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Human neuromotor capabilities guarantee a wide variety of motions. A full understand-
ing of human motion can be beneficial for rehabilitation or performance enhancement
purposes, or for its reproduction on artificial systems like robots.This work aims at describ-
ing the complexity of human motion in a reduced dimensionality, by means of kinematic
Motion Primitives (kMPs). A set of five invariant kMPs are identified for periodic motions,
and a set of two kMPs for discrete motions. It is shown how these two sets of kMPs can
be combined to synthesize more complex motion as the simultaneous execution of the
periodic and the discrete motions. The results reported are an evidence of the theory of
Central Pattern Generators (CPG), showing its effects on the kinematics, and are related
to what presented in the literature on the Motor Primitives extracted from EMG signals.
Experimental tests with the COmpliant huMANoid (COMAN) were performed to show that
the kMPs extracted from human subjects can be used to transfer the features of human
locomotion to the gait of a robot.

Keywords: human motion analysis, kinematic Motion Primitives (kMPs), combination of periodic and discrete
movements, COMAN robot, dimensionality reduction, central pattern generators

1. INTRODUCTION
Humans are capable of performing an impressive variety of
motions including locomotion, manipulation, and coordination
between simultaneous locomotion with manipulation, with the
control of these motions not being trivial. This paper proposes
a novel method to reduce the complexity of human motion, by
describing it through a series of kinematic Motion Primitives
(kMPs). The kMPs are invariant waveforms, and it will be shown
that a small set of kMPs is sufficient to explain a wide variety of
complex coordinated motions, both periodic (e.g., walking and
running), and discrete (e.g., reaching for a target with one hand).
The work demonstrates that kMPs are independent of the subject
and robust to disturbances. For locomotion five kMPs are identi-
fied. They describe different gaits of walking at different velocities
and running, and gaits with constrained arm motion. The work is
further developed to consider reaching, and two kMPs are iden-
tified for this class of motions. The kMPs extracted from both
discrete and periodic motions can be combined to produce a new
set of kMPs that describes the complex motion that is the simul-
taneous execution of the source basic motions (e.g., reaching for
a target with one hand while walking). It is interesting to notice
that, from the kinematic point of view, the combined motion is
neither the sequencing nor the simple superposition of the source
motions.

This work is relevant to the theory of Central Pattern Gener-
ators (CPG; Brown, 1911, 1912), providing evidence of its valid-
ity from the effects noticed at the level of the kinematics, and

Abbreviations: COMAN, COmpliant huMANoid robot under development at IIT;
CPG, central pattern generators; kMPs, kinematic motion primitives; MPs, motor
primitives; PCA, principal component analysis.

confirming its effectiveness in describing complex motions in a
lower dimensionality. Previous works in the literature have used
primitives to describe human or animal motion. Among these
(Tresch et al., 1999; Mussa-Ivaldi and Bizzi, 2000; D’Avella et al.,
2003; Ivanenko et al., 2004, 2005; Bizzi et al., 2008; Lacquaniti et al.,
2012), where Motor Primitives were extracted from EMG signals.
The results presented in this paper are complementary to these
works. The theory of CPG hypothesizes that a limited number of
control signals is generated in the spinal cord (Dimitrijevic et al.,
1998; Kiehn and Butt, 2003). These signals control the contraction
of the muscles, and the work on the Motor Primitives highlights
this activity; the motion produced by the muscles is the object of
the analysis presented in this paper, that shows the effects of the
CPG at a kinematic level, by means of kMPs.

Another related work is Santello et al. (1998), that shows how
to reduce the complexity of the grasping motion of a human hand
by identifying a set of synergies. Synergies are closely related to
the kMPs, with the main difference being their application: every
synergy is related to a basic grasping mode, and a weighted combi-
nation of the synergies describes the different grasps. Soechting
and Lacquaniti (1981) performed a systematic analysis of the
reaching motion, measuring wrist position, and elbow angle.

The results reported can be useful in the field of neuromo-
tor rehabilitation, performance enhancement for athletes, or in
the reproduction of human motion skills in artificial systems,
i.e., robots (Ijspeert et al., 2002; Degallier et al., 2008; Ijspeert,
2008; Moro et al., 2011, 2012). In particular, Moro et al. (2011)
presented the kMPs of human locomotion, and their use to gen-
erate by reconstruction a human-like gait that was tested on
the COMAN robot (Tsagarakis et al., 2011). Moro et al. (2012)
extended this work, using the kMPs-based trajectories and scaling
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them in frequency to match the first resonance frequency of the
mechanism. This resulted in a significant improvement of the
energy efficiency. The new contribution of the research presented
in this manuscript with respect to these previous studies is that
it considerably extends the previous works by considering also
discrete motions (reaching with a hand) and motions that are a
combination of periodic and discrete movements (reaching while
walking).

2. MATERIALS AND METHODS
In this section the experiments performed will be introduced: the
subjects that participated in the experiments, the set-up used to
monitor the human motions, and the method used to extract the
kinematic Motion Primitives (kMPs) will be explained in detail.
The statistics adopted to evaluate the similarity between kMPs, and
the formula to reconstruct the joint trajectories from the kMPs will
be reported as well.

2.1. EXPERIMENTAL SET-UP
Five healthy male subjects, aged 25–28 years old, participated in the
experiments. They differ in nationality, fitness level, and physical
features (height: 170–185, weight: 60–90).

Movement data were collected using a Vicon MX series T
motion capture system with 6 T10 infrared cameras of 1 million
pixels resolution, operating at 250 Hz. Thirty-nine passive mark-
ers were attached to the subjects and used to fit a full body model.
The Plug-in Gait, provided with the Vicon software, was used to
derive the kinematics (i.e., 34 joint trajectories).

The supplemental equipment used for the experiments includes
an electrical treadmill (Christopeit Runner Pro I, velocity range:
1–12 km/h), a foam ball (6.5 cm of diameter), that was used as a
target for the reaching experiments, and a standard gym 5 kg load.
Figure 1 shows the set-up with one subject performing some of
the gaits analyzed, wearing a black suit with the passive markers.

The set of motions recorded includes locomotion (periodic
motion), reaching for a target object (discrete motion), and a
combination of these two motions/tasks.

For what concerns the periodic motions, three different veloc-
ities were considered, two for walking, and one for running:

• WLS – Walking at Low Speed – 2 km/h
• WHS – Walking at High Speed – 4 km/h
• RUN – Running – 6 km/h

In addition to the unconstrained walking (hands free), the
subjects were asked to walk/run while carrying an object which
affected the movements of the arms. Again, three arm parameters
were considered: unconstrained arms, holding an empty box, and
holding a 5 kg load. These three conditions are designated as:

• Normal
• B – Holding an empty box with two hands
• 5 – holding a 5 kg load with two hands

In the notation adopted, for instance, WHSB means “walking at
high speed while holding an empty box.” The combination of dif-
ferent speeds and constraints resulted in nine gait scenarios. For
each of these gaits five trials per subject were recorded, where a
trial consists of several steps taken by the subject at steady-state
speed.

The above set-up allowed testing of the locomotion cycle which
was considered as a period activity. Similar tests were carried out
for the discrete motion of the arm. In these tests the subjects were
asked to reach for a target (foam ball) with their hand. The position
of the ball was fixed at the same height as the eyes of the subject,
20 cm to the left side with respect to the sagittal plane, at a reach-
ing distance of approximately 50 cm. This made not symmetric
the reaching of the ball with the left or the right hand.

