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learning procedure applied to the visual input of a behaving robot. 
In these studies the weights between units in a hierarchical neural 
network are adjusted, such that the firing rate changes as slowly 
as possible with time. The resulting activity patterns thus form an 
optimally stable representation of the sensory input. The results 
of learning in these hierarchical networks match the experimental 
observations of place cells as found in rodent hippocampus (O’Keefe 
and Dostrovsky, 1971). These neurons fire only when the animal is 
located in a certain region of the environment, defining the cell’s 
place field. Although the contribution of these cells to the animal’s 
behavior has still not been fully understood, it is assumed that these 
cells constitute a cognitive map of the environment (O’Keefe and 
Nadel, 1978) and serve as the basis of navigation. The work of 
Wyss et al. (2006) implies that unsupervised learning of the sensory 
input results in a reorganization of the sensory space, originally 
spanned by its visual input to a spatial interpretation. We built on 
this research by using place cells to represent the location a robot in 
its environment. Thus the place fields constitute a discretization of 
the navigational state space spanned by the robot’s position. They 
correspond to the robot’s internal states and represent the positions 
it can differentiate. In summary, in order to enable the cognitive 
model controlling the robot to navigate, we chose place cells as a 
biologically plausible and theoretically founded representation of 
the environment.

An important aspect of the proposed model is the division of 
the architecture of the agent into central and distal processing. 
Both processes learn the sensory outcome of the robot’s actions 
in the agent’s state space, spanned by the place fields. The central 
processing component captures the sensory outcomes of the agent’s 
actions. It is defined by the state (place field), where the robot is 
located after the execution of the action. Exploratory behavior leads 

IntroductIon
An increasing number of studies model animal behavior using 
robots. While many of these studies investigate how individual com-
ponents, such as sensory processing, contribute to the generation 
of behavior (Lungarella et al., 2003), most are limited to modeling 
one particular behavioral domain (Alexander and Sporns, 2002; 
Edelman, 2007). It is becoming more and more obvious that the 
flexibility of human behavior is still out of reach of modeling stud-
ies (Flash and Sejnowski, 2001; Todorov, 2004). Recently in the 
neurosciences, different approaches have delineated behavior in 
a unified theory, independent of any specific paradigm (Wolpert 
and Ghahramani, 2000; Schaal and Schweighofer, 2005). Here we 
develop a model based on general principles that we propose to 
generalize over a broad variety of behavioral domains.

For the present study we apply and test the cognitive model in 
the domain of a navigational task. Navigation refers to the practice 
and skill of animals as well as humans in finding their way and in 
moving from one place to another by any means (Wilson and Keil, 
1999). Hence, a navigational task can be described computationally 
by referring to the position and orientation of the agent as a func-
tion of time. Furthermore, the ability of animals to navigate in 2D 
environments like the four-arm maze has been studied extensively 
(Olton and Samuelson, 1976; Morris, 1984). To test the cognitive 
architecture we thus chose an easily determinable navigational task 
based in the standard environment of a four-arm maze.

To perform a planned behavior, a robot has to predict the sensory 
outcome of its actions. In order to do so, it is useful to reorganize 
the high-dimensional sensory input into a low dimensional repre-
sentation consisting only of behaviorally relevant aspects. Several 
studies (Wyss et al., 2006; Franzius et al., 2007) have recently shown 
that place cells can be understood as the result of an unsupervised 
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to learning which action leads to a specific outcome. The agent 
stores experienced state transitions as transition probabilities. In 
contrast, the distal component is based on infrared sensors and 
accounts for reflexive behavior. Triggered reflexes are memorized as 
so-called reflex factors. These facilitate obstacle avoidance only, and 
are not used to constitute the robot’s state. Combined, transition 
probabilities and reflex factors reflect the environmental properties 
in relation to the robot’s actions.

Based on exploratory behavior the robot learns an approxima-
tion of the environmental affordances (Gibson, 1977) for naviga-
tion, defined as the navigational action possibilities afforded by the 
environment. The cognitive model plans goal-directed actions by 
integrating the information gained by central and distal process-
ing into a local decision-making process. This integration results 
in a quantitative measure of how reliably each executable action 
leads towards the goal. Hence, the key components of our cogni-
tive model are (i) a high-level representation (place fields) of sen-
sory input space, (ii) the knowledge of environmental properties 
acquired by active exploration of local state transitions by means 
of distal and central processing and (iii) a decision-making process 
driven by this knowledge.

Here we show that using the described cognitive model the 
agent latently learned the environmental affordances and let a robot 
successfully navigate to different goals within a four-arm-maze 
environment. Importantly, the differentiation between central 
and distal processing reduces the negative effect of the obstacle-
 avoidance behavior on navigational performance, and enables the 
robot to quickly adapt to changes in the environment. We propose 
that by redefining the states and actions, the introduced model can 
be expanded to model other types of behavior.

MaterIals and Methods
overvIew of the archItecture
Our cognitive model allows the robot to explore the environment 
and navigate to different targets based on a state space represented 
by the spatial representation of place fields. This state space was 
obtained by dividing the four-arm-maze environment (Figure 1A) 
into compact, discrete states (Figure 1B), similar to the place fields 
that can be acquired by unsupervised learning (Wyss et al., 2006). 
The central component of the model processed every one of the 
robot’s state transitions, while the distal component dealt only with 
transitions that coincided with reflexive behavior (obstacle avoid-
ance). Together, the transitions induced by the robot’s actions and 
those transitions associated with reflexive behavior represent the 
environmental properties locally learned by the exploring robot. 
During each stage of the decision-making process, the model chose 
the action that maximally increased the probability of reaching a 
desired target within the environment, thus allowing the robot to 
successfully navigate.

Place fIeld rePresentatIon
We chose place cells as a representation of the environment. A study 
by Wyss et al. (2006) showed that such place cell properties can be 
acquired by mobile robots by means of unsupervised learning in 
a hierarchical network. Although it would be possible to replicate 
this work, our main purpose here was to model behavior, so we 
deliberately used predefined place cells, similar in type to those 

observed in the previous study, to focus on the behavioral aspect. 
We approximated the firing properties of place cells as a function of 
the robot’s position by 2D Gaussian functions (standard deviation: 
0.04 m). To cover the whole four-arm-maze environment we ran-
domly distributed 72 of these Gaussian functions (Figure 1B). For 
each of the robot’s possible positions within the maze, we obtained 
the activity of each of these place cells. A winner-takes-all process 
then extracted the robot’s position in state space from the population 
activity of the place cells – the cell that was maximally active thus 
defined the current state of the agent. In order to calculate the place 
cell activity, we first needed to extract its position in the environ-
ment. The robot was tracked by an Analog Camera (Color Cmos 
Camera 905C) which was attached above the environment as shown 
in Figure 1A. The analog camera signal was digitized by a TV card 
(Hauppauge WinTV Express). The position and orientation of the 
robot were then calculated using the camera image and the color 
code attached on top of the robot. Thus, the population of place cells 
represented a mapping from the position space in which the robot 
was navigating, to the state space of the agent controlling the robot. 
To secure generalizability, no reference was made to the 2D structure 
of the environment. The only information used by the agent to infer 
the robot’s position was the activation of each place cell.

