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expressions and/or eye gaze for more natural interactions with 
human users (for a recent overview see Schaal, 2007). Different 
control architectures for multi-modal communication have been 
proposed that address specifi c research topics in the domain of 
human-centered robotics. It has been shown for instance that 
integrating multiple information channels supports a more intui-
tive teaching within the learning by demonstration framework 
(McGuire et al., 2002; Steil et al., 2004; Pardowitz et al., 2007; 
Calinon and Billard, 2008), allows the robot to establish and main-
tain a face-to-face interaction in crowded environments (Spexard 
et al., 2007; Koenig et al., 2008), or can be exploited to guaran-
tee a more intelligent and robust robot behavior in cooperative 
human–robot tasks (Breazeal et al., 2004; Alami et al., 2005; Foster 
et al., 2008; Gast et al., 2009). Although the proposed multi-mo-
dal architectures differ signifi cantly in the type of control scheme 
applied (e.g., hybrid or deliberative) and theoretical frameworks 
used (e.g., neural networks, graphical or probabilistic models) they 
also have an important aspect in common. Typically, the integra-
tion of verbal and nonverbal information and the coordination of 
actions and decisions between robot and human are performed in 
dedicated fusion and planning modules that do not contain sen-
sorimotor representations for the control of the robot actuators. A 
representative example are control  architectures for HRI based on 
the theoretical framework of joint intention theory (e.g., Breazeal 
et al., 2004; Alami et al., 2005) that has been originally proposed 
for cooperative problem solving in distributed artifi cial intelligence 
systems (Cohen and Levesque, 1990). In these architectures a joint 
intention interpreter and a reasoner about beliefs and communica-
tive acts can feed a central executive that is responsible for joint 
action planning and coordination on a symbolic level. A different 
approach to more natural and effi cient HRI followed by our and 

INTRODUCTION
New generations of robotic systems are starting to share the same 
workspace with humans. They are supposed to play a benefi cial role 
in the life of ordinary people by directly collaborating with them 
on common tasks. The role as co-worker and assistant in human 
environments leads to new challenges in the design process of robot 
behaviors (Fong et al., 2003). In order to guarantee user acceptance, 
the robot should be endowed with social and cognitive skills that 
makes the communication and interaction with the robot natural 
and effi cient. Humans are experts in coordinating their actions with 
others to reach a shared goal (Sebanz et al., 2006). In collaborative 
tasks we continuously monitor the actions of our partners, interpret 
them effortlessly in terms of their outcomes and use these predic-
tions to select an adequate complementary behavior. Think for 
instance about two people assembling a piece of furniture from 
its components. One person reaches toward a screw. The co-actor 
immediately grasps a screw-driver to hand it over and subsequently 
holds the components that are to be attached with the screw. In 
familiar tasks, such fl uent team performance is very often achieved 
with little or no direct communication. Humans are very good in 
combining motion and contextual information to anticipate the 
ultimate goal of others’ actions (Sebanz et al., 2006). Referring to 
objects or events through the use of language and communicative 
gestures is essential, however, whenever the observed behavior is 
ambiguous or a confl ict in the alignment of intentions between 
partners has been detected. Ideally, not only the fact that some-
thing might go wrong in the joint action but also the reason for 
the confl ict should be communicated to the co-actor.

The last decade has seen enormous progress in designing 
human-centered robots that are able to perceive, understand and 
use different modalities like speech, communicative gestures, facial 
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other groups is inspired by fundamental fi ndings in behavioral and 
neurophysiological experiments  analyzing perception and action 
in a social context (Wermter et al., 2004; Erlhagen et al., 2006b; 
Bicho et al., 2009; Breazeal et al., 2009). These fi ndings suggest that 
automatic resonance processes in the observer’s motor system are 
crucially involved in the ability to recognize and understand actions 
and communicative acts of others’, to infer their goals and even to 
comprehend their action-related utterances. The basic idea is that 
people gain an embodied understanding of the observed person’s 
behavior by internally simulating action consequences through the 
covert use of their own action repertoire (Barsalou et al., 2003). 
In joint action, the predicted sensory consequences of observed 
actions together with prior task knowledge may then directly drive 
the motor representation of an adequate complementary behavior. 
Such shared representations for perception, action and language are 
believed to constitute a neural substrate for the remarkable fl uency 
of human joint action in familiar tasks (Sebanz et al., 2006).

