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Computational models of neuromotor control require forward models of limb movement
that can replicate the natural relationships between muscle activation and joint dynamics
without the burdens of excessive anatomical detail. We present a model of a three-link
biomechanical limb that emphasizes the dynamics of limb movement within a simpli-
fied two-dimensional framework. Muscle co-contraction effects were incorporated into
the model by flanking each joint with a pair of antagonist muscles that may be activated
independently. Muscle co-contraction is known to alter the damping and stiffness of limb
joints without altering net joint torque. Idealized muscle actuators were implemented using
the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but
omits series elasticity. The natural force-length-velocity relationships of contractile muscle
tissue were incorporated into the actuators using ideal mathematical forms. Numerical
stability analysis confirmed that co-contraction of these simplified actuators increased
damping in the biomechanical limb consistent with observations of human motor con-
trol. Dynamic changes in joint stiffness were excluded by the omission of series elasticity.
The analysis also revealed the unexpected finding that distinct stable (bistable) equilibrium
positions can co-exist under identical levels of muscle co-contraction. WWe map the condi-
tions under which bistability arises and prove analytically that monostability (equifinality)
is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic

findings in the full biomechanical limb model.
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INTRODUCTION

Forward models of musculoskeletal dynamics replicate the nat-
ural relationship between muscle contraction and limb move-
ment. Forward models are necessary for numerical optimization
of motor control strategies (Todorov, 2004) and for exercising
theoretical models of neuromotor control (e.g., Conforto et al,,
2009; Harischandra et al., 2010). At least one commercial package
(LifeMOD!) is currently available for constructing anatomically
precise forward models of specific body parts and such models
are routinely applied to the inverse problem of estimating isolated
muscle and joint forces from observed limb movements (Erdemir
et al., 2007). However this level of anatomical detail is excessive
when exploring basic theoretical principles of neuromotor con-
trol. In such cases the dynamical character of limb movement is of
primary importance and the use of simplified anatomical models
is justified. We present a planar model of an idealized biomechan-
ical limb (Figure 1) that evokes naturalistic limb movements in
response to muscle contractions and co-contractions yet remains
amenable to customization by individual researchers?.

ILifeMOD is a registered trademark of Biomechanics Research Group, Inc.
2The MaTLAB source code is available from the authors on request. MATLAB is a
registered trademark of The Mathworks, Inc.

Co-contraction (the simultaneous contraction of antagonist
muscles) is known to stabilize limb movements (Milner and
Cloutier, 1995; Milner, 2002; Zakotnik et al., 2006; Lametti et al.,
2007) and is regarded as a distinct component of the motor com-
mand in many theoretical models of motor control (Feldman and
Levin, 1995; Bhushan and Shadmehr, 1999; Gribble and Ostry,
1999; Todorov, 2000; Gribble, 2003; Neilson and Neilson, 2005).
However traditional planar limb models typically lump oppos-
ing muscles into unitary joint actuators that do not accommodate
co-contraction. The present model overcomes this limitation by
actuating each joint with an antagonistic pair of muscle actuators
that may be activated independently.

Co-contraction alters the biomechanical operating ranges of
muscle and tendon by increasing both muscle damping (viscos-
ity) and musculotendon stiffness (elasticity). Winters and Stark
(1985, 1988) show that dynamic limb impedance (resistance to
perturbation) is accurately predicted by an eighth-order model
of antagonist Hill-based muscles. Such models (after Hill, 1938)
include a series elastic (SE) element that represents the passive
elasticity of muscle tissue and tendon (see Winters and Stark,
1987; Zajac and Winters, 1990; Pandy, 2001; Winter, 2005; Erdemir
et al., 2007, for reviews). In these models the series elastic stiff-
ness increases (becomes less compliant) non-linearly with stretch
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which results in increased joint stiffness under co-contraction
(Winters et al., 1988).

Despite this, musculotendon series elasticity is typically an
order of magnitude stiffer than contractile muscle tissue and we
treat it as negligible in the present model. This simplification per-
mits insights into the dynamics through a formal stability analysis,
although it comes at the loss of co-contraction mediated changes
in musculotendon stiffness. Nonetheless, the model retains suffi-
cient kinematic realism to make it a useful platform for exercising
neuromotor models of low to moderate speed movements where
series elasticity has little impact.

In the present paper we derive the full biomechanical limb
model followed by a numerical stability analysis of an isolated
pair of antagonistic muscles using the method of numerical con-
tinuation. The stability analysis reveals the dynamic character of
opponent muscles and illuminates the effects of co-contraction
from a dynamical systems viewpoint. In particular, it reveals
that strongly co-contracting muscles can exhibit multiple distinct
stable (multistable) equilibrium positions depending on the bio-
mechanical properties of the muscles involved. In biomechanical
parlance, monostability satisfies equifinality whereby alimb always
returns to same equilibrium position following a perturbation

FIGURE 1 | Schematic of the simulated biomechanical limb where
each joint is flanked by an opposing pair of muscle actuators (arrows).
Each limb segment was modeled as a long, thin, rigid body of length L; and
mass m.

(Bizzi et al., 1978; Kelso and Holt, 1980; Schmidt et al., 1986;
Feldman and Latash, 2005). We analytically derive the nullclines
of the opponent muscle system and formally prove that mono-
stability is guaranteed for the special case of opponent muscles
with identical properties. Two numerical experiments are pre-
sented which validate these findings in the full biomechanical
limb. Experiment 1 demonstrates the effects of co-contraction on
limb damping and Experiment 2 demonstrates the emergence of
multiple equilibrium postures with strong co-contraction.

METHODS

Skeletal and musculotendon kinematics were modeled as a series of
independent transforms following Zajac (1989) and Pandy (2001).
The forward dynamics were implemented using the Newton-Euler
method following Otten (2003 ). The muscle dynamics were imple-
mented using the Voigt muscle model (Figure 2A) where the
force-length and force-velocity properties of muscle tissue were
approximated by simple mathematical forms (Figures 2B,C) that
captured the general shape of curves reported in the physiological
literature.

