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Higher-order cognitive mechanisms (HOCM), such as planning, cognitive branching,
switching, etc., are known to be the outcomes of a unique neural organizations and
dynamics between various regions of the frontal lobe. Although some recent anatomical
and neuroimaging studies have shed light on the architecture underlying the formation
of such mechanisms, the neural dynamics and the pathways in and between the frontal
lobe to form and/or to tune the stability level of its working memory remain controversial.
A model to clarify this aspect is therefore required. In this study, we propose a simple
neurocomputational model that suggests the basic concept of how HOCM, including
the cognitive branching and switching in particular, may mechanistically emerge from
time-based neural interactions. The proposed model is constructed such that its functional
and structural hierarchy mimics, to a certain degree, the biological hierarchy that is believed
to exist between local regions in the frontal lobe. Thus, the hierarchy is attained not only
by the force of the layout architecture of the neural connections but also through distinct
types of neurons, each with different time properties. To validate the model, cognitive
branching and switching tasks were simulated in a physical humanoid robot driven by the
model. Results reveal that separation between the lower and the higher-level neurons in
such a model is an essential factor to form an appropriate working memory to handle
cognitive branching and switching. The analyses of the obtained result also illustrates that
the breadth of this separation is important to determine the characteristics of the resulting
memory, either static memory or dynamic memory. This work can be considered as a joint
research between synthetic and empirical studies, which can open an alternative research
area for better understanding of brain mechanisms.

Keywords: higher-order cognitive tasks, brain modeling, cognitive branching task, multi-timescale recurrent neural

network, working memory, frontal lobe function

INTRODUCTION
Higher-order cognitive mechanisms (HOCM) refer to the abil-
ity to coordinate thought and action through working memory
toward obtaining a specific goal. Its major functions are to per-
form complex sequences of behaviors and give priority to goals
and sub-goals. HOCM are known to have a direct association
with the size and the complexity of the prefrontal cortex (PFC)
(Grafman, 1995; Koechlin et al., 1999), and thus are character-
istic of higher primate mammalians, reaching a peak in humans
(Miller and Wallis, 2009). PFC damage adversely affects the per-
formance of these mechanisms (Elliott et al., 1996; Channon and
Green, 1999; Walsh et al., 2009). Given this background, many
researchers have focused studying HOCMs, such as planning,
cognitive branching, switching, etc. (Grafman, 1995; Elliott et al.,
1996; Channon and Green, 1999; Koechlin et al., 1999; Miller and
Wallis, 2009; Walsh et al., 2009).

Various anatomical and neuroimaging studies have attempted
to outline the basics behind the emergence of HOCM, reporting

hypotheses on the architecture and the neural pathways sur-
rounding the anterior frontal lobe (Braver and Bongiolatti, 2002;
Koechlin and Hyafil, 2007; Hagmann et al., 2008; Badre and
D’Esposito, 2009). At the neuroimaging level, for instance, some
studies focused on the most anterior lateral regions of the frontal
lobe, namely the frontopolar cortex (FPC), the mid-dorsolateral
PFC (Mid-PFC), and the dorsal premotor cortex (Pre-PMD),
in efforts to understand the specific nature of the mechanism
underlying the activity related to sub-goal processing and pri-
mary task retrieval from the working memory (Konishi et al.,
2000; Lepage et al., 2000; McDermott et al., 2000). At the anatom-
ical level, Bongiolatti (Braver and Bongiolatti, 2002) argued that
the FPC, in particular, is directly engaged in cognitive branch-
ing processes due to its distinctive position. Despite progress in
anatomical and neuroimaging research, there are still some limi-
tations. The underlying neural dynamics in and between various
regions in the frontal lobe to self-organize a temporal working
memory to obtain HOCM, as well as, to tune its stability and
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flexibility, remain a fundamental challenge in neuroscience. A
model to suggest a general perception of this process is, therefore,
required.

Recently, neurocomputational research has been considered
as an alternative/support approach to explore neural dynamics
in the brain (Botvinick and Plaut, 2006; Johnson et al., 2009;
Maniadakisa et al., 2012; Yamashita and Tani, 2012). Such studies
attempt to establish detailed links between biology and cognition
in a manner that is consistent with established neural information
processing principles from anatomical and neuroimaging stud-
ies. Neurocomputational modeling seeks to describe functional
principles of how the simulated neural system in the brain oper-
ates through a relatively comprehensible set of equations, and has
been a powerful tool for clarifying several mechanisms of neural
systems (Maniadakisa et al., 2012; Yamashita and Tani, 2012).