Many of the experiments on action observation were inspired 
by the discovery of mirror neurons (MNs) fi rst in premotor 
cortex and later in the parietal cortex of macaque monkey (di 
Pellegrino et al., 1992, for a review see Rizzolatti and Craighero, 
2004). Mirror neurons fi re both when the monkey executes an 
object-directed motor act like grasping and when it observes or 
hears a similar motor act performed by another individual. They 
constitute a neural substrate of an abstract concept of grasping, 
holding or placing that generalizes over agents and the modality of 
action-related sensory input. Many MNs require the observation 
of exactly the same action that they encode motorically in order 
to be triggered. The majority of MNs however falls in the broadly 
congruent category for which the match between observed and 
executed actions is not strict (e.g., independent of the kinematic 
parameters or the effector). Important for HRI, broadly congruent 
MNs may support an action understanding capacity across agents 
with very different embodiment and motor skills like human and 
robot. The fact that the full vision of an action is not necessary 
for eliciting a MN response whenever additional contextual cues 
may explain the meaning of the action has been interpreted as 
evidence for the important role of MNs in action understanding. It 
has been shown for instance that grasping MNs respond to a hand 
disappearing behind a screen when the monkey knew that there 
is an object behind the occluding surface (Umiltà et al., 2001). A 
grasping behavior is normally executed with an ultimate goal in 
mind. By training monkeys to perform different action sequences 
Fogassi et al. (2005) have recently tested whether MNs are not only 
involved in the coding of a proximate goal (the grasping) but also 
in the coding of the ultimate goal or motor intention (what to do 
with the object). The fundamental fi nding was that specifi c neural 
populations represent the identical grasping act in dependence of 
the outcome of the whole action sequence in which the grasping 
is embedded (e.g., grasping for placing versus grasping for eating). 
This fi nding has been interpreted as supporting the hypothesis 
that neural representations of motor primitives are organized in 
chains (e.g., reaching–grasping–placing) generating specifi c per-
ceptual outcomes (Chersi et al., 2007, see also Erlhagen et al., 2007). 
On this view, the activation of a particular chain during action 
observation is a means to anticipate the associated outcomes of 
others’ actions.

More recently, brain imaging studies of joint action revealed 
compelling evidence that the mirror system is also crucially involved 
in complementary action selection. People performing identical 
or complementary motor behaviors as those they had observed 
showed a stronger activation of the human mirror system in the 
complementary condition compared to the condition when the 
participants imitated the observed action (Newman-Norlund et al., 
2007). This fi nding can be explained if one assumes a central role 
of the mirror system in linking two different but logically related 
actions that together constitute a goal-directed sequence involving 
two actors (e.g. receiving an object from a co-actor).

It has been suggested that the abstract semantic equivalence of 
actions encoded by MNs is related to aspects of linguistic com-
munication (Rizzolatti and Arbib, 1998). Although the exact role 
of the mirror mechanism for the evolution of a full-blown syntax 
and computational semantics is still matter of debate (Arbib, 2005), 
there is now ample experimental evidence for motor resonance dur-
ing verbal descriptions of actions. Language studies have shown that 
action words or action sentences automatically activate corresponding 
action representations in the motor system of the listener (Hauk et al., 
2004; Aziz-Zadeh et al., 2006; Zwann and Taylor, 2006). Following the 
general idea of embodied simulation (Barsalou et al., 2003) this sug-
gests that the comprehension of speech acts related to object-directed 
actions does not involve abstract mental representations but rather the 
activation of memorized sensorimotor experiences. The association 
between a grasping behavior or a communicative gesture like pointing 
and an arbitrary linguistic symbol may be learned when during prac-
tice the utterance and the matching hand movement occur correlated 
in time (Billard, 2002; Cangelosi, 2004; Sugita and Tani, 2005).

In this paper we present and validate a dynamic control architec-
ture that exploits the idea of a close perception–action linkage as a 
means to endow a robot with nonverbal and verbal communication 
skills for natural and effi cient HRI. Ultimately, the architecture 
implements a fl exible mapping from an observed or simulated 
action of the co-actor onto a to-be-executed complementary behav-
ior which consist of speech output and/or a goal-directed action. 
The mapping takes into account the inferred goal of the partner, 
shared task knowledge and contextual cues. In addition, an action 
monitoring system may detect a mismatch between predicted and 
perceived action outcomes. Its direct link to the motor represen-
tations of complementary behaviors guarantees the alignment of 
actions and decisions between the co-actors also in trials in which 
the human shows unexpected behavior.