Figure � | (A) A four-arm-maze environment was chosen to test the model. 
A Khepra robot was controlled by an agent implemented in the MicroPsi 
framework, running on a computer. The inputs to the program were the 
orientation and the position of the robot, as well as the data from the 
proximity sensors. (B) shows the distributions of states used. The white lines 
within the environment represent the boundaries of these states. (C) shows 
these proximity sensors on the robot. These sensors emit infrared light and 
measure the reflection. The agent used the activation of the place cells which 
corresponded to its current position, the orientation of the robot, and the 
proximity sensors to perform the robot’s behavior.
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actIon executIon
In order to limit the number of transitions needed to learn the 
environmental properties to a manageable number, in each state 
the robot was restricted to executing eight different actions. Each 
of these actions consisted of a static rotation to a certain global 
orientation followed by a straight-line movement of the robot. 
The corresponding orientations were equally spaced from 0 to 
325°. As a result of executing such an action when in a given state 
(source), the robot will reach a different state (endstate), with the 
action thus resulting in a transition between states. An endstate was 
reached when the winner-take-all process calculating the current 
state returns a new state index. A transition was defined as complete 
when a local maximum of the endstate’s activity was reached. A 
local maximum occurred when the derivative of the current state’s 
activity becomes negative. The frequencies of the transitions result-
ing from action i, executed in source state j and ending in endstate 
k were stored in the experience matrix EM

i,j,k.
.

dIstal ProcessIng
To prevent the robot hitting one of the maze’s boundary walls, a 
reflexive obstacle avoidance behavior was implemented. The prox-
imity sensors (Figure 1C) were used to perform this behavior, such 
that we directly mapped the inverse activities of the sensors to the 
motor activity. The sensors at the side of the robot reduced the motor 
activity, sent to the wheel located at the same side and reduced it for 
the wheel at the opposite side. The frontal sensors both reduced the 
motor activity sent to both wheels. In both cases a negative motor 
activation was possible such that the wheel rotated in the opposite 
direction compared to a positive motor activation. The frequencies 
of occurrence of the reflexive event characterized by the particular 
state (i) – action (j) combination was stored in the reflex matrix 
RM

i,j
. Whenever the robot used its obstacle avoidance behavior, the 

system associated the current state and action with the occurrence 
of a reflex event and updates the reflex matrix accordingly.

decIsIon MakIng
Here we addressed the problem of decision-making – choosing the 
action that is most likely and quickest to lead towards the goal. As 
the obstacle avoidance behavior introduced additional variability 
in state transitions (see Results), the agent should also minimize 
the usage of this behavior during his movement to the goal. In this 
section we developed a measure for each action on each state result-
ing from an iterative reverse flooding procedures Figure 2 defining 
the actions likeliness and quickness to lead to the goal.

The reverse flooding procedure integrated the transition prob-
abilities experienced by the agent to evaluate the probability to end 
up at the goal state. The transition probabilities were learned by the 
central component of the model and were stored in a transition matrix 
(Figure 3A). The transition probability defined by source j, endstate 
k and action i was stored in the transition matrix TM

i,j,k
 shown in 

Figure 3A. The sum of the transition matrix over the endstates k 
(rows) was normalized to one for each action and source and thus rep-
resented a probability distribution. The 3D transition matrix consisted 
of eight 2D matrices, each for one action i TM

i
. These eight transition 

matrices TM
i
 shared some similarity with a directed graph. The verti-

ces of this graph corresponded to the states, the edges corresponded 
to the transitions, and the edge weights to the transition probabilities. 

This results in eight directed graphs equivalent to the eight possible 
actions. In each of the iteration steps of reverse flooding, the activa-
tion of the state corresponding to the goal state was set to one. State 
activation was propagated through the graph by passing the activity 
– weighted by the corresponding transition probability – to connected 
states in the reverse direction of the directed edges. Technically speak-
ing, the activation was propagated from endstates to sources, weighted 
by the transition probability of the action’s transfer from the source to 
the endstate, hence the name reverse flooding. Applying this process 
to each action’s graph gave rise to eight different activity values for 
each state. These activity values were proportional to the probability 
to reach the goal by executing the corresponding action on each state. 
Up to this point, only the learned environmental properties resulting 
from central processing were considered during flooding.

Further to minimize the number of reflexive events during 
navigation to the goal, we integrated the distal component in the 
flooding procedure. This was done by introducing reflex factors. 
The reflex factor was proportional to the percentage of actions i at 
source j that induced reflexive event:

rf
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EMi j
i j

i j k
k

,
,
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During each iteration step, the eight activations of state j cor-
responding each to one of the eight actions i were multiplied by 
the corresponding reflex factor rf

i,j
. The maximum of the eight 

activations of a state was used as the state’s activation for the next 
iteration step. These eight activations were generated by multiply-
ing the activity by the transition probabilities and the reflex factor, 
both smaller or equal to one. Thus each of those eight activation 
was smaller or equal to one. Applying the maximum operation to 
these eight activation of a state to define the state’s activation for 

Figure � | Description of the reverse flooding algorithm.
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the next iteration step, restricted the activity of a state to be smaller 
or equal to one. Thus, for the flooding procedure we did not apply 
any additive process to the activation propagation, which restricted 
the state’s activity to be equal or smaller than one. Further, by 
injecting in each of the iteration steps an activity of one at the goal 
state, the flooding procedure resulted in a steady-state of state’s 
activity. Thus, this iterative flooding process was continued until 
the states’ activities converged. In order to select the action most 
likely to move the robot towards the goal, we considered the eight 
incoming activation values on each state, which resulted from the 
activation propagation of the eight actions. The robot then chose 
the action corresponding to the highest incoming activation of 
the current state to move to the goal (Figure 3B).

For the reflex factors we introduced a weighting factor of 5/6 to 
prevent a reflex factor of zero in the case of an action, which was com-
bined only with obstacle avoidance behavior. Thus, non-zero reflex 
factors did not neglect the information of the environment gained 
by the transition probabilities during the flooding process.

Furthermore, to reduce the number of transitions to move to 
the goal, we introduced a decay factor df, which was here set to 0.9. 
After each iteration step, the activation of each state was multiplied 
by this factor. The more transitions that were needed to reach the 
goal states, the more the decay factor was taken into account and 
decreases the states’ activities. Hence, the decay factor penalized 
longer trajectories to the goal state.

The flooding algorithm defined above was implemented with 
the help of matrices.

act
j m

j mj( )0
0

1
=

≠
=





represented the activation at the 0’th activation propagation, where 
the goal was located at state m.

act t TM act t rf df acti i

     

+( ) = ⋅ ⋅( )⋅( )⋅ +1 0max ( ) ( )

where act t
 

( ) was the vector of activation values for the states after t 
iteration steps. rf represented the reflex factor and df the decay fac-
tor. After the convergence of the activities, the index i with maximal 
activity of a state define the action that is chosen by the agent to 
navigate to the goal. The convergence of the activities was defined 
by the absolute difference between previous and current activities 
being smaller than 10−5.

robot setuP
To test the model in a real-world environment we used Khepera II 
robots (K-Team, Lausanne, Switzerland). The robot was equipped 
with eight proximity sensors, which emitted infrared light and 
measured the strength of its reflection. Propulsion is achieved by 
two wheels, each controlled by a separate motor (Figure 1C). For 
implementation and flexible programming, we used MicroPsi (Bach, 
2003; Bach and Vuine, 2003), an Eclipse-based Java programming 
environment, as an interface to the robot. The agent that control-
led the robot’s behavior was implemented in this framework. The 
particular cognitive model was implemented with the help of the 
Colt framework, allowing matrix calculation in Java. The real-world 
environment was a four-arm maze with boundaries built from white 
wooden pieces (Figure 1B). Each arm had a width of 0.21 m and a 
length of 0.28 m. The four-arm maze environment fitted into an 
area of 1 m2.

Figure � | (A) Learning of the properties of the environment. The robot is on a 
certain state, defined here as Source J (yellow labeled) and randomly chooses 
an action (Action 1). The execution of the action results in another state, defined 
as endstate K (red labeled). This transition was stored in a 3D matrix, called the 
experience matrix, with the dimensions sources, endpoints and actions. The 

number of action executions combined with obstacle avoidance from a source 
was stored separately. (B) The robot moving to a goal (the “cheese” for the 
artifical “rodent”). His choice is a consequence of the flooding of the transition 
matrix, resulting in an activation of the different actions, shown as colored 
arrows. The action with the strongest activation was chosen.
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analysIs
As a means of comparison, a simulated robot was implemented 
in MATLAB (Version 7.0 (R14), Mathworks, Natick, MA, USA) 
using the same algorithms described above. Obstacle avoidance 
behavior of the physical robot was approximated setting the angle 
of reflection equal to the angle of incidence to the boundary, with 
a random scatter of 10 to −10 degrees added.

