concentration. The LLOQ was 16.6 pg./mL, and the analytical range 
was 10–5,000 pg./mL.

In the case of Alinity, sGFAP was quantified on the Alinity 
i system (Abbott, Illinois, United States) with the GFAP Reagent Kit 
(Ref#: 04 W1720). This assay utilizes a chemiluminescent 
microparticle immunoassay format. In the first incubation step, 
sGFAP in the sample binds to paramagnetic microparticles coated 
with murine monoclonal anti-GFAP antibodies. After washing, an 
acridinium-labeled murine monoclonal antibody is added. Following 
a second wash, chemiluminescence is triggered via chemical 
activation of the acridinium label and measured in relative light units 
(RLU) by the system’s optical detector. The LLOQ was 3.2 pg./mL, 
with a validated analytical range of 6.1–42,000 pg./mL. The 

Abbreviations: DMT, Disease-Modifying Therapy; EDSS, Expanded Disability Status 

Scale; LLOQ, Lower Limit of Quantification; MRI, Magnetic Resonance Imaging; 

MS, Multiple Sclerosis; NMOSD, Neuromyelitis Optica Spectrum Disorder; sGFAP, 

Serum Glial Fibrillary Acidic Protein; SIMOA®, Single Molecule Array.
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manufacturer-recommended reference value is <35 pg./mL for the 
TBI detection.

All procedures followed manufacturer instructions. Quality 
control was ensured using internal controls (two levels for SIMOA and 
Lumipulse, three for Alinity). Calibration yielded expected values, 
with all control and patient samples within range. A single reagent lot 
was used for each platform, with two replicates of each control level 
per run, and patient samples analyzed in duplicate runs.

Specifically, for SIMOA, intra-assay CVs were 14.54% at level 1 
and 7.41% at level 2, with inter-assay CVs of 6.1 and 10.2%, 
respectively. For Lumipulse, intra-assay CVs were 4.42% at level 1 and 
0.07% at level 2, with inter-assay CVs of 2.15 and 1.58%. For Alinity, 
intra-assay CVs were 4.34, 1.24, and 2.49%, while inter-assay CVs 
were 2.86, 4.68, and 3.55% across the different control levels.

Statistical analysis

All statistical analyses were performed using RStudio (version 
4.3.2). sGFAP values were log-transformed to normalize measurement 
scales across platforms, given that SIMOA concentrations 
predominantly fell within the hundreds range, whereas Alinity and 
Lumipulse measurements were generally in the tens. Normality of 
continuous variables was assessed using the Shapiro–Wilk test.

Interchangeability between the three analytical platforms was 
assessed using correlation analysis, Passing–Bablok regression, and 
Bland–Altman methodology. The mcr package was used to compute 
Passing–Bablok regression parameters and generate the corresponding 
plots. Bland–Altman estimators were obtained with the 
BlandAltmanLeh package, and visualizations were generated using 
custom scripts based on ggplot2. To evaluate proportional bias, the 
correlation between measurement differences and their corresponding 
means was examined within the Bland–Altman framework.

To assess longitudinal concordance of sGFAP dynamics across 
platforms, relative changes between two consecutive measurements 
were calculated as logarithmic differences (Δlog), defined as:

	

( ) ( ) ( )−   ∆ = −   
   

1log log logt t t
i i ix x

Where ( )∆ log t
i  represents the logarithmic change for platform i 

at time t, and ( )t
ix  denotes the observed sGFAP concentration at that 

time point.
Correlations between Δlog values were estimated to assess the 

directional consistency of changes across platforms. To investigate 
potential systematic differences in the magnitude of change, we fitted 
a linear mixed-effects model to the Δlog values with platform 
(SIMOA, Lumipulse, Alinity) as a fixed effect—using SIMOA as the 
reference—and a patient-specific random intercept to account for 
repeated measures; models were fitted with lme4.

In a complementary analysis, we  assessed whether changes 
detected by SIMOA could be predicted from those captured by the 
other platforms while accounting for clinical activity. Mixed-effects 
regressions were fitted with ΔSIMOA as the dependent variable and 
ΔLumipulse and ΔAlinity as main predictors, adjusting for ΔEDSS 
( −− 1t tEDSS EDSS ), clinical phenotype, relapses, and new lesions, and 
including a patient-specific random intercept. Models were fitted with 

lme4 and lmerTest. To focus on analytical agreement, no additional 
covariates (age, sex, treatment) were included to avoid unnecessary 
overadjustment. p values for the two primary predictors (ΔLumipulse, 
ΔAlinity) were Holm-adjusted, whereas exploratory covariates were 
evaluated under false discovery rate (FDR, Benjamini–Hochberg) 
control.