Contemporary models of forward dynamics are usually derived
from the Lagrangian formulation of the overall energy in the sys-
tem implemented using kinematic chains of rigid links (see Craig,
1989; Spong et al., 2006). However the equations of motion are
typically non-trivial and are often derived using a symbolic algebra
solver in practice (see Westervelt et al., 2007, for a modern tuto-
rial on this approach). The Newton-Euler method, on the other
hand, is the more straightforward approach for modeling small
systems such as ours (Otten, 2003). Although it does suffer from
the problem of numerical drift whereby rounding errors accumu-
late over time resulting in a slow dislocation of the limb joints. We
therefore extended the method to incorporate spring-like bind-
ing forces within the limb joints to constrain numerical drift and
maintain the geometric integrity of the limb over the long term
(see Appendix B). It should be noted that contemporary methods
using kinematic chains do not suffer from numerical drift so our
solution does not apply to those methods.

A Musculotendon Model B Force-Length Relation C Force-Velocity Relation
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FIGURE 2 | (A) Voigt model of muscle elasticity. Contractile element (CE)
represents the lumped contraction forces of the muscle sarcomeres.
Parallel elastic element (PE) represents the lumped elastic forces of
muscle tissue. Series elasticity of muscle and tendon is assumed to be
negligible and muscle length is considered a linear function of joint angle.
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(B) Force-length relationships for CE (blue line) with 6,,, =60°, 6, = 180",
0 max =300°, kj=— (0 ax — 6,)?/In(0.1), and PE (green line) with k,, =0.1.
Vertical axis is normalized with respect to F,... (C) Force-velocity
relationship for CE with k, = 1. Maximal muscle force asymptotes at
1.313 Froax-
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FORWARD DYNAMICS OF SKELETAL MECHANICS
Each limb segment was modeled as a long thin rigid body of mass
m; and length L; where the subscript (i=1, 2, 3) identifies the
individual segments. The motion of the center of mass of each
body was described by position 5; = (x;, y;,0) angular orienta-
tion 0, translational velocity v; = ds;/dt, and angular velocity
w;=do;l/dt.

The motions of all bodies were solved simultaneously according
to the Newton-Euler method where Newton’s law,

m; a; = Fpi + Foi + Gi + Fpj» (1)

governed the translational acceleration a; = dv;/dt of each limb
segment (treated as a point mass) in response to internal joint
forces F, 'p; and IEQI-, gravitational force é,' and an external damping
force Fp; = —k¢v; Likewise Euler’s law,

Lia; = tpi + 1Qi + TEi + TDi> (2)

governed the angular acceleration «; = dw;/dt of each limb seg-
ment (treated as a rigid body with moment of inertia I; =
m,-Li2 /12) in response to internal wrenching torques 7 p; and 7 ; as
well as an external torque 7 g; and a damping torque 7 p; = — krw;.

Equations (1) and (2) were rearranged as a set of first-order
ordinary differential equations and integrated numerically in
MartrAB. Full details of the forward model are provided in Appen-
dix A. Our extensions to the conventional method are presented
in Appendix B. All parameters of the forward model are listed in
Table 1.

MUSCLE CONTRACTION DYNAMICS

Muscle was modeled by an active contractile element (CE) in par-
allel to a passive elastic element (PE) according to the Voigt model
(Figure 2A). The net force imparted by the muscle was thus

Fm:Fce“r‘Fpe

a(t) Fyaxfi (é) i (@) + Emaxfpe (é) ¥

where a(t) € [0, 1] denotes the instantaneous level of muscle acti-
vation, Fax denotes maximal muscle force, @ denotes joint angle
and ® denotes joint opening velocity. Muscle length was treated
as a linear function of joint angle, as justified by cadaver studies
(Grieve et al., 1978). Notice we use hat notation to distinguish
joint angle  and joint opening velocity @ from limb segment
orientation 6 and limb segment angular velocity w.

The CE force-length relationship (blue line in Figure 2B) was
modeled by a Gaussian curve,

R a2
fi (9) = ¢ O—b0) /k (4)

centered on resting muscle length 0 as is conventional (see Win-
ters and Stark, 1987; Zajac, 1989). The PE force-length relationship
(green line in Figure 2B) was approximated by a hyperbolic curve,

fre(@) = —kpe (5)

Table 1 | Description of all parameters related to the forward

dynamics.

Parameter Description

L Length of jth limb segment (m)
mj Mass of ith limb segment (kg)
li=m;L2/12 Moment of inertia (kg m?)

§,‘ = {Six, Siys O}
Vi={Vi, Viy, 0}
é/' = {aix, iy, O}
0

Position of ith segment (m)
Velocity (ms~")

Acceleration (ms~2)
Orientation of ith segment (rad)

w;j=do/dt Angular velocity (rads™")

o= dwj/dt Angular acceleration (rad s~2)

Fi = {rix. riy, 0} Radial arm of jith segment (m)
rix=Ljcos(6,)/2 Radial arm x-component (m)
riy="L;sin(0,)/2 Radial arm y-component (m)

Diar Pibs Pic Pid Angles of muscle insertions (rad)

Moment arm of muscle a (m)
Joint force at proximal tip (N)
Joint force at distal tip (N)
Translational damping force (N)

momijz=L; sin (¢;5)/2
Fpi = {Fpix. Fpiy, 0}
Fai = (Fai. Faiy, 0}
Fpi = —ke v

E';i = {G/Xr G/'y: O}

?/,’/‘ = {J//x: J,’/‘y, 0}
Tpi= FP, mom;

Gravitational force (N)
Joint-spring force (N)
Proximal joint torque (N rad)

70i=— Fai mom; Distal joint torque (N rad)

TE External torque (N rad)
Tpi=—krwj Damping torque (N rad)

k¢ Translational damping constant
ke Angular damping constant

ks Joint-spring stiffness constant
kq Joint-spring damping constant

where 8 in and 6 yax specified the limits of joint movement and
the constant k. specified the slope. The CE force-velocity relation-
ship (Figure 2C) was approximated by an exponential hyperbolic
tangent,

2
. e+ 1 A
fv (a)) =5 1tanh <ekvw) , (6)
with a single slope parameter, ky, rather than piecewise hyperbol-
ics after Hill (1938). See Table 2 for a list of all parameters related
to muscle dynamics.