FIGURE 1 | One of the subjects (A) walking on the treadmill with no constraints, (B) walking on the treadmill holding a 5 kg load, and (C) reaching for
a ball with his right hand while walking on the treadmill.
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• BallUp_Left – Reaching the ball position with the left hand
• BallUp_Right – Reaching the ball position with the right hand

Finally, the subjects were asked to perform a set of task motions
that is a combination of the described periodic and discrete
activities, i.e., reaching for the ball with either hand while walking
on the treadmill (e.g., WLSBallUp_Left is “reaching for the ball
with the left hand while walking at a low speed”).

From the trajectories recorded with the motion capture sys-
tem for each of these scenarios, the kinematic Motion Primitives
(kMPs) were extracted. In the next section the method adopted
will be described.

2.2. kMPs EXTRACTION
In this section the methodology used to obtain the kMPs from the
raw data collected will be introduced.

As anticipated, the output of the motion capture system is a
set of 34 joint trajectories for each trial (7 for each arm: 3 for the
shoulder, 1 for the elbow, 3 for the wrist; 7 for each leg: 3 for the
hip, 1 for the knee, 3 for the ankle; 3 for the spine; 3 for the neck).
Although efforts were taken to ensure that all the markers could
be seen from the cameras, there were occasions when occlusions
did occur. As expected this was more common in some test scenar-
ios than others. There was some degradation of the quality of the
data for fast motions (i.e., running), motions involving support-
ing objects that could occlude some of the markers (i.e., holding
the box), or motions with self-occlusion (i.e., reaching the ball).
Data sets where there was a significant loss of tracking points were
neglected and not considered in the analysis. The number of valid
data sets used in each experiment is reported in section 3.

Among the many dimensionality reduction techniques avail-
able in the literature, the widely used Principal Component Analy-
sis (PCA) was chosen and applied to the sets of trajectories to
extract the kMPs. PCA is a linear transformation (Pearson, 1901),
and is significantly simpler than most of the other dimensionality
reduction methods. Even if in certain situations PCA was proven
to be not powerful enough (e.g., EMG signals), it fits well in the
case of kinematic data, which are less susceptible to noise. All 34
joint trajectories describing the motion of the subjects were used
as the input to PCA to maximize the information available for
analysis. It was decided to apply not any normalization among the
joint trajectories: this guarantees that a higher importance is given
to the joint with a wider displacement.

In the case of locomotion the first five components explained
about 99% of the cumulative variance. For the reaching tasks, and
the combination of discrete and periodic motions (reaching while
walking), two and four components were considered, respectively,
for a cumulative variance explained of approximately 95%.

The components considered were called kinematic Motion
Primitives (kMP), since it will be shown that they are invariant
between the different subjects and for different gaits, and that they
can describe in a lower dimensionality the complex motions of the
subjects.

2.3. kMPs COMPARISON
The analysis performed, the results of which will be shown in
Section 3, aimed to investigate the effects on the extracted kMPs

when the subject, the velocity, and the constraints on the arms (in
the case of locomotion), or the hand used (in the case of reaching)
change. The combination of periodic and discrete motions was
also studied.

To compare the kMPs extracted a visual representation of the
kMPs is provided for each experiment, together with related sta-
tistical information. To quantify the similarity between two sets of
kMPs the maximum cross-covariance between each correspond-
ing kMP (sliding in time) was calculated, and normalized so that
the auto-covariance is 1. The delay between any two compared
kMPs is also returned. This value indicates how much time-slip is
needed in a signal to maximize the cross-covariance. Again this is
normalized so that a slip of an entire cycle has a value of 1. An indi-
cation of the similarity (and delay) between the two entire sets is
provided as the weighted average of the cross-covariance of the dif-
ferent kMPs. The weight used is the average of the corresponding
variance explained by the kMPs compared.

Table 1 shows the statistical analysis performed, where VGj_i is
the variance of the joint trajectories of Gaitj explained by the ith
kMP, XGjk_i is the cross-covariance between the ith kMP extracted
from Gaitj and the ith kMP extracted from theGaitk. Similarly,
DGjk_i is the delay between the ith kMP extracted from the Gaitj
and the ith kMP extracted from the Gaitk.

Other cells in the table represent the sum or the average of
the corresponding row/column, apart from those in the last col-
umn. Equations (1) and (2) indicate how XGjk_W and XAv_W
are defined, respectively.

∀j ∈ {1 . . . m},∀k ∈ {j + 1 . . . m},

XGjk_W =

(∑n

i=1
XGjk_i ·

VGj_i + VGk_i

2

)
·

2

VGj_Sum + VGk_Sum

(1)

XAv_W =

∑m
j=1

∑m
j=j+1 XGjk_W(m

2

) =

∑n
i=1 XAv_i · VAv_i

VAv_Sum

(2)

In the same way, equations (3) and (4) define DGjk_W and
DAv_W, respectively.

∀j ∈ {1 . . . m},∀k ∈ {j + 1 . . . m},

DGjk_W =

(∑n

i=1
|DGjk_i| ·

VGj_i + VGk_i

2

)
·

2

VGj_Sum + VGk_Sum

(3)

DAv_W =

∑m
j=1

∑m
j=j+1 DGjk_W(m

2

) =

∑n
i=1 DAv_i · DAv_i

DAv_Sum

(4)

Notice that the statistics reported are not intended to provide a
statistical proof, rather they are a quantification of what is already
evident from the visual representation.
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Table 1 | Generic table schema for the report of statistics.

1st 2nd . . . i th Average Sum Weighted

Var Gait1 VG1_1 VG1_2 . . . VG1_i / VG1_Sum /

Var Gait2 VG2_1 VG2_2 . . . VG2_i / VG2_Sum /

. . . . . . . . . . . . . . . / . . . /

Var Gaitj VGj_1 VGj_2 . . . VGj_i / VGj_Sum /

Var average VAv_1 VAv_2 . . . VAv_i / VAv_Sum /

Xcov Gait1_Gait2 XG12_1 XG12_2 . . . XG12_i XG12_Av / XG12_W

. . . . . . . . . . . . . . . . . . / . . .

Xcov Gaitj_Gaitk XGjk_1 XGjk_2 . . . XGjk_i XGjk_Av / XGjk_W

Xcov average XAv_1 XAv_2 . . . XAv_i XAv_Av / XAv_W

Delay Gait1_Gait2 DG12_1 DG12_2 . . . DG12_i DG12_Av / DG12_W

. . . . . . . . . . . . . . . . . . / . . .

Delay Gaitj_Gaitk DGjk_1 DGjk_2 . . . DGjk_i DGjk_Av / DGjk_W

Delay average DAv_1 DAv_2 . . . DAv_i DAv_Av / DAv_W

2.4. TRAJECTORIES RECONSTRUCTION FROM kMPs
This section focuses on the synthesis of joint trajectories starting
from the kMPs. This reconstruction is represented by:

 q1
...

qi

 =
 s1,1 · · · s1,j

...
. . .