In both models, patient-specific random intercepts were 
modeled as normally distributed with mean zero and estimated 
variance to account for repeated measures, as implemented in the 
lme4 package.

Associations between sGFAP values and EDSS across all 
determinations were evaluated using correlation coefficients. Within-
patient changes were examined by correlating Δlog values from each 
platform with the corresponding ΔEDSS. Comparisons between patients 
with and without relapse or new MRI lesions were performed using 
t-tests. Correlations of baseline sGFAP with age and disease duration were 
also assessed, and baseline levels were compared between phenotypes 
(relapsing–remitting vs. progressive [SP + PP]) using t-tests.

Pearson correlation coefficients were used for all continuous 
variables. Spearman coefficients were applied exclusively for 
correlations with EDSS, given its ordinal scale. Statistical significance 
was set at p < 0.05. For Passing–Bablok and Bland–Altman analyses, 
significance was defined as 95% confidence intervals excluding the 
null (0 for intercepts and mean differences; 1 for slopes).

Data wrangling was performed with the dplyr and tidyr packages, 
and visualizations were generated using ggplot2 and ggsignif.

Ethical statement

The methodology of the current research was approved by the 
Institutional Ethics Committee (reference number PI20/01446). The 
study procedures adhered to the principles of the Declaration of 
Helsinki, and all necessary measures were taken to ensure 
data confidentiality.

Results

A total of 105 serum samples from 23 patients diagnosed with MS 
were analyzed. For the Alinity platform, 9 samples were not processed 
due to insufficient volume. Table 1 summarizes the baseline demographic 
and clinical characteristics of the patients. Across all determinations, 
median raw sGFAP concentrations were 123.68 pg./mL (IQR: 88.74) for 
SIMOA, 28.40 pg./mL (IQR: 15.80) for Lumipulse, and 21.90 pg./mL 
(IQR: 10.97) for Alinity. Corresponding log-transformed values yielded 
means of 2.08 ± 0.21, 1.46 ± 0.18, and 1.34 ± 0.17, respectively.

The cohort comprised 5 males (22%) and 18 females (78%), with 
a mean baseline age of 45 ± 11 years. Clinical phenotypes included 9 
relapsing–remitting (39%), 8 secondary progressive (35%), and 6 
primary progressive (26%) patients, with no conversions from 
relapsing–remitting to secondary progressive during follow-up. At 
baseline, three patients had lesion accrual within the preceding 90 days, 
although all had been relapse-free for >90 days. During follow-up, four 
patients developed new lesions and two experienced relapses, with 
GFAP measurements obtained 23 and 56 days after the events. Thirteen 
minor EDSS increases and 18 minor decreases were observed, none of 
which met the criteria for clinically meaningful or sustained change.
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Supplementary Figures S1–S3 display data distribution of raw 
(non–log-transformed) and log-transformed sGFAP concentrations 
across the three platforms, together with Shapiro–Wilk test results.

Passing–Bablok regression

Passing–Bablok regression between SIMOA and Lumipulse 
showed an intercept of −0.32 log (95% CI: −0.47, −0.15) and a 
slope of 0.85 log (95% CI: 0.77, 0.92), with a Pearson correlation of 
r = 0.89 (p < 0.0001; Figure 1A). For the SIMOA–Alinity pair, the 
intercept was −0.35 log (95% CI: −0.49, −0.18) and the slope 0.81 
log (95% CI: 0.72, 0.88), with a Pearson correlation of r = 0.87 
(p < 0.0001; Figure 1B). The Lumipulse–Alinity regression yielded 
an intercept of −0.05 log (95% CI: −0.27, 0.04) and a slope of 0.95 
log (95% CI: 0.88, 1.03), with a Pearson correlation of r = 0.90 
(p < 0.0001; Figure 1C).

Bland–Altman analysis

In the analysis of Lumipulse versus SIMOA, the mean bias was 
−0.62 log (95% CI: −0.64 to −0.60), with limits of agreement from 
−0.81 (95% CI: −0.84 to −0.78) to −0.44 (95% CI: −0.47 to −0.41). A 
significant correlation was observed between the differences and the 
means (r = 0.26; p = 0.006; Figure 2A).

