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We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a
biomimetic robot finger equipped with an array of microelectromechanical touch sensors.
Instead of building tailored algorithms for solving a specific tactile task, we employ
a more general curiosity-driven reinforcement learning approach that autonomously
learns a set of motor skills in absence of an explicit teacher signal. In this approach,
the acquisition of skills is driven by the information content of the sensory input
signals relative to a learner that aims at representing sensory inputs using fewer and
fewer computational resources. We show that, from initially random exploration of its
environment, the robotic system autonomously develops a small set of basic motor
skills that lead to different kinds of tactile input. Next, the system learns how to exploit
the learned motor skills to solve supervised texture classification tasks. Our approach
demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic
platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of
engineered solutions for active tactile exploration and underactuated control, and provides
a basis for studying developmental learning through intrinsic motivation in robots.
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1. INTRODUCTION
Complex robots typically require dedicated teams of control
engineers that program the robot to execute specific tasks in
restricted laboratory settings or other controlled environments.
Slight changes in the task requirements or the robot’s environ-
ment often require extensive re-programming, calibration, and
testing to adjust the robot to the changed conditions. The imple-
mentation of these tasks could be sped up significantly if the robot
autonomously develops and maintains some knowledge about its
own capabilities and the structure of the environment in which
it lives. Instead of placing the task of supplying the robot with
such knowledge in the hands of the robot’s creator, curious robots
actively explore their own capabilities and the structure of their
environment even without an externally specified goal. The struc-
ture found in the environment and its relation to the robot’s own
actions during curious exploration could be stored and used later
to rapidly solve externally-specified tasks.

A formalization of the idea of curious exploratory behav-
ior is found in the work of Schmidhuber (2010) and references
therein. The theory of intrinsically-motivated learning developed
in these works considers active machine learning agents that try
to become more efficient in storing and predicting the obser-
vations that follow from their actions. A major realization of
Schmidhuber (2010), is that curious behavior should not direct
the agent toward just any unknown or unexplored part of its envi-
ronment, but to those parts where it expects to learn additional
patterns or regularities. To this end, the learning agent should
keep track of its past learning progress, and find the relation
between this progress and its own behavior. Learned behaviors

that lead to certain regular or predictable sensory outcomes, can
be stored in the form of skills. Bootstrapping the skills learned in
this fashion, the agent can discover novel parts of the environ-
ment, learn composite complex skills, and quickly find solutions
to externally-specified tasks.

This work presents curiosity-driven, autonomous acquisition
of tactile exploratory skills on a biomimetic robot finger equipped
with an array of microelectromechanical touch sensors. We show
that from active, curiosity-driven exploration of its environ-
ment, the robotic system autonomously develops a small set of
basic motor skills that lead to different kinds of tactile input.
Next, the system learns how to exploit the learned motor skills
to solve supervised texture classification tasks. Our approach
demonstrates the feasibility of autonomous acquisition of tactile
skills on physical robotic platforms through curiosity-driven rein-
forcement learning, overcomes typical difficulties of engineered
solutions for tactile exploration and underactuated control, and
provides a basis for studying curiosity-driven developmental
learning in robots.

Since both theory and practically-feasible algorithms for
curiosity-driven machine learning have been developed only
recently, few robotic applications of the curiosity-driven approach
have been described in the literature thus far. Initial robotic
implementations involving vision-based object-interaction tasks
are presented in Kompella et al. (2011). A similar approach has
been described by Gordon and Ahissar (2011) for a simulated
whisking robot. Examples of alternative approaches to curiosity-
driven learning on simple robots or simulators can be found in
the work of Oudeyer et al. (2007); Vigorito and Barto (2010);
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Konidaris et al. (2011); Mugan and Kuipers (2012). None of these
works consider curiosity-driven development of tactile skills from
active tactile exploration.

The rest of this work is organized as follows: section 2 presents
the curiosity-driven learning algorithm and the tactile robotic
platform used in the experiments. Section 3.1 illustrates the oper-
ation of the curiosity-driven reinforcement learning algorithm on
a simple toy-problem. The machine learning approach for tactile
skill learning presented here has not been published before, and
will be described and compared to other approaches where rele-
vant for tactile skill learning. Section 3.2 then shows the learning
of basic tactile skills on the robotic platform and how these can
be exploited in an externally-specified surface classification task.
Section 4 discusses the results and the relevance of active learning
in active tactile sensing.

2. MATERIALS AND METHODS
2.1. CURIOSITY-DRIVEN MODULAR REINFORCEMENT LEARNING
2.1.1. Skill learning
The learning of tactile skills is done here within the framework of
reinforcement learning (e.g., Kaelbling et al., 1996). A reinforce-
ment learner (RL) addresses the problem which actions to take in
which states in order to maximize its cumulative expected reward.
The RL is not explicitly taught which actions to take, as in super-
vised machine learning, but must instead explore the environ-
ment to discover which actions yield the most cumulative reward.
This might involve taking actions that yield less immediate reward
than other actions, but lead to higher reward in the long-term.
When using RLs for robot control, states are typically abstract
representations of the robot’s sensory inputs, actions drive the
robot’s actuators, and the rewards represent the desirability of the
robot’s behavior in particular situations. Learning different skills
here is done with a modular reinforcement learning architecture
in which each module has its own reward mechanism, and when
executed, produces its own behavior.

Most modular reinforcement learning approaches address the
question how to split up a particular learning task into subtasks
each of which can be learned more easily by a separate mod-
ule. In the curiosity-driven learning framework presented here,
there is no externally-specified task that needs to be solved or
divided. Instead, the modules should learn different behaviors
based on the structure they discover in the agent’s sensory inputs.
This is done by reinforcement learning modules that learn behav-
iors that lead to particular kinds of sensory inputs or events, and
then terminate. The different kinds of sensory events are distin-
guished by another module, which we here call an abstractor. An
abstractor can be any learning algorithm that learns to represent
the structure underlying its inputs into a few relevant compo-
nents. This could for example be an adaptive clustering method,
an autoencoder (e.g., Bourlard and Kamp, 1988), qualitative state
representation (Mugan and Kuipers, 2012) or (including the time
domain) a slow-feature analysis (Kompella et al., 2011). Each
component of the abstractor is coupled to a RL module that tries
to generate stable behaviors that lead to sensory inputs with the
coupled abstractor state, and then terminates. The resulting mod-
ules learn the relation between the part of their sensory inputs
that can be directly affected through their own actions, and the

abstract structure of their sensory inputs. In other words, the
system learns different skills that specify what sensory events can
occur, and how to achieve those events. As the behaviors learned
by these modules depend on the ability of the system to extract
the structure in its sensory input, and not on some externally-
provided feedback, we call these modules intrinsically-rewarded
skills (inSkills).