...
si,1 · · · si,j

×
 P1

...
Pj

+
 Z1

...
Zi

 (5)

where [q1 . . . qi]∈Ri , with i= 34, representing the joint trajecto-
ries vector [P1 . . . Pj]∈Rj , with j equal to the number of kMPs,

being the kMPs vector, and [Z1 . . . Zi] ∈ Ri , with i= 34, being a
zero offset mean vector. Zi is added back to the ith joint trajec-
tory (PCA was applied on the zero-mean normalized trajectories).
The matrix [s1,1 . . . si,j]∈Ri,j represents the kMPs synergy map. If
only a subset of the joint trajectories is required, it is possible to
consider a submatrix, composed only of the rows corresponding
to the joints of interest. The reference vector for the joint variables
is therefore a linear combination of the kMPs through the syner-
getic coefficients of the matrix S. The columns of this matrix map
the contribution of each primitive to the joint space. Using the
extracted kMPs, the joint trajectories can be reconstructed basing
on the above formula.

Some observations earned from a study on the role of the single
kMPs in the overall motion will be reported in Section 4.

3. RESULTS
Section 3.1 studies the effect on the kMPs extracted from peri-
odic motions when the subjects, the velocity, and the constraints
imposed change. In Section 3.2 a similar analysis is performed
for the discrete motions. Section 3.3 considers the combination
of periodic and discrete kMPs. The tables in these sections report
only the final results of the statistics applied. An extended ver-
sion of these tables with all the partial results can be found in the
Appendix. Section 3.4 shows an example of joint trajectory recon-
struction from kMPs. In Section 3.5 an interpretation of the kMPs
is given, showing the foot trajectory when it is partially recon-
structed from single kMPs or a subset of the five kMPs. Finally, in

Section 3.6, the application of the kMPs to generate a valid walking
for the humanoid robot COMAN is presented.

3.1. EXPERIMENT 1: kMPs EXTRACTION AND COMPARISON FOR
PERIODIC MOTIONS

In this subsection the kMPs extracted from different subjects,
walking at different velocities or running, with different constrain-
ing conditions on the arms, are compared. In particular, in the
Experiment 1.1 the kMPs of five subjects performing a low-speed
walking (WLS) are compared. Next, in the Experiment 1.2, the
kMPs of WLS will be compared to those of WHS. This will be
extended in the Experiment 1.3 to the kMPs of running. Finally,
in the Experiment 1.4 different conditions of the arms motion are
considered, and the kMPs extracted from a locomotion when the
arms are constrained to hold a box or a 5 kg load are compared to
those of free walking. For each of the gaits in each experiment, 34
joint trajectories are recorded over a sequence of four gait cycles.
These data were normalized in time (from 0 to 100% of the gait
cycle) and averaged, to reduce noise (Figure 2 shows the typical
results of this procedure for the left knee trajectory).

3.1.1. Experiment 1.1: comparison between different subjects
In this experiment the five subjects are performing a slow walk
(WLS), and all the markers were always clearly observable by the
cameras. This resulted in very low noise in the joint trajectories
recorded, and for this reason only one trial per subject was ran-
domly selected and used in the analysis. Five kMPs for subject were
extracted from these data, as described in Section 2.1. In Figure 3A
the five kMPs are represented. The dotted line in each plot shows
the average kMPs (among subjects). On the x-axis is the percent-
age of the period of the gait, from 0 to 100, while the values on the
y-axis are between −1 and 1, indicating normalized kMPs. From
these results it is clear that the first two kMPs have the same fre-
quency as the gait, while the third and the fourth are coupled with
the step (i.e., twice the gait frequency). The frequency of the fifth
kMP, instead, is approximately three times the gait frequency.

Considering the general profile of the kMPs of the different
subjects, it is already evident visually that the shape of the signals
compared is almost identical, and the delay also is almost zero. The
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FIGURE 2 | On the left is the original left knee angle trajectory (four complete gait cycles), while on the right an averaged and normalized in time left
knee trajectory is derived (dotted line) from the trajectories of the four consecutive gait cycles.

statistical analysis performed, the results of which are reported in
Table 2 (an extended version, Table A1 in Appendix), gave a quan-
titative indication of the similarity between the different signals,
confirming what was observed.

The first five kMPs, on average, explain the 58, 24, 13, 3, and
1% of variance, respectively, for a cumulative variance explained
of about the 99%. The kMPs of each subject were compared with
those of all the other subjects, to obtain the cross-covariances, and
the delays. The averages of these values were calculated, and it
was observed that the third kMP has the least variation, with the
97% similarity. The overall similarity between the kMPs of differ-
ent subjects walking at low speed was calculated as the weighted
average of the values found for the single kMPs, using the average
percentage of variance explained by that kMP as a weighting coef-
ficient. This demonstrated a similarity between the kMPs of the
different subjects of approximately 95%. The same method was
used to evaluate the average delay, and it resulted to be about 2%
of the gait cycle.

3.1.2. Experiment 1.2: comparison between different walking
velocities

What reported in the previous experiment was also verified for the
five subjects walking at a high speed.

In this experiment the average kMPs of WLS are compared
to the average kMPs of WHS (with data from five subjects). From
Figure 3B it can be seen that the kMPs from gaits at different veloc-
ities are almost identical, with respect to both shape and phase.
This means that the kMPs of walking, for the different subjects,
are not affected by the walking speed. The results of the statistical
analysis of this experiment are reported in Table 3 (an extended
version, Table A2 in Appendix).

It can be noticed that the first kMP of WLS and WHS have a
cross-covariance of more than the 99%, and that for the second
and the third kMPs this value is between 98 and 99%. These three

components together explain about the 95% of variance, and this
results in an overall weighted average of about the 99%.

3.1.3. Experiment 1.3: comparison between walking and running
The third experiment is an extension of the previous: the kMPs
of running (RUN) are compared to those of walking at a low
speed (WLS) and at a high speed (WHS) (Figure 3C). The data
from some of the subjects were more noisy than previous tests
due occlusions or slight movement of the markers caused by the
stretching of the elastic suit worn by the subjects. To avoid having
results corrupted by noise, the data from only three of the sub-
jects, those whose data had the best quality, were used. The kMPs
of the subjects performing the three gaits were averaged, and the
resulting kMPs of WLS, WHS, and RUN were compared.

A first observation is that the similarity between WLS and WHS,
that in the previous experiment with five subjects was reported to
be 99%, is now about 98% (Table 4; an extended version, Table A3
in Appendix).The 1% difference is believed to be caused by the
reduction in the number of subjects itself. The noise in the data of
every subject, and in the resulting kMPs, is reduced in the average
kMPs as the number of subjects increases.

The comparison between the RUN kMPs and the WLS and
WHs kMPs, considered one per time, is instead of the 95 and
96%, respectively. The average between these two values, and the
one between WLS and WHS, represents the similarity between the
different locomotion gaits, and is more than 96%.

3.1.4. Experiment 1.4: comparison between unconstrained and
constrained walking

The final experiment into periodic motions considered a compar-
ison between unconstrained walking, as explored in each of the
previous experiments, and walking while holding an object with
the two hands, which introduced a constraint on the ability to
swing the arms (Figure 3D). Two cases were analyzed. In the first
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FIGURE 3 | (A) The five kMPs extracted from the five subjects while walking
at low velocity (2 km/h). (B) Comparison between the average kMPs of
walking at low velocity (2 km/h) and walking at high velocity (4 km/h). (C)
Comparison between the average kMPs of walking at low velocity (2 km/h), at

high velocity (4 km/h), and running (6 km/h). (D) Comparison between the
average kMPs of unconstrained walking at high velocity (4 km/h), and
constrained (holding an empty box, and holding a 5 kg load) walking at high
velocity (4 km/h).

the subjects were asked to hold an empty box, which introduced
a constraint on the motion, but negligible physical loading. In the
second scenario the object was a 5 kg load, which not only con-
strained the motion of the arms, but also introduced a constant
force due to gravity pushing the hands down. The goal of this
test was to determine if the kinematics of the motion, analyzed
by means of kMPs, was affected by constraint imposed with this
holding of objects.