A hierarchical Multi-Timescale Recurrent Neural Network
(MTRNN) modeling, adopted in this study, has recently been
considered as a possible neurocomputational model that simu-
lates, to some extent, the brain activities (Yamashita and Tani,
2008, 2012). MTRNN has ability to simulate the functional hier-
archy of the brain through self-organization that is not only based
on the spatial connection between neurons, but also on distinct
types of neuron activities, each with distinct time properties;
see Figures 1, 2. By such varied neuron activities, continuous
sequences of any set of behavior are segmented into reusable
primitives, which in turn are flexibly integrated into diverse
sequential behaviors. The biological approval of such a type
of hierarchy has been discussed in detail by Badre (Badre and
D’Esposito, 2009), who suggested that levels of abstraction might
gradually reduce along the rostro-caudal axis in the frontal cor-
tex of the monkey and human brain. Others have also argued
that the rostral part is more integrative in processing information
than the caudal part due to its slower timescale dynamics, which
results in the formation of functional hierarchy in the frontal cor-
tex. Thus, neurons in higher levels process abstract action goals in
slow dynamics, and those close to motor regions process in faster

dynamics concrete information about actions that is closer to the
actual motor output; see Figure 1.

In this study, we propose a neurocomputational model
(MTRNN) that may suggest the basic perception of how a
working memory may mechanistically be self-structured through
neural interactions to accomplish HOCM, namely: (1) cogni-
tive branching tasks: in which a delay to the execution of the
original task occurs until the completion of a subordinate task;
and (2) switching: in which the original task is abandoned for a
new one. A physical humanoid robot implemented with the pro-
posed model was considered for examining the model validity in
real-time environmental interactions. We examined two possible
MTRNN models to simulate the tasks, and discussed in detail the
neural dynamics and memory formation of the superior model.
The biological plausibility and the limitations of the resulting
model are also addressed in this study. We believe that this joint
research between synthetic and the empirical studies can open a
new avenue for better understanding of brain mechanisms.

METHODS
TASK DESIGN
A miniature humanoid robot, produced by Sony Corporation,
was used in the role of a physical body interacting with the actual
environment. Instead of relying only on a simulation experiment,
in this study, the robotics experiment is important when con-
sidering the idea of the embodied mind by Varela et al. (1991),
who explained that cognitive functions of neural systems emerge
not only in the brain, but also in dynamic interactions between
a physical body and its environment. This idea is also related to
the so-called “synthetic approach” to neuroscience (or “robotic
neuroscience”), an approach that mainly aims to extract essential
mechanisms of neural systems using a variety of neuro-cognitive
robotics experiments (Doya, 2001).

The robot was fixed to a stand. The selected tasks involve
movements of the head and the right arm of the robot.
The arm moves with four degrees of freedom assigned to m̂t

FIGURE 1 | Anatomical sites of area of our focus on the human brain. The most anterior regions show lower number of neurons and slower neural
timescale dynamics than the most posterior regions.
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FIGURE 2 | A sample of the proposed MTRNN model. The basic layout
of the model inspired by Figure 1. In the model, neurons in the slow
context unit have lower number and slower timescale dynamics than the

neurons in the fast context unit. Inputs and outputs of the model are
processed using topology preserving maps (TPM) (details are in the
“Model Overview” section).

(four-dimensional vectors representing the angles of the arm
joints), and the robot head’s motor moves with two degrees of
freedom assigned to ŝt (two-dimensional vectors x and y repre-
senting the stimulus status: a red mark position, see Figure 3).
The joints of the robot have rotation ranges that were scaled
into values between [0.0 ∼ 1.0]. Encoder values of these arm
joint sensors were received as the current proprioceptive sen-
sory feedback and sent to the network. A vision system mounted
on the robot’s head was programmed to locate the red mark on
the workspace. The direction of the robot’s head, indicated by
encoder values of the two neck joints, expressed the red mark
position in the visual field relative to the robot. This relative
location of the red mark was treated as visual input ŝt to the sys-
tem to observe the current stimulus status and thus trigger the
corresponding task; see Figure 3.

For the workspace, a workbench was set up in front of the
robot, as in Figure 3. A sheet of white paper, which shows four
numbers, interruptions, and switching positions, and a move-
able red mark were placed on the workbench to conduct the
experiment. The robot’s task was to learn to reproduce cogni-
tive branching and switching. For the cognitive branching: (1)
the robot starts an original task that is determined by the experi-
menter (task-A, task-B, or task-C). In this task, as long as the red
mark is located on the initial position, the robot should keep dial-
ing the assigned task set by clicking on the numbers that the task
presents using its right arm index finger. (2) When an external
stimulus appears before the robot [i.e., the red mark is placed by
the experimenter to one of the interruption positions (I1, I2)],
the robot should suspend working on dialing the original task
sets and execute the interruption subtask set (clicking directly on
the red mark on its interruption position: I1 or I2. (3) When the

red mark is returned, by the experimenter, to its initial position,
which is a Go-Back signal, the robot should resume its outstand-
ing original task starting with its arm in its home-position (HP).
For the task switching, as done after starting the original task, if
the red mark is temporarily (approximately two seconds) placed
at one of the switching positions, S1, S2, or S3, and returned to the
initial position, the robot should switch from the current original
task to either task-A, task-B, or task-C, respectively.