Apart from inSkills, we also use externally-rewarded skills
(exSkills) that are learned through external reward from the envi-
ronment, and a small number of other modules whose operation
will be detailed below. Modules can take two kinds of actions
(1) execute a primitive that translates directly into an actuator
command and (2) execute another module. When the executed
module collects sensory inputs with its corresponding abstractor
state, it terminates and returns control to the calling module. The
possibility of executing another module as part of a skill allows for
cumulative learning of more complex, composite skills. In the ini-
tial learning stages, there is not much benefit in selecting another
module as an action, as most modules have not yet developed
behaviors that reliably lead to different sensory events. However,
once the modules become specialized, they may become part of
the policy of another module. To prevent modules from calling
themselves directly, or indirectly via another module, the RL con-
troller keeps track of the selected modules on a calling stack, and
removes the currently executing module and its caller modules
from the available action set. In this fashion, only modules that
are not already on the calling stack can be selected for execution.

It is not uncommon for modular architectures to instantiate
additional modules during the learning process. This comes at a
disadvantage of specifying and tuning ad-hoc criteria for module
addition and pruning. Instead, we use a learning system with a
fixed number of modules, which has to figure out how to assign
those modules to the task at hand. Although this system is by
definition limited (but so is any physical system), flexibility, and
cumulative learning are achieved through the hierarchical combi-
nation of modules; once the system acquires a new skill, it could
use that skill as part of another skill to perform more complex
behaviors.

During curious exploration of its environment, the learning
agent is driven by a module that tries to improve the relia-
bility of the inSkill behaviors. The idea of using the learning
progress of the agent as reward is closely following the work of
Schmidhuber (2010). However, the focus here is not so much
on the ability of the abstractor predict or compress any observa-
tions, but on finding stable divisions of sensory inputs produced
by the agent’s behavior into a few components. The intrinsic
reward is not just the learning progress of the abstractor, but
also includes the improvement in the RL’s ability to produce
the different sensory events distinguished by the abstractor. In
essence, the role of learning progress is taken over here by stabil-
ity progress, which involves the distribution of the agent’s limited
computational and physical resources such that the most relevant
(relative to the system’s learning capabilities) sensory events can
be reliably produced. This strong relation between distinct sen-
sor abstractions and the ability to learn behaviors that lead to
those abstractions has also been argued for by Mugan and Kuipers
(2012).
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2.1.2. Adaptive model-based reinforcement learning
Although the abstractors and RLs could in principle be instan-
tiated with a range of different machine learning methods, in
practice, especially in robotic practice, few algorithms can be suc-
cessfully used. The main challenges for curiosity-driven learning
on actual hardware are: (1) the algorithms have to learn from
much smaller amounts of samples (in the order of 102–103) than
are typically assumed to be available in the machine learning lit-
erature (often more than 104 to solve even the simplest tasks);
(2) typical machine learning approaches assume that training
samples are generated from a stationary distribution, while the
whole purpose of curiosity-driven learning is to make novel parts
of the environment and action space available to the robot dur-
ing and as a result of learning; (3) typical reinforcement learning
algorithms assume a stationary distribution of the reward, while
the intrinsic reward signal in curiosity-driven learning actually
decreases as a result of learning the behavior that leads to this
reward. None of these challenges is considered solved in the area
of practical machine learning; mathematically optimal univer-
sal ways of solving them (Schmidhuber, 2006) are not practical.
In the present work, we employ various machine learning tech-
niques that have been proposed before in the literature, and
introduce some new approaches we are not aware of having been
described before. The main criterion for choosing the techniques
described below was not their theoretical elegance, efficiency, or
even optimality, but their robustness to the challenges addressed
above.

To learn effectively from the small amount of samples that can
be collected from the robotic platform, the learning system trains
a Markov model from the collected data, and generates training
data for the reinforcement learning algorithm from this model.
A Markov model represents the possible states S of its environ-
ment as a set of numbers s ∈ S. In each state, a number of actions
a ∈ A are available that lead to (other) states s′ ∈ S with proba-
bility p(s′|s, a). While a primitive action takes one timestep, skills
taking several timesteps might also be selected as actions. The
model therefore also stores the duration d(s, a, s′) of an action
in terms of the number of primitive actions.

The Markov model is further augmented to facilitate learning
during the dynamic expansion of the agent’s skills and exploration
of the environment. For each module Mj and each transition
(s, a, s′), the model keeps track of: (1) the short-term reward
rj(s, a, s′) provided by the module’s reward system; (2) the prob-
ability zj(s, a, s′) of terminating the module’s policy; (3) the
long-term reward qj(s, a, s′) that changes on a slower timescale
than the short-term reward. Instead of accumulating the Markov
model’s learned values over the whole learning history, all model
values are updated with a rule that gives more weight to recently-
observed values and slowly forgets observations that happened a
long time ago:

m(s, a, s′)← (1− w∗)m(s, a, s′)+ w∗v(s, a, s′), (1)

with model values m = {d, q, r, z}, update weights w∗ =
{wd, wq, wr, wz}, and observed values v = {d, q, r, z}. The short-
term rewards, termination probabilities, and transition durations
are updated according to Equation 1 for every observation, while

the long-term reward is updated for all q(s, a, s′) after process-
ing of a number of samples equal to the reinforcement learning
episode length. Transition probabilities are updated by adding
a small constant wp to p(s′|s, a), and then rescaled such that∑

s′∈S p(s′|s, a) = 1. As the model values adjust to the chang-
ing skills, previously learned transitions become less likely. For
efficiency reasons we prune model values d, p, r, z for which the
transition probabilities have become very small (p(s′|s, a) < wo)
after each model update. Together, these update rules ensure that
the agent keeps adapting to newly acquired skills and changing
dynamics of its expanding environment. Increasing (decreasing)
the model parameters {wd, wo, wq, wr, wz} leads to the develop-
ment of more flexible (more stable) behaviors.

The values stored in the Markov model for each module are
used by reinforcement learners to learn policies that maximize
the cumulative module rewards. The RLs keep track of how much
each state-action pair (s, a) contributes to the cumulative reward
r when following the current action-selection policy. In reinforce-
ment learning these state-action values are known as a Q-values:

Q(s, a) =
∞∑

t=0

γt r(t), (2)

where γ is a discount factor that weights the importance of imme-
diate versus future rewards, and t is time. The RL selects actions a
in state s according its current policy π(s):

π(s) = argmax
a∈A Qπ(s, a). (3)

An efficient algorithm for learning those Q-values is least-squares
policy iteration (LSPI; Lagoudakis and Parr (2003)). LSPI repre-
sents the estimated Q-values as an ω-weighted linear combination
of κ features of state-action pairs φ(s, a):

Q̂(s, a) =
κ∑

j=1

φj(s, a)ωj, (4)

where ωj are the parameters learned by the algorithm. The fea-
ture function φ(s, a) used here represents state-action pairs as
binary feature vectors of length κ = |S||A|, with a 1 at the
index of the corresponding state-action pair, and a 0 at all
other indices. LSPI sweeps through a set of n samples D =
{(si, ai, s′i, ri, p(s′i | si, ai)) | i = 1, . . . , n} generated from the
model, and updates its estimates of parameter vector ω as:

ω = A−1b (5)

A =
n∑

i=1

⎡
⎣φ(si, ai)