From the results reported in Table 5 (an extended version,
Table A4 in Appendix) it can be seen that the similarity between
the gaits is high, and this means that the respective kMPs are not
much affected by the constraints imposed. The first kMP in the
three cases is almost identical: in the three comparisons the cross-
covariance is always of about 99%. The average cross-correlation
of the other kMPs slightly reduces, but it remains between the 90%
of the fifth kMP and the 96% of the fourth kMP.
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Table 2 | Walking at low velocity kMPs (5 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var average 0.5764 0.2368 0.1346 0.0308 0.0112 / 0.9899 /

Xcov WLS 0.9648 0.9215 0.9706 0.9292 0.8506 0.9273 / 0.9527

Delay WLS 0.0320 0.0150 0.0170 0.0080 0.0300 0.0204 / 0.0249

Table 3 | Walking at low and high velocity kMPs (5 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var average 0.5397 0.2590 0.1486 0.0310 0.0119 / 0.9900 /

Xcov WLS_WHS 0.9955 0.9826 0.9884 0.9520 0.9551 0.9747 / 0.9894

Delay WLS_WHS −0.0200 0 −0.0200 0 0 0.0080 / 0.0139

Table 4 | Walking at low and high velocity and running kMPs (3 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var average 0.5294 0.2697 0.1535 0.0279 0.0104 / 0.9908 /

Xcov WLS_WHS_RUN 0.9872 0.9305 0.9673 0.8545 0.8419 0.9163 / 0.9635

Delay WLS_WHS_RUN 0.0433 0.0066 0.0533 0.0400 0.0367 0.0360 / 0.0347

Table 5 | Walking with no constraint, holding an empty box and holding a 5 kg load kMPs (3 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var average 0.5129 0.2697 0.1633 0.0336 0.0097 / 0.9893 /

Xcov WHS_WHSB_WHS5 0.9925 0.9369 0.9545 0.9590 0.9022 0.9490 / 0.9566

Delay WHS_WHSB_WHS5 0.0200 0 0.0067 0 0.0067 0.0067 / 0.0116

The resulting overall similarity among the different gaits is
more than 96%, indicating that the kMPs of locomotion remain
invariant even if a constraint on the swing motion of the arms is
imposed.

3.2. EXPERIMENT 2: kMPs EXTRACTION AND COMPARISON FOR
DISCRETE MOTIONS

The second set of experiments was focused on the discrete motion
of reaching for a target with the hand. The target was a foam ball
with a diameter of 6.5 cm, suspended in front of the subject at the
same height as the eyes of the subject. The ball was 20 cm to the
left of the centerline, at a distance from the subject of about 50 cm.
The subjects were asked to assume an initial pose (standing, arms
by their sides), to reach for the target with one hand, and finally
to move back to the initial position. The data collected in these
experiments were affected by self-occlusion: when the subjects
were asked to reach for the target with the hand, some of the mark-
ers placed on their trunk were occluded to the cameras by their
own arm. For this reason the data coming from only two subjects,
which were considered clean enough, were used in the analysis.

Both reaching with the left hand and reaching with the right
hand were recorded (since the ball was not located in the sagittal
plane of the subjects, their motions of reaching with the left and
the right hand were not symmetric).

In the Experiment 2.1 the kMPs of the different subjects per-
forming the reaching motion with the left hand will be compared.
Next, similarly to what done for the periodic motions, in the Exper-
iment 2.2 the kMPs of reaching with the left hand will be compared
to those of reaching with the right hand.

3.2.1. Experiment 2.1: comparison between different subjects
In this experiment the subjects were asked to stand in a neutral ini-
tial position in front of the target as previously described, to reach
for it with the left hand, and to move back to the initial position.
No constraint on the timing to complete the motion was imposed.

In Figure 4A the two kMPs, that together explain on average
the 97% of variance, are shown. The first of these kMP has a sin-
gle peak, while in the second kMP two peaks are present: each
peak takes approximately 50% of the total reaching time, and the
first peak has an amplitude that is about 25% smaller than the
amplitude of the second peak.

As reported in Table 6 (an extended version, Table A5 in Appen-
dix), the weighted average cross-covariance between the kMPs
is about 96%, showing that the similarity between the reaching
motion of the two subjects, in terms of kMPs, is significant. It is also
interesting to notice that in all cases there is no delay between the
kMPs of the different subjects. This indicates that what stated on
the periodic motions (described by five invariant kMPs) can also
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FIGURE 4 | (A) The two kMPs extracted from the two subjects reaching a target with the left hand. (B) Comparison between the average kMPs of reaching a
target with the left and the right hand.

Table 6 | Reaching a target with the left hand (2 subjects).

1st 2nd Average Sum Weighted

Var average 0.8201 0.1510 / 0.9711 /

Xcov BallUp_Left 0.9662 0.9253 0.9457 / 0.9598

Delay BallUp_Left 0 0 0 / 0

be extended to the discrete motions (described by two invariant
kMPs).

3.2.2. Experiment 2.2: comparison between reaching with the left
and the right hand

Having demonstrated that the kMPs of different subjects perform-
ing the same discrete motion are closely related, two reaching
motions that are slightly different were compared. The first set
of kMPs came from the previous experiments, and describes the
reaching motion with the left hand. The second is the set of kMPs
that describe reaching with the right hand, and was extracted from
the data of the same subjects. The kMPs extracted are reported in
Figure 4B.

Table 7 (an extended version, Table A6 in Appendix) shows that
the first kMP has a cross-covariance of about the 97%, while in the
second instance this value is about 87%. This results in a weighted
average of almost 96%, with no noticeable delays between the
kMPs. It is now reasonable to state that also the discrete motions
can be described by means of a set of two invariant kMPs. It is
interesting to note that, although reaching with the left and right
hands are not symmetrical (the location of the target ball was not
in the sagittal plane of the subjects), this difference is not reflected
in the extracted kMPs, which are once again the same.

3.3. EXPERIMENT 3: COMBINATION OF PERIODIC AND DISCRETE
kMPs

After having shown that both periodic and discrete motions can
be described by a small set of invariant kMPs, in this last set of
experiments the focus is on more complex motions that combine
a periodic and a discrete basic task. The subjects were asked to per-
form the reaching motion described above (Experiment 2), while
walking on the treadmill at a low speed (Experiment 1). The two
subtasks were synchronous: the subjects were asked to complete
the reaching task (both the motion to reach for the ball, and the

Table 7 | Reaching a target with the left and the right hand (2 subjects).

1st 2nd Average Sum Weighted

Var average 0.8326 0.1332 / 0.9658 /

Xcov BallUp 0.9693 0.8745 0.9219 / 0.9562

Delay BallUp 0 0.0100 0.0050 / 0.0014

motion back from the ball to the initial position) in a time that
was approximately the same as the period of two steps, that is
a full gait cycle. The subjects reported that this requirement was
easy to satisfy: a motivation for this observation can be found in
Michaels and Bongers (1994), Sternad et al. (2000), and De Rugy
and Sternad (2003).

