frontiers in
NEUROROBOTICS

ORIGINAL RESEARCH ARTICLE
published: 29 April 2013
doi: 10.3389/fnbot.2013.00008

=

Reward-based learning for virtual neurorobotics through
emotional speech processing

Laurence C. Jayet Bray'?*, Gareth B. Ferneyhough', Emily R. Barker', Corey M. Thibeault®* and

Frederick C. Harris Jr."

T Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
2 Department of Bioengineering, George Mason University, Fairfax, VA, USA
? HRL Laboratories, LLC, Malibu, CA, USA

Edited by:
Jeffrey L. Krichmar, University of
California, Irvine, USA

Reviewed by:

Quan Zou, The George Washington
University, USA

Hsin Chen, National Tsing-Hua
University, Taiwan

*Correspondence:

Laurence C. Jayet Bray, Department
of Bioengineering, George Mason
University, 4400 University Drive,
Fairfax, VA 22030, USA.

e-mail: ljayet@gmail.com

Reward-based learning can easily be applied to real life with a prevalence in children
teaching methods. It also allows machines and software agents to automatically
determine the ideal behavior from a simple reward feedback (e.g., encouragement) to
maximize their performance. Advancements in affective computing, especially emotional
speech processing (ESP) have allowed for more natural interaction between humans
and robots. Our research focuses on integrating a novel ESP system in a relevant
virtual neurorobotic (VNR) application. We created an emotional speech classifier that
successfully distinguished happy and utterances. The accuracy of the system was 95.3
and 98.7% during the offline mode (using an emotional speech database) and the
live mode (using live recordings), respectively. It was then integrated in a neurorobotic
scenario, where a virtual neurorobot had to learn a simple exercise through reward-based
learning. If the correct decision was made the robot received a spoken reward, which
in turn stimulated synapses (in our simulated model) undergoing spike-timing dependent
plasticity (STDP) and reinforced the corresponding neural pathways. Both our ESP and
neurorobotic systems allowed our neurorobot to successfully and consistently learn the
exercise. The integration of ESP in real-time computational neuroscience architecture is a
first step toward the combination of human emotions and virtual neurorobotics.
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1. INTRODUCTION

How does speech portray emotions? Many of our social cues
and communication skills rely on emotional speech, but it is
a challenging process to study. Affective computing, especially
emotional speech processing (ESP) has helped elucidate the
importance of human emotions. It is basically described as apply-
ing human like emotional effects to artificially produced speech.
Speech contains acoustic features that vary with the speaker’s
affective state, and the ability to interpret these communication
signals (e.g., emotions) affects social interaction (Warren et al.,
2006). Humans also perceive how emotional environmental cues
such as fear or anger indicate danger (Kanske and Hasting, 2010)
and keep them fit for survival.

At the physiological level, speech is processed in specialized
brain regions in the upper portion of the superior temporal sul-
cus, which is one of the voice-selective areas of the auditory cortex
(Grossmann et al., 2010). These areas in monkeys and humans
have been thought to provide social information to sensory sys-
tems. Recent studies on macaque monkeys have revealed they
have a region in the superior temporal plane selective to speech
similar to humans (Belin et al., 2000, 2004). These studies suggest
that recognition of speech within species is an evolutionarily con-
served brain function in primates and is independent of language
(Petkov et al., 2008, 2009). Therefore, language requires more
than simply linguistic information. Other studies in behavioral
biology, psychology, and speech and communication sciences

have suggested that many emotional states are communicated by
specific acoustic characteristics of the speaker. Evidence reveals
that listeners attend to changes in voice quality, articulation, pitch,
and loudness to understand the speaker’s emotion (Banse and
Scherer, 1996). Emotions that are the most distinct in humans
are anger, disgust, fear, joy, sadness, and surprise (El Ayadi et al.,
2011).

As part of emotional processing, emotional speech recognition
is a relatively recent research field, which is defined as extracting
the emotional state of a speaker from her or his speech (El Ayadi
etal, 2011). Automatic recognition of emotions from modalities
such as speech has acquired expanding interest within the area
of human-machine interaction research (Fu et al., 2010). Such
emotional speech recognition is essential for facilitating realistic
communication between robots and humans. Service robots are
being designed to help humans with difficult or time-consuming
tasks or help those with disabilities (Severinson-Eklundh et al.,
2003). Appropriate communication allows robots to share human
knowledge, and can potentially use human recognition capabili-
ties to complete complex tasks (Ghidary et al., 2002). Thus, it will
be important for future robotics to be able to understand emotion
in speech in order to complete such tasks.