(
φ(si, ai)−

∑
s′∈D

γp(s′|si, ai)φ
(
s′,π(s′)

))T
⎤
⎦
(6)

b =
n∑

i=1

[φ(si, ai)ri] . (7)

Because actions with different durations are possible in our
implementation, we slightly alter Equations 6 and 7 to take into
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account the duration di of a transition, both in the discount factor
γ and the module reward ri:

A =
n∑

i=1

⎡
⎣φ(si, ai)

(
φ(si, ai)−

∑
s′∈D

γdi p(s′|si, ai)φ
(
s′,π(s′)

))T
⎤
⎦

(8)

b =
n∑

i=1

[
φ(si, ai)γ

di−1ri

]
. (9)

2.1.3. Skill types
The curiosity-driven learning agent uses four different types of
reinforcement learning modules:

An explorer module is a naive curiosity module that tries to find
novel observations around previous novel observations, but
does not exploit any further structure of the environment. The
reward mechanism of an explorer uses the Markov model to
keep track of the number of times a certain state was visited,
and rewards transitions (s, a, s′) inverse-proportionally to the
number of times s′ was visited: rj(s, a, s′) = e−c(·,·,s′), where e is
the natural logarithm base, and c(·, ·, s′) the number of times
a transition led to s′. This leads to a policy that drives the agent
toward yet unexplored parts of the environment, thus speeding
up initial exploration.

InSkill modules exploit regularities in the environment to learn
behaviors that lead to particular kinds of sensory events.
Sensory inputs are grouped in an unsupervised manner by the
abstractor into separate abstractor states yj. The behavior that
leads to each abstractor state yj is learned by an individual rein-
forcement learning module Mj. The reward mechanism of
these RLs reflects the reliability with which a transition leads
to a particular abstractor state. A reward of 1 is given when
transition (s, a, s′) leads to yj, and a reward of 0 otherwise. In
combination with the update rule in Equation 1, this yields
high model reward values rj(s, a, s′) for transitions that reliably
lead to the corresponding abstractor state yj, and low model
reward values otherwise. An inSkill terminates when a tran-
sition produces its coupled abstractor state. When a module
terminates because of other reasons (e.g., reaching the max-
imum number of allowed timesteps), a failure reward −wf

(i.e., penalty) is added to rj(s, a, ·). The reason this penalty
is given to all s′ ∈ S, is that it is unknown to which state
the transition would have led if the module had terminated
successfully.
Note that no direct feedback exists between the ability of the
abstractor to separate sensory events, and the ability of the RLs
to learn behaviors that leads to those events (as is done in some
RL approaches). However, there is a behavioral feedback in the
sense that the total learning system favors behaviors that lead
to those sensory events that can reliably be distinguished by the
abstractor.

The skill progressor drives the overall behavior of the agent when
running in curious exploration mode. The progressor exe-
cutes those skills that are (re)adapting their expertise. Both
increase and decrease in the long-term reward collected by

a skill implies it is adjusting to a more stable policy, so the
progressor is rewarded for the absolute change in long-term
reward of the inSkills:

ri(·, ai, ·) =
∑

(s,a,s′)∈(S×A×S)

abs
(
p(s′|s, a) �qi(s, a, s′)

)
.

(10)
and uses a fixed reward rx for explorer modules.

An exSkill module learns to maximize externally-provided
reward. Just as the other skills, exSkills can choose to exe-
cute other skills, thus exploiting skills that have been learned
through the intrinsic reward system. Reward is given for reach-
ing a designer-specified goal, which then also terminates the
module.

Apart from the termination condition mentioned in the above
description, all modules also terminate after a fixed maximum
number of actions τz.

All RL modules simultaneously learn from all samples (off-
policy). However, modules that execute other modules as part of
their own policy, learn about the actual behavior (on-policy) of
the executed modules. While off-policy learning facilitates rapid
learning of all modules in parallel, it also changes a module’s
behavior without its explicit execution, leading to potentially
incorrect policies in modules that select the changed modules as
part of their own policy. This issue is resolved as a side-effect
of using a progressor, which is rewarded for, and executes the
changing modules, leading to additional sampling of the changed
modules until they stabilize.

Apart from the exploration done by the explorer module, a
fixed amount of exploration is performed in each module by
selecting an untried action from the available action set with
probability ε instead of the action with the maximum Q-value.
In case no untried actions are available for exploration, an action
is selected with uniform probability from the available action set.
Such a policy is called ε-greedy.

2.2. ROBOTIC PLATFORM FOR TACTILE SKILL LEARNING
We use the curiosity-driven machine learning framework to
investigate curiosity-driven learning of tactile skills on a robotic
platform specifically designed for active tactile exploration. The
platform (Figure 1A) consists of a robotic finger with a tactile
sensor in its fingertip, actuation and processing units, and a hous-
ing for replaceable blocks with different surfaces. The details of
each of those components are given in the remainder of this
section.

2.2.1. Biomimetic robotic finger
The human-sized (Buchholz et al., 1992) biomimetic robotic
finger used in the active learning experiments is composed
of three phalanxes and three flexion joints: a metacarpopha-
langeal (MCP) joint, a proximal interphalangeal (PIP) joint,
and a distal interphalangeal (DIP) joint (see Figure 2). Unlike
the natural finger, no abduction of the MCP joint is pos-
sible, since the task under investigation (i.e., an exploratory
trajectory) requires the fingertip to move in two dimensions
only. Like the natural finger, the robotic finger is driven by
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A B C

D

FIGURE 1 | Pictures of the experimental setup. (A) Tactile platform
with (1) the robotic finger, (2) actuator modules, (3) sensor processing
facilities, and (4) housing for replaceable surface blocks. (B) Surfaces
used in tactile skill learning experiments. From top to bottom: two
regular-grated plastic surfaces with 320 and 480 μm spacings, paper,

and two denim textiles. The highlighted areas show enlargements
of 2× 2 mm areas. (C) Fingertip with a 2× 2 tactile sensor array
in the highlighted area, covered with finger-printed packaging
material. The ruler shows the scale in cm. (D) Closeup of 2 MEMS tactile
sensor units.

FIGURE 2 | Robotic finger actuation; MCP and combined PIP and DIP (PDIP) are shown separately.
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tendons and underactuated; the three joints are actuated by
just two motors. Underactuation reduces design complexity and
allows self-adaptation and anthropomorphic movements similar
to human exploratory tasks.

The finger is driven by two direct-current (DC) motors (model
1727, Faulhaber Minimotor; gear head ratio 14:1). One motor
actively actuates the flexion and extension of the MCP joint by
means of two lead screw pairs with opposite screw handedness
(agonist-antagonist action, Figure 2). The second motor actuates
the flexion of the PIP and DIP underactuated pair (PDIP here-
after) by pulling the tendon. Extension of the PDIP joints during
tendon release is achieved passively through torsional springs
housed inside the joints. The DC-motors are integrated with opti-
cal encoders that monitor the released tendon-length, enabling
position control in motor space. Additionally, tension sensors are
integrated in the tendons. Each motor is controlled by a low-level
motion controller implementing position, tendon tension, torque
(motor current) control, and monitoring. The low-level motion
controllers are directly controllable by a host PC through a RS232
serial communication bus.