The architecture is formalized by a coupled system of dynamic 
neural fi elds (DNFs) representing a distributed network of local 
neural populations that encode in their activation patterns task-
relevant information (Erlhagen and Bicho, 2006). Due to strong 
recurrent interactions within the local populations the patterns may 
become self-stabilized. Such attractor states of the fi eld dynamics 
allow one to model cognitive capacities like decision making and 
working memory necessary to implement complex joint action 
behavior that goes beyond a simple input–output mapping. To 
validate the architecture we have used a joint assembly task in which 
the robot has to construct together with a user different toy objects 
from their components. Different to our previous study in a sym-
metric construction task (Bicho et al., 2008, 2009), the robot does 
not directly participate in the construction work. The focus of the 
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the task. The human performs the assembly steps following a given 
plan which explains the way how different pieces have to be attached 
to each other. He or she can directly request from the robot a specifi c 
component by using speech commands (e.g., Give me component X) 
and/or communicative hand gestures (e.g., pointing, requesting). The 
role of the robot is to hand over pieces in response to such requests or 
in anticipation of the user’s needs, to monitor the user’s actions and 
to communicate potential confl icts and unexpected behaviors dur-
ing task execution to the user. Confl icts may result from a mismatch 
between expected and perceived goal-directed actions either because 
the action should have been performed later (sequence error) or the 
action is not compatible with any of the available construction plans 
defi ning possible target objects (wrong component).

The fact that the robot does not perform assembly steps itself 
simplifi es the task representation that the robot needs to serve the 
user (for a symmetric construction scenario see Bicho et al., 2009). 
What the robot has to memorize is the serial order of the use of the 
different components rather than a sequence of subgoals (e.g., attach 
components A and B in a specifi c way) that have to be achieved 

present study is on anticipating the needs of the user (e.g.,  handing 
over pieces the user will need next) and on the detection and com-
munication of unexpected events that may occur on the plan and 
the execution level. The robot reasons aloud to indicate in conjunc-
tion with hand gestures the outcome of its action simulation or 
action monitoring to the user. The robot is able to react to speech 
input confi rming or not the prediction of the internal simulation 
process. It also understands object-directed speech commands (e.g., 
Give me object X) through motor simulation. The results show that 
the integration of verbal and nonverbal communication greatly 
improves the fl uency and success of the team performance.

JOINT CONSTRUCTION TASK
For the human–robot experiments we modifi ed a joint construction 
scenario introduced in our previous work (Bicho et al., 2009). The goal 
of the team is to assemble different toy objects from a set of compo-
nents (Figure 1). Since these components are initially distributed in the 
separate working areas of the two teammates, the coordination of their 
actions in space and time is necessary in order to successfully achieve 

FIGURE 1 | Human–robot joint construction of different toy objects. The robot has fi rst to infer what toy object the human partner intends to build. Subsequently, 
the team constructs the target object from its components following an assembly plan.
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ROBOT CONTROL ARCHITECTURE
The multistage control architecture refl ects empirical fi ndings accu-
mulated in cognitive and neurophysiological research suggesting a 
joint hierarchical model of action execution and action observa-
tion (van Schie et al., 2006; Hamilton and Grafton, 2008, see also 
Wolpert et al., 2003 for a modeling approach). The basic idea is 
that motor resonance mechanism may support social interactions 
on different but closely coupled levels: an intention level, a level 
describing the immediate goals necessary to realize the intention, 
and the kinematics level defi ning the movements of actions in space 
and time (Figure 2A).

Effi cient action coordination between individuals in cooperative 
tasks requires that each individual is able to anticipate goals and motor 
intentions underlying the partner’s unfolding behavior. As discussed 
in the introduction, most MNs represent actions on an abstract level 
sensitive to goals and intentions. For a human–robot team this is of 
particular importance since it allows us to exploit the motor resonance 
mechanism across teammates with very different embodiment.

In the following we briefl y describe the main functionalities of 
the layered control architecture for joint action. It is implemented 
as a distributed network of DNFs representing different reciprocally 
connected neural populations. In their activation patterns the pools 
encode action means, action goals and intentions (or their associ-
ated perceptual states), contextual cues and shared task information 
(c.f. ‘Model Details’ for details on DNFs). In the joint construction 
task the robot has fi rst to realize which target object the user intends 
to build. When observing the user reaching toward a particular 
piece, the automatic simulation of a reach-to-grasp action allows 
the robot to predict future perceptual states linked to the reaching 
act. The immediate prediction that the user will hold the piece in 
his/her hand is associated with the representation of one or more 
target objects that contain this particular part. In case that there 
is a one-to-one match, the respective representation of the target 
object becomes fully activated. Otherwise the robot may ask for 
clarifi cation (Are you going to assemble object A or object B?) or may 
wait until another goal-directed action of the user and the internal 
simulation of action effects disambiguate the situation.

