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Insects carry a pair of antennae on their head: multimodal sensory organs that serve
a wide range of sensory-guided behaviors. During locomotion, antennae are involved
in near-range orientation, for example in detecting, localizing, probing, and negotiating
obstacles. Here we present a bionic, active tactile sensing system inspired by insect
antennae. It comprises an actuated elastic rod equipped with a terminal acceleration
sensor. The measurement principle is based on the analysis of damped harmonic
oscillations registered upon contact with an object. The dominant frequency of the
oscillation is extracted to determine the distance of the contact point along the probe
and basal angular encoders allow tactile localization in a polar coordinate system. Finally,
the damping behavior of the registered signal is exploited to determine the most likely
material. The tactile sensor is tested in four approaches with increasing neural plausibility:
first, we show that peak extraction from the Fourier spectrum is sufficient for tactile
localization with position errors below 1%. Also, the damping property of the extracted
frequency is used for material classification. Second, we show that the Fourier spectrum
can be analysed by an Artificial Neural Network (ANN) which can be trained to decode
contact distance and to classify contact materials. Thirdly, we show how efficiency can
be improved by band-pass filtering the Fourier spectrum by application of non-negative
matrix factorization. This reduces the input dimension by 95% while reducing classification
performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with
gradually differing resonance properties, such that their spike rate is a function of the input
frequency. We show that this network can be applied to detect tactile contact events of
a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can
be suppressed by state-dependent modulation of the input signals.

Keywords: bionic sensor, forward model, insect antenna, material classification, spiking network, tactile

localization, tactile sense

INTRODUCTION
The sense of touch is a prime source of information about object
features within the near-range environment. Many animals carry
actively moveable tactile sensors with which they explore and
sample the ambient space (Prescott et al., 2011). Of these, the
whiskers of mammals (Diamond et al., 2008; Mitchinson et al.,
2011) and the antennae (or feelers) of insects and crustaceans
(Staudacher et al., 2005) are amongst the most elaborate sensory
structures for active tactile exploration. Thus, it is not surpris-
ing that a number of artificial tactile sensing systems have been
developed that capture important aspects of mammal whiskers or
insect antennae.

Pioneering studies on contact sensing with actuated passive
probes were loosely inspired by whiskers or antennae. They either
used torque or vibration sensors at the base of an otherwise non-
sensorized beam to infer contact location from bending (e.g.,
Tsujimura and Yabuta, 1992; Kaneko et al., 1998) or resonant
behavior of the beam (e.g., Ueno et al., 1998). More recently,

whisker-inspired sensor arrays have been developed for shape
recognition in a stationary system (Solomon and Hartmann,
2006), but also for active exploration of objects by mobile robot
platforms (e.g., Pearson et al., 2007, 2011). Insect-inspired appli-
cations with active feelers include tactually mediated decision-
making for climbing versus tunnelling in a cockroach-inspired
robot (Lewinger et al., 2005). All of these approaches have in
common that the probe itself is a non-sensorized beam, and
that tactile information is gathered by active exploration of the
environment.

Mammal whiskers are hairs and, as such, are well-modeled
by a non-sensorized beam held by a sensorized shaft. In con-
trast, insect antennae are multimodal and highly sensorized limbs
of the head. As limbs, they contain at least two joints actu-
ated by muscles, and may carry thousands of individual sen-
sors in modalities as different as smell, taste, hygroreception
(for humidity), thermoreception (for temperature), and touch
(reviewed by Staudacher et al., 2005). Bionic analogs of insect
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antennae therefore should be sensorized probes. To date, the most
elaborate insect-inspired sensorized antennae are passive, at least
in the sense that they do not actively sample the space around the
robot “body.” As yet, they have been applied successfully in a tac-
tile course-control paradigm inspired by wall-following behavior
of cockroaches (Lee et al., 2008). The underlying principle is to
infer the distance to the wall from a series of bending-sensitive ele-
ments (Cowan et al., 2003; Lamperski et al., 2005) that may even
be tuneable in order to account for different functional properties
along the probe (Demir et al., 2010).

Here, we propose an insect-inspired active tactile sensor that
complements the approaches mentioned above by considering
a sensorized and actively moveable probe suitable for tactile
exploration on a mobile robot platform. The present paper has
three objectives: (i) first it will review the measurement princi-
ple underlying vibration-based tactile localization (Lange et al.,
2005, patented by Lange and Reimann, 2005) and material clas-
sification (Dürr et al., 2007). (ii) Second, it will demonstrate
the implementation of this measurement principle by means
of Artificial Neural Networks, ANNs (Hellbach et al., 2010),
including considerations of the resource-performance trade-off
(Hellbach et al., 2011). (iii) Thirdly, it will demonstrate the appli-
cability of the system on a mobile robot, using a spiking neural
network (Arena and Patanè, 2012) allowing for state-dependent
modulation for separating self-induced stimulation from external
stimulation.

The latter concerns a general problem of sensory systems in
moving bodies, and also concerns technical applications in which
self-motion of a system interferes with and potentially confounds
the analysis of sensor readings. Whereas in animals and humans,
the mechanisms underlying the separation of self-induced and
external stimulation are often summarized by the terms corol-
lary discharge and/or efference copy (different variants of such
mechanisms are reviewed by Crapse and Sommer, 2008), in tech-
nical systems, they typically involve the definition of a forward
model (see Karniel, 2002, for distinction of three variants of

forward models). In more general terms, such mechanisms not
only concern dealing with self-induced sensory input, but also
predicting the behavior of a dynamical system in general, includ-
ing its motor output. Several studies have addressed the analogies
of predictive forward models in physiological and technical sys-
tems, (e.g., Miall and Wolpert, 1996; Mehta and Schaal, 2002;
Schröder-Schetelig et al., 2010), including the putative role of for-
ward models in insect neurobiology (Webb, 2004). In the context
of active tactile sensing in insects, Gebhardt and Honegger (2001)
described descending interneurons that are sensitive to antennal
movement and whose responsiveness changes in the presence of
antennal motor activity. Although the underlying mechanism has
not been identified in the antennal system, it is reminiscent of
a well-known mechanism in the auditory pathway of the same
insect species (Poulet and Hedwig, 2002, reviewed by Poulet and
Hedwig, 2007).

In analogy to the mechanism discovered by Poulet and
Hedwig, the present study implements a simple forward model
in the form of state-dependent modulation which, according to
the classification scheme of Crapse and Sommer (2008), belongs
to the lower-order corollary discharge mechanisms for “central
control of sensation.” The core of the model is a spiking neural
network consisting of a sensory array of resonate neurons. This
sensory array extracts the relevant information related to contact
events registered by the antenna. During self-motion of the robot,
the motor speed command, i.e., the motor activity, is used to pre-
dict the strength of modulation of the input to the sensory array,
thus adapting the sensory processing to the current “behavioral
state.” We show how such activity- or state-dependent modula-
tion allows separation of self-induced antennal stimulation from
stimulation related to active touch.