To compare the navigational behavior and the transition prob-
abilities learned by the robot, we introduced the geometrical transition 
matrix. This matrix took into account only the topographical prop-
erties of states in the environment and was created by allowing the 
simulated robot to execute every action on every position within each 
state, using the resolution of the camera tracking system. Because the 
real-world robot chose a new action only at a local maximum of its 
current place cell activity, each transition occurrence in the simu-
lated agent was weighted by the probability of the robot executing 
an action given the current place cell activity. In an ideal world and 
given a very long exploration time the real transition matrix was 
expected to converge to the geometrical transition matrix. In the 
real-world setup, due to the finite robot size, slip and friction and a 
limited exploration time, the geometrical transition matrix might 
deviate considerable from the real transition matrix.

Next we evaluated the properties of the experienced and geo-
metrical transition matrices. First we investigated the similarity of 
action outcomes by comparing the corresponding transition prob-
abilities. We correlated the transition probabilities represented by 
a row vector of the Transition matrix of action i, TM

i
, with the 

same row vector of the Transition matrix of action j TM
j
. Before 

calculating the correlation coefficients between the two vectors 
we reduced the transition probabilities in the row vector by the 
average of these transition probabilities to the topographical next 
neighbors. Thus two actions led to equivalent outcomes when their 
correlation coefficient is 1.0; they are linearly uncorrelated when 
the correlation coefficient is 0.0.

We characterized the predictability of an actions’ transition to 
a state by defining a second measure: The predictability of action 
i in state j is given by the maximum transition probability stored 
in the row vector j of the Transition Matrix TM

i
. This maximum 

transition probability was reduced by the probability of transferring 
to one of the connected states by chance.

pr TM
conni j k i j k

i j
, , ,

,

max= ( ) − 1

Here, Pr
i,j
 corresponded to the predictability of action i in state 

j, and conn
i,j
 is the number of states the robot was able to reach by 

executing action i on state j.
In order to evaluate the decision-making process, we analyzed 

the activation of each action after the flooding process had con-
verged. We chose the normalized activity as an appropriate measure 
to characterize the quality of selection of an action during naviga-
tion to a goal. This normalized activity is defined as the activation 
of the chosen action j for the state, normalized by the sum of all 
incoming activity and by the decay factor.

NormActj =
⋅ ⋅ ⋅ +( )⋅∑

act

TM act act

j

i i jt rf df

 

   

([ ( )] ) ( ) (0 11−df )

with act
j
 representing the maximum converged activity of state j 

after flooding. The denominator corresponded to the sum of all 
converged incoming activations of state j for all actions. In order to 
reduce the dependency of the normalized activation on the decay 
factor, we included the decay factor in the denominator. As a result 
of its inclusion, the normalized activity ranged from 0 to 10. The 
value of 10 is reached when only action j has an activity and thus 
all other actions are not activated. This indicated, that only action 
j is leading the robot reliable to the goal. While smaller values of 
the normalized activity represented similar activation of all actions, 
and thus executing one of the other action could lead the robot to 
the goal with a similar navigational performance. Thus, as smaller 
the normalized activity values as similar are the activations and 
thus any action will lead the robot to the goal.

batch and onlIne learnIng
We investigated the plasticity of the introduced navigational sys-
tem by examining the robot’s navigational adaptation to changes 
in the environment. The robot’s navigational performance was 
evaluated by measuring its navigational performance to a target. 
We examined the robot’s adaptation process by comparison of the 
two different types of learning we introduced: batch and online 
learning. These approaches differed in the timing of the transi-
tion matrix and reflex update and in the way in which the robot 
explored the environment. Batch learning involved interleaved 
experience stages of random action execution, during which the 
existing transition and reflex matrices were updated, and evalu-
ation stages, during which navigation took place and the transi-
tion and reflex matrices were not updated. This is similar to the 
way the agent experienced the environment as described above. 
In comparison, online learning involved updating the robot’s 
transition probabilities and reflexes after each action execution, 
and instead of moving randomly, the decision-making process 
was always at work.

results
Here we investigated the robot’s navigational performance and 
how the central processes – namely the transition probabilities 
– as well as the distal processes defined by the reflex factors, con-
tributed to the decision-making process. We also examined the 
adaptation of the robot’s navigational behavior to changes in the 
environment.

navIgatIon behavIor
Navigational performance
The navigation performance of the robot was evaluated by repeat-
edly measuring its path to a number of different target sites in 
the environment. In each of the 20 trials, the robot was placed 
on one of five possible starting positions and given one of four 
target locations. In order to directly compare different start-target 
combinations, we normalized the length of the robot’s path by the 
direct path, which represented the shortest traversable distance 
from the robot’s starting point to the goal state. Figure 4 shows 
a path traveled by the robot (yellow line) and the corresponding 
direct path (light gray line). Overall, the robot’s median path length 
across 20 trials was 1.71, with a standard deviation of 0.47. This 
represents an increase of 71% (±47%) compared to the direct path 
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length. For all configurations of start positions and targets, the 
robot was able to reach the target in a reasonably short amount 
of time.

Impact of states and learned properties on navigational performance
The increased length of the robot’s paths could be a consequence 
of any of the following: the division of the environment into dis-
crete states (place fields), the environmental properties learned by 
the robot (transitions and reflex factors), and the robot’s behavior 
while navigating through the environment. Each of these factors 
was investigated in turn. To provide a first approximation of the 
increase due to the discretization of the environment, we simu-
lated the robot’s behavior using the same navigational algorithm 
as described in the Section “Materials and Methods”. The simula-
tion used the geometrical transition matrix, which takes only the 
topography of states into account (see Materials and Methods), to 
navigate from the same start positions to the same goal states as 
the real robot. The red line in Figure 4 shows a sample path of the 
simulated robot. This simulation resulted in a median increase of 
19% (±9%) compared to the direct path. Thus, the introduction 
of discrete states did not greatly contribute to the lengthening of 
the robot’s path to a goal.

Additionally we investigated the influence of the size of the states 
on the navigational performance. Because of the spatial extension 
of states, the robot chose an action in order to navigate to the goal 
at from different positions within a state. Thus, the robot was able 
to chose at an action in order to move to the goal at different posi-
tions within a state at different positions than the robot experienced 
the transition probabilities. Do these different positions have an 
impact on the robot’s navigational performance? In order to solve 
this question we let the simulated robot start from different position 
within a state and let him navigate to a certain goal by utilizing the 
real robot’s experience matrix and reflex matrix. This procedure was 
done for 12 start states to each of 12 goal states within the arena. 

We hereby distributed the start position equally over the spatial 
extension of the state and measure the length of the path from the 
start position to one of the goal states. This length of the path was 
normalized by the length of the path from the center of the Gaussian 
activity function of the corresponding state (place field) to the 
goal state. In case the simulated robot had not to navigate around 
the corner, the mean ratio of the traveled path to the one from the 
center of a Gaussian activity was 1.016 (±0.123), while for cases 
the robot had to navigate around the corner a mean normalized 
path of 1.138 (±0.137) was measured. Thus only a small variation 
of the navigational performance caused by the spatial extension 
of states was obtained. In case the robot has to navigate around 
the corner, the spatial extension of states has a higher impact of 
the navigational performance. Further, as described in the Section 
“Materials and Methods”, the robot only chose an action at posi-
tions within a state, which are associated with the first occurrence 
of a negative activity gradient on the robot’s path. This region of 
possible positions was defined by analyzing the positions the real 
robot chose an action. By distributing the start position in each of 
the 12 start states equally in this regions of possible positions we 
evaluated the navigational performance of the simulated robot to 
each of 12 goal states. The mean ratio of the robots path to the one 
from the center of the Gaussian activity was 1.022 (±0.065) with 
the robot navigating around the corner, while without a corner a 
mean normalized path was 1.017 (±0.055). In case the robot has 
to navigate around the corner, the state’s spatial extension has a 
higher impact on the navigational performance. In both cases of 
navigation, the impact on the navigational performance is small. 
In summary, the spatial extension of states has only a small impact 
on the navigational performance.