STABILITY ANALYSIS OF OPPOSING MUSCLES

We analyzed the angular motion of an isolated limb segment actu-
ated by a pair of opposing muscles to gain insights into the effects
of co-contraction. The muscles imposed opposing torques,

1, = —F,mom, (7)
and
1, = —Fymomy, (8)

on the limb segment where F denotes contractile muscle force (3)
and mom denotes the moment arm of the muscle. These torques
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were substituted into Euler’s law (2) and integrated numerically as
a set of first-order ordinary differential equations.

The damping effects of co-contraction were investigated by
comparing the motions of the isolated limb under differing condi-
tions of muscle co-activation but identical net joint torques. Phase
portraits of the motion (6, versus w,) were computed for condi-
tions of nil muscle activation (a, = a, = 0), 25% muscle activation
(a, = ap =0.25),and 50% muscle activation (a, = a; = 0.5) where
thelatter represents the upper limit of co-contraction in physiolog-
ical conditions. Each phase portrait portrays all possible motions
of the limb segment for a given set of muscle activations. The
flow of the vector field in the phase portrait can be characterized
by the nullclines of the dynamic variables which corresponds to
those cross sections through phase space where growth of one or
more variables is zero. Equilibrium points occur where the null-
clines intersect and the growth of all variables is zero. Linearizing
the flow around equilibrium points allows their stability to be
quantified by their eigenvalues. The real part of the eigenvalue
quantifies the rate of convergence to the equilibrium point (damp-
ing) whereas the imaginary part of the eigenvalue quantifies the
rotational component (oscillation frequency) of the vector field
around the equilibrium point. When a parameter change causes
the real part of the eigenvalue to cross zero from below, stability
of the equilibrium point is lost as fluctuations grow exponentially.
This is known as a local bifurcation of a continuous dynamical
system and is classified as either a saddle-node, transcritical, pitch-
fork, or Hopf bifurcation according to the nature of the ensuing
flow (see Strogatz, 2000; Breakspear and Jirsa, 2007, for reviews).

Preliminary analysis of these nullclines also suggested that gross
asymmetries in the force-length properties of the opponent mus-
cles may cause the equilibrium position of the joint to bifurcate
into a co-existing pair of non-unique equilibrium positions under
high levels of co-contraction. Phase portraits were thus computed
for opponent muscles in which the resting length of the CE force-
length property 6y had been shifted away from the midpoint of

Table 2 | Description of parameters related to muscle dynamics.

Parameter Description

6 Joint angle (rad)

0 min Lower limit of joint angle (rad)

0 max Upper limit of joint angle (rad)
o Resting length of CE (rad)

o Joint opening velocity (rads~)
Fm Instantaneous muscle force (N)
Fee Force imparted by CE (N)

Fpe Force imparted by PE (N)

Frax Maximal muscle force (N)

a(t) Instantaneous muscle activation
f(6) CE force-length relation

fu () CE force-velocity relation

fre(0) PE force-length relation

ki Slope of CE force-length relation
ky Slope of CE force-velocity relation
Kpe Slope of PE force-length relation

the muscle’s range of extension by the arbitrary amount of 1 rad
(é()a = 6ypp = m — 1) under various conditions of balanced co-
contraction (a, = ap) and imbalanced co-contraction (a, varied
while gy, held fixed). Parameter space was explored by numerical
continuation of the observed bifurcation points was performed
using the CL_MATCONT numerical toolkit (Dhooge et al., 2003).

NUMERICAL EXPERIMENT 1: EFFECT OF CO-CONTRACTION ON
DAMPING

The effect of co-contraction mediated muscle damping was ver-
ified in the full biomechanical limb by comparing the motion of
identical limbs under conditions of medium (near 20%), strong
(near 50%), and extreme (near 80%) co-contraction (Table 3)
with identical net muscle activations (d4 — dg) across condi-
tions. Extreme co-contraction represents the theoretical limit of
co-contraction in the mathematical sense and does not occur in
nature. Muscle activations were held constant for the duration of
the simulation (10s) with the limb initially hanging at rest from
the base pivot. All other parameters were held fixed (m; =1, L; =1,
k=0, k=0, ks=1, kg =1, Gix =0, Gj = — 9.81, Finax,1 = 4000,
Finax,2 = 2000, Finax 3 = 1000, kpe = 0.1, k= — 2/In(0.1), k, = 0.2,
ba=—02, ¢pp=02, ¢c=0.2, pg=— 0.2, Omin = 0.377, Ormax =
1.6r,60¢=0.957).

NUMERICAL EXPERIMENT 2: EFFECT OF ASYMMETRIC MUSCLES

The effect of co-contraction mediated multistability in asymmet-
ric muscles was verified in the full biomechanical limb model
by comparing the final postures adopted (at t=30s) by n=200
simulation runs of identical limbs undergoing medium, strong,
and extreme co-contraction from random initial postures (always
at rest). The same set of initial postures were used in both co-
conditions and muscle asymmetries were imposed by shifting the
CE resting length of opposing muscles to 8 = 7 — 1. All other
parameters were the same as those in Experiment 1.

RESULTS

STABILITY ANALYSIS OF OPPOSING MUSCLES

Analysis of the isolated limb segment revealed co-contraction

modulated muscle damping effects emerged natively from the

muscle model. Furthermore, a wide range of muscle activations

were found to yield bistable equilibria when the opponent muscles

were configured with asymmetric CE force-length properties.
Figure 3 reveals the differing levels of damping exhibited

by the isolated limb segment under conditions of 0, 25, and

50% co-contraction. Damping was entirely absent under 0%

Table 3 | Muscle activation levels for the conditions of medium,
strong, and extreme co-contraction used in Experiments 1 and 2.