MATERIALS AND METHODS
BIONIC ANTENNA
The bionic feeler used throughout this study (Figure 1) cap-
tured three major characteristics of the stick insect antenna:

FIGURE 1 | Bionic antenna and robotic platform. (A) Stationary setup for
experiments on tactile localization and material classification. The probe
consisted of a polyacrylic beam with a distal acceleration sensor, AS. It was
actuated by a custom-built two-axis actuator platform, Act, using DC-motors

and linkages. During experiments, the probe was moved up-and-down and hit
a cylindrical metal rod, MR that was made of different materials and located
at varying distances. (B) For test experiments on state-dependent
modulation, the probe was mounted onto a pan-tilt unit on a wheeled robot.
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(i) it is a beam-like structure actuated by two rotary joints (Dürr
et al., 2001); (ii) it is compliant but also stiff enough to main-
tain its shape during self-motion (Dirks and Dürr, 2011); and
(iii) it is vibration-sensitive (Westmark and Dürr, 2009). The
probe consisted of a 33 cm polyacrylic tube that carried a dis-
tal two-axis acceleration sensor (Analog Devices ADXL210E). It
was mounted to the actuator platform via a threaded electric plug
connector, allowing simple exchange of probes without affecting
the actuator platform. For the experiments on tactile localiza-
tion and material classification, the actuator platform consisted
of two orthogonal axes, each one driven by a 6V DC motor
(Faulhaber 1331T 006SR). The linkage was designed to mimic
the action range of the stick insect antenna, amounting to 90◦
in the vertical range, centered 10◦ above the horizon, and to 80◦
horizontal range centered 40◦ to the side. Two rotary position
sensors (muRata SV01A potentiometers) monitored the orien-
tation of the probe, thus supplying the two angles required for
representing 3D contact location in a spherical coordinate sys-
tem. The third dimension required for this representation, i.e.,
distance along the probe, was to be inferred from the sensor
readings of the acceleration sensor (see below). For initial exper-
iments, antennal movement was controlled by manual switch-
ing of a voltage source, and sensor readings were registered
using an AD converter system (CED 1401 power, controlled
by Spike2, Cambridge Electronics Design). For acquisition of
larger data-sets, as necessary for ANN training, antennal move-
ment control as well as sensor read-out were implemented on
an embedded system (ATMEL AT90CAN128), with the raw sen-
sor signal being available via RS232C for further processing
in Matlab (The Mathworks). Angular positioning of the probe
was limited by slack in the motors and amounted to approxi-
mately 7◦ (5 mm at the distal end of the probe). Total length of
the feeler was 413 mm. Total weight was 175 g, including both
motors.

PRE-PROCESSING, DETECTION OF CONTACT EVENTS, AND
PARAMETER EXTRACTION
The distal acceleration sensor provided readings corresponding
to two orthogonal dimensions, such that the actual oscillation of
the antennal tip was projected onto the corresponding dimension
vectors of the sensor. Because of this, sensor readings depended
on the orientation of the sensor with respect to the antennal
movement direction at the time of a contact event. To align the
rotated oscillation with a single axis, principle component analy-
sis, PCA, was applied. PCA computes a set of eigenvectors which
are oriented with respect to the principal axes of the data dis-
tribution. The matrix of eigenvectors E can be used directly as
an affine transform matrix applied to the data: Xrotated = E · X.
Here, the first dimension of the rotated data Xrotated contained
the part of the data with the largest variance. For all experi-
ments reported in this paper, only this part was used for further
processing (Figure 2A).

As a first test for proof of principle in contact localization and
material classification, we constrained the movement to the ver-
tical axis and analysed sensor readings upon contact with one of
two horizontal test rods (Figure 1A) made of either aluminium
(Ø = 11.8 mm) or wood (Ø = 9.6 mm). For subsequent detailed

analysis of performance in classification of multiple materials,
test rods were made of the following eight materials: aluminium,
stainless steel, wood, copper, brass, polyoxymethylene (POM),
polyvinylchloride (PVC), and acrylic glass. In these experiments,
all test rods were 12 mm in diameter. Whenever an impact of
the antenna on an obstacle occurred (contact event), the accel-
eration sensor recorded the damped harmonic oscillation of
the antennal tip. Thus, for processing information relevant to
contact events it was necessary (i) to detect the corresponding
damped oscillation and (ii) to retrieve the relevant informa-
tion for describing the properties of the oscillation recorded.
In the stationary system, the contact could be detected easily
and reliably by means of a simple threshold for the accelera-
tion. For detecting the end of the oscillation, the local maxima
over time were considered. The end point was defined as the
time at which the amplitude of these maxima decreased below
10% of the maximum amplitude. Only the data within the win-
dow between the detected start and end points was processed
further. In a first step, the mean signal amplitude was sub-
tracted. Next, the frequency content of the damped oscillation
was determined by means of a Fast Fourier Transform (FFT,
using FFT algorithms of Matlab or MathCad, Adept Scientific).
The result of the FFT was used in two different variants for fur-
ther processing (see neural network section “Neural Network
for Localization and Material Classification”). In case of the
“parametric variant” the FFT result was used to extract six param-
eters that captured the most important signal properties. In the
“FFT variant,” the entire amplitude spectrum of the FFT was
used without further pre-processing. Whereas the parametric
variant was used for proof of principle and for sensitivity anal-
ysis of distinct parameters, the FFT variant was used to find
the best performance possible in case of maximum information
available.

As the typical frequency spectrum of a contact-related signal
contained two distinct peaks (Figure 2B), the purpose of param-
eter extraction was to describe the two corresponding frequency
components in terms of their amplitude, A; frequency, F; and
decay time constant, τ. For contact events along the proximal
three quarters of the probe, it was sufficient (i) to divide the
FFT spectrum in two parts (using 55 Hz as a fixed boundary
between low- and high-frequency components), (ii) to determine
the peak frequency, F, within each part of the spectrum, and
(iii) then reconstruct the signal corresponding to these frequency
components, only (using inverse FFT-algorithms of Matlab or
MathCad). The peak frequencies depended on the contact loca-
tion following a logarithmic function (Figure 2C).

Damping was quantified by estimating the decay time con-
stant from the local extreme points of the damped oscillation.
The most satisfying results were obtained with the following algo-
rithm: after decomposition of the recorded signal into a pair
of low- and high-frequency components as described above for
steps (i) to (iii), (iv) local extreme points were extracted with a
minimum interval (e.g., 3 ms) and minimum absolute amplitude
(e.g., 15 mV). Next, (v) the amplitudes of the extreme points were
rectified and log-transformed. Finally, (vi) a linear regression
yielded the amplitude, A, and time constant, τ, of a first-order
exponential decay function.
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FIGURE 2 | FFT-based parameter extraction. (A) The raw sensor signal (blue)
consisted of two channels, which measured the acceleration of the antenna in
two dimensions (x and y, plotted in arbitrary units). Since the antenna could hit
an obstacle in an arbitrary angle, the signal needed to be aligned for further
processing. This was done using principal component analysis (PCA)
(red curve). PCA determined a new coordinate-system, in which the first axis
contained the maximum variance of the data. The dimension with the higher
variance was selected and transferred into Fourier frequency space. Contact

distance was encoded by oscillation frequencies. (B) FFT amplitude spectra of
three single contacts with an aluminium rod, taken at 8, 16, and 24 cm distance.
As contact distance increased, the low-frequency peak decreased in amplitude
and shifted to higher frequencies. Multiple high-frequency modes could occur,
but only the largest mode beyond 55 Hz was analysed further. (C) Peak
frequencies of both frequency ranges increased exponentially with distance
(n = 10, means ± SD, note that error bars are within symbols); red: high
frequency component; black: low frequency component.