 during the course of the assembly work. Importantly, since for each 
of the target objects the serial order of task execution is not unique, 
the robot has to simultaneously memorize several sequences of com-
ponent-directed grasping actions in order to cope with different 
user preferences. To facilitate the coordination of actions and plans 
between the teammates, the robot speaks aloud and uses gestures to 
communicate the outcome of its goal inference and action monitor-
ing processes to the user. For instance, the robot may respond to a 
request by saying You have it there and simultaneously points to 
the specifi c piece in the user’s workspace. Although the integra-
tion of language and communicative gestures in the human–robot 
interactions will normally promote a more fl uent task performance, 
this integration may also give rise to new types of confl ict that the 
team has to resolve. From studies with humans it is well known 
for instance that if the verbally expressed meaning of an action or 
gesture does not match the accompanying hand movement (e.g., 
pointing to an object other than the object referred to) decision 
processes in the observer/listener appear to be delayed compared to 
a matching situation. This fi nding has been taken as direct evidence 
for the important role of motor representations in the comprehen-
sion of action-related language (Glenbach and Kaschak, 2002).

For the experiments we used the robot ARoS built in our lab. 
It consists of a stationary torus on which a 7 DOFs AMTEC arm 
(Schunk GmbH) with a two fi nger gripper and a stereo camera head 
are mounted. A speech synthesizer/recognizer (Microsoft Speech 
SDK 5.1) allows the robot to verbally communicate with the user. 
The information about object type, position and pose is provided 
by the camera system. The object recognition combines color-based 
segmentation with template matching derived from earlier learn-
ing examples (Westphal et al., 2008). The same technique is also 
used for the classifi cation of object-directed, static hand postures 
such as grasping and communicative gestures such as pointing or 
demanding an object. For the control of the arm-hand system we 
applied a global planning method in posture space that allows us to 
generate smooth and natural movements by integrating optimiza-
tion principles obtained from experiments with humans (Costa e 
Silva et al., submitted).

FIGURE 2 | Multistage robot control architecture. (A) Joint hierarchical model 
of action execution and action observation. (B) Mapping from observed actions 
(layer AOL) onto complementary actions (layer AEL) taking into account the 

inferred action goal of the partner (layer GL), detected errors (layer AML), 
contextual cues (layer OML) and shared task knowledge (layer STKL). The goal 
inference capacity is based on motor simulation (layer ASL).
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request verbally or by pointing a valid part located in the robot’s 
 workspace, the robot should not automatically start a handing 
over procedure. The user may have for instance overlooked that 
he has an identical object in his own working area. In this case, a 
more effi cient complementary behavior for the team performance 
would be to use a pointing gesture to attract the user’s atten-
tion to this fact. Different populations in the action monitoring 
layer (AML) are sensitive to a mismatch on the goal level (e.g., 
requesting a wrong part) or on the level of action means (e.g., 
handing over versus grasping directly). In the example, input from 
OML (representing the part in the user’s workspace) and from 
ASL (representing the simulated action means) activate a specifi c 
neural population in AML that is in turn directly connected to the 
motor representation in AEL controlling the pointing gesture. As 
a result, two possible complementary actions, handing over and 
pointing, compete for expression in overt behavior. Normally, 
the pointing population has a computational advantage since the 
neural representations in AML evolve with a slightly faster time 
scale compared to the representations driving the handing over 
population. In the next section we explain in some more detail the 
mechanisms underlying decision making in DNFs. It is important 
to stress that the direct link between action monitoring and action 
execution avoids the problem of a coordination of reactive and 
deliberative components that in hybrid control architectures for 
HRI typically requires an intermediate layer (e.g., Spexard et al., 
2007; Foster et al., 2008).

MODEL DETAILS
Dynamic neural fi elds provide a theoretical framework to endow 
artifi cial agents with cognitive capacities like memory, decision mak-
ing or prediction based on sub-symbolic dynamic representations 
that are consistent with fundamental principles of cortical informa-
tion processing. The basic units in DNF-models are local neural 
populations with strong recurrent interactions that cause non-
trivial dynamic behavior of the population activity. Most impor-
tantly, population activity which is initiated by time- dependent 
external signals may become self-sustained in the absence of any 
external input. Such attractor states of the population dynamics 
are thought to be essential for organizing goal-directed behavior 
in complex dynamic situations since they allow the nervous system 
to compensate for temporally missing sensory information or to 
anticipate future environmental inputs.

The DNF-architecture for joint action thus constitutes a com-
plex dynamical system in which activation patterns of neural popu-
lations in the various layers appear and disappear continuously in 
time as a consequence of input from connected populations and 
sources external to the network (e.g., vision, speech).