Condition Muscle activation levels

Medium aa(t) ={0.3, 0.1, 0.3}, ag(t)={0.1, 0.3, 0.1}
Strong aa(t) ={0.6, 0.4, 0.6}, ag(t)={0.4, 0.6, 0.4}
Extreme aa(t) =1{0.9, 0.7 0.9}, ag(t)=1{0.7 0.9, 0.7}

The net muscle activation a,(t) — az(t) = {0.2, —0.2, 0.2} is identical across all
conditions.
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FIGURE 3 | Phase portraits of the motion of an isolated limb segment
actuated by an opposing pair of symmetric muscles under conditions
of (A) nil co-activation (a, = a, =0), (B) 25% co-activation

(a, = a, =0.25) and (C) 50% co-activation (a, = a, = 0.5). The latter
approximates the biological limit of muscle co-contraction in nature. All
other musculoskeletal parameters are identical in all three conditions
(m=5,L=1,¢=02, Frp=1, k=—7%/In0.1), k, =2, kpo =0.1, f = 7,
émm =0, émax = 2x). Horizontal axis in each panel represents the angular
position of the limb segment (#) and is synonymous with both joint angle

limb orientation, 6 (deg)

180 360 0 180

limb orientation, 6 (deg)

360

and muscle length. Vertical axis represents the angular velocity of the limb
segment (w) and is synonymous with muscle lengthening velocity. Faint
green lines indicate randomly selected motion trajectories. Heavy blue line
in each panel indicates the nulicline of w. Its zero-crossings denote the
equilibrium positions of the limb segment (9 = 180 degrees in all panels).
The curvature of the nullcline qualitatively characterizes the degree of
damping in the vector field. Damping is also quantified by the eigenvalues
at the equilibrium point (see text) which confirm that damping is absent
under nil co-activation and increases with higher levels of co-activation.

co-contraction (Figure 3A) as seen by the closed orbits around
the equilibrium position. The lack of damping was confirmed
quantitatively by noticing that the real part of the eigenvalues of
the equilibrium position were zero (A; =020.174i). By com-
parison, progressively more damping was observed in the 25%
co-contraction (Figure 3B) and 50% co-contraction (Figure 3C)
conditions, as quantified by progressively larger negative values
in the real parts of the eigenvalues (11, = — 0.0657 £ 0.161i and
A1, =—0.1314 & 0.114i respectively).

Figure 4A reveals the existence of bistable equilibrium posi-
tions in the same joint when the muscles were configured with
asymmetric CE force-length properties (0,0=0p=m — 1) and
subjected to 50% co-contraction. Since the nullcline of 8 is always
@& = 0 in the present model, we need only consider the nullcline
of ® to understand the motion of the joint. Figure 4B shows the
nullclines for the asymmetrically actuated limb under differing
levels of balanced co-contraction (a, =a, =0, ..., 1). It reveals a
supercritical pitchfork bifurcation in the equilibrium positions as
co-contraction exceeds the critical value of a, = a, =0.17 (indi-
cated by the branch point BP). The pitchfork bifurcation occurs
when the slope of the nullcline at the central stable equilibrium
point changes sign resulting in a nullcline with three distinct zero
crossings. In the supercritical case, these three zero crossings cor-
respond to a central unstable equilibrium point flanked by a pair
of stable equilibrium points.

Similarly, Figures 4D-F describe the motion of the asym-
metrically actuated limb when a,=0.5 is held fixed while a;
is manipulated. Here we observe a saddle-node bifurcation that
yields bistable equilibrium positions when muscle activations
are within the critical range 0.338 < a, < 0.998. The saddle-
node (or fold) bifurcation occurs when the turning points in
the nullcline fold back far enough to support multiple zero

crossings, specifically, one unstable equilibrium flanked by two
stable equilibria.

Figure 5A shows the bistability map for the asymmetric joint
with 6 =m — 1. It reveals the extent of muscle activations that
yield bistable equilibrium positions in this case. The cusp point
(CP) corresponds to the branch point in Figure 4C and it marks
the furthest extent of the bistable region. Its position (always
on the line a,=a;) depends upon the CE resting length para-
meter 6. Figure 5B plots the migration of the cusp point as
0o is manipulated. Here we see that the bistability emerges at
100% co-contraction levels when 6y =3.00rad (point A) while
it emerges at 50% co-contraction levels when 6y = 2.86 rad (point
B). Bistability therefore emerges in the biological operating range
of co-contraction when the CE resting lengths of the opposing
muscles are shifted away from the muscle midpoint by as little as
(7 — 2.86) radians (16.1°).

In comparison, bistability emerges at 17.1% co-contraction lev-
els when 8p=m — 1 (point C) which is the value used in our
simulations. This happens to be close to the maximal extent of
bistability which emerges at only 15.4% co-contraction levels
when 6y = 1.68 rad (point D) and corresponds to shifting 6y by
(m — 1.68) radians (83.7°) from the muscle midpoint — which is
an extreme shift.

NUMERICAL EXPERIMENT 1

Co-contraction modulated damping effects were confirmed in
the full biomechanical limb. Figures 6A—C show the trajectories
of the limb under conditions of medium, strong, and extreme
co-contraction. Figure 6D tracks the vertical position of the
limb tip for each condition where limb damping is observed to
increase with higher levels of co-contraction. The limb converged
to the same equilibrium position in all conditions, confirming
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point is observed at § = 180° and two stable equilibrium points are observed. (E) Same as (B) except here a,=0.5 is held fixed while a, is
observed at § = 76° and § = 284¢ respectively. (B) Nullclines for the same manipulated from 0 to 1. (F) Bifurcation plot showing the emergence of
limb segment after manipulating muscle co-activation (a= a, = a,) from 0 bistability through a saddle-node bifurcation as muscle activation a, is
to 1 in steps of 0.1. (C) Bifurcation plot showing the onset of bistability in increased while a, = 0.5 is held fixed. The limit points (LP) mark the onset
the equilibrium positions through a pitchfork bifurcation as muscle (a,=0.338) and offset (a, = 0.998) of bistability.

that multistability did not apply when the opponent muscles were
symmetrically matched.