For Alinity versus SIMOA, the mean bias was −0.73 log (95% CI: 
−0.76 to −0.71), with limits of agreement between −0.94 (95% CI: 
−0.97 to −0.90) and −0.53 (95% CI: −0.57 to −0.49). A stronger 
correlation was found (r = 0.44; p < 0.0001; Figure 2B).

In the Lumipulse–Alinity comparison, the mean bias was 0.11 log 
(95% CI: 0.02 to 0.19), with limits of agreement from −0.040 (95% CI: 
−0.21 to 0.13) to 0.26 (95% CI: 0.09 to 0.43). No significant correlation 
was detected (r = 0.15; p = 0.13; Figure 2C).

Table 2 summarizes all statistical estimates reported in Sections 3.1 
and 3.2. Analogous versions of Figures 1, 2A–C, as well as a counterpart 
to Table  2 based on raw sGFAP values, are provided in 
Supplementary Table S1 and Supplementary Figures S4, S5, respectively.

Longitudinal analysis

Correlations between Δlog values were statistically significant across 
platforms: SIMOA vs. Lumipulse, r = 0.60, p < 0.001; SIMOA vs. Alinity, 
r = 0.55, p < 0.001; Lumipulse vs. Alinity, r = 0.65, p < 0.001 (Figure 2D).

In the linear mixed-effects model comparing Δlog values across 
platforms, the intercept corresponding to SIMOA was β = −0.023 
(SE = 0.01, p = 0.24). The estimated difference relative to SIMOA was 
β = 0.018 (SE = 0.02, p = 0.36) for Lumipulse and β = 0.033 (SE = 0.02, 
p = 0.12) for Alinity. Variability explained by the patient-specific 
random intercept was negligible (SD = 0.026; 95% CI: 0.0001, 0.027).

In a complementary mixed-effects model, ΔLumipulse emerged 
as a significant predictor of ΔSIMOA (β = 0.51, SE = 0.16, p = 0.002), 
whereas ΔAlinity showed only a trend toward significance (β = 0.31, 
SE = 0.15, p = 0.051). By contrast, ΔEDSS (p = 0.70), relapse 
occurrence (p = 0.90), new MRI lesions (p = 0.44), and clinical 
phenotype (all p > 0.85) were not associated with ΔSIMOA. After 
Holm adjustment for the two prespecified primary predictors, 
ΔLumipulse remained significant (Padj = 0.004), while ΔAlinity 
remained non-significant (Padj = 0.05).

TABLE 1  Demographic and clinical characteristics, as well as raw and log-transformed sGFAP values, of patients with multiple sclerosis at baseline.

RRMS (n = 9) SPMS (n = 8) PPMS (n = 6) Total (n = 23)

Sex (M/F) 0/9 4/4 1/5 5/18

Age, years (mean ± SD) 38.5 ± 7.19 46.7 ± 2.69 54.2 ± 7.19 45 ± 10

Disease duration, (mean ± SD) 6.5 ± 6.52 8.6 ± 7.23 18.5 ± 6 11.4 ± 8.42

DMT (n, %)

 � Glatiramer Acetate 1 (11.1%) 0 (0%) 0 (0%) 1 (4.4%)

 � Rituximab 1 (11.1%) 3 (37.5%) 3 (50%) 7 (30.4%)

 � Teriflunomide 5 (55.6%) 0 (0%) 0 (0%) 5 (21.7%)

 � Fingolimod 0 (0%) 2 (25%) 0 (0%) 2 (8.7%)

 � Ocrelizumab 1 (11.1%) 1 (12.5%) 1 (16.7%) 3 (13.1%)

 � No DMT 1 (11.1%) 2 (25%) 2 (33.3%) 5 (21.7%)

EDSS, median (IQR) 1 (1) 3.5 (4) 5 (2) 3 (4)

sGFAP Simoa, median (IQR) 133 (76.3) 143.9 (86.8) 182.3 (63.7) 144.7 (85.9)

sGFAP Lumipulse, median (IQR) 27.8 (15.6) 35.8 (17.3) 37.6 (12) 33.4 (16.6)

sGFAP Alinity, median (IQR) 20.2 (10.7) 28.7 (15.5) 26.7 (12.5) 22.8 (14.4)

Log (sGFAP) Simoa, (mean ± SD) 2 ± 0.2 2.16 ± 0.17 2.21 ± 0.15 2.12 ± 0.21

Log (sGFAP) Lumipulse, (mean ± SD) 1.38 ± 0.22 1.51 ± 0.15 1.55 ± 0.11 1.46 ± 0.18