Next we investigated the contribution of the robot’s learned 
environmental properties. To do so, we again used the simulated 
robot with the same start-target combinations, but this time used 
the robot’s learned transition matrix and reflex factors to perform 
the task. Figure 4 shows an example of such a simulated path (green 
line). The median increase in path length was 37% (±23%). As 19% 
of the path increase is caused by discrete states, approximately 18% 
is due to differences between the geometrical properties of the 
environment and those properties learned by the robot. Thus, the 
difference between the geometric and learned transition matrices 
and reflexes explains a further quarter of the lengthening of the path 
of the real robot while navigating to a goal. Again, this is a small 
contribution to the overall increase of the path length.

Summary
How can we interpret the robot’s navigational behavior? 
Approximately a quarter of the increase of the robot’s path to a goal 
was due to the representation of the environment by discrete states 
of finite size. Another quarter of the lengthening was explained by 
the differences between the geometrical properties of the environ-
ment and those learned by the robot. We also analyzed the effect of 
obstacle avoidance on the robot’s performance. The agent engaged 
its obstacle avoidance behavior in 60% of the trials, independent 
of the particular combination of start and goal states. Analyzing 
only the trials in which the agent did not engage obstacle avoid-
ance, we obtained a median path length of 1.36 (±0.23), which was 
similar to the length measured in simulation with the transition 

Figure � | Navigational behavior of the robot was investigated by 
measuring the length of the path to different goals. The direct path, 
defined as the shortest traversable path from the start point to the goal state 
(shown as the gray line in the upper part), was used to normalize the length of 
the robot’s path (yellow line) to the goal. The red line corresponds to the length 
of a path of a simulated robot by taking the topographical distribution of states 
(geometric transition matrix) into account. The bars represent the median 
length between different starting and goal states and their standard deviation.
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matrix learned by the real-world robot. This was due to operational 
 differences – particularly in obstacle avoidance behavior – between 
the robot and the simulation (see Materials and Methods). Thus 
the median path length given by the robot’s learned transitions 
represented an approximation of the contribution of obstacle-free 
navigation. Consequently, the largest share of the lengthening of the 
robot’s path compared to the direct path was due to the obstacle 
avoidance behavior, which was usually triggered when the robot 
moved through the narrow arms of the maze. In all configurations 
of goal states and start positions, the robot was able to find its goal 
in a reasonably short amount of time, with the main increase in 
path length arising from obstacle avoidance behavior.

analysIs of the central coMPonent
The robot’s performance in this navigation task was a direct result of 
the underlying decision-making process. This process was based on 
the learned transition and reflex factors, which represent the learned 
environmental properties. Here we investigated the characteristics 
of the robot’s learned transitions by looking at: (i) the differences 
between the transitions of different actions on a state, (ii) the influ-
ence of the used topographical distribution of states on the learned 
transitions of, (iii) the number of different states reachable by the 
different actions, (iv) the predictability of the state reachable by 
a single action execution, and (v) the effect of the robot’s limited 
learning time on the learned transition probabilities. For the most 
part, we analyzed the characteristics of the transition matrices by 
comparison to the simulation based on the geometrical transition 

matrix (see Materials and Methods), which only took the used 
topographical distribution of states into account. This comparison 
allowed us to investigate the extent to which the topographical 
distribution of states gave rise to the investigated characteristics 
of the transition matrix.

Properties of learned transition probabilities
Here we analyzed the similarity between the transitions of dif-
ferent actions, defined as the redundancy of the robot’s possible 
actions on a state, by comparing the transition probabilities asso-
ciated with these actions. For this purpose we computed correla-
tion coefficients (see Materials and Methods and Figures 5A,D) 
between the transition probabilities of the different actions on each 
state. Higher correlation coefficients (>0.5) were more frequently 
observed in the experienced transition matrix (44%) than in the 
geometrical case (25%), (Figure 5A). Thus, the robot’s real-world 
action execution resulted in more similar outcomes and a higher 
redundancy of the actions, as compared to the geometrical case. 
Most (93%) of the highly correlated actions in the experienced case 
were obtained for states at the boundaries of the environment, and 
so were primarily due to the obstacle avoidance behavior elicited 
by wall contact. Overall, the robot’s action execution resulted in 
more similar transitions compared to the transitions based only 
on the topographical distribution of states.

Next we investigated the influence of the topographical distribu-
tion of states on the robot’s learned state transitions. Because the 
topographical properties of the states we used are fully represented 

Figure � | (A) Occurrence of correlation coefficients of the different actions. In 
order to do so we correlated the transition probabilities to the neighboring states 
of the actions as shown in the example. (B) The occurrence of the action’s 
highest transition probability, defined as the actions predictability. (C) The actions 

connectivity, defined by the number of non-zero transition probabilities for each 
action and state. (D) An exemplary calculation of the correlation coefficients (in 
A), actions predictability (in B) and the number of non-zero transition probabilities 
(in C), based on the transition probabilities of 2 possible actions
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by the geometrical transition matrix (see Materials and Methods), 
we took each state and action and calculated the correlation coef-
ficient between the transition probabilities stored in the geometrical 
matrix and those stored in the robot’s experienced matrix. Across 
all actions and states, a mean correlation coefficient of 0.56 (±0.52) 
was obtained. Although these correlation coefficients were low, they 
should be considered as a conservative estimate of the similarity 
of action outcomes. This is because the calculation of these coef-
ficients was based only on the transition probabilities to directly 
neighboring states. However, the transition probabilities to more 
distant states were mostly zero for all actions, and if these transition 
probabilities were also included in the correlation calculation, the 
similarity of different action outcomes would increase. In summary, 
while the different actions executed by the robot resulted in similar 
transitions more often than expected when only the topographical 
properties of the states were taken into account, the topographi-
cal state distribution nevertheless had an influence on the robot’s 
learned transitions.

How many different states can possibly be reached by means of a 
single action? To answer this question we examined the connectiv-
ity of the actions, by counting the number of non-zero transition 
probabilities. Figure 5C shows the occurrence of this connectivity 
in the geometric and experienced transition matrices. The experi-
enced transition matrix was characterized by a higher connectivity, 
with more than half (51%) of all actions showing a connectivity 
larger than four in the experienced case compared to less than a 
fifth (19%) in the geometric case. In the experienced case the mean 
connectivity was higher (3.60) than in the geometrical case (2.75). 
The higher connectivity in the experienced case was due to the 
obstacle avoidance behavior – in 79% of the experienced actions 
which led to more than four connected states, the robot had to use 
the obstacle avoidance behavior at least once. More states can be 
reached by executing a single action in the experienced case.

We then analyzed the predictability of action outcomes. 
Predictability defines the ability to predict the state that will be reached 
by a given action execution, and is thus useful for action planning to 
perceive a certain sensory outcome. In order to evaluate the actions’ 
predictability we introduced predictability values (see Materials and 
Methods) proportional to the maximum transition probability of an 
action. Although there are alternative ways of measuring predictability 
(e.g. as the sparseness of transition probabilities), these are similar to 
the measure used here, because of the normalization of transition 
probabilities to one. Figure 5B shows the occurrence of predictability 
values for the experienced and geometric transition matrices. Lower 
predictability values (<0.3) of the actions occurred more often in the 
experienced case (37%) compared to the geometric one (13%). Thus 
in general, the robot’s actions were equally likely to reach a number of 
spatially adjacent states. This was due to the actions’ transition prob-
abilities being characterized by a non-sparse probability distribution. 
Furthermore we investigated the influence of the obstacle avoidance 
behavior on the action predictability of the experienced transition 
matrix. Most (84%) of the low predictability values were due to actions 
for which the robot had to use its obstacle avoidance at least once. 
In other words, obstacle avoidance reduced the predictability of the 
action result. In most cases we obtained a lower predictability of the 
robot’s resultant state than we would have expected from the topo-
graphical distribution of place fields.