Due to the underactuated architecture and absence of joint-
angle sensors, the kinematics of the finger are not unique and
can only be solved by considering the dynamics of the robot and
its interaction with the environment. Control and monitoring in
motor space does not allow for unique control and monitoring in
fingertip space, unless the full dynamic model of the finger and
its interaction with the touched surface is computed. This makes
it difficult to control the finger by means of conventional control
strategies (Arai and Tachi, 1991).

2.2.2. Fingertip with MEMS tactile sensor array
The tip of the robotic finger holds a 2× 2 array of 3D micro-
electromechanical system (MEMS) tactile sensors (see also Oddo
et al., 2011b) created with silicon microstructuring technologies.
Each 1.4 mm3 sensor consists of four piezoresistors implanted at
the roots of a cross-shaped structure measuring the displacement
of the elevated pin (Figure 1D). The MEMS sensors are placed
on a rigid-flex printed circuit board lodged in the fingertip (see
Figure 1C). The resulting array has a density of 72 units/cm2 (i.e.,
16 channels/22.3 mm2), similar to the 70 units/cm2 of human
Merkel mechanoreceptors (Johansson and Vallbo, 1979).

The piezoresistor output signals are directly (without pream-
plification) acquired at a frequency of 380 Hz by a 16-channel
24-bit analog-to-digital converter (ADS1258, Texas Instruments)
lodged in the distal phalanx. The digital signals acquired from
the sensor array via the analog-to-digital converter are encoded
as ethernet packets by C/C++ software routines running on
a soft-core processor (Nios II, Altera) instantiated onboard a
FPGA (Cyclone II, Altera), and broadcasted over an ethernet
connection.

The outer packaging layer of the fingertip (Figure 1C) is made
of synthetic compliant material (DragonSkin, Smooth-On) and
has a surface with fingerprints mimicking the human fingerpad
(i.e., 400 μm between-ridge distance; fingerprint curvature radius
of 4.8 mm in the center of the sensor array; artificial epider-
mal ridge-height of 170 μm; total packaging thickness of 770 μm;
Oddo et al., 2011a).

2.2.3. Platform
The robotic finger, control modules, and processing hardware are
mounted on a platform together with a housing for replaceable
surface samples (see Figure 1A). Five different surfaces are used in
the tactile skill learning experiments (see Figure 1B): two regular-
grated plastic blocks with grating-spacings of 320 and 480 μm
(labeled ‘grating 320’ and ‘grating 480’, respectively), a paper sur-
face (labeled ‘paper’), and two different denim textiles (labeled
‘fine textile’ and ‘coarse textile’).

The robotic finger and MEMS sensor are handled by sepa-
rate control and readout modules. To achieve synchronization
between finger movements and tactile sensory readouts, we
implemented a real-time, combined sensory-motor driver in Java
and .NET, which can be easily interfaced from other program-
ming languages.

3. RESULTS
3.1. EXAMPLE: RESTRICTED CHAIN WALK
3.1.1. Setup
We illustrate the relevant aspects of the curiosity-driven learning
algorithm with a chain walk problem, an often-used toy-problem
in reinforcement learning (e.g., Sutton and Barto, 1998). In the
chain walk problem considered here, the learning agent is placed
in a simulated environment in which it can move left or right
between 20 adjacent states. Going left (right) at the left (right)
end of the chain leaves the agent in the same state. The struc-
ture of the environment is rather obvious when presented in the
manner of Figure 3; however, note that the agent does not know
beforehand which actions lead to which states. Instead, it has
to learn the effects of its actions by trying the actions one at a
time.

Learning is done over a number of episodes in which the agent
always starts in state 1 (left of each column in Figure 3), and
interacts with the environment for a maximum of 25 timesteps.
Limiting the chain walk task in this fashion forces the learning
agent to address the three machine learning challenges discussed
in section 2.1.2: (1) the agent can collect only a limited number
of samples before it is sent back to state 1; (2) states cannot be
equally sampled, as the agent needs to pass through states closer
to state 1 to reach more distant states; (3) larger parts of the input
space become available to both the RL and the abstractor as a
result of learning, requiring the adjustment of the modules to the
increasing input space.

In externally-rewarded chain walk tasks, reaching a particular
state or states usually yields a reward. Here, however, we let the
agent first explore the chain walk environment without provid-
ing any external reward. During this curiosity-driven exploration
phase, the sensory input to both the RL and the abstractor is the
current state. The abstractor divides the states seen thus far into a
number of regions, and the RL modules have to learn policies for
reaching each of those regions. In curious-exploration mode the
agent thus learns skills for reaching different parts of the environ-
ment. These skills can later be used in externally-rewarded tasks
where the agent is rewarded for reaching particular states. Instead
of retrying all primitive actions starting from state 1 each episode,
the agent can then use the learned skills to quickly reach different
regions in the environment.
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FIGURE 3 | Intrinsic rewards and module policies after 200 learning

episodes in the restricted chain walk environment. Top row: normalized
intrinsic reward for each module as a function of the reinforcement learning
state s′. Middle row: Q-tables for modules that can select only primitive
actions, with Q-values (grayscale) maximum values (boxes) and the

abstractor’s cluster boundaries (vertical lines). Bottom row: Q-tables for
modules that can select both primitive actions and inSkills. Black areas
in the Q-tables indicate state-action pairs that were never sampled
during learning. Each column of plots shows the results for an individual
module.

In real-world experiments many processes are going on that
affect the learning agent to a certain extent, but cannot all
be explicitly represented. The effect of these processes is often
referred to as noise. To test the robustness of the learning agent
against such noise, we incorporate some random processes in
both the environment and the abstractor. To simulate noise in
the environment, there is a 10% chance that a primitive action
has the reverse effect (going right instead of left, and v.v.), and
an additional 10% chance that a primitive has no effect at all
(the agent stays in the same state). Abstractor noise is intro-
duced by feeding a randomly selected state (instead of the cur-
rent state) as input to the abstractor with a 10% chance every
timestep.

The abstractor used for skill learning is a simple clustering
algorithm that equally divides the states seen thus far into k parts
y1, . . . , yk. The k corresponding inSkill modules Mj, . . . ,Mk

learn policies for reaching each of those parts. Rapid exploration
of the environment is facilitated by an explorer module. The over-
all behavior of the agent is driven by a progressor module, which
receives reward for the long-term inSkill change and a reward
of rx = 0.1 for selecting the explorer module. In this fashion,
the progressor switches to the explorer module once the stability
progress of the inSkills becomes smaller than 0.1. Each episode
starts with the execution of the progressor in state 1. The pro-
gressor selects to execute a module, which runs until it terminates
by itself, or for a maximum of τz steps in the environment. This
is repeated until τe environment steps (episode length) are exe-
cuted. At the end of an episode, the samples collected during that
episode are used to update the Markov model and the abstractor.
Next, the new reinforcement learning policies are generated for
each module from the model. A list of all parameter values used
for this experiment is given in Table 1.