MODEL OVERVIEW
The main components of the current model are borrowed from
a continuous time recurrent neural network (CTRNN) (Elman,
1990). CTRNN is a type of RNN that implements some features
of biological neurons, thus the activities of neurons are deter-
mined not only by the current synaptic inputs but also by the
history of neural states. Due to these characteristics, CTRNN can
reproduce complex dynamics as well as continuous sensorimotor
sequences.

To construct a hierarchy structure of CTRNN that simulates
the biological assumptions in Figure 1, we adopted the model
of the MTRNN presented in Figure 2. The functional hierarchy
in MTRNN is made possible through the use of various distinct
types of neurons, each with different timescale properties. Thus,
the time constant τ in (1), represents the activity speed of the
corresponding neuron (Hertz et al., 1991; Yamashita and Tani,
2008):

τiu̇i,t = −ui,t +
∑

j

wijxj,t (1)

where ui,t is the membrane potential, xi,t is the neural state of
the ith unit, and wij is the synaptic weight from the jth unit to the
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FIGURE 3 | The Robot (a miniature humanoid robot produced by Sony

Corporation), the workspace, and the tasks sets. In the workspace: the
movable red mark is first located at the initial position. The red mark at
this position stimulates the robot to execute the original task. The white
circles/(gray circles) represent the interruption/(switching) positions. Moving

the red mark to one of these positions stimulates the robot to execute the
corresponding task. The dotted arrows indicate the paths of the red mark. In
the tasks sets: home-position (HP) refers to the robot’s arm in its initial position.
In one Task-A set, for instance, the robot starting its arm from HP, moves to
dial 1 → 2 → 3 → 4, and then ends the task by returning its arm to HP.

ith unit. The second-term of the equation corresponds to synaptic
inputs to the ith unit. The time constant τ is defined as the decay
rate of the unit’s membrane potential, analogous to the leak cur-
rent of membrane potential in real neurons. When the τ value is
large, the activation of the unit changes slowly, because the inter-
nal state potential is strongly affected by the history of the unit’s
potential. On the other hand, when the τ-value of a unit is small,
the effect of the history of the unit’s potential is also small, and
thus it is possible for activation of the unit to change quickly.

The network that is used in the current model consists of
input-output and a context unit. To test various model layouts,
the context unit is divided into two or three levels based on the
value of the time constant τ, as well as, the number of neurons
in each unit. An example of a general layout connection of a
three-level context model is shown in Figure 2. Table 1 presents
the detailed specifications for each model. The settings of neu-
ron initial states are self-organized through the learning process
(Nishimoto et al., 2008), and thus the initial values that corre-
spond to the same behavior are close to each other in the state
space of the initial values.

In the current study, parameters of time constants are set by
the experimenters on a trial and error base. In Yamashita and Tani

(2008), it was shown that time constant differences do not result
in worse performance. In Paine and Tani (2005), it was shown that
optimization of the time constants by an evolutionary algorithm
applied to the learning of goal-directed navigation tasks results
in the generation of similar time constant structures as those
applied here, i.e., fast time constants in a lower-level for encod-
ing primitive behaviors such as turning left/right and a straight
corridor and slow time constants in higher-level for encoding
sequences of primitives. Our future study, however, will focus
on how the time constant parameters can be self-determined by
utilizing the back-propagation error deliberated at each neural
unit.

Input-output encoding to MTRNN
Inputs to the system were sparsely encoded in the form of a
population coding using conventional topology preserving maps
(TPM) (Kohonen, 1996), Figure 2. One map corresponds to pro-
prioception and the other map to vision. The TPM is a type
of neural network that produces a discretized representation of
the input space of training samples. The characteristic feature of
the TPM is that it preserves topological properties of the input
space. This sparse encoding of sensorimotor trajectories reduces
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Table 1 | Specifications of the MTRNN models.

Specifications Two-level model Three-level model

Structure Input/output unit and a two-level context unit:
fast context unit and slow context unit

Input/output unit and a three-level context unit:
fast context unit, mid-context unit and slow
context unit

Number of neurons in the input-output unit/(τ) 61/(τ = 2) 61/(τ = 2)

Number of neurons in the fast context unit/(τ) 16/(τ = 5) 14/(τ = 3)

Number of neurons in the mid-context unit/(τ) 0 10/(τ = 5)

Number of neurons in the slow context unit/(τ) 14/(τ = 50) 6/(τ = 50)

Connection among units As in Figure 4, neurons in each unit are
connected to themselves and only to the neurons
in its direct neighbors units, as shown by the
arrows in the figure.