NEURAL NETWORK FOR LOCALIZATION AND MATERIAL
CLASSIFICATION
ANN were programmed and trained either by use of custom-
written software (for proof of principle) or by use of the Neural
Networks Toolbox of Matlab. For distance estimation and mate-
rial classification tasks, we used simple feed-forward ANNs,
either single- or multi-layered perceptrons. For proof of prin-
ciple using the parametric variant, a single ANN was used for
combined distance estimation and the distinction of two mate-
rials (wood versus aluminium). Several different combinations
of input parameters were tested, as will be elaborated in the
results section. In the FFT variant, separate networks were used
for localization and material classification, although in principle,
both could be combined into a single ANN. Input to the FFT
variants was either the entire Fourier spectrum (509 frequency
components) or the result of the dimension reduction algorithm
(see below). Best results for distance estimation were obtained
using a 3-layered ANN with 20 neurons for the first hidden layer
and 5 for the second layer. For material classification a two-layered

network with 51 neurons in the hidden layer was sufficient. All
networks were trained by use of a gradient descent method.

For reducing the input dimension in a data-driven manner,
we used non-negative matrix factorization (NMF, Lee and Seung,
1999). Two other algorithms that, like NMF, also compute a vec-
tor basis transformation were tested too (PCA and Partial Least
Squares, Schwartz et al., 2009), but will not be presented here.
The main reason for using NMF was that it produces a set of
basis vectors that, when applied to the input, has similar compu-
tational properties as a set of band-pass filters. Most importantly,
it attenuates or amplifies each input component with positive
scaling factors only. This property makes the solution physiolog-
ically plausible, as it captures the frequency-selective attenuation
which is typical for sensory processing (e.g., Braddick et al., 1978).
It arises due to the constraint of the NMF algorithm, allowing
non-negative basis vector components only. In contrast, algo-
rithms such as PCA and PLS produce basis vectors with negative
components and, therefore, do not capture the computational
properties of band-pass filters.
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ROBOTIC PLATFORM
The robotic system used for the implementation of the feed-
forward strategies, consisted of a custom-built, dual-drive rov-
ing platform equipped with a pan-tilt actuated bionic-antenna,
as shown in Figure 1A. The pant-tilt unit consisted of two
Dynamixel motors (i.e., High-performance networked actua-
tors for robots RX-64, http://www.robotis.com/xe/) controlled
through an RS485 serial bus. The same motors were used also to
actuate the four robot wheels. The low-level distributed control
system was based on three main boards: (i) an 8-bit Atmega-based
board used to handle the ADXL321 sensor; the x and y signals
coming from the sensor were sampled with a 10-bit ADC at a
sampling rate of 1 kHz, before being transferred to a PC via a USB
connection; (ii) a 128-bit Atmega-based board was used to con-
trol the pan-tilt system of the antenna; in the simplest case, the
two motors followed a limit cycle with a period of two seconds;
(iii) the main board, based on a 128-bit Atmega microcontroller,

was used to control the movements of the roving platform and
received commands from or exchanged data with a remote PC
through a wireless connection.

SPIKING NEURAL MODEL
The sensory data acquired with the robotic platform was pro-
cessed by a spiking neural network model. The model combined
linear sensory arrays of spiking neurons and a central pattern
generator (CPG) model for driving the pan-tilt unit (Figure 3).
After a pre-processing stage, the sensory information was fed into
a one-dimensional array of spiking sensory neurons. Through
plastic synapses, their output was then conveyed to the motor
neurons that control the muscle/motor system. The scheme pro-
posed in Figure 3 refers to the general case in which the robot
is equipped with two antennae, even though in the experi-
ments described here, sensor data were acquired from a single
antenna only.

FIGURE 3 | Bock diagram of the control architecture, designed for the

integration of the bionic antennae in a roving platform. The neural
network was characterized by multiple layers: (i) A Sensory Layer used for
sensory pre-processing and extraction of the frequency spectrum of the
acquired signal, based on an array of resonate-and-fire neurons; (ii) a Control
Layer where a high-level navigation controller could be introduced together
with the material classification network, and (iii) a Motor Layer, used to

actuate both robot wheels and the pan-tilt unit of the antenna. Details of the
Motor Layer and the Navigation Control unit of the Control Layer are beyond
the scope of this paper. The presence of a forward model for self-motion
compensation has been considered by using a sensory gating strategy.
The commands for speed were used to modify the pre-processing of the
antennal acceleration sensor in oder to compensate for self-induced sensor
readings.

Frontiers in Neurorobotics www.frontiersin.org August 2012 | Volume 6 | Article 8 | 5

http://www.robotis.com/xe/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Patanè et al. An insect-inspired bionic tactile sensor

As described above, the sensory information acquired with the
two-axis accelerometer was pre-processed using PCA and nor-
malized. The pre-processed signal was used as input current for
a series of resonate-and-fire neurons. Each neuron was tuned to
resonate at a specific frequency in the interval from 7 to 30 Hz.
The high-frequency band necessary for material classification was
not used in the robot experiments, as we concentrated on distance
estimation only The array of resonate neurons used to process
the sensory signals for each antenna represented a linear sensory
array encoding the contact location along the antenna. Whereas
neuron f1 provided information about the lowest frequency com-
ponent (dominated by self-stimulation), neurons f2–fn provided
information about increasingly higher frequency components
and were associated with contact detection of increasingly dis-
tal locations along the probe (with increasing n in fn). The array
of resonate-and-fire neurons provided input to the control layer,
of which only one part will be explained in this paper (Material
Classification). Whereas the Navigation Control unit determined
the appropriate movement direction upon tactile contact (e.g.,
away from the contacted obstacle), the Material Classification
unit provided information about the contacted obstacle.

On the wheeled robot, the antenna was actuated with a pan-tilt
system controlled by the Motor Layer that mediated the infor-
mation from the Control Layer. The current speed of the robot
could be used to modulate the cycle frequency of the antennae
in order to reduce possible shadow areas, thus avoiding collisions
with obstacles.

Within the spiking network within the Sensory Layer shown
in Figure 3, each unit is an Izhikevich-type spiking neuron
(Izhikevich, 2003). The neuron model is represented by the
following differential equations:

v̇ = k
(
0.04x2 + 5v + 140− u + I

)
u̇ = ak(bv − u)

with the spike-resetting

if v ≥ 0.03, then

{
v← c

u← u+ d

where v is the membrane potential of the neuron, u is a recovery
variable, and I is the synaptic current. By choosing the parameters
a, b, c, and d, different kinds of neural dynamics can be obtained.
To show a resonate-and-fire behavior the neuron parameters were
set to the following standard values: a = 0.1, b = 0.26, c = −60
and d = −1. The parameter k was used to select the resonate fre-
quency in each neuron. All other neurons behaved like class I
neurons, in which the output spike rate was proportional to the
input current (the adopted parameters were a = 0.02, b = −0.1,
c = −55 and d = 6).