3.1.2. Skill learning
Figure 4 shows an example of the intrinsic reward, the fastest
learning modules, and the changing cluster boundaries of the
abstractor during curious exploration with four inSkills. As
becomes clear from this figure, the agent starts by learning poli-
cies for reaching the first few abstractor states (episodes 1–10,
until marker (a)). Once it reaches state 15 at marker (a), the
agent spends several episodes (11–30, marker (a)–(b)) adjust-
ing modules 3 and 4, which are the modules that take the agent
to the rightmost part of the known environment. At episode 30
(marker (b)), the inSkill modules have stabilized (i.e., all inSkills’
intrinsic rewards < 0.1), and the agent executes the exploration
module. Using the learned skills for further exploration of the
environment, the exploration module quickly manages to reach
state 17 (episode 31, marker (b)). The abstractor adjusts its clus-
ter distribution to the new observations, and the inSkills have
to change their policies for reaching those clusters accordingly.
This process is repeated at episode 57 (marker (c)), where the
exploration policy is selected, and promptly takes the agent to the
rightmost state (state 20). Due to the change in the abstractor’s
distribution, the inSkills change their policies again until their
learning progress becomes less than 0.1 (episode 75, marker (d)),
and the exploring module takes over. This switching between
learning stable behaviors, and exploiting the stabilized behaviors
to explore all transitions in the environment goes on until the
environment is fully explored. After that, the agent continues to
explore while the inSkills remain stable, indicating that the limit
of the agent’s learning capabilities in the environment is reached.

An example of the final RL policies for the four-inSkill chain
walk task is plotted in Figure 3. The top row of this figure
shows an equal distribution of the inSkill reward regions over
the state space. The second row with the module’s policies in
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Table 1 | Experimental parameters and their values.

Symbol Description Chain walk Tactile platform

S state set {1, . . . , 20} {1, . . . , 36}, see Figure 8

A action set {left, right} see Figure 8

k number of clusters/inSkill modules {4, 7, 10} 5

ε reinforcement learning exploration rate 0.1 0.1

γ reinforcement learning discount 0.95 0.95

κ LSPI feature vector length 20 36

rx fixed exploration reward 0.1 0.2

τe episode length 25 25

τz maximum module timesteps 25 20

Markov model update weights

wd duration update weight 0.2 0.2

wf action failure penalty 0.1 0

wo pruning threshold 0.01 0.01

wp transition probability update weight 0.33 0.33

wq long-term reward update weight 0.2 0.2

wr short-term reward update weight 0.2 0.2

wz termination probability update weight 0.2 0.2

case only primitive actions are allowed, makes clear that the
inSkills correctly learn to go left (right) when they are to the
right (left) of the reward regions. The bottom row of Figure 3
shows the module’s policies in case both primitives and inSkills
could be selected as actions. Note that an inSkill cannot exe-
cute itself, the explorer or the progressor as part of its policy, as
indicated by the absence of Q-values in Figure 3. During initial
exploration, the selection of other modules happens quite often,
because the transition probabilities of primitive actions are not
yet sampled reliably. Once the transition probabilities are esti-
mated more accurately during subsequent exploration, primitive
actions become preferred over executing other modules, because
the on-policy ε-greedy behavior of the executed modules is less
efficient than the optimal policy. After the whole environment is
explored, some modules still select other inSkills in certain states.
For example, inSkill 1 selects inSkill 2 for going left in states 8–9
and 11–12, and inSkills 1 and 2 select inSkill 3 for going left in
states 17 and 18. Again, this is due to the low number of times
those state-action (state-module) pairs are sampled during the
200 learning episodes.

The explorer module (right column in Figure 3) learns poli-
cies for reaching the least-visited parts of the environment. This is
still reflected in the exploring module’s Q-values and reward after
learning. More reward is obtained in states further away from the
starting state 1, and Q-values are increasing with increasing dis-
tance from the starting state, because states further away from the
starting state are visited less frequently.

3.1.3. Skill exploitation
To demonstrate the usefulness of the learned skills in an
externally-rewarded chain walk task, we compare an agent with
trained inSkills against two other learning agents that have no
skill-learning capabilities (1) an agent with no additional mod-
ules and (2) an agent with a naive explorer module only. Note that

all agents still use an ε-greedy policy as additional means of
exploration. The externally-rewarded task for the agents is to
reach any of the states in the furthest region (states 16–20),
while starting from state 1. The main challenge is getting to this
region by fast and efficient exploration. Once the reward region is
reached for the first time, the RLs can usually extract the right pol-
icy instantly from the model. Each episode lasts only 25 timesteps,
and each module can also run for a maximum of 25 timesteps
(see Table 1). Together with the 20% chance of primitive failure
(10% in the opposite direction and 10% no change) this makes
the task particularly challenging. Even when the right policy is
learned, the RL might not always reach any of the goal states
during an episode due to action noise.

All experiments are repeated 500 times, and the results are
averaged. Figure 5 shows the average proportion of the total pos-
sible reward achieved as a function of the number of primitive
actions taken during learning over 40 episodes. As becomes clear
from this figure, the agent with no additional modules takes a
long time to reach the target region. Eventually, the ε-greedy
policy will take this agent to the rewarding states, but on aver-
age it takes much longer than the 40 training episodes displayed
here. The agent with the explorer module learns to reach the
rightmost region much faster, because its explorer module drives
it to previously unexplored regions. The agents with previously
learned inSkills quickly reach the target region by simply select-
ing one of the previously learned skills that leads there. Agents
with more inSkills collect the reward with less training exam-
ples because several modules lead to the rewarding region. Due
to the difficulty of the task (20% action failure, 10% abstractor
noise), it still takes these agents some episodes to reach the tar-
get region for the first time (e.g., less than half of the time for the
four-inSkill agent during the first episode). However, the agents
with previously-learned skills are still much faster in solving the
externally-rewarded task than the other agents.
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FIGURE 4 | Modular intrinsic reward (top), fastest learning modules

(middle) and the abstractor’s cluster boundaries (bottom) during

200 learning episodes in the chain walk environment. The vertical
dotted lines at markers (a–d) indicate distinctive learning events as
explained in section 3.1.2.

3.2. CURIOSITY-DRIVEN SKILL LEARNING ON THE ROBOTIC PLATFORM
3.2.1. Setup
The curiosity-driven learning algorithm is applied on the robotic
tactile platform to learn the movements that lead to different
kinds of tactile events. Here, tactile events are encoded as the
frequency spectra of MEMS sensor-readouts during 0.33 s fin-
ger movements. We filter the MEMS signals with a high-pass
filter with lower limit of 0.5 Hz because frequencies below this
threshold do not reflect any information about the type (or pres-
ence) of sensor-surface contact. Additionally, we filter the signals
with a 50 Hz notch filter to suppress power line noise. For vari-
ous reasons (e.g., location relative to the fingerprints, DragonSkin
becoming stuck inside the sensor after intensive use, general wear,
50 Hz distortions), some channels of the MEMS sensor gave less
consistent readings than others. The spectra of the three best per-
forming channels selected from visual inspection of the signals
are used in the following.