As in Figure 6, neurons in each unit are
connected to themselves and only to the
neurons in its direct neighbors units, as shown
by the arrows in the figure.

the overlaps of sensorimotor sequences. The size of the TPMs
was 36 (6 × 6) for proprioception and 25 (5 × 5) for vision,
respectively. The 6-dimensional proprioceptive and visual inputs
were therefore transformed into 61-dimensional sparsely encoded
vectors.

In this study, TPMs were trained in advance of MTRNN
training using a conventional unsupervised learning algorithm
(Kohonen, 1996). Samples for training of the TPMs included
all the recorded teaching sensorimotor sequences of all the
tasks in various combinations (a total of 16 recorded com-
binations designed arbitrary, e.g., combination 1: Task-A ×
3 → I2 × 3 → Task-A × 3 (which means a three sets of Task-
A followed by a three sets of I2, and then followed again
by three sets of Task-A); combination 2: Task-A × 6 → I2 ×
2 → Task-A × 2, etc.). In the training stage of the TPM, data
were sampled randomly, and training for both propriocep-
tion and vision were carried out over a total of 3 × 106

epochs.
Reference vectors of the TPM are described as follows:

ki = {
ki,1, ki,2, . . . , ki,l(i)

}
(2)

where l(i) is dimension of the reference vector corresponding to
the sample vectors of proprioception mt or vision st . Thus, l(i)
is determined as follows: if i ∈ M, then l(i) = 4, and if i ∈ S,
then l(i) = 2, where M and S are sets of indices corresponding
to proprioception and vision.

The TPM transformation is then described by the following
formula:

pi,t =
exp

{
−

∥∥ki − ksample
∥∥

σ

2
}

∑
j ∈ Z

exp

{
−‖kj − ksample‖

σ

2
} (3)

where in the case of proprioception (i ε M) then Z = 36 and
ksample = mt . While in the case of vision (i ε M) then: Z =
25, and ksample = st . σ is a constant set at 0.01, indicating

the shape of the distribution of pi, t . Thus, pi, t is a 61-
dimensional vector transformed by the TPM to be the input to
the MTRNN.

The MTRNN generates predictions of the next step sensory
states based on the acquired forward dynamics described later.
Similarly, outputs of the MTRNN were 61-dimensional vectors
yi, t . The output of the MTRNN, assumed to correspond to an
activation probability distribution over the TPM units, was again
transformed into 6-dimensional vectors using the same TPM, as
follows:

kout =
∑
i ∈ Z

yi, tki (4)

where Z = 36, and kout = mt + 1, in the case of proprioception.
Z = 25 and kout = st + 1, in the case of vision.

Neurons activation in MTRNN
Neurons in the MTRNN are modeled according to a conventional
firing rate model, in which the activity of each unit constitutes
an average firing rate over groups of neurons. Continuous time
characteristics of the model neurons are described by (1). Actual
updating of ui, t values is computed according to (5), which is a
numerical approximation of (1).

ui, t + 1 =
(

1 − 1

τi

)
ui, t + 1

τi

⎡
⎣∑

j ∈ N

wijxj, t

⎤
⎦ (5)

The activation of the ith unit at time t (yi, t) is determined by the
following formula:

yi, t =
⎧⎨
⎩

exp(ui, t )∑
j ∈ Z

exp(uj, t )
if i ∈ Z

f (ui, t) otherwise
(6)

where Z is proprioceptive inputs. Note that the softmax acti-
vation is applied only to each group of output units, not to
the context units. Activation values of the context units, how-
ever, are calculated according to a conventional sigmoid function
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f (x) = 1/1 + e−x. Application of softmax activation to the
MTRNN makes it possible to maintain consistency with output of
the TPM, which is calculated through use of the softmax function.

Activation values of the output units are then sent to the TPM
and transformed into predictions of mt + 1 (the vision signal st + 1

is not predictable at this stage since we designed the task, in this
study, so that the interruptions and the switching signals occurred
in an unpredictable manner). Based on mt + 1 prediction, the
robot generates movement; as a result of this, actual sensory feed-
back m̂t + 1 is sent to the system using the TPMs described earlier.
Activation values of the non-output units yi, t , one the other
hand, are simply copied as recurrent inputs to the neural states
of the next time step, xi, t + 1.

TRAINING
In the proposed model, inputs to the system are the propriocep-
tion m̂t and the vision sensor ŝt . Based on the current m̂t and
ŝt , the model generates predictions of proprioception mt + 1 for
the next time step. The prediction of the proprioception is then
sent to the robot in the form of target joint angles, which act
as motor commands for the robot to generate movements and
interact with the environment. For recording the initial teach-
ing signals (the 16 combinations of task-A, task-B, and task-C),
the experimenter guides the robot’s right hand along the trajec-
tory of each of the task sequences. The training of the network
was conducted by means of supervised learning using these teach-
ing sequences. The conventional back-propagation through time
(BPTT) algorithm was used for learning of the model network
(Rumelhart and McClelland, 1986). The objective of training was
to find optimal values of connective weights minimizing sen-
sory prediction error E, defined as the learning error between the
teaching sequences and output sequences. In the current study,
the BPTT was not used for mimicking the learning process of
biological neural systems, but rather as a general learning rule.