RESULTS
TACTILE CONTACT LOCALIZATION
When the antenna hits an object, the acceleration sensor recorded
the impact in the form of an abrupt, steep signal followed by
a damped harmonic oscillation. The latter can be explained by

the vibration of the free end of the probe, i.e., the part between
the contact site and the tip. Accordingly, the fundamental fre-
quency of the oscillation increased with increasingly distal contact
events, i.e., with decreasing length of the vibrating free end of
the probe (Figures 2B and C). The FFT amplitude spectra of
the recorded oscillations always showed a salient low-frequency
peak, followed by one or more high-frequency modes. In order
to obtain good understanding of the main signal parameters and
their relevance for the sensing process, we first limited the anal-
ysis to the two largest modes only, using their peak frequency,
amplitude and decay time constant as parameters. Peak fre-
quencies, F, of both modes increased exponentially with contact
distance, d (Figure 2C, low frequency: log F = 0.0268 · d+ 0.69;
high frequency: log F = 0.0305 · d+ 1.52), and linear regres-
sion models of the log-transformed frequencies explained more
than 98% of the total variance of the data (low frequency: r2 =
0.995; high frequency: r2 = 0.987). Peak frequencies of the low-
frequency peaks had approximately three times lower standard
deviation than those of high-frequency peaks, indicating that the
low-frequency peaks were more reliable for estimation of con-
tact distance. Judged from the standard deviation of the low
frequency peaks, the linear regression model allowed an aver-
age precision of 6.2 mm for estimates based on a single contact
event.

A major problem of this parametric variant of sensory pro-
cessing was that the frequency of the first harmonics became
increasingly unreliable for distal contact sites due to an decrease
of the signal-to-noise-ratio. Nevertheless, we tested the perfor-
mance of tactile localization with an ANN receiving two fre-
quency peaks of the FFT spectrum as input, and producing a
distance estimate at its output. For comparison, we used the
entire amplitude spectrum of the FFT, thus increasing the input
dimension from 4 to 509. The results are shown in Figure 4. The
fact that vibration-based distance estimation of contact events
generally worked well is reflected by the disjunct clusters of
input vectors after multi-dimensional scaling (Figure 4A, note
that multi-dimensional scaling is used for visualization purposes
only, not for quantitative analysis). As yet, this graph reveals
that clusters corresponding to increasingly distal contact locations
overlapped more and more, suggesting that it should become
increasingly hard for an ANN to separate the corresponding
input vectors. In other words, since the network had to find a
mapping from frequency values to distance, performance was
expected to deteriorate for distal contact locations. The regres-
sion plots in Figure 4B confirm this. Compared to the precision
estimate based on the linear regression models mentioned above,
performance increased for both ANN variants. For the paramet-
ric peak search variant, the root mean squared error (rmse) of
2.93 mm, equivalent to 0.7% of the antenna length. For the FFT
variant, performance improved to an rmse of 1.71 mm, equiva-
lent to 0.4% of the antenna length. This improvement was not
due to altered network size (owing to more input dimensions),
because using the lower frequency band only (halving the input)
yielded similar results as those of the parametric variant, whereas
ten-fold sub-sampling the input spectrum (tenth input size) pro-
duced classification results that did not differ from those obtained
from the entire spectrum. In summary, this shows that (i) the
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FIGURE 4 | (A) Multi-dimensional scaling and tactile localization. The plot
illustrates the separability of different distances. The Fourier spectra of
eight materials with a contact distance from 80 mm to 375 mm were
processed using multi-dimensional scaling. This led to a two-dimensional
embedding with the pair-wise distances being conserved. Contact locations
closer to the base can be distinguished easily (blue clusters do not overlap),
while contact locations above about 320 mm are challenging to tell apart

(red clusters overlap). Note that the scales on the axes are meaningless, as
this visualization method uses a non-linear transformation with the sole
purpose of conserving distances in a planar projection. (B) Corresponding
confusion plots, showing the distance output of the artificial neural network
compared to the true distance of the object. The results of parametric variant
(left) are compared with those of the FFT-variant (right). The latter shows
better results, especially for distant contact sites.

upper frequency band is important for good performance in
vibration-based tactile localization, and (ii) that extraction of a
single high-frequency mode is either not sufficient or not reliable
enough for achieving the best performance in tactile localization.

TACTILE MATERIAL CLASSIFICATION
Apart from tactile localization of objects, we were interested in
exploiting information arising through physical interaction of
the contacting materials. For example we were hoping to dis-
tinguish different material-specific properties through differences
in energy dissipation. In a first approach, we used the para-
metric variant of signal analysis and tested its applicability for
tactile material classification. Figure 5 summarizes the proof of
principle: the materials wood and aluminium could be distin-
guished reliably by comparing the decay time constants of the
damped harmonic oscillations. This suggested that an ANN could
be used for tactile classification of several materials, even if the
signals recorded had identical peak frequencies (because of iden-
tical contact location on the probe), and very subtle differences
in signal time course only (e.g., see time courses in Figure 5A).
In our proof of principle experiment, extraction and rectifica-
tion of the local extreme points revealed robust differences in
decay time constants that could be measured reliably by fitting
a first-order exponential decay function (Figure 5B). Amplitudes
and time constants of the fit functions differed in a statistically
significant manner for both the low- and high-frequency signal
component (t-test; τlow: t = 3.140, p = 0.0057; τhigh: t = 7.736,
p < 0.001; Alow: t = −3.683, p = 0.0017; Ahigh: t = −5.934, p <

0.001; Figure 5C). A remarkable feature of the algorithm was the
low variability of the results. For example, the coefficient of varia-
tion of the decay time constant of the low-frequency component,
τlow, was less than 1%. Owing to the small variability, measure-
ments from different materials could be distinguished with great
reliability.

Potential problems of classification based on decay parame-
ters could occur as decay time constants changed with frequency

and, thus, contact distance. To test whether it was possible to
distinguish time constants at any contact location, we compared
signals recorded for contacts on wood and aluminium, varying
contact location from 80 to 375 mm. For both materials, decay
time constants decreased with contact distance. The dependence
was almost linear (Figure 5D). Time constants of the two materi-
als were statistically different at all but four contact sites. On the
background of having shown that tactile distance estimation by
an ANN could be very reliable, it was clear that the decrease of
time constant as a function of contact location was possible too.
This suggested that material classification independent of contact
site should be possible for an ANN, using either the parametric or
the FFT variant.