NUMERICAL EXPERIMENT 2

Co-contraction modulated multistability was confirmed in the
full biomechanical limb with asymmetric CE force-length prop-
erties. Figure 7A shows the random initial limb postures used
in all conditions. Figures 7B—-D show the final limb postures
for medium, strong, and extreme co-contraction respectively. All
limbs undergoing medium co-contraction converged to the same
posture (Figure 7B) and are indistinguishable. In contrast, limbs
undergoing extreme co-contraction (Figure 7D) converged to one
of six distinct stable postures which clearly demonstrated that
all joints were operating in the bistable regime, whereas limbs
undergoing strong co-contraction (Figure 7C) converged to one
of only two distinct equilibrium postures. Nonetheless, all joint
angles in this condition diverged noticeably from those observed
under medium co-contraction suggesting all were operating in the
bistable regime even though only some had converged to distinct
equilibrium positions.

Not all of the possible combinations of (bi)stable joint solutions
yield stable limb postures in Figures 7C,D. This is particularly
noticeable in Figure 7D where two of the eight possible postural
combinations of bistable joints are rendered unstable by the action
of gravity. Critical slowing of the limb is evident in the vicinity of
these “missing” postures (see Movie S2 in Supplementary Mate-
rial) confirming that the system is close to a stable regime even
though stability is not achieved in this case.

CONDITIONS FOR MONOSTABILITY

By dynamical system theory the limb joint is guaranteed to be
monostable when the velocity nullcline is monotonically decreas-
ing and thus has only one zero-crossing (as is the case in
Figure 3). Here, we derive an analytical expression for the equi-
librium position of the isolated limb segment for the special
case of identical antagonist muscles. We then use that expres-
sion to prove that monostability is guaranteed in the special case.
This proof does not preclude the possibility that monostability
may also hold when antagonistic muscles are similar but not
identical.
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A Bistability Map for Asymmetric CEs
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FIGURE 5 | (A) Bistability map for the isolated limb segment with asymmetric
CE force-length properties (6, =m — 1). Solid lines indicate the transition
boundary between bistable and monostable regions. Dotted line indicates
balanced co-contraction (a, = a,). Cusp point (CP) marks the furthest extent of
the bistable region (a,=a,=0.171). Points M, S, and X correspond to the
conditions of medium, strong, and extreme co-contraction applied in
Experiments 1 and 2. (B) Shows the migration of the cusp point along the line
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of balanced co-contraction when the CE resting length parameter is
manipulated between 6, =0,,=0,,=0 (the limit of joint flexion) and

0o =0.="0,,=m (the midpoint of muscle). Point A (6, =3.00, a= 1) marks the
emergence of bistability at 100% co-contraction levels. Point B (8, =2.86,
a=0.5) marks the emergence of bistability at 50% co-contraction levels.
Point C (6o =7 — 1, a=0.171) corresponds to point CP in the previous panel.
Point D (8, = 1.68, a=0.154) marks the maximal extent of the bistable region.

The equilibrium position of the limb segment is given by the
intersection of the nullclines of & and & but since the nullcline
of 6 is always @ = 0 for our system we need only consider the
zero crossings of the nullcline of @. Solving Euler’s law of motion
for the case where d@, /dt = 0 and substituting muscle equations
(3-6) allows the nullcline to be expressed as

Cafva (@4) + Do = Cofypy (05) + Dy 9)
where

Ca = ay(t) momyg Faxa fla (éa)

Cp = ap(t) momy Finax,p fiv (éb)

Dy = momg Fiuaxa frea (éa)

Dy = momy Faxp fpeb (éb) ,

are defined for brevity. Observe that ®, = — @, = 0 at the zero

crossings of (9) and all force-velocity relations have f,(0) =1 by
definition thus the zero crossings of the nullcline are obtained by
solving the expression
Ca+Dy=Cy+ Dy (10)
where 6,460, =27. We now use this expression to prove the
following theorem.

Theorem. The nullcline (9) of an isolated limb segment actuated
by an identical pair of opposing Voigt muscles always has exactly one
root (& = 0) for any given pair of fixed muscle activations, a, and ay.
Thus monostability of the limb segment is guaranteed for all possible
muscle activations.

Proor. The roots of nullcline (9) are given by equa-
tion (10). When the opponent muscles (denoted “a” and
“b”) have identical muscuoloskeletal properties (momg = momy,
Finax,a = Fnax,p> Kia = kips kpea = kpeb) 9 + 9b = 2m, 90u + 9019 =
2m, Qmm,a + emax,h = 2m, Qmax,a + Gmm,b = 2m) then
equation (10) reduces to

Aafia (éu) — apfiy (éb> = fpeb (éb) — fpea (éa)

where fi;,(0 b) can be expressed in terms of fj, (f,) by substituting
6 =2 — 04, O, = 21 — o, and ky, = ky, as follows,

i <éb> = exp (— (éb - é017)2/’@17)

(11)

[
o
S

Slmllarly, f;,eb(Oh) can be expressed in terms of §, by sub-

stituting 0p =27 —0ay Opinp = 270 = Omava>  Omary =
2w — Gmm,a, and kpe = kpea = kpep as follows,
A O — 0 minp)
Toev(Op) = —kpepy ———F——
) " 0y — Omax )
_ O —00) = 7 = Onana) (13)
(27T —04) — 21 — O pina)
_ o Ga—Omaxa)
=— G g )
(‘9 min,u)
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FIGURE 6 | Results of Numerical Experiment 1. (A-C) Show the trajectories  approximates the mathematical limit of co-contraction. Limb position is
of the full biomechanical limb under conditions of medium, strong, and sampled at 0.1 s intervals in all three panels. (D) Tracks the vertical position of
extreme co-contraction in the presence of gravity (denoted by G). Here, the limb tip for each co-contraction condition. Damping in the full
medium contraction is close to 20% activation capacity. Strong co-contraction  biomechanical limb is observed to increase with higher levels of
is close to 50% capacity and thus approximates the biological limit of co-contraction, consistent with the findings for the isolated limb segment. See
co-contraction. Extreme co-contraction is close to 80% capacity and Movie S1 in Supplementary Material for an animated version of this figure.

