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1 Introduction

The good and bad news regarding better health care for patients with epilepsy lie in the

advances of research on the background of the negative impact of global challenges that are

beyond the control of clinicians and researchers.

2 Epilepsy and climate change

Climate change as an important environmental variable in the generation and

exacerbation of epilepsy can no longer be ignored (1). Consequences of climate change

include more frequent and intense heatwaves and natural disasters and increased air

pollution (2). Increased body temperature is well-known to lower seizure threshold and

to increase the risk of seizure-related brain damage. Brain injury due to the exposure to

natural disasters increases the risk for post-traumatic epilepsy (3). Poor air quality directly

impacts epilepsy through neuroinflammation (4). Air pollution decreases sleep efficiency

(5), rising temperatures decrease the duration and quality of sleep (6), and worries about

climate change or natural disasters negatively impact sleep (7). Sleep deprivation increases

the likelihood of seizures (8). Seasonal influences that interact with climate change,

individual genetic variation and multiple other factors give rise to a complex interaction

between epilepsy and climate change that calls for the scientific development of better

health services for people with epilepsy living under the negative impacts of climate

change (1).

3 Challenges in lower and middle income countries
(LMIC) in the management of epilepsy

Climate change has its biggest impact in those countries being the least responsible

for it. People in lower and middle income countries (LMICs), for example in the

nations in Africa, Central and South America, and South East Asia, will experience

additional 30 days of seasonal heat as a consequence of each additional increase of

+1◦C in global warming (9). The negative consequences for patients with epilepsy

hit a situation where accurate diagnosis and appropriate treatment is for most

patients impossible because there are no experts and no services available. The

conditions differ certainly from region to region, but there are some common

challenges that are noteworthy. For example, in sub-Saharan Africa there is only one

neurologist available for 5 million people (10). The treatment gap in this region is
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also attributable to newer generation antiseizure medication being

available only at larger clinical centers or private clinics (11) and

even in these specialized centers, antiseizure medication is often

out of stock (12). Additionally, patients in sub-Saharan Africa were

found to prefer treatment with traditional healers, which are much

more accessible than neurologists in numbers [one healer for 200

people (13)]) and also in terms of the distance between the patients

in rural areas and health care centers, where high costs for traveling

are often not affordable (14).

4 SUDEP

Especially in LMICs, sudden unexpected death in epilepsy

(SUDEP) as a major cause of mortality in epilepsy remains

largely unknown among patients and to some extent even among

neurologists (15). Propensity to tell patients with epilepsy about

SUDEP is more likely among neurologists in academic settings

and with epilepsy fellowships (16). The length of the definition

of SUDEP as “sudden, unexpected, witnessed or unwitnessed,

non-traumatic and non-drowning death, occurring in benign

circumstances, in an individual with epilepsy, with or without

evidence for a seizure and excluding documented status epilepticus

(SE), in which post-mortem examination does not reveal other

causes of death” (17) already suggests the complicated issue of

diagnosing SUDEP (18). SUDEP can be registered inmousemodels

(19) which led to novel insights especially regarding the cardiac

dysfunctions suspected to contribute to SUDEP (20), but leaves

many questions open (21). There is need for clinical data to

study the clinical risk factors and to guide the development of

preventive devices (22) for people at risk and for the development

of novel therapies including promising approaches based on

vesicles (23).

5 AI for the management of epilepsy

Among the technological developments that are named

the most these days—not only in epilepsy research –artificial

intelligence (AI) stands out. It stands out because of the massive

funding it receives, being on the one hand extremely promising,

but on the other hand highly controversial and doubted and even

perceived as dangerous. AI also stands out because it has infiltrated

so many aspects of health care and life with epilepsy, including

patient education (24), automated detection of epileptiform activity

in the EEG (25), comparison of effectivity of antiseizure medication

(26), automated delineation of the epileptic lesion (27), predicting

seizure recurrence (28), and controlling neuromodulation (29),

to name a few examples. The strength of AI is in the ability to

extract information from extremely large databases where manual

analysis to find systematic patterns is not possible. At the same

time, the reliance on the availability of large databases is the

biggest limitation of AI and the most common pitfall in its use,

when AI models are trained with insufficient data, leading to

unreliable results. Researchers and clinicians must be aware of

these limitations when using AI and interpreting results generated

with AI.

6 (Deep) brain stimulation in epilepsy
and advances in invasive recordings

AI is also intensively used in neuromodulation and gives rise

to recent advances in therapeutic brain stimulation. Following the

general technical trend toward smaller devices, cortical electrodes

based on novel nanomaterials including, for example, graphene

(30) can improve solutions for brain mapping. Miniaturization of

electrodes in pre-surgical and intra-surgical evaluation of eloquent

vs. epileptogenic brain tissue holds the promise of a higher

resolution and more accurate delineation of the to-be resected area.

Miniaturization is especially relevant for novel concepts of DBS

in epilepsy, such as promising approaches of multimodal thalamic

DBS (31), with an overall promise that smaller scales of electrodes

will also lead to more accurate targeting and fewer side effects

(32). The further advances of chronically implanted devices for the

control of seizures goes beyond a continuous stimulation toward

closed-loop approaches. These are not restricted to implantable

solutions. For example, recent advances in focused ultrasound

stimulation (fUS) based on closed-loop technology have been

demonstrated successfully in animalmodels (33). Low intensity fUS

(LIFU) can be used for temporary modulation of brain activity and

for opening the blood-brain barrier selectively for certain drugs

while high intensity fUS can be employed to ablate epileptogenic

tissue (34). Closed-loop developments are also a viable method to

recover consciousness of patients during seizures using thalamic

stimulation (35). The approach hits in the direction to treat the

symptoms of seizures if their occurrence cannot be prevented.