At the beginning of training, synaptic weights of the network
were set randomly (values ranging between −0.025 and 0.025).
Connective weights approach their optimal levels through a pro-
cess in which values are updated in a direction opposite to that of
the gradient ∂E/∂w.

wij(n + 1) = wij(n) − α
∂E

∂wij
(7)

where α is the learning rate (constant fixed at 5.0 × 10−4) and n is
an index representing the iteration step in the learning process.
∂E/∂w is given by:

∂E

∂wij
=

∑
t

1

τi

∂E

∂ui, t
xj,t−1 (8)

and is recursively calculated from the following formula:

∂E

∂ui, t
=

⎧⎪⎨
⎪⎩

yi, t − y∗
i, t +

(
1 − 1

τi

)
∂E

∂ui, t + 1
i ∈ 0∑

k ∈ N

∂E
∂uk, t + 1

[
δik

(
1 − 1

τi

)
+ 1

τk
wki f ′(ui, t

)]
i /∈ 0

(9)

where f ’() is the derivative of the sigmoidal function and δik is
Kronecker’s delta (δik = 1 if i = k and otherwise 0).

Through the calculations of the BPTT algorithm, the val-
ues of connective weights approach their optimal values by
minimizing the error between teaching sequences and output
sequences.

EXPERIMENT
Ten learning trials were conducted with randomized initial synap-
tic weights for each type of network architecture (i.e., the two-
level model and the three-level model). Successful trained weights
were then tested through the interaction of the robot in the
physical environment.

RESULTS
A TWO-LEVEL MODEL
As stated earlier, one of the targets of this work is to suggest a
possible model structure that can self-organize a working mem-
ory capable of accomplishing cognitive branching and switching.
In this experiment, we started with the minimum form of the
MRTRNN structure, i.e., two-level context units, as shown in
Figure 4.

By considering this model, only one trial out of the ten tri-
als successfully performed the desired task. Figure 5 shows an
example of the neural activities of the fast and the slow context
units of the successful trials when performing (Task-C → I1 →
Task-C). From the figure, although the formulated memory in the
slow context unit could maintain the original task to some limita-
tion, i.e., the robot was able to return to the outstanding original
task after performing the task interruption, it is obvious that if
the interruption lasts for a little longer, the slow context unit will
lose the ability to resume maintaining the memory. From the fig-
ure, the representations of the neural activations of task-C, before
and after the task interruption are slightly different. Neurons in
the slow context unit thus appear to be manipulated by the task
interruption.

From these results it can be concluded that direct commu-
nication between the high- and low-unit can impair the ability
of the working memory to preserve the original task since it
will remain vulnerable to moment-to-moment environmental

FIGURE 4 | Two-level MTRNN model. Arrows indicate the direction of the
synaptic connections between the units. The input/output unit (I/O) is fully
connected to itself, as well as to the fast context unit (F). F-unit is connected
to itself, as well as, to I/O and to the slow context unit (S). S-unit is connected
to itself and to the F-unit as well. More details are given in Table 1.
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FIGURE 5 | A sample of the neural activities (A) and phase plots (B),

resulting from the two-level Model while performing task-C with one

set of task interruptions (Task-C → I1 → Task-C). In the phase plot, red

plots illustrate the task interruption part; black plots illustrate the original task
before the task interruption; and green plots illustrate the original task after
task interruption I1.

changes. Separation of the slow and fast context units, therefore,
may solve this issue.

A THREE-LEVEL MODEL
Due to the limited performance of the two-level model, in
this experiment, a three-level MTRNN model was constructed;
see Figure 6. From the figure, the fast- and the slow-context
units were separated from each other by introducing a mid-
context unit. Re-conducting the 10 trials considering this
model, 8 out of 10 learning trials could form proper work-
ing memories to successfully perform the desired tasks. From
an analysis of the neural activities in the context units of the
successful trials, interestingly, two types of working memory
were observed: a static memory (five out of the eight) and
dynamic memory (three out of the eight), wherein the neural
dynamic representations of the slow context unit are significantly
different.