Substituting (12) and (13) into (11) yields

G (éu) =H (éu) (14)

where
G (éa) = i (a2 — ap) fia <éa) (15)
and

H(éa)z@u ; >—< ) (16)

are defined for convenience. From this point onward we omit the
muscle subscript (a) from the notation for brevity. Notice that
G(6) corresponds to a Gaussian curve centered on 6 with a peak
amplitude of (a; — ap)/kpe. Notice also that H (é) corresponds to
the difference of two hyperbolics which asymptotes vertically to
+00 at @ = Opin and to —00 at & = O, with a zero cross-
ing at éo = Opin + émax)/Z. Functions G(é) and H(é) are both
continuous on the interval (é mins émax).

We argue geometrically that functions G(8) and H(f) always
intersect exactly once on the interval (é mins 2 max) for any value of
(a, — ap) and therefore equation (11) always has exactly one solu-
tion. It follows from the definition of (11) that nullcline (9) always
has exactly one root when the opposing muscles are symmetric.
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FIGURE 7 | Results of Numerical Experiment 2. (A) Shows the random
initial limb postures for all simulation runs (n=200) of the full
biomechanical limb. (B-D) Show the final limb postures adopted by all
runs under conditions of medium, strong, and extreme co-contraction
respectively. Opposing muscles have asymmetric CE force-length
properties (0,0 =60,,=m — 1) otherwise all parameters are the same as
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Figure 6. All limbs undergoing medium co-contraction converged to
same final posture whereas those undergoing strong and extreme
co-contraction converged to non-unique final postures. These
observations are consistent with the findings of bistability in the isolated
limb segment. See Movie S2 in Supplementary Material for an animated
version of this figure.

CASE1:a,=
Here G(6) = 0 thus equation (14) reduces to

which simplifies to the unique solution
é = (émin + émux) /2

after rearranging and canceling redundant terms. Thus nullcline
(9) has exactly one root when a, = ay.

CASE2: a, > a,
Here G(éa) is a continuous, non- negative function that is monot-
onically increasing on the 1nterval (9 mins 90] and monotomcally
decreasing on the interval [90, mux) whereas H (0) is a con-
tinuous, monotonically decreasing function that is non-negative
on tlle interval (é mins éo] and non-positive on the interval
[90’ Qmax)- R R

Since G(#) and H(0) are both non-negative in the interval
(é min> éo] wherein G(é) is monotonically increasing and H (é)
is monotonically decreasing from its upper bound of 400 to its
lower bound of zero then there must exist exactly one solution in
(émm, éo] where G(é) = H(é) is satisfied.

On the other hand, G(#) is always positive and H (0) is always
non-positive on the interval [90, 0 max). Hence there are no
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solutions in this interval that satisfy G(§) = H(f). Consequently,
exactly one solution to equation (14) exists in this case across the
entire interval (O min, Omax). Thus nullcline (9) has exactly one
root when a, > a,.

CASE3:a, < ap
Similar to case 2 except here G(é) is a continuous, non-
positive function that is monotonically decreasing on the inter-
val (é mins éo] and monotonically increasing on the interval
[éo, émux) whereas H(é) is unchanged.

Following the same reasoning as above, no solutions to G(é) =
H (é) exist in the interval (é min> 0o] and exactly one solution
exists in the interval (éo, 6 max]- Consequently, exactly one solu-
tion to equation (11) exists in this case across the entire interval
(é mins émax). Thus nullcline (9) has exactly one root when when
a; < dp.

DISCUSSION

Our objective was to provide a simplified anatomical forward
model of limb movement that replicates the fundamental dynam-
ical relationships between muscle co-contraction and limb move-
ment. Limb anatomy was reduced to a planar three-link rigid
body limb where each joint is actuated by an opposing pair of
simplified muscle actuators having force-length-velocity prop-
erties that approximate those of natural muscle systems. Sta-
bility analysis of a pair of antagonist muscle actuators con-
firmed that co-contraction increases muscle damping as antic-
ipated. The stability analysis also revealed that co-contraction
induces bistable equilibrium when the force-length properties
of the opponent CEs are sufficiently asymmetric. Both find-
ings were verified in the full biomechanical limb model where
overall limb damping increased with co-contraction (Numeri-
cal Experiment 1) and multiple co-existing stable equilibrium
postures were evoked when co-contraction was high (Numerical
Experiment 2).

The effect of co-contraction on muscle damping is best under-
stood by inspecting equation (3) of the muscle model and observ-
ing that muscle activation a(f) modulates both the force-length
1(6) and force-velocity f, (®) properties of the contractile element.
Muscle activation therefore modulates both isometric muscle force
and muscle damping to the same extent however the opposing iso-
metric muscle forces cancel to produce nil joint torque whereas the
damping forces of both muscles unite against the common muscle
movement.

On the other hand, the effect of co-contraction on joint stabil-
ity is best understood in terms of the velocity nullcline for a single
pair of opposing muscles. Increased co-contraction induces turn-
ing points in the velocity nullcline when the force-length curves of
the opponent muscles are sufficiently asymmetric. Above a critical
level of co-contraction these turnings can become large enough
for the nullcline to support multiple zero crossings. In such cases,
the unique stable equilibrium bifurcates to yield a pair of non-
identical stable equilibria. The critical level of co-contraction at
which bistability emerges is determined by the degree of asym-
metry in the force-length properties of the antagonist muscles.
Bistability does not emerge when the antagonist muscles have
identical properties.