It is important to notice that the combination of tasks analyzed
in this experiment is different from the analysis available in the
literature: it is not a sequencing of tasks, and not even a simple
superposition, since the swinging motion (coming from the walk-
ing) of the arm used for reaching is suppressed in the period of
time when the subject is actually performing the reaching task.

3.3.1. Experiment 3.1: comparison between different subjects
In the same way as it was in the Experiment 2.1 the subjects were
asked to reach for the target ball with the left hand. Differently from
the previous case, for these experiments the reaching task had to
be accomplished while walking at low speed on the treadmill. The
complex reaching while walking task was then a combination of
the periodic motion WLS presented in the first set of experiments,
and the discrete motion BallUp_Left from the second set of exper-
iments. The kMPs extracted from the joint trajectories of the two
subjects performing this composed task are reported in Figure 5A.

The first four kMPs together explain on average the 97% of
variance. The overall weighted average cross-covariance is 90%, as
reported in Table 8 (an extended version, Table A7 in Appendix),
and this proves that the motion of the two subjects, analyzed by
means of the kMPs, has a good level of similarity.

3.3.2. Experiment 3.2: comparison between reaching with the left
and the right hand while walking

In this experiment the average kMPs of reaching for the target with
the left hand while walking on the treadmill at a low speed (WLS-
BallUp_Left) are compared to the corresponding kMPs of reaching
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FIGURE 5 | (A) The four kMPs extracted from the two subjects reaching a target with the left hand while walking. (B) Comparison between the average kMPs
of reaching a target with the left and the right hand.

Table 8 | Reaching a target with the left hand while walking (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

Var average 0.7770 0.0946 0.0720 0.0277 / 0.9689 /

Xcov WLSBallUp_Left 0.9347 0.6070 0.8971 0.8697 0.8271 / 0.9004

Delay WLSBallUp_Left −0.0200 −0.0500 −0.0700 −0.0100 0.0375 / 0.0264

for the target with the right hand while walking on the treadmill
at a low speed (WLSBallUp_Right), as reported in Figure 5B.

The first three kMPs are almost identical, with a cross-
covariance of 98, 98, and 99%, respectively (Table 9; an extended
version, Table A8 in Appendix). The overall weighted average is
thus approximately 98%, while the delay approaches 0%. Also
in this case, the motion for reaching with the left hand, and the
motion for reaching with the right hand were not symmetrical,
but this difference does not reflect on the corresponding kMPs
extracted, that once again resulted to be the same.

3.3.3. Experiment 3.3: comparison between reaching while
walking and reaching and walking separately

This experiment was the most challenging among those pre-
sented in this paper. What was compared, in fact, was not a
set of kMPs from the same motion, but the kMPs of reaching
while walking, with the kMPs of reaching and the kMPs of walk-
ing, separately. A correspondence between the kMPs extracted
from the reaching while walking motion, and some of the kMPs

extracted from the two simpler motions was noticed. More specif-
ically, the first and the second kMPs of WLSBallUp (blue line in
the first and second graph, Figure 6) were very similar to the
first and the second kMPs of BallUp (red line in the first and
second graph, Figure 6), respectively. The third and the fourth
kMPs of WLSBallUp (blue line in the third and fourth graph,
Figure 6), instead, were very similar to the first and the fourth
kMPs of WLS (red line in the third and fourth graph, Figure 6),
respectively.

From Table 10 it can be noticed that the cross-correlation
between the kMPs is high: the maximum value observed is the
one corresponding to the comparison between the first kMP of
WLSBallUp and the first kMP of BallUp, which is 98%, while the
minimum, which is for the comparison between the second kMP
of WLSBallUp and the second kMP of BallUp, is 81%. The other
two comparisons resulted in a cross-correlation of 95 and 93%,
respectively, for an overall weighted average of about 96%. The
weights used for the definition of this synthetic indicator of sim-
ilarity, in this case, are the amount of variance explained by the
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Table 9 | Reaching a target with the left and the right hand while walking (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

Var average 0.7837 0.0895 0.0677 0.0276 / 0.9672 /

Xcov WLSBallUp 0.9827 0.9759 0.9862 0.8654 0.9526 / 0.9803

Delay WLSBallUp 0 0 0 −0.0200 0.0050 / 0.0006
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FIGURE 6 | Comparison between the average kMPs of reaching a target with the hand while walking (blue line) and the average kMPs of reaching
(red line, first and second graph), and walking (red line, third and fourth graph).

Table 10 | Combination of the kMPs of walking and the kMPs of reaching (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

WLS / / 1st kMP 4rd kMP / / /

BallUp 1st kMP 2nd kMP / / / / /

Var WLSBallUp 0.7837 0.0895 0.0677 0.0276 / 0.9672 /

Xcov Combination 0.9762 0.8085 0.9480 0.9339 0.9167 / 0.9588

Delay Combination 0 0.0300 0.0700 0 0.0250 / 0.0077

single kMPs of the WLSBallUp only, since the second set of kMPs
is a combination of the sets of kMPs of two different motions. It
can also be observed that the weighted average delay between the
two sets of kMPs under comparison is less than the 1% of the cycle
period.

The results achieved in this experiment show how the kMPs
extracted from the periodic and the discrete motions can be com-
bined to produce more complex motions that are a combination
of the simpler source motions. The resultant complex motions
guarantee the execution of the two tasks, one periodic and the
other discrete, and can be described neither by the simple super-
position, nor by the sequencing of the motions to perform the two
tasks separately. The kMPs of this complex motion, instead, are
a proper combination of the kMPs extracted from the two basic
tasks.

These results allow certain conclusions to be drawn on how
human motion control and coordination is performed: according
to this study five kMPs can effectively describe the different peri-
odic motions, while two kMPs can be responsible for synthesizing
different discrete motions. A combination of kMPs of the periodic
and discrete motions may be used to generate different complex
motions, that simultaneously accomplish the periodic and discrete
tasks.

3.4. EXAMPLE OF JOINT TRAJECTORY RECONSTRUCTION FROM kMPs
In this Section the contribution of the kMPs to the joint trajec-
tories is analyzed, showing the left knee trajectory generated by
reconstruction from single kMPs and from subsets of the five
kMPs.

Figure 7 shows that no single kMP is sufficient to guarantee a
good accuracy in the reconstruction. In this specific example, the
first three kMPs describe most of the original motion, and when
they are considered together the trajectory reconstructed is very
close to the original one, while the introduction of the fourth and
the fifth kMPs only brings an improvement that is negligible.

3.5. PARTIAL RECONSTRUCTION OF THE FOOT TRAJECTORY FROM
kMPs

This section considers the contribution of the single kMPs to the
foot trajectory. In Figure 8 the blue line is the right foot trajectory
(relative to the pelvis) of a subject walking at low speed, pro-
jected on the sagittal plane (Figure 8A) and on the coronal plane
(Figure 8B), respectively. In both figures the first row of graphs
compare the foot trajectory reconstructed from an individual kMP
(labeled on top), in red, with respect to the original trajectory.
The second row compares foot trajectories reconstructed from a
combinations of kMPs, in red, again with respect to the original
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FIGURE 7 | Left knee trajectory generated by reconstruction from
kMPs (solid line) compared to the original left knee trajectory (dotted
line). On the x-axis the percentage of a gait cycle (from 0 to 100%), and on
the y-axis the knee angle in degrees.

trajectory. The second row, instead, compare the foot trajectory
reconstructed from a set of kMPs (label on top), in red, to the
original trajectory.