Impact of reflexive behavior on transition probabilities
Next we investigated the influence of the obstacle avoidance behav-
ior on the robot’s learned transitions. The above investigations of 
the robot’s transitions revealed a reduction in the predictability of 
the robot’s actions, and an increase in the similarity between the 
robot’s action outcomes when compared to the transitions based 
on the topographical state distribution. These effects on the transi-
tions were due to the robot’s engagement of the reflexive obstacle 
avoidance during these transitions. In other words, the obstacle 
avoidance behavior acted upon the robot’s experience-gathering 
behavior, thwarting the actions the robot intended to do. Here we 
investigated the characteristics of the transitions influenced by the 
reflexive behavior. The obstacle avoidance behavior was guided 
by proximity sensors, whose activation was highly dependent on 
the angle of the sensors to an obstacle. These angles can change 
between different trials, resulting in different sensor activations 
and thus in different movements of the robot. Thus the outcome 
of the actions combined with obstacle avoidance had a low repro-
ducibility. A direct result of this low reproducibility was that the 
transition probability associated with this action would be low, 
given a high number of experiences. In contrast, a low number 
of experiences could mean that the transition probabilities of 
these interrupted actions was high, and would thus have a high 
influence on the navigational behavior. In order to analyze these 
effects on the transition probabilities we introduced the notion of 
a bad connection, defined as a low correlation between the robot’s 
intended actions and the transition that was learned, namely the 
action’s outcome. In order to quantify this relation we calculated 
the line between the points within a certain state at which the robot 
chose an action to the point within another state, at which the 
subsequent action was chosen. This line was compared with the 
direction of the action the robot intended to take. The executed 
action was defined as a bad connection if the angle between the 
line representing the robot’s traversed path and the direction of the 
intended action exceeded 135°. We chose this threshold because the 
actions with this difference in orientation had a mean correlation 
of 0.19 (±0.51). Figure 6A shows the mean transition probabilities 
of these bad connections in the experienced transition matrix as a 
function of the overall number of gathered experiences. At a low 
amount (some hundred) of exploration steps, the average transition 
probability for these transitions was 0.69. With increasing explora-
tion time, these average probabilities decayed to 0.16. The analyzed 
connections amounted to 29% of all connections associated with 
obstacle avoidance behavior. Thus, the influence on the transition 
matrix of obstacle avoidance resulting in a low correlation between 
intended and executed action reduced with an increasing number 
of experiences.

Impact of the limited experiences
Were the differences between the geometrical properties and those 
learned by the robot due to the robot’s limited experience time? As 
outlined in the Section “Materials and Methods”, the geometrical 
transition matrix was generated by simulating the execution of each 
action on each position within a state. In order for the real-world 
robot to learn its environment to this extent simply by executing 
actions at random, it would have to experience the environment 
for an infinite time. In contrast, the robot’s experienced transition 
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matrix is based on executing each action on each state 11.54 times 
on average (executing actions on 1.8% over all possible positions 
within a state; 97% overall action execution was executed only once 
on a position). Here we investigated the influence of this limited 
experience on the robot’s reduction in action predictability and 
the increase in the similarity between the outcomes of different 
executed actions. To do so, we compared the action predictability 
and action similarity of generated geometrical transition matrices 
to the geometrical transition matrix. The generated geometrical 
transition matrices were calculated in the same way as the geometri-
cal transition matrix; however, the number of actions executed 
on each state was restricted to that of the real-world robot. We 
simulated 300 generated transition matrices. In order to investi-
gate the influence of finite experience on action predictability, we 
calculated the action predictability values for each action of the 
300 generated transition matrices. We correlated each of these 300 
distributions of predictability values with that of the geometrical 
transition matrix and found a mean correlation of 0.89 (±0.02). 
In contrast, we obtained a lower similarity (r = 0.48) between the 
distribution of the predictability values of the robot’s experienced 
transition matrix and the geometrical transition matrix. The same 
approach was used to correlate the distributions of action similar-
ity values of the generated transition matrices with that of the 
geometric transition matrix, yielding a high mean correlation 
of 0.93 (±0.02). In contrast, a low correlation coefficient (0.42) 
was found between the experienced and geometrical transition 
matrices. Thus, restricting the amount of experience to that of the 
robot had a minor effect on the generated geometric transition 
matrices. Finally, to directly compare the geometrical and generated 
transition matrices we correlated the transition probabilities for 
each action and state of the generated matrices with the geometric 
one. Averaging these correlation coefficients for each generated 
transition matrix yielded a distribution with a mean value of 0.86 
(±0.01). A lower mean correlation coefficient (0.56) was obtained 

for the same correlation between the robot’s experienced and the 
geometric transition matrix. The difference between the transition 
matrix constructed from the robot’s experience and the geometrical 
transition matrix was thus dominated by the behavior of the robot 
and was not due to limited knowledge of its world.

Summary
Here we investigated the properties of the transition probabilities 
learned by the robot. In comparison to the transition probabili-
ties given by the topographical distribution of states, we obtained 
in general a lower predictability of the outcome of the robot’s 
actions, as well as a higher similarity between the outcomes of 
different actions. These effects were mainly due to the real-world 
robot’s obstacle avoidance. However, despite the differences 
observed between the geometrical and experienced transition 
matrix, an influence of the topography of states on the robot’s 
experiences was nonetheless observed. These properties of the 
transitions were due to the robot’s behavior and not to the time-
limited experience of the environment. Another influence of the 
obstacle avoidance behavior on the learned properties of the envi-
ronment was given by the low correlation between the intended 
action and the executed action. This influence decreases as the 
robot increases its experience of the environment. Neglecting 
the reflex factors (obstacle avoidance behavior) occurring during 
the decision-making process, which navigational behavior would 
result by taking only the learned transitions into account? We 
would expect that it was not important for the robot to choose 
a precise action when moving towards a goal, due to the low 
action predictability as well as the high similarity between the 
transition probabilities of different actions. Nevertheless, the 
transition matrix was influenced by the geometrical distribution 
of the place fields, while the obstacle avoidance behavior caused 
a similarity between the actions and a low predictability of an 
action’s resultant state.

Figure � | (A) Mean contribution to the transition probabilities of the bad decisions. Bad decision is defined as a low correlation between actions outcome and the 
direction of the intended action. (B) Occurrence of normalized activity in the decision-making process. (C) Ratio of executed actions which resulted in 
reflexive behavior.
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decIsIon-MakIng Process
The decision-making process involved the selection of actions 
in order to move to a goal, and integrates the centrally learned 
 properties – namely the transition probabilities – and the distal 
learned properties – namely the reflex factors. Here we investigated 
the impact of distal processing on the agent’s decision-making proc-
ess: first in terms of the frequency of obstacle avoidance behavior 
engaged in by the robot; and second by investigating the influence 
of the reflex values on the decision-making process. The frequency 
of obstacle avoidance behavior was quantified as the ratio of transi-
tions combined with reflexive events to the total number of tran-
sitions. Figure 6C shows the percentages of occurrence of these 
reflex values for the geometric and experienced case. Higher values 
of these ratios occurred more often in the experienced case, with 
a mean value of 0.42, than in the geometrical case, reflected by a 
mean of 0.17. This difference in means was caused by operational 
differences between the robot and the simulation, such as the spatial 
extension of the robot (see Materials and Methods), which meant 
that the robot-based agent used the obstacle avoidance behavior 
more frequently.

Next we investigated the impact of the reflex factors on the 
 decision-making process by analyzing the normalized activity. After 
flooding (see Materials and Methods), the normalized activity of a 
state is defined as the ratio of the maximum action activation to the 
sum of all actions’ activations. During the decision-making process, 
the agent selected the action most highly activated at the robot’s cur-
rent location, which meant that a low normalized activity describes 
a situation where all actions would result in a similar navigational 
performance. In contrast, high values define a decision-making 
process in which the agent chose a precise action in order to move 
to the goal. In general, this normalized activity was higher for the 
experienced than for the geometric transition matrix (Figure 6B). 
This implies that the robot chose a precise action in order to move to 
a goal, and underwent a stable decision-making process. However, 
as discussed above, we actually expected a lower normalized activity 
considering only the transition probabilities. In contrast the lower 
reflex factors in the experienced case were due to an increase of 
normalized activities for the experienced transition matrix. Thus 
taking the reflexes into account reduced the effects of the obstacle 
avoidance behavior on the decision-making process, and resulted 
in a more precise action selection.