For the modeling we employed a particular form of a DNF 
fi rst analyzed by Amari (1977). In each model layer i, the activity 
u

i
(x,t) at time t of a neuron at fi eld location x is described by the 

following integro-differential equation (for mathematical details 
see Erlhagen and Bicho, 2006):
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Once the team has agreed on a specifi c target object, the align-
ment of goals and associated goal-directed actions between the 
teammates have to be controlled during joint task execution. 
Figure 2B presents a sketch of the highly context-sensitive map-
ping of observed onto executed actions implemented by the 
DNF-architecture. The three-layered architecture extends a previ-
ous model of the STS-PF-F5 mirror circuit of monkey (Erlhagen 
et al., 2006a) that is believed to represent the neural basis for a 
matching between the visual description of an action in area STS 
and its motor representation in area F5 (Rizzolatti and Craighero, 
2004). This circuit supports a direct and automatic imitation of the 
observed action. Importantly for joint action, however, the model 
allows also for a fl exible perception–action coupling by exploit-
ing the existence of action chains in the middle layer PF that are 
linked to goal representations in prefrontal cortex. The automatic 
activation of a particular chain during action observation (e.g., 
reaching–grasping–placing) drives the connected representation 
of the co-actor’s goal which in turn may bias the decision proc-
esses in layer F5 towards the selection of a complementary rather 
than an imitative action. Consistent with this model prediction, a 
specifi c class of MNs has been reported in F5 for which the effective 
observed and effective executed actions are logically related (e.g., 
implementing a matching between placing an object on the table 
and bringing the object to the mouth, di Pellegrino et al., 1992). 
For the robotics work we refer to the three layers of the matching 
system as the action observation (AOL), action simulation (ASL) 
and action execution layer (AEL), respectively. The integration of 
verbal communication in the architecture is represented by the 
fact that the internal simulation process in ASL may not only be 
activated by observed object-directed actions but also by action 
related speech input. Moreover, the set of complementary behaviors 
represented in AEL consists of goal-directed action sequences like 
holding out an object for the user but also contains communicative 
gestures (e.g., pointing) and speech output.

For an effi cient team behavior, the selection of the most ade-
quate complementary action should take into account not only 
the inferred goal of the partner (represented in GL) but also the 
working memory about the location of relevant parts in the sepa-
rate working areas of the teammates (represented in OML), and 
shared knowledge about the sequential execution of the assembly 
task (represented in STKL). To guarantee proactive behavior of 
the robot, layer STKL is organized in two connected DNFs with 
representation of all relevant parts for the assembly work. Feedback 
from the vision system about the state of the construction and the 
observed or predicted current goal of the user will activate the 
population encoding the respective part in the fi rst layer. Through 
synaptic links this activation pattern automatically drives the rep-
resentations of one or more future components as possible goals in 
the second layer. Based on this information and in anticipation of 
the user’s future needs the robot may already prepare the transfer 
of a part that is currently in its workspace.

In line with the reported fi ndings in cognitive neuroscience 
the dynamic fi eld architecture stresses that the perception of a 
co-actor’s action may immediately and effortlessly guide behav-
ior. However, even in familiar joint action tasks there are situ-
ations that require some level of cognitive control to override 
prepotent responses. For instance, even if the user would directly 
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where c
l
(t) is a function that signals the presence or absence of a 

self-stabilized activation peak in u
l
, and a

mj
 is the inter-fi eld synaptic 

connection between subpopulation j in u
l
 to subpopulation m in 

u
i
. Inputs from external sources (speech, vision) are also modeled 

as Gaussians for simplicity.

RESULTS
In the following we discuss results of real-time human–robot inter-
actions in the joint construction scenario. The snapshots of video 
sequences shall illustrate the processing mechanisms underlying the 
robot’s capacity to anticipate the user’s need and to deal with unex-
pected events. To allow for a direct comparison between different joint 
action situations, the examples all show the team performance during 
the construction of a single target object called L-shape (Figure 3). 
Details on the connection scheme for the neural pools in the layered 
architecture and numerical values for the DNF parameters and inter-
fi eld synaptic weights may be found in the Supplementary Material.

The initial communication between the teammates that lead to 
the alignment of their intentions and plans is included in the videos. 
They can be found at http://dei-s1.dei.uminho.pt/pessoas/estela/
JASTVideosFneurorobotics.htm. The plan describing how and in 
which serial order to assemble the different components is given to 
the user at the beginning of the trials. We focus the discussion of 
results on the ASL and AEL. Figures 4, 5 and 7 illustrate the experi-
mental results. In each Figure, panel A shows a sequence of video 
snapshots, panel B and C refer to the ASL and AEL, respectively. For 
both layers, the total input (top) and the fi eld activation (bottom) 
are compared for the whole duration of the joint assembly work. 
Tables 1 and 2 summarize the component-directed actions and 
communicative gestures that are represented by different popula-
tions in each of the two layers. Since the robot does not perform 
assembly steps itself, AEL only contains two types of overt motor 
behavior: pointing towards a specifi c component in the user’s work-
space or grasping a piece for holding it out for the user.