Log (sGFAP) Alinity, (mean ± SD) 1.25 ± 0.18 1.36 ± 0.17 1.39 ± 0.15 1.32 ± 0.18

Continuous variables with normal distribution are presented as mean ± standard deviation (SD); non-normally distributed and ordinal variables as median (interquartile range, IQR); and 
categorical variables as number (percentage, %). Baseline age and disease duration were normally distributed (Shapiro–Wilk test, p ≈ 0.15). M, Male; F, Female; SD, Standard Deviation; MS, 
Multiple sclerosis; PPMS, Primary progressive MS; RRMS, Relapsing–remitting MS; SPMS, Secondary progressive MS; DMT, Disease-modifying therapy; EDSS, Expanded Disability Status 
Scale; IQR, Interquartile Range; Gd, Gadolinium; sGFAP, serum Glial fibrillary acidic protein.
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Figure 3 illustrates the longitudinal dynamics of serum GFAP 
levels across the three analytical platforms; corresponding analyses 
using raw values are provided in Supplementary Figure S6.

Association with clinical and demographic 
variables

sGFAP values measured across the three platforms correlated 
significantly with baseline age (SIMOA: r = 0.57, p = 0.0066; 
Lumipulse: r = 0.58, p = 0.0056; Alinity: r = 0.53, p = 0.013; 
Figure  4A) and with EDSS (SIMOA: ρ = 0.31, p = 0.0009; 
Lumipulse: ρ = 0.45, p < 0.0001; Alinity: ρ = 0.37, p = 0.0002; 
Figure 4B). No significant correlations were observed between 
ΔEDSS and Δlog values across platforms or with disease 
duration. None of the platforms revealed significant differences 
in sGFAP levels between relapsing–remitting and progressive 
phenotypes (Figure 4C) or between patients with and without 
relapse or new MRI lesions (Figure 4D).

Discussion

Our findings provide solid support for the clinical utility of fully 
automated platforms in the quantification of sGFAP. However, the 
analyses revealed the presence of systematic bias, comprising both 
constant and proportional components, which must be taken into 
account when interpreting results.

A constant bias was expected due to the differing dynamic ranges of 
SIMOA and the automated platforms: whereas SIMOA typically reports 
values in the hundreds, Lumipulse and Alinity yield concentrations in the 
tens. This discrepancy was reflected in statistically significant negative 
mean biases and non-zero intercepts. Of greater clinical relevance, 
however, was the presence of proportional bias, evidenced by a statistically 
significant Passing–Bablok regression slope and a positive correlation 
between the mean values and their corresponding differences. These 
findings suggest a systematic proportional deviation across the 
measurement range that could affect the comparability of results between 
platforms. Nevertheless, the magnitude of this correlation was modest—
particularly for Lumipulse—and although the regression slopes differed 

FIGURE 1

Passing–Bablok regression analysis comparing quantitative agreement across the three analytical platforms. Panels (A–C) correspond to the SIMOA–
Lumipulse, SIMOA–Alinity, and Lumipulse–Alinity comparisons, respectively.
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significantly from unity, they closely approximated it, thereby mitigating 
the practical implications of the proportional bias. Still, its potential 
clinical impact in specific diagnostic or monitoring settings cannot 
be entirely ruled out.

The longitudinal analysis provides further evidence for the functional 
interchangeability of platforms. Correlations of Δlog values across 
sequential measurements showed a consistent linear association, even in 
the absence of absolute agreement. Mixed-effects models confirmed that 
longitudinal changes in sGFAP were comparable across platforms, 
underscoring their utility for patient monitoring. In these models, 
ΔLumipulse emerged as a significant predictor of ΔSIMOA, while 
ΔAlinity showed only a trend toward significance, reinforcing the 
analytical robustness of these associations. By contrast, no significant links 
were observed with clinical activity measures (ΔEDSS, relapses, new MRI 
lesions) or with clinical phenotype, suggesting that sGFAP dynamics 

primarily reflect analytical concordance rather than immediate 
disease activity.

This capacity to reliably capture intra-individual variation is 
particularly relevant in longitudinal patient monitoring, as in cases of 
NMOSD (11, 12), MS (27–29), Alzheimer’s disease, and other 
neurodegenerative conditions (30).