How did the different components of the algorithm influ-
ence the behavior of the robot? Taking only the central processes, 
namely the state transitions, for the decision-making into account, 
different action executions would result in similar navigational 
performances; although navigation in the narrow arms required 
precise actions in order to reduce wall collisions and thus reduced 
the path length to the goal. Integrating the distal learned envi-
ronmental properties, namely reflexes, into the decision-making 
process, the robot now executed one precise action to navigate 
towards the goal. Thus as we expected, taking the distal process-
ing into account reduces the effects of reflexive behavior and 
allowed the robot to successfully navigate in the environment. 
As mentioned above, another influence of the reflexive behavior 
on the transition matrix was a low correlation between intended 
and executed actions. This influence depended on the extent of 
the robot’s experience in the environment. Taking the reflexes into 

account reduced the number of experiences needed to neglect this 
effect on the navigational behavior, as the probabilities combined 
with obstacle avoidance behavior were reduced by the reflex factor. 
Thus the precise selection of an action in the decision-making 
process and the reduction of the number of experiences needed 
to navigate in the environment were due to the differentiation 
between a distal processing represented by the reflex values, 
and the central processing represented by the transition prob-
abilities between the states, which were both integrated in the 
decision-making process. Differentiating between reflexive and 
central processing allowed the robot to successfully navigate in 
the environment.

learnIng behavIor
Next we analyzed the plasticity of the navigation system by examin-
ing the adaptation of the robot’s navigational behavior to changes 
in the environment. In order to do so we inserted an obstacle into 
the previously learned four-arm-maze environment, as shown 
in Figure 7A. We implemented and compared two different 
approaches to allow the robot to adapt to this change: batch and 
online learning (see Materials and Methods).

Online learning
First we investigated the adaptation process with the help of online 
learning by analyzing the robot’s path passing the added obstacle. 
In each trial the robot navigated from one start state within one 
of the three arms to a target site, as shown in Figure 7A. In order 
to evaluate these trials we calculated the robot’s normalized path 
in a certain area surrounding the wall shown in Figure 7A. Here 
the normalized path was given by the robot’s path in a certain area 
surrounding the wall, normalized by the direct path, which was the 
shortest traversable path between the robot’s entry and exit point of 
this area. The lengths of the robot’s paths are shown in Figure 7B as 
a function of trial number. After a few trials (8) the path length of 
the robot reached values comparable to the navigational perform-
ance reported earlier. After 20 trials the selection of actions during 
decision-making on the different states is stabilized, and thus the 
changed environmental properties are fully integrated. The vari-
ation of the path length in later trials is due to the different start 
positions of the robot within the different arms (see Figure 7B). 
Thus, online learning enabled the agent to quickly adapt to envi-
ronmental changes.

As already mentioned, the navigational behavior of the system was 
based on two different environmental properties, stored as transition 
probabilities and reflexes. In order to analyze their contributions to 
the environmental adaptation, we compared the decision-making 
process based on transition probabilities and reflexes to that uti-
lizing the transition probabilities alone. Thus we ran the flooding 
algorithm (as described in the Section Materials and Methods) first 
using the transition matrix and reflexes, and second utilizing only 
the transition matrix. In order to analyze the integration of the 
changed environmental properties into the transition matrix, we 
compared the action selection based only on the transition matrix 
before learning and after all trials of online learning. As seen in 
Figure 8A, we found no difference but on two states between the 
best action of each state, selected only on the basis of the transition 
matrix, before (blue arrows) and after online learning (red arrows). 
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Thus experience with the added obstacle was not fully integrated 
into the transition probabilities. In contrast, the action selection 
process based on both the transition matrix and the reflexes (yellow 
arrows) did show integration of the new environmental features. 
Thus, during online learning, the reflexes were responsible for the 
integration of the new obstacle into the decision-making process.

We further investigated this integration of the changed envi-
ronmental properties into the reflexes rather than the transition 
probabilities. The adaptation processes of the transition matrix 
and reflexes were dependent on the amount of actions already 
executed before the environment was changed (see Materials and 
Methods). As shown previously, without taking the reflexes into 
account, actions shared a similar activation value after the flood-
ing process. In order for the transition matrix to adapt to envi-
ronmental changes, the connectivity among neighboring states 
must change. However, we know that connected states share a 
similar activation due to the similarity and low predictability of 
the respective action outcomes, which means that any change 
in transition probability must be reasonably large in order to 
allow another action to be selected during the decision-making 
process. Before we added the obstacle to the four-arm-maze, the 
robot had experienced its environment by executing each action 
on each state 11.54 times on average. Thus, the robot would had 
to experience the changed environment for a long time before 
the change in transition probabilities could trigger an alternative 
action selection during the decision-making process. In contrast, 
the reflexive processing acted as a penalty on the action’s activa-
tion. Thus, the influence of the transition probabilities on the 
decision-making process depended directly on the activation of 
the neighboring states. In contrast to the influence of the reflex 
factors, which depended on the sum of the incoming activation 
for each action and thus conveniently required fewer experiences 

Figure � | (A) A new obstacle (construction side) is added in an already learned 
environment. To test the adaptation process we evaluated the robots path 
through the construction side to the target side starting from three different 
start states, each located in one of the three different arms. (B) The adaptation 
process was done with online learning. This type of learning corresponds to an 
Exploration and Navigation stage at the same time, as shown in the lower part 
of the figure. The pictures in the upper part show the robot’s path in an area 
around the added obstacle, while the robot navigated to the target. The robot’s 
path length in this area is plotted in the center of this figure. The different colors 

correspond to the robot’s start position in the different arms as shown in (A). The 
brown line corresponds to the best approximation of the path length of all runs 
by an exponential combined with a constant. (C) The adaptation process using 
batch learning. After some action executions done in one of the 22 states 
surrounding the construction side the path of the robot from three different start 
states to one target side was evaluated. The robots path is shown in the upper 
part of the figure, for different number of experiences. In the lower part the best 
decision in order to move to the goal is shown for each state for a different 
number of experiences.

Figure � | The best decision in order to move to the target side. The 
different colored arrows correspond to the different conditions. Before the 
robot experiences the changed environment we executed the decision-
making process based only on the transition matrix without the reflex factors 
(Blue arrow). After the adaptation process (online learning: 45 runs/batch 
learning: 2500 decisions see Figure �) the decision process was calculated 
also without reflex factors based on the transition matrix (red arrow). The 
yellow arrows correspond to the condition of the integrated changes of the 
environment combined with the transition matrix and the reflexes.  
(A) represents the online learning while (B) batch learning.
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to integrate any environmental changes. As soon as the reflexes 
adapted to the changes in the environment, the action which led 
to a reflexive behavior was no longer executed during the online 
learning process. As a result, the adaptation process stopped. In 
summary, during online learning it is the reflexive processing that 
enabled a fast integration of the environmental changes.

Batch learning
Next we investigated the adaptation process involved in batch 
learning and compared it to online learning. Each of the expe-
rience stages was specified by the number of action execution 
done on each of the 22 states surrounding the added obstacle. 
In order to evaluate the robots navigational performance, the 
robot navigated in each navigation stage two times from three 
different start positions within one arm to the target site. The 
average normalized path within a certain area around the added 
obstacle, for each start position is shown in Figure 7C. After an 
experience stage containing around 500 experiences, the path 
length of the robot reached a length comparable to the robot’s 
best navigational performance reported earlier. A slight increase 
in the path length can be seen after 800 experiences. This was due 
to some new learned features of the environment. As the obsta-
cle was located in the middle of a state, actions were executed 
which results in a reflexive behavior on one side of the obsta-
cle and on the other side not. Thus in this case batch learning 
could result in some instability in the decision-making process, 
according to some conflicting experiences learned in the envi-
ronment. After 1500 randomly executed actions the navigational 
performance did not change much anymore and in general the 
best actions in order move to the target did not change anymore. 
Thus after a short amount of time the changed environmental 
features were integrated in the navigational performance by batch 
learning. Here, the robot needed more time to experience the 
environment compared to online learning. This was due to the 
difference types of learning, as online learning integrated only 
the environmental features in order to move to the goal while 
batch learning was latent learning and thus could integrate any 
changed features. However after a short amount of time online 
and batch learning integrated the environmental changes in their 
navigational behavior.