The displacement of the foot trajectory on the longitudinal axis
is about 20 cm, while on the medial axis it is about 60 cm, and on
the transverse axis it is about 10 cm. The first two kMPs together
are enough to give a hint on what the range of motion of the foot
is. By including the third kMP the trajectory reconstructed has
already a similar shape to the one of the original trajectory.

It can be also noticed that, if all the five kMPs are used, the
resulting foot trajectory obtained by reconstruction is almost
identical to the original trajectory.

3.6. APPLICATION: RECONSTRUCTION FROM kMPs OF A HUMAN-LIKE
WALKING FOR THE COMAN ROBOT

This section reports the use of kMPs to generate a walking for the
COmpliant huMANoid (COMAN) robot (Tsagarakis et al., 2011),

under development in the Department of Advanced Robotics at
the Istituto Italiano di Tecnologia (IIT). Figure 9A shows COMAN
as it currently appears. At the moment when the experiments pre-
sented in this paper were performed, a first prototype of the robot,
composed by the lower body only, was available. Only the trajecto-
ries for the joints of the legs hence were generated. The application
to generate trajectories for a humanoid robot from kMPs, though,
is not the main focus of this paper: more details on the COMAN
robot walking human-like can be found in Moro et al. (2011,
2012).

When the kMPs are extracted from the joint trajectories of a
subject, the coefficients of the matrix S in equation (5) can be used
to reconstruct the trajectories for the same specific subject. It is
not easy then to use these trajectories as they are, and fit them on
a robot that has a kinematics which is slightly different. Moreover,
there are some constraints, in particular on the range of motion
of some of the joints of the robot, that made it necessary to look
for an alternative solution. It was decided, hence, to consider the
center of mass (CoM) trajectory, which was provided by the Vicon
motion capture software according to an estimation of the human
mass distribution. Since the CoM trajectory and the joint trajec-
tories are coupled, if the CoM trajectory is added to the set of
joint trajectories, the kMPs extracted remain the same. In this way
the coefficients to reconstruct the CoM itself are available. The
CoM reconstructed was scaled down, and, via inverse kinemat-
ics, a set of joint trajectories that satisfies it was derived. The gait
generated by these trajectories was tested on the COMAN robot.
Figure 9B shows a series of snapshots of COMAN walking using
kMPs.

Among the others, three are the main features that character-
ize human walking if compared to the typical robot locomotion:
the heel-strike, the toe-off, and the straight knees. Mechanical
constraints (rigid foot) represent a limitation for the COMAN
robot for what concerns the first two features. The third feature
(straight knees), instead, was observed in the gait generated by
reconstruction from kMPs, though not imposed in any way.

The resultant gait, hence, was observed to have strong human-
like traits (this can be noticed in the video of the COMAN robot
walking human-like): the variation of the CoM height was rel-
atively large compared to the almost flat CoM motion of most
humanoids, and the knee straighten to −5˚, which is a strong
contrast to the very bent knee walk typically observed in robot
locomotion, where the knee angles are never greater than −25˚
throughout the gait cycle (in Figure 10 the left knee trajectory is
reported).

Figure 11 shows the left ankle, knee, and hip trajectories of
a human (red line), and those of COMAN walking in a human-
like manner (blue line). In the second graph it can be seen that
COMAN’s knee trajectory show the described straightening from
approximately −50˚ to about −5˚, following a profile that is sim-
ilar to that of the human. After this knee straightening the robot
knee has an increasing bend angle that is not present in the human.
This motion is due to the rigid feet of the robot (no toe flexing is
possible), that presents a non-negligible limitation to the motion
of the robot. Indeed this lack of flexibility in the foot limits the
step length of the robot, and made it necessary to always keep the
orientation of the foot parallel to the ground. These constraints
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FIGURE 8 | Partial reconstruction from kMPs of the right foot trajectory (A) projected on the sagittal plane, and (B) projected on the coronal plane.
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FIGURE 9 | (A) The COMAN robot as it currently appears. (B)
Snapshots from the video of the COMAN robot walking human-like,
with CoM trajectory reconstruction from kMPs. The height of the
COMAN lower body, from the foot to the waist, is 671 mm, with a
maximum width and depth (at the hips) of 176 and 110 mm,

respectively. The total lower body weight is 17.3 kg, with each leg
weighing approximately 5.9 kg, and the waist section, including the hip
flexion motors, weighing 5.5 kg. The leg of COMAN incorporates two
series elastic (SEA) actuation units, which are placed at the knee flexion
and the ankle dorsiflexion joints.
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FIGURE 10 | Left knee reference, motor, and link trajectories.

also reflect on the hip and ankle trajectories: the range of motion
of the hip joint is limited to only 15˚, and the ankle trajectory is
roughly the same as the opposite of the knee trajectory.

4. DISCUSSION
Humans can perform diverse intricate tasks involving a vast range
of different motions, many of which are not preplanned. This flex-
ibility, and the variety of possible solutions, means that control

paradigms are complex. Previous works, mostly focused on hand
grasping motions (Santello et al., 1998), or based on the mon-
itoring and analysis of EMG signals (D’Avella et al., 2003; Iva-
nenko et al., 2004, 2005) have shown that this problem can be
tackled using dimensionality reduction techniques. The work pre-
sented in this paper, in a similar manner, investigates the existence
of kinematic Motion Primitives (kMPs) in the human motion
control.
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FIGURE 11 | Comparison between left ankle, knee, and hip trajectories of a human subject, and those of the COMAN robot walking human-like.

In Section 2 details on the experiments were introduced, includ-
ing specification of all the materials used, and the procedures
adopted to perform the analysis. From these data, five kMPs
were extracted for locomotion, and a further two kMPs were pre-
sented for reaching motions. Comparative studies were carried
out among different subjects. From this analysis it was demon-
strated that, although joint trajectories appear different for each
subject, they can actually be described by the same small set of
invariant kMPs. It has also been shown that velocity (slow walk-
ing, fast walking, and running) does not affect the kMPs, which
remain unchanged even after the introduction of constraints to
the motion of the arms.

For discrete (non-cyclic) motions, it has been proven that
reaching with either the left or the right hand (even when the
target is not in the sagittal plane of the subject) results in the same
set of kMPs. These results were reported in Section 3, along with
pertinent detailed statistical data.