In a first step of ANN-based material classification, we tested
whether a two-layered perceptron could be trained to predict
both the contact distance and the correct one of two materi-
als (wood and aluminium). Figure 6A shows the network and
the dependence of its performance on the number of hidden
layer neurons. For identifying the most relevant input parame-
ter for material classification, the ANN was trained with different
sets of input parameters. If only the amplitude and frequency
of the low-frequency component were used as input parame-
ters, overall performance was bad (blue line in Figure 6A), mainly
because errors in material classification were many. Performance
improved if amplitude and frequency of the high-frequency com-
ponent were included as well, but best performance (particularly
for very small ANNs with few hidden neurons) was obtained if
the decay time constant of the low-frequency component was
included (red and black lines in Figure 6A, respectively). We did
not include the decay time constant of the high frequency com-
ponent because this was too unreliable to determine for distant
contact locations where oscillation frequencies were very high
(despite the fact that τHigh proved to be a reliable at proxi-
mal contact sites, as seen in Figure 5C). For the best ANN with
five input, eight hidden and two output neurons (equivalent to
56 synaptic weights, only), the precision in distance estimation
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FIGURE 5 | The principle of tactile material classification. Extracting
parameters of damping. (A) When touching different objects or materials, like
an aluminium rod (red) and a wooden rod (black), sensor readings hardly
differ in frequency content (top), and even after decomposition, both low
(mid panels) and high frequency components (bottom) look very much alike
for both materials. (B) Extraction and rectification of local extremata of sensor
reading reveals different time courses of the decay. (C) Fitting first order
exponential decay functions to single trial data results in significantly different

time constants, τ, and amplitudes, A, for both frequency components (n = 10,
means ± s.d.). Hence, analysis of decay time constants allows material
classification. Note that data in (C) correspond to a single contact distance.
(D) Dependence of decay time constants on contact site. Two materials were
compared, a soft wood rod (circles) and an aluminium rod (squares). Time
constants were calculated from slopes of linear fits to log-transformed peaks
of low-frequency components. Error bars depict the SD, asterisks label
statistically significant differences (n = 10; ∗∗p < 0.001; ∗p < 0.05).

was ± 4 mm, with 87% correct material assignments for single
contact events.

For testing the performance of material classification with
several materials, we used eight cylindrical test rods made of dif-
ferent materials, including four metals and three plastics. Thus,
the selection of materials included samples that were expected
to be discriminated easily, e.g., aluminium and PVC, as well as
samples that were expected to be much harder to distinguish,
e.g., the two kinds of plastic. The experiments were carried out
such that antennal contact occurred at 16 positions along the
probe, ranging from 80 to 360 mm in steps of 20 mm, and at
375 mm. For each pair of material and contact location, con-
tact events were recorded 100 times, yielding a total of 1600
sample measurements per material and 80 per contact distance.
Multidimensional scaling of the input vectors for the FFT variant
revealed that data points related to the same material clustered
well, but with varying degree of overlap for selected material pairs
(e.g., see brass and wood in Figure 6B). Moreover, overlap of clus-
ters depended on contact location, as revealed by the different

graphs for 80 mm and 320 mm in Figures 6B and C). When using
the entire amplitude spectrum of the FFT as input, overall per-
formance in material classification was very good, amounting to
94.2% of correct assignments for single contact events. As yet,
performance was not equally good for all materials, as reflected
by the confusion matrix in Figure 6D, where correct assignments
are shown in red, low error numbers are shown in dark green, and
increasingly larger error numbers are shown in light green and
yellow. For example, wood and aluminium were confused only
rarely, while brass and wood appeared to be more difficult to dis-
cern (brass was confused with another material in 9.4% of cases,
wood was confused in 8.4% of cases; both of these materials were
most likely confused with each other).

REDUCING NETWORK DIMENSIONALITY WHILE MAINTAINING
PERFORMANCE
As the results above showed that the FFT variant was clearly
superior to the parametric variant, the question remained which
parts of the FFT spectrum were needed and which ones were not.
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FIGURE 6 | ANNs for tactile material classification. (A) In the parametric
variant, a two-layered artificial neural network (ANN) was tested with different
sets of input parameters for the high- and low-frequency components:
extracted peak frequencies flow and fhigh, amplitudes Alow and Ahigh, and
decay time constant of the low-frequency component, τlow. The diagram
plots performance error over the number of hidden neurons for three
combinations of input parameters (test error only, i.e., for signals not used for
training). Lowest errors with smallest network size were obtained if τlow was

included as input. (B) and (C) illustrate the separability of different materials.
The Fourier spectra of eight materials with a contact distance of 80 mm
(B) and 320 mm (C) were graphed using multi-dimensional scaling, resulting
in a two-dimensional embedding with pair-wise distances being conserved.
(D) Confusion matrix, showing the output of the ANN compared to the true
material class. As expected from multi-dimensional scaling, some materials
could be distinguished easily, e.g., copper and aluminium, whereas others
were more challenging, e.g., brass and wood.
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As the FFT variant used 509 input dimensions, the result-
ing ANN was large, requiring considerably more computational
resources than the parametric variant. Thus, there was a clear
resource-performance trade-off, and we were interested to assess
how performance decreased with systematic reduction of input
dimension. As preliminary results had already suggested that
ten-fold sub-sampling of the FFT spectrum had little effect on
distance estimation (see above), we sought the most efficient
combination in inputs in a data-driven manner. For this, we
applied non-negative matrix factorization, NMF, with varying
numbers of output dimensions. A representative result of NMF
with nine dimensions is shown in Figure 7A. The number of nine
dimensions was chosen for a better visualization, only. However,
with a larger number of dimensions the shown band-pass fil-
ter like characteristics stays the same. The nine basis vectors are
drawn as frequency spectra, emphasizing the analogy to a set
of band-pass filters. The corresponding nine-dimensional input
to the ANN was then computed by the dot products of the
509-dimensional FFT spectrum of the measured signal with each
one of the basis vectors shown. Thus, the number of basis vec-
tors is equal to the number of input dimensions of the ANN.
Figure 7B shows how material classification improves with num-
ber of input dimensions, where several training sessions were
done for each number of input dimensions, in order to avoid ran-
dom effects. The performance when using the un-filtered, entire
FFT spectrum was used as reference. The results for reduced input
dimension asymptotically approached the results of the entire
spectrum. For more than 30 input dimensions, performance in
material classification was at least 86% correct assignments. From
30 onwards, the improvement of performance became smaller.
Compared to the reference performance of 94.2% correct assign-
ments with 509 inputs, the performance with 30 inputs was
reduced by 8% only, while the amount of data was reduced by
95%. Taken together, robust classification of eight materials can

be achieved by appropriately filtering the measured tactile contact
signal by 30 non-linear band-pass filters obtained through NMF.

SENSORY DATA PROCESSING IN SPIKING NEURAL NETWORK
Until this point, the sensor data was always pre-processed by
FFT. Although the sensory encoding of stimuli in the fre-
quency domain is common in various sensory systems, including
mechanoreceptive and visual systems, FFT is not a biologically
plausible algorithm, so we strived to replace FFT by a bionic
method of information processing. For this we used a frequency-
encoding sensory array based on resonate-and-fire neurons.
By appropriate parameter adjustment of a single resonate-and-
fire neuron, it is possible to tune selective band-pass filters
(Izhikevich, 2003). Here, we exploited this property to determine
the specific frequency selectivity for each neuron in a linear sen-
sory array, such that each neuron was responsive to a narrow band
of frequencies only. The frequency tuning of the neurons is shown
in Figure 8 where the responses of neurons with preferred fre-
quencies at 7 Hz and 23 Hz are shown for two different sinusoidal
input signals. Each neuron was responsive to the corresponding
frequency and was silent to other inputs. The frequency selectiv-
ity is shown in Figures 8 G,H where the role of the parameters
I and b was analysed for a neuron tuned to resonate at 7 Hz. By
changing the amplitude of the input current, I, the neuron could
either resonate in a wide range of frequencies or be exited in a nar-
row band around 7 Hz. Parameter b was responsible for the spike
rate of the neuron.