Biological-inspired human-robot interactions have become
increasingly important as robots fascinate many researchers and
become more common in our daily activities. For the past couple
of years, we have worked on machine learning systems, and we
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developed a Virtual Neurorobotic (VNR) loop, which focuses on
the coupling of neural systems with some form of physical actua-
tion. This is based around the interoperability of a neural model,
a virtual robotic avatar and a human participant (Goodman
et al., 2007, 2008). Under all but the most basic scenarios this
interoperability is accomplished through an organized network
communication system (Thibeault et al., 2010b, 2012).

This paper provides an introduction to affective computing
and emotional speech processing combined with one application
of real-time virtual neurorobotics. We use our VNR to describe
how our emotional speech system can be successfully used to rein-
force learning and allow a neurorobot to make ideal choices based
on visual cues.

2. AFFECTIVE COMPUTING

The curious nature of human emotions has been the subject
of much research and philosophical debate. Why do humans
have emotions, and what role do they have in human cogni-
tion and behavior? During the cognitive revolution that began
in the second half of the twentieth century, the lingering influ-
ence of behaviorism helped downplay the role of emotion to little
more than a side effect from instinctual and learned behavior
(Hudlicka, 2003).

Recently, advancements in neuroscience and psychology have
helped elevate the importance of emotion; within the last decade
or so, research has shown that emotion plays a crucial role
in human intelligence, including planning and decision mak-
ing of all levels (Hudlicka, 2003; Picard, 2003). This renewed
interest in emotional research has led to the birth of a grow-
ing research field, affective computing. Rosalind Picard’s paper,
Affective Computing: Challenges gave the field its name (Picard,
2003). In her paper, Picard discusses the three main areas of
affective computing: emotional sensing and recognition, affect
modeling, and emotion expression.

Several researchers have attempted to create emotionally intel-
ligent robots. Perhaps the most famous is Kismet, an infant-like
robotic creature developed at MIT (Breazeal and Aryananda,
2002). Kismet responds to the emotional state (typically acted)
of its “caregiver” by analyzing the caregiver’s speech in real-time.
The system extracts statistics on the caregiver’s voice pitch and
energy, and classifies the underlying emotion using a Gaussian
mixture model classifier. The robot responds to the caregiver’s
emotional intent by changing its facial expression. Naive test sub-
jects were chosen to interact with the robot and many felt a strong
emotional response while interacting with it, especially when
Kismet showed sadness after being prohibited by the human.
Kismet successfully shows that robots can be designed to react to
human emotions, and in turn, elicit an emotional response from
the human as well.

Another empathetic android robot is BARTHOC, developed at
Bielefeld University, Germany (Hegel et al., 2006). BARTHOC can
be given several different appearances by changing the latex mask
that composes its face and head. For many experiments, the robot
is given the appearance of a small child via a latex mask, although
its appearance is decidedly less “cute” than Kismet, due to the dif-
ficulty in creating a realistic looking android face. Like Kismet,
BARTHOC mimics the emotion of the human interacting with

it by changing its facial expression. The emotion of the human is
determined using emotional speech processing. BARTHOC can
distinguish and portray six emotional states: neutral, happy, fear,
anger, disgust, surprise, and sad.

Both Kismet and BARTHOC can mimic human emotions
by recognizing the emotional content in a human’s speech. Our
system aims to further these advancements by using human
emotional content as a training mechanism for a virtual robot.

3. THEORY BEHIND EMOTIONAL SPEECH

PROCESSING (ESP)

ESP systems (also called emotional speech recognition systems)
attempt to determine the underlying emotion in human speech.
Unlike normal speech recognition systems, most ESP systems do
not extract lexical information, but instead classify the speaker’s
emotion without any regard to context. This is typically accom-
plished by extracting prosodic features for each word or phrase
uttered by the speaker, generating statistics on these features,
and classifying the feature vector using a supervised learning
algorithm.

Although the accuracy of ESP systems is typically lower than
other emotional classification methods involving facial imag-
ing and physiological features, their recognition rates are similar
to those of humans (Hudlicka, 2003). Furthermore, emotional
speech recognition is less computationally expensive and less
invasive than other methods, and remains a popular method for
emotion detection, especially in live environments.