7 Rare diseases and pediatric epilepsy
syndromes

Poorly controlled seizures are the reality of many patients

with underlying rare diseases, among them many pediatric

epilepsy syndromes. Since genetic testing has become more

widely available for the diagnostic assessment of childhood onset

epilepsies, novel approaches including targeted next generation

sequencing were applied to significantly sized samples including

benign familial neonatal/infantile epilepsy, Dravet syndrome and

epilepsy of infancy with migrating focal seizures (36). At the

same time, therapeutic advances promise to reduce the occurrence

of drug-resistant epilepsy for metabolic disorders if identified

in-time (37). Therefore, experts call for neonatal screening

for epileptic syndromes with actionable targeted therapies and

emerging precision medicine approaches (37). However, the rare

occurrence remains a challenge in the evaluation of new therapies,

with a few exceptions including Dravet syndrome, Lennox–

Gastaut syndrome, and West syndrome, for which considerable

orphan drug development takes place (38). Nevertheless, recent

examples such as the treatment of CDKL5 Deficiency Disorder

with cannabidiol and tetrahydrocannabinol (39) and treatment

of developmental and epileptic encephalopathy with spike wave

activation in sleep with steroids (40) show that evidence consists

often in anecdotal reports (39) and is generally limited by

the absence of guidelines in formulations and dosages (40).
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Finally, more research is needed in the challenging transition

from pediatric to adult care, especially among patients with

comorbidities (41). Research of somatic mutations is an emerging

field with promise to advance understanding of pediatric epilepsies

(42). Pathogenic brain-limited somatic mutations can be detected

in surgically resected cell tissue (43). Novel, minimally invasive

methods through extraction of cell-free DNA from cerebrospinal

fluid and microbulk tissue adherent to stereo-EEG electrodes

allow the identification of these mutations that cause focal onset

seizures (43).

8 Epilepsy comorbidities across the life
span

Comorbidities are highly common in patients with

developmental forms of epilepsy as the example of autism

shows (44), but exist throughout the life span. The most

striking insight is that for many of these comorbidities

the relationship goes both ways. For example, psychiatric

disorders including depression, anxiety, and psychosis are

significantly more common among patients with epilepsy (44).

However, patients with depression also have a higher risk of

developing epilepsy (45). Also the relation between Alzheimer’s

disease and epilepsy is bidirectional (46). In this context the

treatment options must be carefully assessed, especially for

psychiatric comorbidities where antiseizure medication might

successfully suppress seizures but exacerbate mental health

symptoms.

9 Antiepileptogenesis

As the above-mentioned case of developmental epilepsies

shows, under certain circumstances epilepsy can and should

be prevented (37). Beyond the neonatal case, post-stroke

epilepsy is a good candidate for the development and

application of antiepileptogenic strategies, also because of

its relatively high prevalence of about 10% among stroke

survivors (47). While the identification of at-risk patients

for post-stroke epilepsy is realistic, there is a lack of

effective drugs that prevent the condition (47). For post-

traumatic epilepsy and genetic, non-injury epilepsy, animal

models showed promise e.g., using pregabalin (48). Further

research is needed to clarify the translatability of promising

therapeutic interventions from injury models to genetic

models (48).

10 Advanced treatments in epilepsy

Treatment of epilepsy is still not satisfying as about 30% of

patients suffer from uncontrolled seizures (49). Novel antiseizure

drugs such as cenobamate give rise to hope for patients with

drug-resistant focal epilepsy, especially when prescribed early

(50). Research toward more effective ways of treating epilepsy

has entered a new era with gene and cell therapy being among

the most exciting developments (51). Gene therapies under

examination include adeno-associated virus-mediated delivery of

genes encoding neuromodulatory peptides, neurotrophic factors,

enzymes, and potassium channels, where rat models showed

promising decrease of seizure frequency (51). Cell therapy can be

roughly grouped in nervous system cells that are intravenously

infused (52) or transplanted (53), injected MSCs (54), exosomes,

e.g., derived from MSCs (55), bone marrow mononuclear cells

(50), and encapsulated cell biodelivery (56). In-vivo models

testing viral vectors demonstrated beneficial effects but cell-

based therapy has entered clinical trials providing evidence

for the benefits and safety based on the neuroprotective,

anti-inflammatory, and immunomodulatory properties of the

transplanted cells (51). Extracellular vesicles were found to

hold promise not only as biomarkers for epilepsy, but also

as therapeutic means for restraining consequences of status

epilepticus (23).

11 Wars

Today we are facing global threats to peace. Wars are fought

without respecting human rights, at the costs of civilian’s lives,

including children. For example, the war unleashed by the

Russian Federation on the Ukraine led to a mass migration

of approximately 15 million people (57). Many of the people

living under attack suffer from pre-existing diseases, including

epilepsy. While violence is a general threat to health, from

past wars we know that war negatively impacts patients with

epilepsy, already because of the psychological distress and trauma

(58). Loss of medical documentation and test results, loss of

contact with the usual medical care provider, additional complexity

associated with the psychological and physiological consequences

of war are just a few of the difficulties patients with epilepsy

and other chronic disorders suffer as a direct consequence of

war and displacement (57). In Gaza and throughout occupied

Palestine, healthcare has collapsed, due to the blockade of

aid by Israel and the destruction of health infrastructure and

detention of healthcare workers (59). A severe shortage of

antiseizure medication led to admission of patients to the intensive

care units because of uncontrolled seizures, where prolonged

sedation is the only treatment until supply of anticonvulsants is

secured. However, status epilepticus due to medication shortage

and seizures as a consequence of brain injury are only the

tip of the iceberg. International networking, joint research

with experts in the occupied regions, and telemedicine are

some of the methods that experts in epilepsy can leverage to

support healthcare workers and their patients during man-made

humanitarian crises.
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