After pre-processing with PCA, the signal was low-pass filtered
to remove high-frequency disturbances (above 30 Hz). The data
was then centred on zero by subtracting the mean value. This was
done off-line but can be performed on-line too, e.g., by use of
sliding window operations. Finally, the signal was transformed
into a train of pulses of unit amplitude (Figure 8I), thus remov-
ing amplitude differences in the input to the resonate neurons

FIGURE 7 | NMF-based dimensionality reduction. (A) Application of
non-negative matrix factorization to the FFT spectra of contact signals lead
to a set of basis vectors that could be interpreted as different band-pass
filters. The nine frequency spectra correspond to the set of optimal
filter characteristics when setting the dimension of the NMF-derived vector

basis to nine. (B) Accuracy of material classification as a function of the
number of dimensions of the NMF vector basis. The blue line
delimits the maximum accuracy achieved for a given dimension. The red line
indicates the accuracy achieved when using the original FFT spectrum as the
input.
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FIGURE 8 | Behavior of two neurons tuned to stimulus frequencies of

7 Hz (A) and 23 Hz (B). Membrane potential of the 7 Hz neuron showed
excitation in response to the sinusoidal stimulus with frequency 7 Hz (C) but
no response to frequency 23 Hz (D). The opposite was true for the 23 Hz

(Continued)
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FIGURE 8 | Continued

neuron (E),(F). Tuning of frequency selectivity depended on parameters k and
b, but also on the input amplitude I. This is illustrated for the 7 Hz neuron.
Parameter k was used to select the frequency of interest (for 7 Hz:
k = 0.3425). The input amplitude I modified the window in which the neuron
was active (G), and parameter b determined the spike rate (H). (I) The

pre-processed input signal was codified with a square-wave signal with an
amplitude range [−0.085 to 0.085]. This improved the detection performance
of the resonate neuron. (J) Block scheme of the signal elaboration from the
sensory data acquisition to the neuron input current generation. An
associative memory was considered to modulate the signal pre-processing
depending on the robot motor command.

that could affect frequency selectivity (which is a function of I,
see Figure 8G). Among the different methods tested, this square-
wave transformation proved most efficient, as the zero-crossings
became triggering events for spikes. The result was a codifica-
tion of input frequency only, supporting narrow-band frequency
selectivity in each neuron within the sensory array.

SPIKING-BASED PROCESSING AND FORWARD MODEL BY
SENSORY GATING
Experiments carried out with the bionic antenna being mounted
to the robotic platform generated a wide variety of sensor data
that was used to test state-dependent modulation of sensory pro-
cessing. During motion, frequency analysis of the pre-processed
sensor readings revealed an evident peak around 7.8 Hz (note
that high frequency signals with f > 30 Hz were not consid-
ered in this analysis). The presence of frequency components
in the band 7–8 Hz is evident even in absence of tactile con-
tacts. This activity represents the natural oscillation frequency
of the sensory probe due to the robot/antenna motion. Still,
antennal contact with an external object could be detected by a
marked, impulsive response in the sensor reading. Upon regis-
tering a contact event, the antenna was maintained in contact
with the obstacle for one second and a frequency analysis was
performed. For this, the FFT-based analysis used so far was
replaced by the spiking neural network architecture described
in Figure 3, with appropriate parameter tuning as explained in
Figure 8.

Analyzing the first results obtained using this pre-processing
strategy, it was evident that, in some cases, low-amplitude fluctu-
ations could create artifacts that erroneously caused a resonate
neuron to fire a spike. To avoid this problem, a threshold for
the signal amplitude was added, thus discarding sub-threshold
fluctuations. The value of the threshold was critical because an
inaccurate choice could lead to the presence of multiple false
positives, or, on the contrary, to missing of all contact events
(false negatives). Since most of the noise that made the thresh-
old necessary was introduced by self-motion of the robot, this
could be predicted from the motor commands assigned to the
robot drives. In a first attempt to adaptively select an appro-
priate threshold value, we determined its dependence on robot
speed. Indeed, if the robot drove on a plane surface, a simple
speed-dependent threshold improved contact detection perfor-
mance. Context-dependent setting of this threshold value allowed
for state-dependent modulation of the sensitivity to contact
events.

The effect of threshold modulation on the sensory array of
resonate neurons is shown in Figure 9. It summarizes two exper-
iments in which the robot antenna touched obstacles several
times. The rows in Figure 9 correspond to two different driving

speeds (Low speed v = 12 cm/s; High speed v = 27 cm/s). When
the signal codification through the square-wave was performed
without a threshold modulation (Th = 0), contact events were
detected erroneously, owing to the noise introduced by robot
motion. Increasing the threshold can filter out disturbances, but
too high thresholds can filter out contact signals, too. In the exam-
ple shown, the optimal value of Th was strongly dependent on the
speed of the robot, being more than five-fold as high for the fast
speed than for the low speed. As yet, doubling Th led to a loss of
true positives, irrespective of driving speed.

A more detailed example of a robot experiment is shown
in Figure 10, where the response properties of two resonate
neurons in the sensory array during a non-contact episode
(Figures 10 B,D,F) and a contact event (Figures 10 C,E,G) are
juxtaposed. In this experiment, the robot was moving at low
speed on flat terrain and a tactile contact occurred after 5.5 s.
During self-motion without tactile contacts, the 7 Hz neuron
fired spikes continuously, whereas neurons tuned to higher fre-
quencies remained silent. Upon tactile contact with the obstacle,
the pattern of activity within the sensory array shifted to higher
frequencies, and the 17 Hz neuron was most active. The frequency
map (Figure 10H) shows the time course of neural activity within
the entire sensory array: the initial frequency band of 7–8 Hz indi-
cates that the robot moved and, therefore, caused self-stimulation
at the resonance frequency of the probe. The contact event
was detected by an abrupt termination of the 7 Hz activity and
simultaneous occurrence of a new peak at much higher frequen-
cies. As soon as the robot was stopped in response to tactile
contact, neural activity ceased in both high and low frequency
neurons.

DISCUSSION
With this study, we present a bio-inspired tactile sensor for
active tactile localization and material classification, suitable for
application on a mobile robot platform. Two neural informa-
tion processing modules were proposed for these purposes: a
multi-layered perceptron for analysis of the frequency spectrum
of the vibration signal recorded, and a spiking neural net-
work that can provide the frequency spectrum and lends itself
for state-dependent modulation of sensory processing during
self-motion.