Also here we analyzed the contribution of the transition prob-
abilities and the reflex factors to the navigational adaptation. As 
done for online learning we analyzed the decision-making proc-
ess by comparison of the decision-making process based on the 
transition matrix and reflexes with the one based on only the 
transition matrix. We concluded from Figure 8B that also the 
transition probabilities adapted to the changes in the environ-
ment. Thus in contrast to online learning, during batch learning 
the transition probabilities were able to integrate the changed 
environmental features.

Differentiating between reflexive and central processing allowed 
the robot to successfully navigate in the environment. This differ-
entiation also resulted in a fast integration of the environmental 
changes and thus navigational adaptation to the changes in the 
environment. The presented architecture was able to successfully 
model navigational behavior and kept its plasticity in an already 
learned environment.

dIscussIon
We have introduced a cognitive model capable of generalizing over 
a broad variety of behavioral domains, and applied it to a naviga-
tional task. Here, behavior was modeled as state transitions in the 
state space spanned by place cells. Furthermore, the architecture 
of this model differentiated between central processing and dis-
tal processing. Distal processing was defined by the state transi-
tions where the reflexive behavior of the sensory-driven obstacle 
avoidance was triggered. Central processing acted on all learned 
transitions between states. The reflexive behavior acted upon the 
robot’s learned transitions, resulting in uniformly distributed and 
less predictable action outcomes than expected from inspection 
of the topographical distribution of place fields used. However, as 
expected, the integration of the information gained by reflexive 
and central processing in the decision-making process reduced the 
impact of sensory-driven obstacle avoidance behavior on the navi-
gational performance. In addition the introduced model quickly 
adapted to changes in the environment. Consequently, the robot 
was able to successfully navigate in the real-world environment 
after only a short amount of time.

Here we used eight different discrete actions in order to limit 
the robot’s experience time. The outcome of these different actions 
resulted in redundancies, which would increase by increasing the 
number of actions. Consequently the robot would not gain more 
information about the environment by more action possibilities. 
In addition using discrete actions allows the cognitive architecture 
to be easily expandable. Without a change of concepts it might be 
applied to a robot equipped with a grabber to lift object. In order 
to capture such a behavior the state space has to be expanded, such 
that each sensory state is defined by a spatial state (place fields) 
and the position of an object, either at the bottom or at the top 
lifted by the grabber. This state space representation could not be 
embedded in a 2D space, but necessitates a high-dimensional rep-
resentation. However, learning transition probabilities and reflex 
factors does not refer to the dimensionality of state space and the 
same algorithms might be applied. The agent has to experience the 
transition probabilities of this new sensory state space by execut-
ing its action, consisting of the movement of the grabber and the 
eight different directions. In order to let the robot lift an object 
the corresponding sensory state has to be activated an this activity 
has to be back propagated as described in the Section Materials 
and Methods. Thus the discretization of the action makes it easy 
to apply the cognitive model to different behaviors and expand 
the action repertoire with different unrelated actions, like lifting 
objects. Admittedly, in a very high-dimensional state space new 
problems due to very sparse data arise. This, however, is a general 
problem of large non-hierarchical state spaces and beyond the scope 
of the present work. In this cognitive architecture the limitation 
on modeling different behaviors is given by the robot’s experience 
time, which increases with the number of states and actions and 
thus with the complexity of the behavior to be modeled.

The decision-making process involves two parameters, the 
decay factor and a parameter in the reflex value (see Decision 
making). The decay factor is also known as discounting factor 
(Sutton and Barto, 1998) and was introduced to reduce the number 
of transitions needed to move to the goal. In case of a small decay 
factor, the agent preferred to make fewer transitions to move to 
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Next we discuss the computational complexity involved in the 
application of the cognitive architecture in a context other than 
navigation. Under natural conditions simple cells in primary visual 
cortex display sparse activity. Indeed, recent studies propose that 
sensory representations of natural stimuli optimize specific statisti-
cal properties like sparseness (Olshausen and Field, 1996), temporal 
coherence (Körding et al., 2004; Wyss et al., 2006) and predictability 
(König and Krüger, 2006; Sprekeler et al., 2007). In line with this 
research, we suggest that sensory states in general are optimal for 
predicting the action induced state transitions (Weiller et al., sub-
mitted). This implies that the transition matrix of such highly pre-
dictable sensory representations contain either rather high or low 
and few mid-level probabilities, i.e. they are sparse. This property, 
as argued above, leads to benign scaling behavior. We like to point 
out that this is not a worst-case analysis. To the contrary, it is based 
on the assumption that the properties of sensory representations 
are optimized with respect to the available behavioral repertoire. 
Hence we hypothesize, that the presented cognitive architecture 
has tractable computational complexity exactly for the relevant 
scenarios, but not necessarily in general.

Different studies have modeled navigational behavior by using 
place cells as a representation of the environment. These different 
approaches can be characterized by the type of learning used: 
Hebbian learning or reinforcement learning. The first type of 
learning exploits the fact that while moving in the environment, 
more than one place cell is active at the rodent’s location, caused 
by the overlapping place fields of the corresponding cells. This 
allows the application of the biologically motivated principles 
of LTP and LTD, resulting in a strengthening of the connec-
tions between place cells which were active in a certain time 
interval. These cells and their connections between each other 
represent a cognitive map (Blum and Abbott, 1996; Gerstner and 
Abott, 1997; Gaussier et al., 2002). Other studies introduced a 
cell type – goal cells – representing the goal of the navigational 
task (Burgess et al., 1997; Trullier and Meyer, 2000). The connec-
tions between the current place and the goal cell encode the place 
cell’s direction to the goal. The strength of connections between 
these two cell types was also modulated by Hebbian learning. In 
contrast to our model, the mentioned approaches rely on a global 
orientation and a metric, measuring the direction and distance 
to the goal from a given location within the environment. The 
global orientation used by these studies is defined using the same 
frame of reference over the whole environment. In contrast, we 
wanted the robot to learn the topology of the environment and 
thus did not introduce such global variables as orientation or a 
metric. Furthermore, some of the mentioned studies (Burgess 
et al., 1997; Gerstner and Abbott, 1997; Foster et al., 2000; Trullier 
and Meyer, 2000; Strosslin et al., 2005) used population coding 
to encode the position or direction to the goal. The population 
vector approach is based on the assumption that place fields and 
rodent’s orientations have separate topologies. Thus to decode 
the robot’s position or orientation, the weighted average of 
place cells or orientations has to be calculated. This incorpo-
rates knowledge of the topology in the decoding scheme and 
impedes a generalization to other action repertoires. In contrast, 
we defined the actions independently of each other so that the 
action repertoire can easily be expanded, for example including 

the goal and thus make also those transitions characterized by 
low predictability, i.e. low reliability. In order to reduce unreli-
able transitions and thus the variation of pathlength to the goal 
between different runs, we chose a decay value of 0.9, used in 
most literature (Sutton and Barto, 1998). However a change of 
the decay value between 0.6 and 0.95 did not affect the decision-
making process much. Further, to calculate the reflex values we 
weighted the ratio of transitions associated with a reflexive event 
to all over transitions with a factor of 5/6. In case of a weighting 
factor smaller than 5/6 the reflexive events would be less involved 
in the decision-making process, such that the agent prevents less 
transition associated with a reflexive event in order to move to 
the goal. An increase of the weighting factor would result in an 
opposite behavior, while at a value of one transitions would be 
not considered in the decision-making process in case all transi-
tions are associated with an reflexive event, which are obtained 
at the narrow arms. Thus, such a weighting factor would reduce 
the agent’s navigability especially at the narrow arms. However, 
a change of the weighting factors between 0.5 and 0.95 does not 
have a huge impact on the decision-making process. Thus, in a 
certain range the variation of the parameters have a small impact 
on the agent’s navigational behavior.