It is important to stress that the dynamic decision making proc-
ess in AEL also works in more complex situations with a larger 
number of possible complementary action sequences linked to each 
component (Erlhagen and Bicho, 2006).

Figure 4 shows the fi rst example in which the humans starts 
the assembly work by asking for a medium slat (S1). The initial 
distribution of components in the two workplaces can be seen 
in Figure 1. The fact that the user simultaneously points towards 
a short slat creates a confl ict that is represented in the bi-modal 
input pattern to ASL centered over A6 and A7 at time T0. As can 
be seen in the bottom layer of Figure 4B, the fi eld dynamics of 
ASL resolves this confl ict by evolving a self-sustained activation 
pattern. It represents a simulated pointing act towards the short 
slat. The decision is the result of a slight difference in input strength 
which favors communicative gestures over verbal statements. This 
bias can be seen as refl ecting an interaction history with different 
users. Our human–robot experiments revealed that naive users are 
usually better in pointing than verbally referring to (unfamiliar) 
objects. The robot directly communicates the inferred goal to the 

where the parameters τ
i
 > 0 and h

i
 > 0 defi ne the time scale and the 

resting level of the fi eld dynamics, respectively. The integral term 
describes the intra-fi eld interactions which are chosen of lateral-
inhibition type:
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 > 0 and σ

i
 > 0 describe the amplitude and the standard 

deviation of a Gaussian, respectively. For simplicity, the inhibi-
tion is assumed to be constant, w

inhib,i
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vated neurons contribute to interaction. The threshold function 
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(u) is chosen of sigmoidal shape with slope parameter β and 
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The model parameters are adjusted to guarantee that the fi eld 
dynamics is bi-stable (Amari, 1977), that is, the attractor state of 
a self-stabilized activation pattern coexists with a stable homog-
enous activation distribution that represents the absence of specifi c 
information (resting level). If the summed input, S

i
(x,t), to a local 

population is suffi ciently strong, the homogeneous state loses sta-
bility and a localized pattern in the dynamic fi eld evolves. Weaker 
external signals lead to a subthreshold, input-driven activation pat-
tern in which the contribution of the interactions is negligible. This 
preshaping by weak input brings populations closer to the threshold 
for triggering the self-sustaining interactions and thus biases the 
decision processes linked to behavior. Much like prior distribu-
tions in the Bayesian sense, multi-modal patterns of subthreshold 
activation may for instance model user preferences (e.g., preferred 
target object) or the probability of different complementary actions 
(Erlhagen and Bicho, 2006).

The existence of self-stabilized activation pattern allows us to 
implement a working memory function. Since multiple potential 
goals may exist and should be represented at the same time and 
all relevant components for the construction have to be memo-
rized simultaneously, the fi eld dynamics in the respective lay-
ers (STKL and ML) must support multi-peak solutions. Their 
existence can be ensured by choosing weight functions (Eq. 2) 
with limited spatial ranges. The principle of lateral inhibition 
can be exploited on the other hand to force and stabilize deci-
sions whenever multiple hypothesis about the user’s goal (ASL, 
GL) or adequate complementary actions (AEL) are supported by 
sensory or other evidence. The inhibitory interaction causes the 
suppression of activity below resting level in competing neural 
pools whenever a certain subpopulation becomes activated above 
threshold. The summed input from connected fi elds u

l
 is given 

as ( , ) ( , )i l lS x t k S x t= Σ . The parameter k scales the total input to a 
certain population relative to the threshold for triggering a self-
sustained pattern. This guarantees that the inter-fi eld couplings 
are weak compared to the recurrent interactions that dominate 
the fi eld dynamics (for details see Erlhagen and Bicho, 2006). The 
scaling also ensures that missing or delayed input from one or 
more connected populations will lead to a subthreshold activity 
distribution only. The input from each connected fi eld u

l
 is mod-

eled by Gaussian functions:

http://dei-s1.dei.uminho.pt/pessoas/estela/JASTVideosFneurorobotics.htm


Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 5 | 7

Bicho et al. Natural communication in HRI

slat, that is, well ahead of the time when the robot predicts the nut 
as the user’s next goal. This early preparation refl ects the fact that 
handing over the medium slat automatically activates the repre-
sentations of all possible future goals in STKL that are compatible 
with stored sequential orders. Since a yellow bolt and an orange nut 
represent both possible next assembly steps, the combined input 
from STKL and OML (bolt in robot’s workspace) explains this early 
onset of subthreshold motor preparation in AEL.