Static memory
Figure 7 shows an example of a static memory type model
when performing task-A (left) and task-B (right). Both tasks
were interrupted by two sets of interruption-I1. From the fig-
ures, the neural activities in the slow context unit seem to be
generally stationary, i.e., neurons in the slow context unit were
self-organized to form a role similar to that formed by the para-
metric bias (PB) (Yamashita and Tani, 2008). They represent,
on a very abstract level, the selected original task (e.g., task-A,
task-B) without any significant influence from the interruption
task. The mid-context unit, in contrast, has been influenced, to

FIGURE 6 | Three-level MTRNN model. Arrows indicate the direction of
the synaptic connections between the units. In contrast to the two-level
model, F and S are indirectly connected throughout the mid-context unit
(M) to increase the distance between them.

a certain degree, by the ongoing task changes. Thus, marked
changes appear between the representation of the original task
and the interruption task. Finally, the fast-unit neurons seem to
participate mainly in representing the primitives of the ongoing
task (e.g., click-1, click-2, click-I1, etc.). Such neural represen-
tations can also be observed by the phase plot in Figure 7B;
the plots show the various abstract levels in representing both
tasks (from the general task goal at the higher level (slow context
unit) to concrete motor responses at the lowest level (fast context
unit).

Arrangement of such hierarchal neural representation helps
the robot to obtain stability in holding the memory when deal-
ing with multiple and/or long-term interruptions. Thus, from
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A

B

FIGURE 7 | (A) An example of the behavior sequences and the neural
activities of task-A [Task-A → I1 × 2 → Task-A (left)], and task-B [Task-B →
I1 × 2 → Task-B (right)]. (B) Their phase plots. As is apparent in the figure,
both tasks were subjected to two sets of a task interruption-I1 . In the phase

plot, red plots illustrate the task interruption stage; black plots illustrate the
original task before the task interruption; green plots illustrate the original
task after the task interruption; and the black and the green plots are almost
identicals in the slow context unit.

Figure 7B, the neural dynamics of the original task before and
after the task interruptions is almost identical (see also the dot-
ted squares in Figure 7A). We therefore call this type of memory
a static memory.

Dynamic memory
Figure 8 shows the neural activities of the context units of a
dynamic memory type while performing task-A (left) and task-B
(right), each with two sets of interruptions-I1. From the fig-
ure, in contrast with the static memory in Figure 7, the neural
dynamics in the slow context unit here seem to be more influ-
enced by the ongoing task changes. The neural representation of
task-B, for instance, shifts slightly from its origin after the inter-
ruption tasks are introduced twice. This also can be observed
significantly in the mid-context level (note the original task
before and after the interruptions, Figure 8A dotted squares). The
phase plots of Figure 8B confirm these observations; the phase
plot of the slow and the mid-context units before (black) and
after (green) the task interruptions are shifted relative to each
other.

These results suggest that such a representation of the neural
activities decreases the robot’s stability when dealing with a longer
period of interruption. Thus, the neural representations that are
used to suspend (encode) the original task, task-B for instance,
will gradually fade after a few repetitions of the interrupting sub-
task, and thus returning to this task becomes impossible. We call
this type of memory dynamic memory.

STATIC vs. DYNAMIC MEMORY
To better understand the reason behind of the emergence of these
two types of memories and the resulting characteristics of each,
we have investigated (1) the contribution of each context unit in
each type of memory in encoding the original task; and (2) the
connectivity between the context units in each type of memory.

Contribution of the context units
To obtain insight into the functionality acquired at each context
unit in each memory type, as well as the contribution of its neu-
rons to encode the original task in the branching process, we
have investigated each unit’s neural dynamics while suspending
the original task of responding to the interruption task. The idea
here is that if the same task interruption I1, for instance, is intro-
duced to two original tasks, Task-A, and Task-B, e.g. (Task-A →
I1,A → Task-A), (Task-B → I1,B → Task-B), then the difference
d between the neural activities within the interruption period
(i.e., I1,A – I1,B) will reflect the contribution degree of the unit
in encoding the memory. Context units that represent higher
distances will be considered as units that are highly involved in
encoding the original task, and vice versa. Since in this study
we deal with 3 original tasks, Task-A, Task-B, and Task-C, di is
calculated by Equation (10).

di =
∑T

t = 0 |xt, A−yt, B|
T +

∑T
t = 0 |xt, A−yt, C |

T +
∑T

t = 0 |xt, B−yt, C |
T

3
(10)
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A

B

FIGURE 8 | (A) An example of behavior sequences and neural
activities of a dynamic-type memory while performing task-A [Task-A
→ I1 × 2 → Task-A (left)] and task-B [Task-A → I1 × 2 → Task-A
(left)], with two sequences of the task interruptions-I1 B. Their phase
plots (B). In the phase plot, red plots illustrate task interruption part;

black plots illustrate the original task before the task interruption;
and green plots illustrate the original task after the task interruption.
From the phase plots, particularly in the slow and mid-context units,
slight differences between the representation of black and green
plots are observed.

FIGURE 9 | The encoding level of the original tasks while responding to the task interruption-I1 (10). The plotted data are the average of neural dynamics
of each unit for an average of the three static and dynamic working memories.

where i represents the neuron in the context units (Table 1). x and
y represent the neural activity of task-A and task-B, task-A and
task-C, and task-B and task-C, respectively. T represents the total
steps of the task interruption (T = 60 steps). Figure 9 shows the
normalized average of the distance of the neurons in each unit to
100% (i.e., the summation of elements in each unit equal to 100).