The final experiment sought to show how the kMPs extracted
from periodic and discrete motions can be combined to produce
more complex movements (e.g., reaching for a target with either
hand while walking). It was discovered that the intricate motions
analyzed are neither the sequencing of basic motions, nor their
simple superposition. What was observed is that the kMPs of the
complex motion are a subset of the kMPs extracted from the peri-
odic and the discrete motions performed separately. This suggests
that humans can produce different complex motions through
the synergetic combination of a very small set of kMPs. These
results, in some degree, confirm ideas hypothesized by the origi-
nal CPG theory (Brown, 1911, 1912), and move some way toward
explaining how humans can handle the complexity of motions
experienced in daily tasks. For this reason it may be appropri-
ate that this work be classified together with those on CPG, that
focus on the signals generated in the spinal cord (Dimitrijevic
et al., 1998; Kiehn and Butt, 2003), and those on Motor Primitives
(Tresch et al., 1999; Mussa-Ivaldi and Bizzi, 2000; D’Avella et al.,
2003; Ivanenko et al., 2004, 2005; Bizzi et al., 2008), that observe
the effects of the signals from the CPG at the level of muscle acti-
vation. This work is a further step that observes the effects of the
muscle activation, driven by CPG signals, at a kinematic level, for
both periodic and discrete motions. Although originally the CPG
theory was used to describe periodic movements only (Delcomyn,
1980; Grillner, 1985, 2006; Marder and Bucher, 2001; Ronsse et al.,

2009) extended it to the discrete movements also. In the work of
Schaal et al. (2004),Van Mourik and Beek (2004), Hogan and Ster-
nad (2007), Sternad (2008), Dégallier Rochat and Ijspeert (2010),
and Dégallier Rochat et al. (2011) it is possible to find important
contributions to the on-going discussions around the possibility
of describing both periodic and discrete movements by means of
a unified theory.

The differences between the kMPs compared in this study are
always relatively small (never below 90% of similarity). This is con-
firmed by the results of the statistical analyses, which suggest that
this variation mostly arises from the noise in the data collection of
the joint trajectories. Evidence to support this is the improvement
achieved when the number of subjects increases. The presence of
this noise was not unexpected, and comes primarily from a less
than perfectly accurate tracking system, and from unavoidable
small movements of the markers on the body of the test subjects,
due to the elasticity of the skin and the suit. Not withstanding these
problems, the accuracy reached in the extraction of the kMPs is
significantly higher than those reported in the literature for Motor
Primitives extracted from EMG signals. In the latter case, in fact,
the signal to noise ratio is lower.

In spite of the effort made to investigate the nature of the
coefficients of matrix S [equation (5)], it was hard to identify a
regular pattern in the synergetic mapping of the kMPs to the joint
trajectories. This is reasonably because there are significant differ-
ences in the joint trajectories among subjects/gaits. As it has been
shown, the kMPs extracted are always very similar. This means
that what produce the diverse gaits are the coefficients of matrix
S. Some interesting experimental results were collected to inves-
tigate the contribution of the single kMPs to the motion of the
lower limbs for walking. A simple model of the legs was devel-
oped, and the hip, knee, and ankle trajectories were reconstructed
from the single kMPs, and tested on the simulation model. This
analysis revealed that the first two kMPs are mainly responsible of
the alternate swinging of the legs, while the third and the fourth
kMPs are related to the vertical motion of the pelvis (generated by
bending the knees). The combination of the effects of the single
kMPs results in the complex human motion.

As highlighted in Section 3.5, an important possible applica-
tion for this research is in the field of humanoid robotics (Ijspeert
et al., 2002; Degallier et al., 2008; Ijspeert, 2008; Moro et al., 2011,
2012). The tests performed to use the kMPs to transfer the features
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of human gait to the walk of a robot were successful, but some fur-
ther development is still required to achieve a full usability. At the
current state valid joint trajectories were reconstructed from kMPs
and applied on the COMAN robot (Tsagarakis et al., 2011), that
could perform a human-like walking. The characteristics of the
gait obtained, though, are fixed: to change the walking velocity, or
other features, brand new trajectories need to be reconstructed.
As an extension of this work it would be interesting to find a
way to scale the joint trajectories to automatically change the fea-
tures of the gait. This would involve future work on a study on
the transitions from one gait to the other. At the current time,
only steady-state gaits have been considered. An analysis on how
the scaling coefficients of the kMPs [matrix S in equation (5)]

change when the gait has a transition (e.g., from walking to run-
ning) could be useful to provide a better understanding of the
correlation between kMPs and joint trajectories, and may lead
to a complete application of the kMPs to generate a human-like
robot walk.

This would reduce the gap between the motor performance
of humans and robots, reproducing a criterion observed in the
human behavior to control a complex system like a humanoid
robot.
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APPENDIX
The tables that follow are an extended version of those presented in Section 3: all the partial results of the comparative statistical analysis
are reported.

Table A1 | Walking at low velocity kMPs (5 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var Subj1_WLS 0.6775 0.1859 0.1084 0.0151 0.0069 / 0.9938 /

Var Subj2_WLS 0.5917 0.2037 0.1322 0.0478 0.0113 / 0.9869 /

Var Subj3_WLS 0.5921 0.2749 0.0993 0.0210 0.0086 / 0.9960 /

Var Subj4_WLS 0.5002 0.2517 0.1810 0.0354 0.0163 / 0.9846 /

Var Subj5_WLS 0.5206 0.2679 0.1519 0.0346 0.0131 / 0.9881 /

Var average 0.5764 0.2368 0.1346 0.0308 0.0112 / 0.9899 /

Xcov Subj1_Subj2 0.9945 0.9554 0.9583 0.9491 0.7377 0.9190 / 0.9751

Xcov Subj1_Subj3 0.9590 0.8811 0.9600 0.9111 0.8974 0.9217 / 0.9397

Xcov Subj1_Subj4 0.9827 0.9924 0.9795 0.9673 0.9235 0.9691 / 0.9833

Xcov Subj1_Subj5 0.9616 0.9280 0.9750 0.9488 0.9425 0.9512 / 0.9552

Xcov Subj2_Subj3 0.9532 0.8572 0.9883 0.8694 0.7705 0.8877 / 0.9292

Xcov Subj2_Subj4 0.9762 0.9632 0.9721 0.9543 0.7029 0.9137 / 0.9677

Xcov Subj2_Subj5 0.9555 0.8593 0.9651 0.9526 0.7996 0.9064 / 0.9318

Xcov Subj3_Subj4 0.9260 0.8795 0.9609 0.8846 0.8783 0.9058 / 0.9138

Xcov Subj3_Subj5 0.9866 0.9678 0.9640 0.8759 0.9453 0.9479 / 0.9750

Xcov Subj4_Subj5 0.9526 0.9306 0.9831 0.9793 0.9084 0.9508 / 0.9508

Xcov WLS 0.9648 0.9215 0.9706 0.9292 0.8506 0.9273 / 0.9527

Delay Subj1_Subj2 −0.0100 0 0.0200 0.0100 0.0500 0.0180 / 0.0096

Delay Subj1_Subj3 0.0500 0.0300 −0.0100 −0.0100 −0.0100 0.0220 / 0.0402

Delay Subj1_Subj4 0 0 0.0200 0 0 0.0040 / 0.0029

Delay Subj1_Subj5 0.0500 0.0200 0.0200 0 0 0.0180 / 0.0374

Delay Subj2_Subj3 0.0700 0.0300 −0.0300 −0.0200 −0.0800 0.0460 / 0.0540

Delay Subj2_Subj4 0 0 0 0 −0.0600 0.0120 / 0

Delay Subj2_Subj5 0.0600 0.0300 0 0 −0.0600 0.0300 / 0.0417

Delay Subj3_Subj4 −0.0400 −0.0200 0.0300 0.0200 0.0200 0.0260 / 0.0324

Delay Subj3_Subj5 0 0 0.0400 0.0200 0.0100 0.0140 / 0.0057

Delay Subj4_Subj5 0.0400 0.0200 0 0 −0.0100 0.0140 / 0.0261

Delay WLS 0.0320 0.0150 0.0170 0.0080 0.0300 0.0204 / 0.0249

Table A2 | Walking at low and high velocity kMPs (5 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var WLS 0.5764 0.2368 0.1346 0.0308 0.0112 / 0.9899 /