We expect that at least three different tactile events can be
distinguished with the robotic platform: (1) movement without
sensor-surface contact, which we call free movement, (2) tapping
on a surface, and (3) sliding over a surface. To check our expecta-
tions, we programmed the finger to perform 50 repetitions of each
of these movements in setups with five different surfaces. Figure 6

FIGURE 5 | Normalized external reward obtained by different learning

agents during training over 40 episodes (1000 primitive actions) in the

chain walk task.

shows the frequency spectra of the MEMS signals averaged over
50 scripted free, tapping and sliding movements over the surfaces.
Sliding movements generate spectra with a low-frequency peak
caused by changes in pressure during sliding, and some additional
spectral features at higher frequencies: grating 320 has a slight
increase in energy around 55 Hz, grating 480 has a peak around
30 Hz, paper has no additional spectral features, fine textile has a
peak around 25 Hz, and coarse textile has a peak around 12 Hz.
Movements without sensor surface contact (free) yield an almost
flat frequency spectrum, while tapping movements lead to spec-
tra with a low-frequency peak and no other significant spectral
features.

The frequency spectra are fed to an abstractor, whose task is
to cluster similar sensory events and represent them as discrete
tactile states. The abstractor used for distinguishing tactile events
is a k-means clustering algorithm (Lloyd, 1982) that partitions
the spectra into k clusters y1, . . . , yk, with k ∈ {3, 4, 5}. Although
k-means clustering is an unsupervised method, it is still possible
to calculate its classification accuracy on free, tapping and slid-
ing events by assigning each cluster to the tactile event with the
largest number of samples in that cluster. Figure 7 shows the clas-
sification accuracies on free, tapping and sliding events for each
surface individually. As becomes clear from this figure, the sig-
nals generated during free, tapping and sliding movements can
be distinguished from each other by the k-means clusterers with
reasonable accuracy (>90%). Using more than three (i.e., the
number of different finger movements) clusters helps to better
separate the different tactile events, usually because the difference
between data generated during different types of sliding move-
ments is larger than the difference between data collected from
free and tapping movements.

The goal of the inSkill modules is to learn behaviors that pro-
duce MEMS signals belonging to the corresponding abstractor
cluster. To learn finger behaviors, the RLs need some propri-
oceptive information from the finger, and needs to be able to
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FIGURE 6 | Average frequency spectra of MEMS recordings during 0.33 s free, tap and slide finger movements for five different surfaces.

execute finger movements. We use a representation that might
not be optimal for the learning algorithms, but greatly simplifies
the graphical presentation of the tactile skill learning. The RLs
are fed with the MCP and combined PDIP motor locations, dis-
cretized into six positions for each motor, yielding 36 states in
total as depicted in Figure 8. The RLs can select from a total of
eight primitive actions that set the torque of the MCP and the
tension of the PDIP as presented in Figure 8. Each motor prim-
itive lasts a fixed 0.33 s. Unlike the chain walk task, the adjacent
states might not be directly reachable from each other, for exam-
ple, closing the PDIP motor when it is half closed (third or fourth
state column in Figure 8) might fully close it at the end of the
transition (left state column in Figure 8). Note that many aspects
of the robot’s dynamics, such as the angles of the underactuated
PIP and DIP joints, the precise encoder values, finger movement
direction and velocity, cable tension in case of sensor-surface con-
tact, etc., are not captured in this representation, and instead need
to be absorbed by Markov model’s transition probabilities. More
complex representations using more state and action dimensions
might facilitate faster learning, but do not lend themselves for an
easily understandable presentation of tactile-skill learning.

The episodic learning scheme in the chain walk task is also
applied for the robotic platform. At the episode start the finger is
put in randomly selected encoder positions in the range (0.1–0.9)
(MCP) and (0.1–0.5) (PDIP), which approximately covers the
finger’s movement range (see Figure 8). We use slightly shorter
episode and module runtime lengths (20) than in the chain walk
task to speed up the experiments. A list of all parameter values
used for the robotic platform experiment is given in Table 1.

We run the curiosity-driven learning agent on the robotic
platform using five inSkill modules, a naive explorer and a skill
progressor. No external reward is provided to the agent yet. To
allow for adaptation of the k-means clusterer during exploration
and skill-learning, it is retrained every reinforcement learning
episode on a buffer of the last 500 observations. Consistency of the
cluster-means between each episode is enforced by initializing the
k-means training algorithm with the most recent cluster-means.

3.2.2. Skill learning
Figure 9 shows an example of the intrinsic reward of the inSkills
during curious exploration of the robotic platform with the
coarse textile. The intrinsic reward generated by the progress of
the inSkills decreases over time as the agent learns separate behav-
iors for generating different tactile events. Unlike in the chainwalk

FIGURE 7 | Clustering accuracies on MEMS frequency spectra during

0.33 s free, tap and slide finger movements for five different surfaces.

task, little switching back and forth between skill learning and
exploration occurs. Instead, the agent learns the inSkills without
calling the explorer for explicit exploration, because it can eas-
ily reach all parts of the environment. After about 65 episodes,
the inSkills stabilize, and the exploring modules takes over, with
a few short exceptions around episodes 75, 85, and 90. The
learning progress in the inSkills around these episodes is due to
the finger getting stuck (caused by faulty encoder readouts) in
a pose where the sensors generated many samples for a single
cluster. The curiosity-driven learning algorithm picks this up as
a potentially interesting event, and tries to learn behaviors that
reliably lead to such an event. However, after resetting the finger
at the end of the episode, the encoders return the correct values
again, and the learning agent gradually forgets about the deviating
event.

Figure 10 shows an example of the abstractor clusters and
corresponding RL policies after 100 episodes of curiosity-driven
learning in a setup with the coarse textile. Comparing the cluster-
means of the inSkills learned during curious exploration to the
frequency spectra of the scripted free, tapping and sliding move-
ment in Figure 6, it becomes clear that the abstractor has learned
a similar division of the MEMS frequency spectra. The almost flat
frequency spectrum for inSkill 2 is very similar to the frequency
spectrum of the scripted free movements, and the spectrum for
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FIGURE 8 | States and actions of the robotic finger during the

reinforcement learning tasks. Left: 6× 6 areas in normalized
encoder-position space represent the discrete reinforcement learning states.

One thousand continuous encoder values (gray dots) obtained from a random
policy indicate the finger’s movement range in the state space. Right: eight
motor actions set the PDIP tension and MCP torque.