From Figure 9, in the static-type memory, the original task
seems to be highly encoded into the slow context unit (73.9%),
and partially aided by the mid-context level (25.3%). Recruiting

the neurons in such as structure appear to increase the dis-
tance between the slow-unit and the fast-unit, which therefore
preserves the working memory from any instant moment-to-
moment changes in the environment. In contrast, encoding the
memory in the dynamic memory appears to be mainly shared
between the slow-, mid-, and the fast-units (37.1, 34.1, and
28.8%, respectively). Such encoding decreases the distance from
the memory to the environment, and thus impairs the memory
ability when dealing with long-term interruptions.
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FIGURE 10 | Synaptic weight matrices for (A) Static memory and (B) Dynamic memory (the plots are the average of three static and dynamic

memories). Synaptic connections between units are shown in Figure 6.

Connectivity among the context units
Figure 10 shows the weight connectivity matrices resulting from
an average of the three static and dynamic memories. From the
figure, we observe that the dynamic memory tends to have a
dense connectivity from the fast to the mid-context units than
the static memory (the dotted square in Figure 10B). A dense
bottom-up synaptic connectivity between the fast and the mid-
context units appears to reduce the distance and facilitate the
transmission of the dynamic property of the neurons from the fast
context unit to the slow context unit. This, accordingly, reduces
the stability of the memory and leads to dynamic memory, and
vice versa.

From these results, we can conclude that the distance between
the slow context unit and the fast context unit is based entirely
on the initialized random weights, which play a key role in the
formation of the characteristics of the resulting memories. One
interesting future research direction related to these results would
be to investigate the possibility of changing the properties of the
resulting working memories by subjecting them to certain exer-
cises (e.g., repeating the original task for a longer period before
introducing the interruption). This issue is scheduled for future
study.

TASK SWITCHING
To examine the flexibility between the resulting static and the
dynamic memories, both types of memories were introduced to
the task switching. This stage was conducted in the simulation
environment only. After a number of repetitions of the origi-
nal task, we asked the robot to switch to another original task.
This was made possible by changing the value of ŝt to one of the
switching positions; see Figure 3. This step was repeated for 10
trials.

For the dynamic memory, task switching was successfully
achieved among all the trials. This reflects the high flexibility of
this type of memory. For the static-type memory, on the other
hand, in all the trials the network was unable to switch between
one or two tasks. This could be due to the high stability of
the higher context unit, which was only very slightly affected
by moment-to-moment changes on the environment. Figure 11
shows an example of the neural activities of a dynamic mem-
ory while successfully performing task switching from Task-C to
Task-A.

From the figure, when the ŝt value was changed to stimulate the
task switching S1 (switch to Task-A), as seen in Figure 3, a gradual
shift of the neural activations appeared in all the context units,
starting from the fast context unit and moving to the slow context
unit (dotted square). As the result, the network was successfully
able to switch to Task-A.

In conclusion, dynamic memory has greater flexibility for
moment-to-moment changes in the environment than does static
memory.

DISCUSSIONS
In this study, we proposed a neurocomputational model that may
suggest the basic perception of how a working memory in human
brain may be mechanistically self-structured through neural
interactions to accomplish HOCM, namely cognitive branching
and switching.

First, a minimum form of the MRTRNN structure was exam-
ined (a two-level MTRNN model). The model poorly per-
formed cognitive branching (only one out of 10 trials succeeded).
Although the model could cope with segmentation and integra-
tion of the introduced tasks, it was hardly able to self-organize a
suitable working memory to handle its pending stages. The prob-
lem could lie in the distances between the context units, which
seems to have a significant impact on the formulation of the
resulting working memory.

Second, we proposed a three-level MTRNN model, which
outperformed the two-level model. The branching tasks were suc-
cessfully performed in 8 out of 10 trials. The results illustrate
the importance of a separation between the slow-unit (high-
level) and the fast-unit (low-level) for the formation of a proper
working memory away from any lower-level processors, sensory
noise, and/or moment-to-moment changes in the environment.
These results are remarkably consistent with previous findings,
including the “bottle-neck” in Paine’s work (Paine and Tani,
2005), where neurons of the higher module, which carry infor-
mation about the task goal, interact with external inputs of the
lower module only through a particular class of neurons referred
to as bottle-neck neurons. This ensures a kind of separation
between the higher level and the lower level. Botvinick’s work
in Botvinick (2008) also suggested that a separation from input-
output unit can contribute to the development of a functional
hierarchy.
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A

B

FIGURE 11 | An example of behavior sequences and neural activities (A),

and phase plots (B) of a dynamic memory while performing task

switching from task-C to task-A. In the phase plots: black plots illustrate

task-C and blue plots illustrate task-A. After introducing the switching signal,
a gradual shift appeared on the neural activations in all the context units,
starting from the fast context unit and moving to the slow context unit.