The systematic underestimation relative to SIMOA may 
be  attributed to intrinsic technological differences between 
platforms, such as the lower analytical sensitivity of conventional 
immunoassays or variability in the immunorecognition of the 
biomarker, given the multiple isoforms and post-translational 
modifications of GFAP (1, 31). These limitations have been 
previously documented by Xu et al., who reported that both ELISA 
and SIMOA assays may be affected by biological matrix complexity 
and procedural demands (16). Further studies are needed to 

FIGURE 2

Bland–Altman plots and correlation analysis of log-transformed variability (Δlog) between platforms. Panels (A–C) represent Bland–Altman analyses: 
the dashed blue line indicates the mean bias, red lines represent the upper and lower limits of agreement, and the green line depicts the regression line 
for the correlation between log-means and log-differences. Panel (D) shows Pearson correlations between Δlog values for each pair of platforms.

TABLE 2  Pairwise method comparison and agreement between SIMOA, Lumipulse, and Alinity platforms.

SIMOA vs Lumipulse SIMOA vs Alinity Lumipulse vs Alinity

Intercept (log) [95%CI]* −0.32 [−0.47, −0.15] −0.35 [−0.49, −0.18] −0.05 [−0.27, 0.04]

Slope (log) [95%CI]* 0.85 [0.77, 0.92] 0.81 [0.72, 0.88] 0.95 [0.88, 1.03]

Log (sGFAP) Correlation (r) 0.89 (p < 0.0001) 0.87 (p < 0.0001) 0.90 (p < 0.0001)

Bias (log) [95%CI]† −0.62 [−0.64, −0.60] −0.73 [−0.76, −0.71] 0.109 [0.02, 0.19]

LL (log) [95%CI]† −0.81 [−0.84, −0.78] −0.94 [−0.97, −0.90] −0.04 [−0.21, 0.13]

UL (log) [95%CI] † −0.44 [−0.47, −0.41] −0.53 [−0.57, −0.49] 0.26 [0.08, 0.43]

Bias-Mean Correlation (r) 0.26 (p = 0.006) 0.44 (p < 0.0001) 0.15 (p = 0.13)

*Passing–Bablok regression estimates; †Bland–Altman analysis estimates. LL, Lower Limit of Agreement; UL, Upper Limit of Agreement; CI: Confidence Interval; sGFAP, Serum Glial 
Fibrillary Acidic Protein; r, Pearson correlation coefficient.
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determine whether these differences stem from technical limitations 
or systematic overestimation inherent to SIMOA.

Nonetheless, in clinical terms, Lumipulse showed the most robust 
association with EDSS, and even Alinity outperformed SIMOA, which 
represents a highly positive finding. No significant discrepancies were 
observed between platforms in predicting short-term disease activity; 
however, these results should be interpreted with caution given the limited 
sample size and the low prevalence of clinical events. It should be noted 
that the primary aim of this work was the analytical comparison of 
platforms, and the limited number of clinical events in our cohort 
precludes firm conclusions regarding the monitoring value of sGFAP.

Mean sGFAP concentrations obtained using the SIMOA platform fell 
within the reference ranges previously established by Rodero-Romero 
et al. (145.8 pg./mL for individuals under 55 years of age and 280 pg./mL 
for those over 55) (32). For the Lumipulse platform, mean values were 
substantially below the upper reference limit proposed by Agnello et al. 
(92 pg./mL). However, it is worth noting that this threshold was derived 
from a cohort with a mean age of 55 years and included individuals over 
70, whose average values approached 60 pg./mL (24). Within this context, 
our results appear consistent with prior literature, falling near the upper 
range reported for individuals under 50 years of age.

Regarding the Alinity platform, no reference values in healthy 
populations have been published to date. Nonetheless, the 
manufacturer has proposed a cut-off of 35 pg./mL, primarily 
intended for detecting axonal injury in TBI (21–23). In our 
cohort, sGFAP values quantified using this platform showed a 
pattern similar to the other two systems, generally remaining 
below the proposed threshold. Only 12 (13%) samples exceeded 
this value. Our results are consistent with the recently published 
study by Arslan et  al., which also demonstrated a strong 

correlation between Alinity and SIMOA measurements in healthy 
controls (33).

Taken together, the observed correlation with SIMOA values, 
combined with the reproducibility and clinical applicability of fully 
automated platforms, supports their positioning as valid and efficient 
tools for routine clinical use. Their adoption could reduce reliance on 
ultrasensitive technologies, provided that platform-specific cut-offs are 
appropriately tailored to each clinical context. Additionally, age-related 
effects should be taken into account (24, 32, 34, 35).