In the second example (Figure 5) the initial distribution of 
components in the two working areas is identical to the situa-
tion in the fi rst example. However, this time the meaning of the 
verbal request and the pointing act are congruent. Consequently, 
the input converges on the motor representation in ASL repre-
senting the pointing (A6) and a suprathreshold activity pattern 
quickly evolves. This in turn activates the population encoding 
the complementary behavior of handing over the short slat in 
AEL. Compared to the dynamics of the input and the fi eld activ-
ity in the previous case (Figure 4C) one can clearly see that in 
the congruent condition the input arrives earlier in time and the 
decision process is faster. Note that in both cases the alternative 
complementary behavior representing the transfer of a medium 
slat (A3) appears to be activated below threshold at time T0. This 
pre-activation is caused by the input from STKL that supports both 
the short and the medium slat as possible goals at the beginning 
of the assembly work.

user (S2). Figure 4C shows that the input to AEL supports two 
different complementary actions, A1 and A2. However, since the 
total input from connected layers is stronger for alternative A1, 
the robot decides to hand over the short slat (S3). Subsequently, 
the robot interprets the user’s request gesture (empty hand, S4) as 
demanding a medium slat (S5). The observed unspecifi c gesture 
activates to some extent all motor representations in ASL linked 
to components of the L-shape in the robot’s workspace (compare 
the input layer). Goal inference is nevertheless possible due to the 
input from STKL that contains populations encoding the sequential 
order of task execution. The fi eld activation of AEL (Figure 4C) 
shows at time T1 the evolution of an activation peak representing 
the decision to give the medium slat to the user (S6). At time T2 
the robot observes the human reaching towards an orange nut 
(S7). The visual input from AOL activates the motor representa-
tion A4 in ASL which enables the robot to predict that the human 
is going to grasp the nut (S7). Since according to the plan the nut 
is followed by a yellow bolt and the bolt is in its workspace, the 
robot immediately starts to prepare the handing over procedure and 
communicates the anticipated need to the user (S8–S9). Note that 
the activation patterns representing the inferred current goal of the 
user (A4 in ASL) and the complementary action (A3 in AEL) evolve 
nearly simultaneously in time. An additional observation is worth 
mentioning. The input supporting the complementary behavior A3 
starts to increase shortly after the decision to hand over the medium 

FIGURE 3 | Toy object L-shape. (A) Pieces used to build the L-shape. (B) Different serial orders to assemble the L-shape.
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In the third example (Figures 6 and 7) the robot’s action moni-
toring system detects a sequence error and the robot reacts in an 
appropriate manner before the failure becomes manifested. The 
robot observes a reaching towards the short slat (S1) and commu-
nicates to the user that it infers the short slat as the user’s goal (S2). 
The input to the AEL (Figure 7C) triggers at time T0 the evolution 
of an activation pattern at A6 representing the preparation of a 

pointing to the medium slat in the user’s workspace. However, this 
pattern does not become suprathreshold since at time T1 the user 
request the yellow bolt in the robot’s workspace (S3). By internally 
simulating a pointing gesture the robot understands the request 
(S4) which in turn causes an activity burst of the population in AEL 
representing the corresponding complementary behavior (A3). 
However, also this pattern does not reach the decision level due to 

FIGURE 4 | First example: (1) goal inference when gesture and speech contain incongruent information (ASL), and (2) anticipatory action selection (AEL). (A) 
Video snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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Table 1 | Goal-directed sequences and communicative gestures in ASL.

Action Sequence of motor primitives Short description

A1 Reach short slat → grasp Use short slat

A2 Reach medium slat → grasp Use medium slat

A3 Reach yellow bolt → grasp Use yellow bolt

A4 Reach orange nut → grasp Use orange nut

A5 Reach other piece → grasp Use other part

A6 Point to short slat Request short slat

A7 Point to medium slat Request medium slat

A8 Point to yellow bolt Request yellow bolt

A9 Point to orange nut Request orange nut

A10 Point to other part Request other part

Table 2 | Goal-directed sequences and communicative gestures in AEL.