3.1. FEATURES

There is currently little consensus on the best features for emo-
tional speech recognition, however statistics on prosodic features,
especially the fundamental frequency (pitch), are among the most
common (Scherer etal., 1991; Dellaert et al., 1996; Oudeyer, 2003;
Ververidis et al., 2004; Fu et al.,, 2010; Thibeault et al., 2010b;
Koolagudi et al., 2011; Tahon et al., 2011). Other prosodic features
used for ESP include energy and duration (Batliner et al., 2006).
In addition to prosody, other common features include spec-
tral features such as Mel-frequency cepstral coefficients (MFCCs),
and non-linear Teager energy based features. In order to form a
“good* feature vector, ESP systems extract several statistical quan-
tities from each feature contour such as the “mean, median, stan-
dard deviation, maximum, minimum, range, linear regression
coefficients, 4th order Legendre parameters, vibrations, mean of
first difference, mean of the absolute of the first difference, jit-
ter, and ratio of the sample number of the up-slope to that of
the down-slope of the pitch contour” (El Ayadi et al., 2011). By
varying the number of features, and the statistics on each fea-
ture, ESP systems can have feature vectors of lengths ranging
from 12 (Breazeal and Aryananda, 2002) to 988 (Eyben et al.,
2009). To improve classification time and accuracy, several stud-
ies begin with large feature sets and then select the best features
using exhaustive, sequential, or random searches (Fu et al., 2010).

3.2. FUNDAMENTAL FREQUENCY DETECTION

The fundamental frequency (Fy) of a voiced speech is typically
defined as the rate of vibration of the vocal folds (de Cheveigné
and Kawahara, 2002). Generally, the pitch humans perceive when
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someone is talking or singing is equivalent to the fundamental
frequency, and ranges from about 40 to 600 Hz (Huang et al,,
2001). We will therefore refer to the fundamental frequency sim-
ply as “pitch”, and methods to determine Fy as “pitch detection
algorithms.” Frequency-domain pitch detection approaches usu-
ally utilize the Fast Fourier Transform (FFT) to convert the signal
to the frequency spectrum. This allows for polyphonic detection.
Time-domain approaches, such as autocorrelation are typically
less computationally expensive, but may be prone to errors and
octave jumps, especially due to noise. As a method, robust algo-
rithm for pitch tracking (RAPT) (Talkin, 1995) is a pitch tracking
algorithm that attempts to return a smooth pitch contour, with-
out the undesirable octave jumps and false detection problems
present in the basic auto-correlation method. RAPT operates on
two versions of the input signal, one at the original sample rate,
and one at a significantly reduced rate. The algorithm first com-
putes the normalized cross-correlation (NCFF) of a low-sample
signal and records the locations of the local maxima. Next, NCFF
is performed on the higher sample-rate signal in the vicinity of
the peaks found in the previous step. This generates a list of
several Fy candidates for the input frame. Finally, dynamic pro-
gramming is used to select the best Fy candidates over the entire
window.

3.3. CLASSIFIERS

After a feature vector has been created, it must be classified
in order to determine its emotional class. A number of classi-
fiers have been used in ESP systems, including hidden Markov
models (HMM), Gaussian mixture models (GMM), k-nearest
neighbor (k-NN), support vector machines (SVM), artificial neu-
ral networks (ANN), and decision trees (El Ayadi et al., 2011).
Different classifiers can perform better in different situations,
which can have a significant effect of a system’s classification
accuracy (El Ayadietal., 2011). Therefore, it is important for
the researcher to chose a classifier carefully, taking into account
accuracy as well as computational requirements.

3.4. DATABASES

It can be difficult to compare the classification accuracies reported
by different researchers due to the variety in emotional speech
databases used. The Berlin emotional speech database (Burkhardt
et al.,, 2005) contains recordings performed by professional actors
in a noise-free environment, while (Morrison et al., 2007) pro-
vides actual recordings from call centers. Naturally, both humans
and computers attain higher recognition accuracy on databases
containing low-noise, acted recordings.

4. VIRTUAL NEUROROBOTICS (VNR)

VNR aims to develop combinations of biologically realistic neu-
ral simulations with robotic agents and human participants in
closed-loop configurations (Thibeault et al., 2010b). As described
by our previous studies by Goodman et al. (2007, 2008), we define
VNR as follows: a computer-facilitated behavioral loop wherein a
human interacts with a projected robot that meets five criteria:
the robot is sufficiently embodied for the human to tentatively
accept the robot as a social partner; the loop operates in real time,
with no pre-specified parcellation into receptive and responsive

time windows; the cognitive control is a neuromorphic brain
emulation using our NeoCortical simulator (NCS) and incorpo-
rating realistic neuronal dynamics whose time constants reflect
synaptic activation, membrane and circuitry properties, and most
importantly learning; the neuromorphic architecture is expand-
able to progressively larger scale and complexity to track brain
development; and the neuromorphic architecture can potentially
provide circuitry underlying intrinsic motivation and intention-
ality, which physiologically is best described as emotional rather
than rule-based drive.