IMPLICATIONS FOR MOTOR CONTROL THEORY

While co-contraction is known to modulate both muscle damping
and musculotendon stiffness, it has not previously been implicated
with bistable equilibria to the best of our knowledge. Indeed, main-
stream theoretical accounts of biological motor control (e.g. Feld-
man, 1966; Feldman and Levin, 1995) typically assume that co-
activations of antagonist muscles implicitly translate into mono-
stable equilibrium positions. However our findings suggest that
such an assumption may not always be justified. Existing theoret-
ical accounts may therefore need to accommodate the additional
complexities of either controlling or avoiding bistability in the
muscle apparatus to achieve unambiguous forward control of the
joint.

Whether co-contraction mediated bistability occurs in nature
remains an open question. Our analysis suggests that bistable pos-
tures can emerge at biologically plausible levels of co-contraction
(50% maximal isometric force) when the CE resting length para-
meters are offset from the muscle midpoint by as little as 16.1°.
This critical offset value corresponds to a peak-to-peak discrep-
ancy in the force-length curves of the antagonist muscles of 32.2°
(twice the offset). This critical value happens to be exceeded by
the peak-to-peak discrepancies in human elbow (40°), knee (40°),
and ankle (60°) reported by Winters and Stark (1985). So it is not
unreasonable to consider that bistable antagonist muscle systems
may indeed exist in nature.

IMPLICATIONS FOR NEUROROBOTICS

The increasing use of biomimetic actuators in robotic systems
(e.g. Ayers et al., 2002; Safak and Adams, 2002) complements the
neurorobotic doctrine that the brain cannot be studied separately
from the body (Chiel and Beer, 1997). The central nervous sys-
tem’s ability to use muscle co-contraction to actively control limb
damping highlights the tight integration between the functional-
ity of the motor control system and the contractile dynamics of
muscle tissue. However not all muscle properties have equivalent
functional relevance to the motor control system so only the most
relevant muscle properties need be incorporated into biomimetic
actuators.

Our biomechanical model demonstrates that simplified actu-
ators with idealized forms of CE force-length-velocity properties
are sufficient to permit active control of joint damping through co-
contraction. More specifically, it is crucial that the force-velocity
property of the actuator be modulated by its activation level for
co-contraction modulated damping effects to occur. Musculoten-
don series elasticity, for example, is not necessary for this purpose.
As we have shown, care must be taken with the force-length prop-
erty of the actuator to avoid gross non-linearities in the dynamics
of opposing actuators which can introduce non-unique equilibria
into the forward dynamics that merely complicate the problem
of joint control. Thankfully, numerical stability analysis allows
the monostable operating limits of antagonist actuators to be
ascertained from the contractile dynamics of a single biomimetic
actuator.

LIMITATIONS
The contractile dynamics of the present biomechanical model
were simplified by the use of the Voigt muscle model which
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lacks a series elastic element. This simplification made it pos-
sible to derive an analytical solution to the equilibrium posi-
tion of antagonist muscles and to prove that monostabil-
ity is guaranteed for identical muscles. However musculoten-
don series elasticity is known to have a significant impact on
muscle stiffness during rapid movement (Winters and Stark,
1985; Winters et al., 1988). The physiological accuracy of the
present model is therefore limited to low and moderate speed
movements where dynamic changes in muscle stiffness are
negligible.

CONCLUSION

Our analysis of antagonistic Voigt muscles highlights that even
simple muscle systems can exhibit unexpected multistable behav-
iors. Insights into these complex behaviors were gleaned through
the application of formal methods from dynamical system the-
ory where knowledge of the nullclines of the dynamic variables
allowed us to predict the stability of the equilibrium positions of
co-contracting muscles and to map the conditions under which
co-contraction induces bistable joint postures. Bistability com-
plicates the problem of achieving unambiguous control over the
forward dynamics. Its existence has practical implications for the

design of non-linear biomimetic actuators and theoretical impli-
cations for accounts of biological motor control that presume
antagonist muscle systems are universally monostable. Further
numerical analysis using more elaborate antagonist muscle models
is required to assess the impact of musculotendon series elastic-
ity on the emergence of bistability. Empirical research is ultimately
required to establish whether bistable antagonist muscle dynamics
can be observed in nature.
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APPENDIX A

DERIVATION OF THE FORWARD DYNAMICS

Equations (1) and (2) can be rearranged as a set of first-order
ordinary differential equations,

as; .

—3. Al
pralall (A1)
do;

Wi _ A2
dt wj (A2)
v, - - .

mi— = Fpi+ Fqi + Gi + Fpi, (A3)
dw;

Ii?=TPi+TQi+TEi+TDi> (A4)

and integrated numerically to obtain the evolution of each limb
segment’s position s;, orientation @;, translational velocity v;,
and angular velocity w; from a given set of initial conditions
{5i» 6i, Vi» @i}li=o-

By convention, the system of equations (A1-A4) is closed by
joint constraints that enforce matched accelerations of adjoining
limb segments (i and j), namely

aqi = apj (A5)

where agi = @ + (@ x TqQi) + wﬁQi represents the accel-
eration of the distal tip of the ith limb segment and ap; =
a;j + (aj x 7pj) — w]27pj represents the acceleration of the prox-
imal tip of the jth limb segment (j=1i+ 1). The vectors 7p; and
7oi denote the proximal and distal radial arm vectors of the ith
segment (7; = 7pj = —7qi).

So-called contact constraints similarly clamp the acceleration of
the contact point with the external world to zero, namely

(A6)

apy = 0.

Equations (A5) and (A6) can be expanded to yield the
constraints in the form of ordinary differential equations,

dvic  dv dw; dw; 2 2
e dr g g T iR T e (A7)
dviy dey da)i da)j 2 2
dt dr Mg g T @iy T 9he (48)

that are compatible with equations (A1-A4). Here i=0, 1, 2 and
j= i+ 1 with individual terms having i= 0 being ignored.