Action Sequence of motor primitives Short description

A1 Reach short slat → grasp Give short slat

A2 Reach medium slat → grasp Give medium slat

A3 Reach yellow bolt → grasp Give yellow bolt

A4 Reach orange nut → grasp Give orange nut

A5 Point to short slat Attend to short slat

A6 Point to medium slat Attend to medium slat

A7 Point to yellow bolt Attend to yellow bolt

A8 Point to orange nut Attend to orange nut

A9 Point to other part Attend to other part

FIGURE 5 | Second example: faster goal inference and speeded decision making due to congruent information from gesture and speech. (A) Video 
snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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inhibitory input from a population in the AML. This population 
integrates the confl icting information from STKL (possible goals) 
and the input from the action simulation (yellow bolt). The robot 
informs the user about the sequence error (S5) and suggests the 
correction by pointing towards the medium slat and speaking to 
the user (S6). The pointing gesture is triggered by converging input 
from STKL, OML and the population in AML representing the 
confl ict. The user reacts by reaching towards the correct piece (S7). 
The internal simulation of this action triggers the updating of the 
goals in STKL which allows the robot to anticipate what component 
the user will need next. As shown by the suprathreshold activation 
pattern of population A3 in AEL, the robot immediately prepares 
the transfer of the yellow bolt (S8–S9).

DISCUSSION AND SUMMARY
The main aim of the present study was to experimentally test the 
hypothesis that shared circuits for the processing of perception, 
action and action-related language may lead to more effi cient and 
natural human–robot interaction. Humans are remarkably skilled 
in coordinating their own behavior with the behavior of others to 
achieve common goals. In known tasks, fl uent action coordination 
and alignment of goals may occur in the absence of a full-blown 
human conscious awareness (Hassin et al., 2005). The proposed 
DNF-architecture for HRI is deeply inspired by converging evidence 
from a large number of cognitive and neurophysiological studies 
suggesting an automatic but highly context-sensitive mapping 
from observed on to-be-executed actions as underlying mechanism 
(Sebanz et al., 2006). Our low-level sensorimotor approach is in 
contrast with most HRI research that employ symbolic manipula-
tion and high-level planning techniques (e.g., Breazeal et al., 2004; 

Alami et al., 2005; Spexard et al., 2007; Gast et al., 2009). Although 
it is certainly possible to encode the rules for the team performance 
in a logic-based framework, the logical manipulations will reduce 
the effectiveness that a direct decoding of others’ goals and inten-
tions through sensorimotor knowledge offers. At fi rst glance, the 
motor resonance mechanism for nonverbal communication seems 
to be incompatible with the classical view of language as an inten-
tional exchange of symbolic, amodal information between sender 
and receiver. However, assuming that like the gestural description 
of another person’s action also a verbal description of that action 
has direct access to the same sensorimotor circuits allows one to 
bridge the two domains. In the robot ARoS, a verbal command 
like Give me the short slat fi rst activates the representation of a 
corresponding motor act in ASL (e.g., pointing towards that slat) 
and subsequently the representation of a complementary behavior 
in AEL (e.g., transferring the short slat). We have introduced this 
direct language–action link into the control architecture not only 
to ground the understanding of simple commands or actions in 
sensorimotor experience but also to allow the robot to transmit 
information about its cognitive skills to the user. Verbally commu-
nicating the results of its internal action simulation and monitoring 
processes greatly facilitates the interaction with naive users since 
it helps a human to quickly adjust his/her expectations about the 
capacities the robot might have (Fong et al., 2003).

Our approach to more natural HRI differs not only on the level of 
the control architecture from more traditional approaches but also on 
the level of the theoretical framework used. Compared with for instance 
probabilistic models of cognition that have been employed in the past 
in similar joint construction tasks (Cuijpers et al., 2006; Hoffman and 
Breazeal, 2007), a dynamic approach to cognition (Schöner, 2008) 

FIGURE 6 | Third example: initial distribution of components in the two working areas.
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represented by the dynamic fi eld framework allows one to directly 
address the important temporal aspects of action coordination (Sebanz 
et al., 2006). As all activity patterns in the interconnected network of 
neural populations evolve continuously in time with a proper time 
scale, a change in the time course of population activity in any layer 
may cause a change in the robot’s behavior. For instance, converging 
input from vision and speech will speed up  decision processes in ASL 

and AEL compared to the situation when only one input signal is avail-
able. Confl icting signals to ASL on the other hand will slow down the 
processing due to intra-fi eld competition (compare Figures 4 and 5). 
This in turn opens a time window in which input from the AML 
may override a prepotent complementary behavior (Figure 7). We 
are currently exploring adaptation mechanisms of model parameters 
that will allow the robot to adapt to the preferences of different users. 

FIGURE 7 | Third example: Error detection and correction. (A) Video snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) 
Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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