NCS (Drewes, 2005; Wilson et al., 2005; Brette et al., 2007;
Drewes et al., 2009; Jayet Bray et al., 2010) is a neural simulator
that can model integrate-and-fire neurons with conductance-
based synapses. It uses two clusters: four SUN 4600 machines
(16-processors each) connected via Infiniband with 192 GB RAM
per machine, 24 Terabytes of disk storage; and 208 Opteron cores,
416 GB RAM, and more than a Terabyte of disk storage. Note:
for more information on NCS equations and related publications,
please go to: www.cse.unr.edu/brain/publications.

As a part of our neurorobotics, learning can be based on many
different experiences including making correct decisions and con-
sequently being rewarded. As illustrated in Figure 1: (1) a human
participant presents the robot with one external cue at a time. The
robot sees and then processes the information (2), then a decision
followed by an action associated with the initial cue is made (3).
Then, there are two possible scenarios (4): If the decision/action is
incorrect, then the robot does not receive any reward. However, if
the decision is correct it does receive a reward (e.g., hears positive
speech) by the human. In our correct case, the reward stimu-
lates synapses (in our simulated model) that underwent spike-
timing dependent plasticity (STDP) described by several studies

FIGURE 1 | Simplified reward-based learning scheme during
human-robot interaction. (1) The external cue is presented by the human
to the robot; (2) The information is seen and processed by the robot; (3) The
decision and the related action are performed; (4) The robot chose the ball
correctly or incorrectly; (5) The spoken reward (if correct action) is received
by the robot (6) The reward reinforces Learning every time the decision is
correct.
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(Zhang et al., 1998; Song et al., 2000; Dan and Poo, 2004; Caporale
and Dan, 2008; Markram et al., 2011) as:

Ay exp(%) if (A) <0
A exp<_At> if (A1) > 0

T—

W(AT) = (1)

where A is the maximum amount of synaptic modification; At is
the positive or the negative window; and t is the positive or the
negative decay constant.

Every time the robot receives a spoken reward (5), the neural
pathway corresponding to the correct decision and the action is
reinforced (6) until completely learned.

The integration of ESP in real-time computational neuro-
science architecture is a first step toward the combination of
human emotions and virtual neurorobotics. It was first described
in our preliminary study by Thibeault et al. (2010b), and it is now
being improved and further implemented in one of our neuro-
robotic applications. The improvements consisted on making the
system a stand alone C++ application using a different classifica-
tion and an ameliorated feature extraction method as described
in Section 5.

5. METHODS

5.1. HUMAN EMOTIONAL SPEECH CLASSIFICATION

To provide a benchmark for our emotional speech classification
system, we conducted a human trial in which seven individuals
were asked to classify 40 random utterances (sentences) from the
Berlin emotional speech database from four emotional classes:
happy, sad, anger, and fear. An even amount of samples (10) was
randomly played for each of the four emotions. Therefore, a total
of 280 samples (70 for each emotion) were classified and displayed
in a confusion matrix (Table 1). All the samples in the database
were in German and the humans classifying the samples only
spoke English. This allowed the listeners to only base their clas-
sifications on the prosody only, rather than the meaning of the
words.

5.2. EMOTIONAL SPEECH RECOGNITION SYSTEM

Our emotional speech classification system operated in real-time
by extracting several prosodic features for each utterance, and
classifying them using the support vector machine library, lib-
SVM (Changand Lin, 2011) with the Radial Basis Function (RBF)
kernel. This classifier was chosen because of its high accuracy for
emotional speech classification tasks (El Ayadi et al., 2011).

To form the prosodic feature vector for each utterance, the
pitch for each window was determined using RAPT (Talkin,
1995), as described in Section 3. The window size and overlap
were 3361 and 2880 frames long, respectively. These values were
suggested by the RAPT algorithm for our system’s particular sam-
ple rate of 16 KHz. In addition to the pitch, RAPT also returned
the signal energy for each window. If the energy was above a
dynamic threshold, RAPT assumed that the speaker was talking.
In this case, the energy and pitch for that window were saved. If
the energy was too low, the speaker assumed to be silent and the
window was discarded.