Further we characterized the computational complexity of the 
reverse flooding procedure. In each iteration the activity of each 
state is propagated to all other states as defined by the transition 
probabilities (see Action Execution). This implies a multiplication 
of the transition matrix with the state vector, resulting in O(N2) 
operations for N states. However, as the transition matrix is highly 
sparse, the effective number non-zero transition probabilities is 
much lower. Specifically, scaling behavior depends on the number 
of connected states as a function of total number of states. In the 
context of the present study, increasing the size of the arena at 
constant spatial resolution lead to a linear scaling.

Complementary to the cost of each iteration, the number of ite-
rations was estimated. In the present implementation the number 
of iterations is determined by a threshold criteria. When the sum 
of absolute changes of state activation was smaller than 10−5 the 
flooding procedure was terminated (Figure 2). Due to the sparse-
ness of the transition matrix the interaction of two states needs a 
finite number of iterations, in the worst case limited by N, i.e. the 
process is O(N). In the typical scenario, however, the reverse floo-
ding reaches the target state much faster on the scale of the length 
of the final trajectory. During this activity propagation the decay 
factor affects the activity such that it exponentially decays with the 
number of iterations (Figure 2). This punishes long trajectories, 
and for practical purposes, the winning trajectory was always of 
a length comparable to the one leading to the fastest interaction. 
In the context of the present experiments this leads to a scaling 
of O(N1/2). A strict upper bound is dependent on the topology of 
the problem. Specifically, the sparser the transition matrix is, the 
cheaper a single iteration can be computed, but the number of 
necessary iterations increases. For a non-sparse transition matrix 
a single iteration is more expensive, but the number of necessary 
iterations is reduced. As an estimate of the computational expense 
of the total computational costs of the algorithm presented above 
we obtain a scaling of better than O(N3). This is not cheap, but 
clearly computationally tractable.
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the action of lifting an object. Cuperlier et al. (2007) suggested 
a navigation algorithm based on learned transitions between 
activity patterns of place cells. In this study only connections 
between place cells with their neighbors were allowed, predefin-
ing a topology to be learned. Further, in the mentioned work the 
agent’s location within the environment is associated with an 
activity pattern of place cells. In contrast we defined a state space 
by applying a winner take all process on the place cells activity. 
We can hypothesize that the transitions captured by Cuperlier 
and colleagues are not as sparse as the one used here. This is due 
to the possibility to establish transitions from place cells with 
an activity value smaller than the maximum activity and larger 
than zero. Other branches of studies (Arleo and Gerstner, 2000; 
Foster et al., 2000; Arleo et al., 2004; Strosslin et al., 2005) used 
reinforcement learning (Sutton and Barto, 1998) to perform a 
navigational task. The concepts of Markov Decision Processes 
and value iteration (Sutton and Barto, 1998) are commonali-
ties between reinforcement learning and our approach, while 
in our model, value iteration was expanded by reflexes. A pure 
reinforcement learning approach involves learning the properties 
of the environment by using an explicit reinforcement signal, 
given by a goal state; in the presented model these properties 
are latently learned (Tolman, 1948), resulting in a global strategy 
for navigation in this environment. In contrast to other studies, 
here we have presented a cognitive model that is able to learn the 
topology and properties of the environment in a latent manner 
and can additionally be expanded to model other behaviors by 
redefining the meaning of the actions and states.

In the introduced cognitive model we differentiated between 
central and distal processing, the latter driven by the reactive 
obstacle avoidance behavior. In order to control autonomous 
robots, one approach tries to utilizes reactive controller, which 
selects the next action as a function of the current sensor readings. 
Millan’s (1996) approach tries to combine traditional reinforce-
ment learning with reactive learning procedure. Thus traditionally 
reinforcement learning in a navigational paradigm evaluates the 
quality of an action to reach a global goal. In this work a nega-
tive reinforcement is given when the robot facilitates its collision 
sensors to do obstacle avoidance. While in the mentioned study, 
environmental properties are learned for a particular goal, here 
we learned the environmental properties in a latent way, such 
that we are able navigate to different goals in the environment. 
Similar to Millan our cognitive agent can easily adapt to changes 
of the environment. In summary, by learning the environmental 
properties in a latent way, the robot is able to navigate to different 
goals in the environment, while differentiating between central 
and distal components results in a fast adaptation to changes of 
the environment.

The introduced cognitive model is based on a sensory rep-
resentation composed of discrete states. In this state space the 
robot first learned the sensory outcomes of its action’s execu-
tion, namely the state transition and the reflex factors. Thus, the 
robot learned the environmental properties in an unsupervised 
fashion with respect to its actions. Based on these results, the 
robot planned its action in order to move to the goal state. We 
defined the states such that they are equivalent to the place fields 
of place cells, providing a representation of body position within 

the external space. Although the contribution of place cells to 
the rodent’s navigational performance is not fully understood, 
an involvement of these cells has been obtained (Morris et al., 
1982). These place cells can be understood as an optimally stable 
sensory representation of the visual input to a robot moving in 
an environment (Wyss et al., 2006). The unsupervised learning 
resulted in a reorganization of the sensory space spanned by the 
robot’s visual input, leading to a low-dimensional representation 
of the sensory input with a spatial interpretation. In order to 
determine the robot’s current state, we used a winner-takes-all 
process over all place cells’ current activations. This process results 
in a discrete division of the robot’s navigational space, spanned 
by the robot’s possible positions. Since this navigational space 
completely determines the navigational task, a discrete division 
of this space corresponds to a discrete division of any sensory 
space relevant for navigation (e.g. the sensory space spanned by 
the proximity sensors, which measure distances to objects). In 
this study we used predefined place cells and used a tracking 
camera to determine the place cells activities. This complements 
a previous study on unsupervised learning, using a frontal camera 
of the robot, to form place cells at high levels of the sensory hier-
archy (Wyss et al., 2006). In ongoing work we combine these two 
approaches to generate appropriate behavior in an autonomous 
agent based on local sensory only. In addition, differentiating 
between distal processes – namely the transitions influenced by 
the sensory-driven behavior – and central processes – the state 
transitions – is expected to result in a better performance of the 
system. In order to extend our model to different behaviors, we 
need only to divide the relevant sensory space into discrete states 
and implement the actions that define the behavior to be modeled. 
By means of executing these actions, the sensory outcome in the 
state space can be learned.

The number of actions influences the agent’s navigational per-
formance. Given a state space, increasing the number of action 
possibilities, i.e. the behavioral repertoire, allows more appropri-
ate actions and is expected to lead to a small improvement of 
navigational performance. Such an expansion of the behavioral 
repertoire does not change the principles of the presented model, 
but only increases the number of learned transitions, scaling linear 
with the number of actions. However, increasing the action pos-
sibilities above a certain number would result in a high similarity 
between the actions transition probabilities and thus does not 
result in an increase of the navigational performance. Hence, the 
discretization of the action space should be in a reasonable rela-
tion to noise level of actions, defined in this study by the robot’s 
angular precision.

Also the number of discrete states influences the navigational 
performance. Increasing the number of states would not only 
increase the navigational performance but also the precision of 
spatial navigation. An increase of the number of states allows the 
agent to capture the navigational properties of the environment 
more precisely in its transition probabilities. This would result in 
a better navigational performance of the agent. Further, increas-
ing the number of states allows the agent to navigate to a more 
precise position within the environment. But increasing the states 
results raises the time needed to experience the environment, which 
scales linearly with the number of states. Here, we chose a state 
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