FIGURE 9 | Intrinsic reward (top) and fastest learning modules

(bottom) during 100 learning episodes on the robotic platform with

the coarse textile.

inSkill 1 has a similar low-frequency peak as the spectrum of the
scripted tapping movement. The spectrum of inSkill 5 is most
similar to the sliding spectrum of the coarse textile in Figure 6,
but misses the characteristic peak around 12 Hz. The absence

of a clear peak for this inSkill is probably due to the combina-
tion of several sliding movements at different sensor angles and
hence, different sensor-surface speeds, smearing out the spec-
tral peaks over a larger range. The actual behaviors generated
by these inSkills and the Q-tables in Figure 10 indicate that the
corresponding finger movements are also learned; the Q-values
of inSkill 2 (free) have almost the same value throughout the
state space, with slightly higher values with the finger away from
the surface; inSkill 1 (tap) has two distinctive high Q-values
for opening and closing the PDIP joints with the MCP joint
halfway closed (middle-left in its Q-table); inSkill 5 (slide) obtains
high Q-values with the MCP joint almost closed and opening
and closing actions close to the surface (bottom-center in its
Q-table).

The specialization of inSkills 3 and 4 is less obvious from
Figure 10. However, the actual behavior of the inSkills indicated
that inSkill 3 developed into a module for learning slight elastic
deformations of the sensor packaging material while opening the
finger close to the surface (while not actually touching anything),
while inSkill 4 developed behavior that led to similar changes
during closing movements.

In setups with the other four surfaces, the skill repertoire
learned by the agent also contains distinct behaviors for free,
tapping and sliding movements. Apart from these skills, a range
of other consistent behaviors were learned, such as behaviors
for breaking sensor-surface contact, behaviors that generate
elastic deformation of the packaging material after sensor-surface
contact, separate skills for sliding forward and sliding backward,
hard and soft tapping, and tapping from different angles.

While the specialization of the skills changes during explo-
ration of the environment, the exploration phase often involves
the learning of skills in a particular order; first the agent learns
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FIGURE 10 | InSkill sensory clusters and policies after 100 learning

episodes in a setup with the coarse textile. Top row: frequency-spectra
cluster means of each inSkill. Bottom row: normalized maximum Q-values for

each module (grayscale) and best actions (arrows). States and actions are the
same as in Figure 8. Black areas without arrows indicate states that were
never sampled during learning.

to distinguish between free and tapping movements, and as a
result of improving its tapping skills, learns a sliding skill as well.
During the learning of reliable tapping, the finger makes many
movements with the sensor close to the surface. This leads to the
discovery of sliding movements, and the learning of the associated
sliding skill. The result of this sequence is visible in Figure 9,
where the sliding skill (inSkill 5) is the last module that is learned
(note that the final specialization happens for the inSkill with the
highest number (5) is a coincidence; the order of the clusters is
determined randomly).

3.2.3. Skill exploitation
After autonomous learning of skills on the robotic platform, we
test the usefulness of the learned skills in an externally-rewarded
surface-classification task. The task for the robotic finger is to fig-
ure out which surface sample is placed on the platform. Instead
of programming the finger to slide over the surface, the agent
has to learn which of its movements generate the most dis-
tinguishing information about the surface sample. We compare
the learning agent with previously learned tapping and sliding
skills against a learning agent without such previously-learned
skills.

To determine the different surface types in the externally-
rewarded task, we compare the frequency spectra recorded
during each finger movement with previously recorded fre-
quency spectra during sliding movements over the different
surfaces, tapping movements, and movements without sensor-
surface contact. An external reward of 1 is provided when the
recorded spectrum closely matched the frequency spectra of the
surface placed on the platform and an external reward of 0

otherwise. After each correct classification, the module ends,
and the finger is reset as in an episode start. Although the
reward function does not directly represent misclassifications
(i.e., the finger can continuously provide misclassification with-
out penalty) due to the limited amount of time in each trial, more
reward can be obtained if the finger makes correct classifications
sooner.

To give an indication of how difficult it is to distinguish the
different surfaces during scripted sliding movements, we pro-
vide the frequency spectra recorded during sliding movements as
well as during free and tapping movements to a 10-means clus-
terer, and compute the clustering accuracy as described before.
As shown in Figure 11, the overall accuracy of 92% for distin-
guishing the different surfaces from each other, is not as high
as the accuracy of distinguishing between free, tap and slide
movements for each surface individually (Figure 7), but still is
well above guess chance (14%). Figure 11 further indicates that
sliding movements over different surfaces can be accurately dis-
tinguished from each other, as well as from tapping and free
movements. However, it is more difficult to distinguish slid-
ing movements over paper from tapping movements, probably
because the smooth paper surface produces almost no distinctive
spectral features (compare also the frequency spectra for sliding
over paper and tapping in Figure 7). Using slightly different num-
bers of clusters (between 7 and 15) changed the accuracies with
only a few percentages.

During the externally-rewarded task, we keep training the
skills learned during the curious exploration phase for two rea-
sons: (1) skills used during autonomous exploration might be
useful in quickly solving an externally-specified task, but might
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FIGURE 11 | Confusion matrix for surface-type classification using a

10-means clusterer on frequency spectra recorded during pre-scripted

free, tapping and sliding movements. Background colors indicate the
number of samples assigned to each class. The number and percentage
of correctly (incorrectly) classified samples are indicated in black
(white) text.

not solve it directly. For example, a sliding skill might lead to sen-
sor data that distinguishes a sliding movement from a tapping
movement in a particular setup, but might not necessarily be good
for distinguishing between different surface types. Still, some kind
of sliding movement is probably required to distinguish between
different surface types. An existing sliding skill could be easily
adjusted to make slightly different movements that are better for
distinguishing between surface types. We therefore add the exter-
nal reward to inSkill modules that were active when the external
reward was received, and adjust the modules’ models and poli-
cies accordingly. (2) The dynamics of the robotic platform change
during operation for various reasons (e.g., cable stretch, changes
in ambient temperature and battery levels, general wear). While
this might require repeated calibration in traditional approaches,
the learning system used here is flexible enough to cope with those
changes.

Learning in the externally-rewarded tasks is done over
30 episodes and repeated three times for each of the five surfaces
described in section 2.2.3. Figure 12 shows the average reward
during training. As shown in this figure, agents that have previ-
ously learned inSkills learn to solve the externally-rewarded task
much faster than the agent without such previously learned skills.
The skills learned during the curious exploration phase are useful
for the externally-rewarded task, but often do not solve it directly.
Instead, the skills need to be (slightly) adjusted from skills that
distinguish free, tap and slide movements for individual surfaces,
into sliding movements that distinguish different surfaces. This
skill adjustment is reflected in the increasing reward of the agent
with previously-learned inSkills while it is learning to solve the
externally-rewarded task.

FIGURE 12 | External reward obtained by different learning agents

during training over 30 episodes in the surface-classification task.

4. DISCUSSION
We presented a curiosity-driven modular reinforcement learning
framework for autonomous learning of tactile skills on a tactile
robotic platform. The learning algorithm was able to differenti-
ate distinct tactile events, while simultaneously learning behaviors
for generating those tactile events. The tactile skills learned in
this fashion allowed for rapid learning of an externally-specified
surface classification task. Our results highlight two important
aspects of active tactile sensing: (1) exploratory tactile skills can
be learned through intrinsic motivation (2) using previously-
acquired tactile skills, an agent can learn which exploratory poli-
cies yield the most relevant tactile information about a presented
surface.