TACTILE LOCALIZATION AND MATERIAL CLASSIFICATION
The measurement technique is simple, accurate, and robust. It
is simple because the use of a single sensor per antenna, it is
accurate because contact localization can achieve as little as 0.4%
deviation from linearity over a measurement distance of some
40 cm, and it is robust because it allows for correct classification
of eight materials in up to 94% of cases with a single contact

Frontiers in Neurorobotics www.frontiersin.org August 2012 | Volume 6 | Article 8 | 12

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Patanè et al. An insect-inspired bionic tactile sensor

FIGURE 9 | Frequency maps obtained from data acquired during two

experiments where the robot touched an obstacle several times and at

different speeds: vhigh = 27 cm/s, vlow = 12 cm/s. In the principal
component (PC) of the acceleration data, the contact events could be
identified as high-amplitude impulsive responses. For the high-speed
experiment (A) the contact events occurred at t = 6 s (window 30), t = 14 s
(window 70), t = 21 s (window 105), t = 26s (window 130), t = 33 s (window
165). For the low-speed experiment the contact events occurred at t = 13 s
(window 65), t = 19 s (window 95), t = 27 s (window 135), and t = 34 s

(window 170). The maps show the responses of the sensory array of
resonate neurons (columns of the maps), by color-coding their spike rate, in
time. Rows correspond to time windows of 1 s duration, with a sliding time
of 200 ms used between two consecutive windows. With a threshold
Th = 0, some artifacts appeared as in (B) and (F) that do not correspond to
real contact events. For high values of Th, real contact events could disappear
from the map (D)–(H). Finally, for optimal values of Th, contact events were
detected correctly (C)–(G). Note that the optimal value of Th depended on
the speed of the robot.
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FIGURE 10 | Experiment performed with the robot exploring a flat terrain

at low speed. (A) Principal component extracted from the acceleration data
and filtered signal (after low-pass-filtering with a cut-off frequency of 30 Hz).
Behavior of the network in absence of contact events: (B) normalized signal in
the interval [2, 3] s (window 10); (D) spike rate of the sensory array of resonate
neurons: the 7 Hz neuron is active because the robot is in motion; (F) membrane
potential of the 7 Hz neuron. Behavior of the network in presence of a contact

event: (C) pre-processed input signal and corresponding input current in the
interval [5.8, 6.8] s (window 29): a damped oscillation is recorded after a tactile
contact; (E) spike rate of the sensory array of resonate neurons: the 17 Hz
neuron it is active because the antenna touched an obstacle, the contact
distance can be calculated using a non-linear mapping function (here d = 19 cm
from the base of the antenna); (G) membrane potential of the 17 Hz neuron in
window 29. (H) Frequency map obtained for the entire experiment.
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event. Compared to earlier work on artificial active tactile sen-
sors, our method differs with respect to the sensorization of
the beam. For example Kaneko et al. (1998), Lewinger et al.
(2005), Solomon and Hartmann (2006), and Pearson et al. (2011)
used sensors at the base of the beam, whereas we use a sen-
sor on the tip. Despite the difference in sensor placement, our
method bears some similarities with that proposed by Ueno et al.
(1998), who also inferred the contact location along the beam
by analysing its resonant behavior, though with a basal sensor.
Technically, a major difference between basal and distal sensor
placement is the number of oscillation cycles that can be mea-
sured during a single contact event. In the approach by Ueno et al.
(1998), the fundamental frequency during the contact period
needs to be inferred from half a cycle period, whereas in our
method, several cycle periods can be analysed. Analysis of signals
containing several complete cycles of oscillation arguably allows
for more reliable computation of the frequency composition.
Another advantage of our method might be its applicability for
material classification in addition to tactile localization. This was
not tested by Ueno et al. (1998). On the other hand, approaches
with basal bending- and/or torque-sensors have been shown to
be very efficient in tactile shape reconstruction (e.g., Solomon
and Hartmann, 2006). As our sensing method relies on the anal-
ysis of discrete events rather than of a continuous stream of
sensor readings, it may be more appropriate for local, discon-
tinuous analysis of object features rather than for complete and
continuous mapping tasks.

The present system uses PCA-based pre-processing of the sen-
sory input that reduces the number of input channels from two
to one. This reduction is not necessary as the signals could be
also processed separately, with the overhead of doubling the pro-
cessing structure. An advantage of parallel processing of both
channels might be that the direction of motion relative to the sur-
face contacted could be determined. Future experiments will need
to address this issue.

The major advantage of the feed-forward ANN module con-
cerns the robustness of accurate localization in the face of noise,
and the applicability of fast and simple learning rules for any par-
ticular tactile classification task of choice. Both of these aspects are
of relevance to the engineering of autonomous active tactile sens-
ing systems. Concerning the resource-performance trade-off, the
reduction of input dimensionality used in this study was based
on NMF, yielding a relatively small set of basis vectors for effi-
cient description of the sensor signal. Owing to its non-negativity
constraint, NMF results in a set of basis vectors that can be
interpreted as non-linear band-pass filters. In principle, similar
results might have been obtained by an even-spaced set of band-
pass filters with equal frequency bandwidth. In fact, the analysis
of distance estimation revealed that simple down-sampling of
the input by using every 10th value, still produced satisfying
results. Potential disadvantages of such “simpler” choices of sen-
sory filters could arise due to arbitrary heuristics, e.g., when
choosing the bandwidth of band-pass filters. In contrast, appli-
cation of NMF ensured purely data-driven optimization of filter
properties. The result suggests that some 30 band-pass filters pro-
vide sufficient information for reliable classification of the eight
materials tested, independent of contact location. Many sensory

systems are known to use a relatively small number of input
channels with band-pass filter properties (e.g., see Olshausen
and Field, 2004, on sparse coding in sensory systems). Thus,
reducing the number of input dimensions by use of a set of band-
pass filters is not only resource-efficient in technical terms, but
also follows a common principle in natural sensory information
processing.

Our active tactile sensor system is inspired by the stick insect
antenna, albeit with strong simplification of the biomechan-
ical features (Dirks and Dürr, 2011) and number of sensors
(Monteforti et al., 2002). Stick insects of the species Carausius
morosus continuously move their antennae during locomotion,
thus actively exploring the ambient space (Dürr et al., 2001).
They use mechanoreceptive information from their antennae for
tactually mediated re-targeting of leg movements in a reach-to-
grasp paradigm (Schütz and Dürr, 2011) though the source of
this mechanoreceptive information is not known yet. At least
two kinds of antennal mechanoreceptors could contribute to the
encoding of fast rhythmic deformation of the long and thin flagel-
lum: (i) campaniform sensilla, i.e., bending-sensitive sensilla that
are embedded within the cuticle of different parts of the antenna;
(ii) Johnston’s organ, a prominent chordotonal organ in the sec-
ond segment of the antenna, near the base. Johnston’s organ is
present in all higher insects. It is a proprioceptor known to mea-
sure antennal vibration in many insects, including mosquitoes,
flies, and honeybees (reviewed by Staudacher et al., 2005). In
stick insects, descending neurons of the antennal mechanosen-
sory system have been shown to be vibration-sensitive (Westmark
and Dürr, 2009), and the sensory structures that supply this
information must have been located on the proximal part of the
antenna, although their identity remains obscure. In a chordo-
tonal organ of the stick insect leg, the sense of vibration has been
analysed to considerable detail (Stein and Sauer, 1999), show-
ing that the sense of vibration is of importance in these animals.
In summary, the choice of a single distal acceleration sensor
on our bionic antenna does not model any particular antennal
mechanoreceptor. Rather it abstracts the property of antennal
vibration-sensitivity, highlighting both advantages and disadvan-
tages of vibration-sensitivity on an active sensor, and furthering
our understanding of what kind of behavioral tasks vibration-
sensitive proprioceptors potentially could contribute to.