This potential not only facilitates more efficient clinical 
implementation, but also promotes broader access to emerging 
neurological biomarkers by enabling their use in less specialized 
healthcare settings. Moreover, automated platforms are considerably less 
costly. In particular, the Abbott platform offers a further advantage, as it 
is currently the only one with CE marking, reinforcing its regulatory 
viability and clinical applicability.

These findings are especially relevant in a context where serum GFAP 
is gaining increasing importance and is being positioned as a key 
component in diagnostic and prognostic algorithms for a range of 
neurological disorders (3, 27).

From a clinical implementation perspective, beyond the adjustment 
of cut-offs, it would be  highly relevant to develop inter-platform 
conversion models. The absolute values reported by different assays differ 
markedly in scale, and the systematic biases observed underscore the need 
for harmonization strategies. While simple linear correction factors may 
partially compensate for constant bias, the presence of proportional bias 
suggests that more flexible regression-based approaches are warranted. 
Polynomial or other nonlinear regression models may represent a first 
step, and if their performance proves insufficient, advanced machine 
learning approaches—such as support vector machines or deep 

FIGURE 3

Longitudinal serum GFAP concentrations in patients with multiple sclerosis over a 2-year follow-up, with samples collected every 4 months. Missing 
data points indicate unavailable serum aliquots for the respective platform. The grey dashed line represents EDSS trajectory. TP = time point (TP1–TP7 
correspond to sequential visits approximately at baseline, 4, 8, 12, 16, 20, and 24 months); sGFAP: serum GFAP. * indicates the time point at which the 
patient showed an increase in lesion burden during the interval since the previous visit; † indicates the time point at which the patient experienced a 
clinical relapse during the interval since the previous visit.
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learning—could be explored, ideally incorporating relevant covariates 
such as age or EDSS to improve predictive accuracy. Importantly, such 
algorithms could be integrated into clinical decision support systems 
(CDSS) (36), enabling real-time conversion within laboratory information 
systems. Moreover, these harmonization efforts should ideally be extended 
to healthy control cohorts to ensure generalizability and facilitate the 
establishment of unified reference ranges.

Multiple assays are currently available for measuring serum GFAP, 
including more recent platforms such as NULISA (37) and i-STAT; 
however, these have not been directly compared with SIMOA (38, 39). To 
our knowledge, only one recent study has evaluated more than one 
platform (Ella, Alinity, and Meso Scale Discovery) in parallel with 
SIMOA, but Lumipulse was not included (33). Our study therefore 
represents the first direct head-to-head comparison of SIMOA, 
Lumipulse, and Alinity for GFAP measurement using the same set of 
longitudinal samples. Another key strength of this work lies in its specific 
focus on the longitudinal dynamics of the biomarker and the novelty of 
its approach.

However, this study has several limitations. First, it focused exclusively 
on patients with MS, which restricts the generalizability of the findings to 
other neurological conditions. Second, the limited number of clinical 
events (EDSS worsening, relapses, or MRI activity) precluded firm 
conclusions regarding the utility of sGFAP for monitoring disease activity, 
despite the analytical agreement observed across platforms. In addition, 
the small number of patients limited the evaluation of its potential to 
discriminate between phenotypes, and the absence of healthy controls 

prevented the establishment of reference ranges. Finally, the moderate 
sample size did not allow for the development and validation of a robust 
inter-platform conversion model to further enhance clinical applicability. 
Future multicenter studies in larger cohorts are needed to address these 
limitations and establish the clinical utility of sGFAP on the 
evaluated platforms.

Conclusion

Our findings support fully automated platforms as reliable and 
accessible tools for sGFAP quantification. Although they 
underestimate levels compared with SIMOA, recalibration of 
diagnostic thresholds or conversion algorithms may mitigate 
discrepancies. The strong correlations and consistent longitudinal 
dynamics endorse their use in clinical monitoring, particularly in 
settings requiring rapid and widely available solutions. Among them, 
Lumipulse showed the most robust performance, positioning it as the 
frontrunner for clinical implementation and paving the way to 
democratize sGFAP testing in neurological care.
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FIGURE 4

Associations of log-sGFAP with demographic and clinical variables across analytical platforms. Clinical activity was defined as the presence of a clinical 
relapse or an increase in MRI lesion burden at the time of blood sampling. EDSS, Expanded Disability Status Scale; PMS, Progressive MS; RRMS, 
Relapsing–remitting MS.
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