Var WHS 0.5029 0.2811 0.1626 0.0311 0.0127 / 0.9902 /

Var average 0.5397 0.2590 0.1486 0.0310 0.0119 / 0.9900 /

Xcov WLS_WHS 0.9955 0.9826 0.9884 0.9520 0.9551 0.9747 / 0.9894

Delay WLS_WHS −0.0200 0 −0.0200 0 0 0.0080 / 0.0139
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Table A3 | Walking at low and high velocity and running kMPs (3 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var WLS 0.6346 0.1948 0.1203 0.0315 0.0091 / 0.9903 /

Var WHS 0.4876 0.3092 0.1506 0.0346 0.0092 / 0.9911 /

Var RUN 0.4658 0.3049 0.1897 0.0176 0.0129 / 0.9909 /

Var average 0.5294 0.2697 0.1535 0.0279 0.0104 / 0.9908 /

Xcov WLS_WHS 0.9857 0.9872 0.9851 0.9108 0.8829 0.9503 / 0.9826

Xcov WLS_RUN 0.9848 0.9158 0.9489 0.7711 0.8761 0.8994 / 0.9553

Xcov WHS_RUN 0.9911 0.8884 0.9680 0.8817 0.7668 0.8992 / 0.9500

Xcov WLS_WHS_RUN 0.9872 0.9305 0.9673 0.8545 0.8419 0.9163 / 0.9635

Delay WLS_WHS 0 0 −0.0400 −0.0300 −0.0200 0.0180 / 0.0067

Delay WLS_RUN −0.0600 0 −0.0800 −0.0700 0.0300 0.0480 / 0.0479

Delay WHS_RUN −0.0700 −0.0200 −0.0400 −0.0200 0.0600 0.0420 / 0.0479

Delay WLS_WHS_RUN 0.0433 0.0066 0.0533 0.0400 0.0367 0.0360 / 0.0347

Table A4 | Walking with no constraint, holding an empty box and holding a 5 kg load kMPs (3 subjects).

1st 2nd 3rd 4th 5th Average Sum Weighted

Var WHS 0.4876 0.3092 0.1506 0.0346 0.0092 / 0.9911 /

Var WHSB 0.5332 0.2524 0.1621 0.0290 0.0113 / 0.9880 /

Var WHS5 0.5180 0.2476 0.1772 0.0372 0.0088 / 0.9889 /

Var average 0.5129 0.2697 0.1633 0.0336 0.0097 / 0.9893 /

Xcov WHS_WHSB 0.9907 0.9576 0.9801 0.9805 0.8910 0.9600 / 0.9783

Xcov WHS_WHS5 0.9885 0.8826 0.9113 0.9320 0.8373 0.9103 / 0.9425

Xcov WHSB_WHS5 0.9983 0.9704 0.9721 0.9646 0.9783 0.9767 / 0.9854

Xcov WHS_WHSB_WHS5 0.9925 0.9369 0.9545 0.9590 0.9022 0.9490 / 0.9566

Delay WHS_WHSB 0.0300 0 0.0100 0 −0.0100 0.0100 / 0.0172

Delay WHS_WHS5 0.0300 0 0.0100 0 −0.0100 0.0100 / 0.0170

Delay WHSB_WHS5 0 0 0 0 0 / 0

Delay WHS_WHSB_WHS5 0.0200 0 0.0067 0 0.0067 0.0067 / 0.0116

Table A5 | Reaching a target with the left hand (2 subjects).

1st 2nd Average Sum Weighted

Var Subj1_BallUp_Left 0.7498 0.2067 / 0.9565 /

Var Subj2_BallUp_Left 0.8904 0.0953 / 0.9857 /

Var average 0.8201 0.1510 / 0.9711 /

Xcov BallUp_Left 0.9662 0.9253 0.9457 / 0.9598

Delay BallUp_Left 0 0 0 / 0

Table A6 | Reaching a target with the left and the right hand (2 subjects).

1st 2nd Average Sum Weighted

Var BallUp_Left 0.8201 0.1510 / 0.9711 /

Var BallUp_Right 0.8451 0.1154 / 0.9605 /

Var average 0.8326 0.1332 / 0.9658 /

Xcov BallUp 0.9693 0.8745 0.9219 / 0.9562

Delay BallUp 0 0.0100 0.0050 / 0.0014
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Table A7 | Reaching a target with the left hand while walking (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

Var Subj1_WLSBallUp_Left 0.7656 0.0913 0.0682 0.0277 / 0.9529 /

Var Subj2_WLSBallUp_Left 0.7883 0.0980 0.0758 0.0227 / 0.9848 /

Var average 0.7770 0.0946 0.0720 0.0277 / 0.9689 /

Xcov WLSBallUp_Left 0.9347 0.6070 0.8971 0.8697 0.8271 / 0.9004

Delay WLSBallUp_Left −0.0200 −0.0500 −0.0700 −0.0100 0.0375 / 0.0264

Table A8 | Reaching a target with the left and the right hand while walking (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

Var WLSBallUp_Left 0.7770 0.0946 0.0720 0.0277 / 0.9689 /

Var WLSBallUp_Right 0.7903 0.0845 0.0633 0.0275 / 0.9656 /

Var average 0.7837 0.0895 0.0677 0.0276 / 0.9672 /

Xcov WLSBallUp 0.9827 0.9759 0.9862 0.8654 0.9526 / 0.9803

Delay WLSBallUp 0 0 0 −0.0200 0.0050 / 0.0006

Table A9 | Combination of the kMPs of walking and the kMPs of reaching (2 subjects).

1st 2nd 3rd 4th Average Sum Weighted

WLS / / 1st kMP 4rd kMP / / /

BallUp 1st kMP 2nd kMP / / / / /

Var WLSBallUp 0.7837 0.0895 0.0677 0.0276 / 0.9672 /

Xcov Combination 0.9762 0.8085 0.9480 0.9339 0.9167 / 0.9588

Delay Combination 0 0.0300 0.0700 0 0.0250 / 0.0077

HIGHLIGHTS
• Data for periodic motions (locomotion) and discrete motions (reaching for a target with one hand) of human subjects, as well as

motions that are a combination of discrete and periodic movements (reaching for a target while walking), are collected with a motion
capture system.
• A Principal Component Analysis (PCA) is applied on the joint trajectories derived from the data of the subjects, and a comparative

analysis on the components extracted is performed.
• It is shown that the first five components extracted from the periodic motions (99% of cumulative variance explained) are invariant

to the subjects, to the walking/running velocity, and to the constraints on motion of the arms imposed by asking the subjects to hold
an object with both hands.
• In the same way, the first two components extracted from the discrete motions (95% of cumulative variance explained) are invariant

to the subjects, and to the hand used to reach for the target.
• These two invariant sets of signals identified are named kinematic Motion Primitives (kMPs).
• A further analysis shows that the kMPs extracted from periodic motions and those extracted from discrete motions can combine to

describe those movements that are a combination of simultaneous periodic and discrete motions.
• As a possible application to this theoretical study of human motion, it is shown that the kMPs can be used to generate human-like

trajectories for a humanoid robot.
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