In addition to their rich sensory infrastructure, real insect
antennae have very complex mechanical properties. In many
species, the antenna is sufficiently stiff for maintaining its
shape during self-motion, even in very long and thin structures
(e.g., 100:1 length-to-diameter ratio in the stick insect Carausius
morosus). At the same time, antennae are compliant and readily
bend when in contact with obstacles. Moreover, damping appears
to be functionally important, and is known to vary along the
length of the antenna (Dirks and Dürr, 2011). Near the base
of the stick insect antenna, damping is over-critical, preventing
long-lasting oscillation of the structure, while supporting fast
return to the natural shape after release of contact. Closer to
the tip of the antenna, damping is weaker and oscillation of the
flagellum has been shown (Dirks and Dürr, 2011). The bionic
tactile sensor used in this study does not model a proximal-
to-distal gradient of damping properties. Taken together, the
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sensing principle based on a distal vibration sensor monitoring
damped harmonic oscillations is a simplification based on the
observation that antennal contacts cause deflections of the flag-
ellum which lead to fast return movements inducing oscillation
of the tip.

STATE-DEPENDENT SENSORY GATING BY MEANS OF A
FORWARD MODEL
Mechanoreceptors are particularly susceptible to self-stimulation
during motion, mainly because movement may directly inter-
fere with their adequate stimuli, e.g., the deflection of a hair
or passive movement of a joint. As a consequence, active sens-
ing, i.e., involving self-motion into the sensing process, is likely
to generate self-stimulation that potentially could confound sen-
sory readout. On the other hand, active mechanoreception may
also have advantages in fidelity over passive mechanoreception,
as shown by Kim and Möller (2006). Here we use a bio-inspired
neural network approach for state-dependent modulation of
sensory input. It is inspired by central modulation of sensory
processing in insects (e.g., Poulet and Hedwig, 2007), and bears
many parallels to gating properties described in the central ner-
vous system of walking crickets (Staudacher and Schildberger,
1998).

Bio-inspired solutions can be applied in robots for finding
alternative ways to deal with classical problems of obstacle detec-
tion in roving platforms. With the proposed spiking-network
architecture we provide an alternative method for the frequency
analysis of the input data originally performed through the FFT.
The spiking-network is based on resonate-and-fire neurons for
processing sensory information coming from mechanoreceptors
on the antenna. Apart from resonance-based frequency decom-
position of the input signal, we modulate a key parameter of the
resonate-and-fire neurons for state-dependent modulation of
their sensitivity. This allows for state-dependent cancellation of
self-induced sensor readings.

Resonance in neural circuits is considered an essential ingredi-
ent for giving rise to self-sustained activity (i.e., in the absence of
external stimuli), suggesting a primary role in higher cognitive
processes such as working memory, decision-making, and goal
directed behavior (Wang, 2003). On the other hand, dynamical
system theory traditionally exploits resonance for detecting the
essential dynamical characteristics of the system under consider-
ation, emphasizing the role of enhancing specific input patterns
locked around the system’s resonance frequency. Joined together,
these two concepts led to the design of neural models which
were both able to exhibit self-sustained oscillations (Muresan and
Savin, 2007), and to show the emergence of oscillations only if
stimulated by input signals possessing specific frequency contents
(Izhikevich, 2001). Complex strategies of selective communi-
cations were hypothesized using networks endowed with such
models (Izhikevich et al., 2003). One of the first applications of
resonators was in the field of sound detection, localization and
clustering from sensory data (Arena et al., 2005). A similar princi-
ple has been applied by Webb et al. (2007), investigating the ability
of bushcrickets to respond to different song patterns. The imple-
mentation through spiking networks, as proposed here, can be
a first step toward a bio-inspired formalization of the structure,

allowing its transfer and application to modeling higher brain
functions of insects as well, for example functions that involve
the mushroom bodies or the central complex (Arena et al., 2010).
Future work will consider the introduction of local excitatory
and global inhibitory connections among the resonate neurons to
create a winner-takes-all topology to improve the filtering capa-
bilities and the detection performance. Moreover the proposed
architecture allows embedded solutions by using either networks
of microcontrollers or FPGA-based boards (Arena et al., 2007,
2008).

In nature, mechanisms for self-motion detection are fre-
quently met. For example, flies readily estimate their self-motion
from the acquired optic flow field (Krapp, 2009). Forward mod-
els are used for predicting and compensating specific effects of
own body motions, recorded from exteroceptive sensors: there
is a large body of literature suggesting that biological systems
use efference copy and internal models to filter out disturbances
in a fast, robust, and adaptive way (Franz et al., 2004; Webb,
2004). Applications in the area of biorobotics include prediction
and compensation of self-induced disturbances on sensor read-
ings in a biped robot (Manoonpong and Woergoetter, 2009),
using a recurrent neural network. The particular implementa-
tion of forward models through spiking neural networks is an
interesting topic as discussed by Russo et al. (2005). Their mod-
eling work on multimodal integration in crickets allowed them
to deal with conflicting effects of auditory and visual orienta-
tion reflexes (phonotaxis and optomotor turning response). For
this, they suppressed self-induced visual input activity during
voluntary turning movements and phonotaxis-induced turning.
In this case, a simple non-linear feed-forward compensator was
designed as part of a bio-inspired spiking neural network to
model sensorimotor integration and control on a roving robot.
The proposed architecture included a forward model for ego-
motion compensation that was based on a sensory gating strat-
egy for an efficient and robust solution, requiring neither time
prediction nor compensation mechanisms. The present model
could be extended to include a reward-based learning method,
allowing the robot to learn the appropriate threshold values.
A potential candidate structure for implementing such a learn-
ing method is a Motor Map (Ritter et al., 1992). In a Motor
Map, a lattice of neurons can be specialized to find the best
threshold value for different robot speed. Moreover, it could be
extended easily to include further inputs, including inputs that
classify different types of environments. The reward signal could
be generated by a teacher that indicated to the robot whether
a detected contact event was a true or false positive. Instead
of a teacher, other sensors, such as sonar or infrared distance
sensors, could provide the signals necessary validation of true
positives.

The control architecture used in the present robot system can
be improved further by introducing a behaviour association net-
work as proposed in Arena et al. (2009). The robot could then
try different basic behaviors on the detected objects, for instance
avoidance, climbing, or pushing, while monitoring the conse-
quences of its own actions. By using a simple associative learning
method, the robot could choose the most suitable action for each
object, depending on information about dimension and type of
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material that can be acquired from the bionic antennae. It is
important to underline that the spiking-network structure can
be considered as a functional module that can be integrated with
other modules for a more detailed control strategy.

In summary, out active tactile sensing system successfully
applies a simple feed-forward ANN module for robust and reli-
able tactile localization and material classification. Moreover, we
exploit the resonant behavior of a spiking-network for imple-
menting a mechanism of state-dependent modulation or gating.
This allows suppression of self-induced mechanorecptive inputs
from the antenna as it occurs during self-motion. Thus, it is
applicable to active tactile sensors mounted to mobile platforms.
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