A key aspect of the developmental learning system presented
here is the ability to use previously-learned skills for reaching
novel parts of the environment, and to combine skills into more
complex composed skills. This bootstrapping of skills became
apparent in the chain walk task, where modules used other mod-
ules to reach parts of the environment in case the transition
probabilities of primitive actions were not accurately known.
Also, during curious exploration of the tactile platform, the agent
first learned to move the finger without sensor-surface contact,
then learned to tap the finger on the surface, and finally learned
the more difficult skill of sliding the finger over the surface while
maintaining sensor-surface contact. After learning these skills, the
agents kept exploring the environment in search for further things
to learn, while maintaining a stable division of skills learned
thus far.

The notion of active tactile sensing has recently been discussed
in Prescott et al. (2011), who considered different interpreta-
tions: (1) the energetic interpretation, in which the information-
relevant energy flow is from the sensor to the outer world
being sensed; (2) the kinetic interpretation, in which the sen-
sor touches rather than is being touched; and (3) the pre-
ferred interpretation by Prescott et al. (2011), which considers
active sensing systems as purposive and information-seeking,
involving control of the sensor apparatus in whatever manner
suits the task. Our work fits best with the third interpretation,
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because tactile information drives both the learning of tactile
exploratory skills and the categorization of tactile stimuli. Note,
however, that the exploratory dynamics are not directly used as
kinaesthetic information provided to the texture classifier, but
rather enter in the categorization chain as affecting sensor out-
puts. In future work, it would be interesting to study if and how
tactile and kinaesthetic information could be fused for motor
control and perceptual purposes during learning of exploratory
skills.

A potentially interesting comparison could be made between
the usage of sensory information during tactile exploration in
humans and in the biomimetic robotic setup. In our experiments
the algorithms were able to distinguish between different tex-
tures using the key spectral features of the sensor output. The
human neuronal mechanisms and contributions of the differ-
ent types of mechanoreceptors for distinguishing textural details
(Yoshioka et al., 2007) are still highly debated. No agreement
has been reached about the most informative mechanoreceptors
(i.e., among Merkel, Meissner, Ruffini, and Pacini corpuscles)
or about the coding strategy (e.g., temporal, spatial, spatiotem-
poral, intensity) used by humans to represent textural informa-
tion. Various studies aimed at demonstrating that the Pacinian
system encodes fine textures (Hollins et al., 2001; Bensmaïa
and Hollins, 2003; Bensmaia and Hollins, 2005). In particular,
Hollins and Risner (2000) supported the Katz’s duplex theory,
according to which fine textures are supposed to be mediated
by different classes of mechanoreceptors via vibrational cues for
fine forms and via spatial cues for coarse forms. Conversely,
Johnson and colleagues presented human psychophysical stud-
ies and complementary electrophysiological results with monkeys
supporting a unified peripheral neural mechanism for rough-
ness encoding of both coarse and fine stimuli, based on the
spatial variation in the firing rate of Slowly Adapting type I affer-
ents (SAI; Merkel) (Connor et al., 1990; Connor and Johnson,
1992; Blake et al., 1997; Yoshioka et al., 2001). Johansson and
Flanagan (2009) introduced a hypothetical model of tactile cod-
ing based on coincidence detection of neural events, which may
describe the neuronal mechanism along the human somatosen-
sory chain from tactile receptors, passing through cuneate neu-
rons up to the somatosensory cortex. What has been agreed
on is that humans can detect up to microtextures (LaMotte
and Srinivasan, 1991), and that the human perception of tex-
tures is severely degraded in case of lack of tangential motion
between the fingertip and the tactile stimuli (Morley et al.,
1983; Gardner and Palmer, 1989; Radwin et al., 1993; Jones
and Lederman, 2006). This consolidated finding fits well the
results presented in the current work: like human beings, the
robotic finger also developed skills for sliding motions tangential
to the tactile stimuli while seeking for information-rich experi-
ences.

Recently, Fishel and Loeb (2012) obtained impressive tex-
ture classification accuracies on a large range of different tex-
tures, using an algorithm that selects the most discriminative
exploratory motions from a set of tangential sliding move-
ments with different forces and velocities. That variations in

high-level motion parameters like force and velocity are impor-
tant for obtaining the most distinctive information is, how-
ever, not inferred by their learning algorithm. Our approach
first learns how to make exploratory movements without any
teacher feedback and without any knowledge of high-level param-
eters such as sensor-surface force and velocity. As in Fishel and
Loeb (2012), our algorithm then learns to select exploratory
movements that yield the most distinctive information about
the presented textures. Whereas Fishel and Loeb (2012) learn
to select pre-scripted exploratory movements, our algorithm
can still refine the previously-learned exploratory movements
during the learning of the supervised texture classification
task.

A further comparison could be made between the exploratory
behaviors learned by the biomimetic platform, and the learning of
tactile exploratory procedures by human beings. There is a large
body of literature about the exploratory procedures employed by
humans when investigating an objects, including texture (e.g.,
Lederman and Klatzky, 2009, and references therein). Tapping
and sliding tangentially over a surface are both used by human
beings and learned by the robotic platform when gathering tactile
information. Apart from using or selecting existing exploratory
procedures it could also be interesting to study similarities in how
these exploratory procedures are learned in human beings in the
first place. The constraints of the biomimetic robotic finger make
tapping easier to learn than sliding. Consequently, sliding is often
learned after and as a result of tapping. Similar constraints in
human beings might lead the same developmental trend (from
tapping to sliding).

Although the robotic finger has just two controllable degrees of
freedom, learning skills in an autonomous fashion already proved
to be beneficial during learning of an additional externally-
specified task. Moreover, the learning approach allowed for
overcoming challenges in traditional engineered solutions to
robotic control, such as the need of constant recalibration of the
robotic platform to changing circumstances, and the absence of
joint-angle sensors in the underactuated joints. We expect that
autonomous acquisition of skills in robots will become increas-
ingly important for autonomous learning in robots with more
degrees of freedom and sensory capabilities.
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Glossary of symbols.

A action set

A LSPI update matrix

a action

b LSPI update vector

c transition count in Markov model

D set of samples

d transition duration

e base of natural logarithm

i index

j module index

k number of clusters / inSkill modules

M reinforcement learning module

m Markov model value

n number of samples

o Markov model pruning threshold

Q reinforcement learning state-action value

p transition probability

q long-term reward

r short-term reward

s, s′ state

S state set

t time

v observed value

w Markov model update weight

y abstractor output

z termination probability

� difference operator

ε reinforcement learning exploration rate

γ reinforcement learning discount

κ LSPI feature vector length

π reinforcement learning policy

φ LSPI feature vector

ω LSPI weight

τe episode length

τz maximum module timesteps

Glossary of acronyms.

DC direct current

DIP distal interphalangeal

exSkill externally-rewarded skill

inSkill intrinsically-motivated skill

MCP metacarpophalangeal

MEMS microelectromechanical system

PDIP combined PIP and DIP joints

PIP proximal interphalangeal

RL reinforcement learner
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