Following Otten (2003), the unknown internal joint forces
in equation (A3) were solved at each step of the integration by
expressing equations (A3, A4, A7, A8) in matrix form AX=B
and computing the inverse X=A"'® where X represents the
unknowns. Specifically,

[ dvix/dt Gix + Fpix |
dvyx/dt Gax + Fpox
dvsy/dt Gsx + Fpsx
dvly/dt Gly + FDly
dey/dt G2y + FDZy
dV3y/dt G3y + FD3),
da)l/dt M R -1 TE1 + Tp1
dwy/dt | = |: S 0] X T + T, (A9)
d(x)3/dt TE3 + TD3
Fpix biox
Fpoyx bysx
Fpsy biay
Fpyy by
Fpyy —boix
| Fpsy | —bo1y
where
b — —wir,'x—a)]zrjx, fori#0
w —wfrjx, fori=0"
b — —a)?r,'},—w]rjy, fori#0
e —wfrjy , fori=0"
Fm 0 0 0 0 0 0 0 07
0 m O 0 0 0O 0 0 O
0 0 m; O 0 0 0O 0 O
0 0 0 m O 0 0O 0 O
M= 0 0 0 0O m 0 0 0 O
0 0 0 0 0 my 0 0 O
0 0 0 0 0 0O L 0 O
0 0 0 0 0 0 0 L 0
L O 0 0 0 0 0 0 0 &
-1 1 o0 0 0 0 ]
0 -1 1 0 0 0
0 0 -1 0 0 0
0 0 0 —1 1 0
R= 0 0 0 0 —1 1 N
0 0 0 0 0 —1
y Ty 0 —Tx —Tx 0
0 rZy rZy 0 —nNx  —TNx
L 0 0 1”3}, 0 0 —13x |
and
1 -1 0 0 O 0 1y ry 0
0 0 0 1 —1 0 —ryx —ny 0
s_|0 1 —10 0 0 0 n o ow
00 0 0 1 —1 0 —ry —ri
1 0 0 0 O 0 —ry 0 0
0 0 0O 1 0 0 Ty 0 0

See Table 1 for descriptions of all parameters.
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MUSCULOSKELETAL MECHANICS

Muscle paths were assumed to project linearly from attachment
sites located at the midpoint of each limb segment and fol-
low an approximately circular path around the joint shell. The
transformation of muscle contraction force F to joint torque t,

T = —F mom, (A10)
is determined exclusively by the moment arm (mom) of the joint
reaction force. The joint reaction force is equal and opposite to the
muscle contraction force and its moment arm was a fixed prop-
erty of the limb anatomy, namely mom = (1/2)L sin(¢) where ¢
denotes the angle of insertion of the muscle line-of-action at the
attachment site and 7 = L/2 denotes the limb segment’s radial
arm vector.

Each limb segment had four muscle insertions (denoted a,b,¢,d)
where insertions a and b were connected to the opposing muscles
of the proximal joint respectively and insertions ¢ and d were con-
nected to the opposing muscles of the distal joint. The net torque
on the limb segment due to all four muscle torques was thus
Thet = Ta + Tp — Tc — Td> (A11)
where the torques 7. and t 4 have negative sign because the radial
arm vector to the distal joints has opposite direction to that of the
proximaljoint (7fp = — 7). Substituting T ne¢ directly into the for-
ward model of the skeleton as an external torque (7 in equation
A9) enables the muscles to drive the skeleton and thus completes
the forward model.

APPENDIX B
CONSTRAINING NUMERICAL DRIFT
The conventional implementation of the Newton-Euler method
(Appendix A) is prone to numerical drift whereby accumulated
rounding errors lead to a slow dislocation of the joints over time.
We overcame this problem by introducing small spring forces in
the joints (Figure Al) that explicitly bound adjoining limb seg-
ments together and counteracted any dislocation as it occurred.
Numerical error was thus constrained to the legal degrees of free-
dom of the limb in a manner that is commensurate with the
connective tissues in biological joints however these joint forces
are not proposed as models of the connective tissues per se.
Joint-springs (our terminology) were modeled as a damped
linear spring suspended between two point masses representing
the limb segments. Each joint-spring exerted a binding force of

]ij=Fs+Fd (A12)
= ks (3¢ — i) + ka (7 — Vi)

on the tips of the adjacent limbs segments (i and j), where con-

stant k; denotes the stiffness of the joint-spring and k; is the spring

damping constant. By Newton’s law, this binding force induces

an acceleration of ajq; = 7,] /m; at the tip of the proximal limb

FIGURE A1 | Adjoining limb segments were bound at the joints by
damped spring forces that counteracted numerical drift in the
Newton-Euler method. The joint-spring shown here exerts a binding force
of 312 Newtons at point Q1 and an equal and opposite force on point P2.
The magnitude of the spring force J is proportional to size of the joint gap.
Similarly, the magnitude of the damping force (not shown) is proportional to
the rate at which of the joint gap changes.

segment (Q1 in Figure A1) and an acceleration of Zi]pj = —7,-j /m;
at the tip of the distal limb segment (P2 in Figure A1).

These joint binding forces were incorporated into the forward
model by relaxing the conventional joint constraint (A5) to accom-
modate the correcting accelerations induced by the joint-springs,
namely
agi + ajqi = apj + apj. (A13)

Likewise for the contact constraint (A6) which was redefined
as
apy + ajp; = 0. (A14)

Notice these revised constraints are equivalent to the conven-
tional constraints when the joint-spring accelerations ;g and

ajp are zero. Equations (A13) and (A14) were incorporated into
equation (A9) by redefining the coefficients

].. ] .
—w%rix—wzrjx—i-ﬂ—i-ﬂ, fori#0

bijx = I e
—a)]?rjx—l—% R fori=0
2. 2,04 Ty Ty g
—a)ir,y—a)jr]),—i-mi—l—mj, ori#0
bijy = 2 Jiy for i
_wjrjy"‘ﬁj’ ori=20

Pilot studies revealed that joint-springs were highly effective at
preventing the dislocation of limb joints over time with 95.9% of
joint gaps (sampled every 0.01 s) in 24 h of simulated limb motion
being less than 1 mm.
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