By further analysis of the successful trials, interestingly, we
observed that two types of memory, static memory or dynamic
memory, were self-organized during training. The static memory
appeared in five out of the eight trials. Static memory showed
high stability in preserving the original task and less flexibility
with moment changes on the environment. Thus, it carried out
the cognitive branching task better than the switching task. In this
type of memory, the neural dynamics in the slow context unit was
mainly engaged in encoding the memory, playing a role similar to
that of a PB (Yamashita and Tani, 2008). The dynamic memory
appeared in three out of eight trials. Dynamic memory showed
low stability to maintain the original task and more flexibility
to the ongoing environmental changes. It thus better performed
switching compared to branching. In this type of memory, the
slow-, mid-, and fast-context units seemed to be all involved, to
various degrees, in encoding the memory. Surprisingly, relatively
comparable types of memory representations were also found
a similar investigation of other higher-order cognitive tasks,
namely, rule switching and confidence (Maniadakisa et al., 2012).

From an analysis of the neural activations in both types of
memory, we believe that the variances of the strength between
bottom-up and top-down synaptic connections, which were ran-
domly initialized and self-organized throughout the learning
process, are the main factor to form the properties of the result-
ing memories. Higher bottom-up weights, which could facilitate
the transmission of information into that direction, reduce the
distance between the lower and the higher units, and thus lead
to dynamic memory. Higher top-down synaptic weights, in con-
trast, can reduce the impact of any lower-level processors, and
thus increase the distance between the lower and the higher
units, which lead to a static memory. Optimal balancing between
these distances, therefore, could serve as a basis to attain bal-
ance among those memory types: this phenomenon which may
reveal some interesting characteristics of the frontal lobe to handle
HOCM. This may account for our daily psychological observation
that some people are able to more effortlessly perform cognitive
branching and switching than others. There is also a possibility
that both types of memory may also emerge in one model.
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This can happen if there is a certain balance rate between the units
in the model. In this case, an extra variable synaptic weight, which
is less dependent to the training process and more dependent
on the environmental changes, can perhaps be used to convert
between one type of memory and the other, depending on the sit-
uation. This also could be linked to the term “mood” in human,
where in the case of a good mood we have greater ability to per-
form cognitive branching than when we are in a bad mood (Walsh
et al., 2009).

To some degree, our resulting model and the review of frontal
lobe studies in Badre and D’Esposito (2009) (mainly by looking
at the layout structure and task development) can be associated:
where the fast-unit can be assigned to the lateral FPC, the mid-
unit to the Mid-PFC, the fast-unit to the premotor cortex, and
the input-output-unit to the posterior sensory-motor cortex); see
Figures 1, 2. It is important to note here that, although the con-
nectivity between the units in the proposed three-level MTRNN
model is not fully compatible with the frontal lobe connectiv-
ity assumed from neuroimaging studies discussed in Badre and
D’Esposito (2009), we believe that it does not conflict with it.
Thus, their reported direct connection from the high-level unit
(FPC) to the low-level unit (premotor cortex) could possibly be
critical for the emergence of other human higher cognitive abili-
ties (e.g., complex decision making, etc.) rather than the selected
tasks in this study. Another possibility could be that this extra link
could work as an additional factor to balance the memory to cope
with various situations.

A complete frontal lope model should host more com-
plex functions for higher-order cognition, such as novelty and
unexpected choices, online configuration of old memories, etc.
However, the current paper focuses only on specific mechanisms
related to cognitive branching and switching. It is important to
integrate those various higher functions in future studies which
would require more complex architectures than the current sim-
ple architecture.

CONCLUSIONS
In the present work, we conducted neurorobotic experiments
driven by a neurocomputational model to suggest a possible neu-
ral dynamics for ruling cognitive branching and switching in
human brain. Our results suggest a possible network structure
and neural dynamics involved in accomplishing tasks.

Interestingly, two types of network emerged from training
the proposed three-level MTRNN model. Each of these net-
works has its own memory characteristics: either static memory
or dynamic memory. The existence of any of these memories
mainly depends on the resulting distances from a long-term
learning between the contexts units that involved in the pro-
cess. Both memories could successfully perform the desired tasks
with some limitations; the static type memory performed well
in terms of stability, but showed poor flexibility, in dealing
with the tasks. The dynamic type memory showed converse
performance.

From the results, we believe that extension of this work
could contribute to possible neural implementation for better
insight into how macro-level anatomical nodes in the frontal lobe
are dynamically structured and self-organized to obtain various
HOCM. An important issue for future work will be to scale both
the model and the task into further complex levels in which the
formed memory should not only encode the main ongoing task as
a set but also encode to which of the task sequence steps the inter-
ruption occurred. The limitations of the biological plausibility of
the resulting model are also a subject for detailed explorations in
the future.
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