The system continued saving pitch and energy values for each
window until a two second break in speech was was detected.

This corresponded to the end of a utterance. After the end of
an utterance, the feature vector was formed by calculating the
mean, minimum, maximum, and range of the pitch values over
the utterance. In addition to these four values, the feature vector
also contained the mean speech energy during the voiced regions.
In testing mode, the feature vector was then scaled and classi-
fied using libSVM. Before the system could classify emotions, it
had to be trained (training mode). Features were extracted for
33% (offline) and 50% (live) of utterances, and they were given
the appropriate emotion class labels. When the desired number
of utterances was processed by the system, the feature vectors
were scaled and used to create a libSVM model. The model file
and scaling parameters were saved and used to classify the fea-
ture vectors in testing mode. To show the difference between
pitch and emotion, the average pitch over 23 utterances was
graphed comparing “happy” and “sad” emotion for both male
and female speakers (Figure 2). This illustrates how the different
pitch measurements change with respect to emotion and gender,
as supported by Ververidis and Kotropoulos (2006).

There were two different experiments conducted to evalu-
ate the classification accuracy of our system. The JACK Audio
Connection Kit (Davis, 2013) was used to connect audio to the
system, either from a separate audio player (offline mode) or
the microphone (live mode). In the offline mode, the same pre-
recorded samples (23 “happy” and “sad” utterances for both male
and female speakers) from the Berlin emotional speech database
were used, which gave a total of 92 samples. In the live mode,
four humans recorded samples at 16 KHz from a list of 10 neu-
tral phrase samples. The following samples were recorded: “Look
Jack, the ball is blue,” “The ball is red,” “You turned left toward
the library,” “Jack, you turned right toward the museum,” “You
pointed to the blue color,” “You pointed to the red color, Jack,”
“Jack, you went over there,” “Look what you’ve done,” “Jack gave
the rattle to his mom,” “Jack kept the rattle for himself.” Each
sample was recorded twice with both “happy” and “sad” utter-
ances giving a total of 160 phrase samples. For both experiments,
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FIGURE 2 | Average pitch between two emotional utterances. The
average pitch (Hz) is shown over 14 data points for both “happy” (female
voice—green and male voice—red) and “sad” (female voice—black and
male voice—Dblue) utterances.
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the results were represented as confusion matrices distinguishing
“happy” and “sad” utterances from both female and male speak-
ers. These showed the accuracy of the system (in terms of % error)
for both live and offline modes (Tables 2, 3).

5.3. AVIRTUAL NEUROROBOTIC APPLICATION

Our virtual neurorobotic loop used a virtual neurorobot as a
remote agent, and the interaction between a camera and ESP. The
design used in this project as well as the basic software engineering
behind its implementation was further described in our previous
research by Thibeault et al. (2012).

As a scenario example described in Figure 3, we designed an
experiment using a spoken reward through ESP as reward-based
learning. (1) A human presented a card with either a printed
blue or red pattern to the neurorobot via the camera, which cap-
tured the image from the user and calculated the dominant color.
(2) The information was processed by the virtual neurorobot,
which was sent as the defined plain text statement (“saw red” or
“saw blue”) to NCSTools through the server interface (Thibeault
et al., 2012). (3a) The configuration of NCSTools stimulated the

appropriate regions of the remote NCS Model through the NCS
network interface (Jayet Bray et al., 2012). Images were then
processed and respective values were sent to simulated visual
pathways (Thibeault et al., 2010a). (3b) The NCSTools server
monitored the neurorobot and created the appropriate stimu-
lus to send to proprioceptive feedback and premotor movements.
The NCSTools software then received spiking information from
the premotor region of the neural simulation. Such activity in
the two premotor regions were monitored, and then compared
as the stimulation progressed. The appropriate command was
finally sent to the neurorobot once a configured threshold was
reached (Anumandla et al., 2011; Jayet Bray et al., 2012). (4) This
loop of events initiated the appropriate pointing motion/action
toward a colored ball. (5) After the robot has pointed to the cor-
rect or incorrect colored ball, the human participant responded
with a “happy” or “sad” spoken phrase. This was processed by
the ESP which determined whether the participant encouraged
or discouraged the action of the virtual neurorobot. (6) The
output of the ESP was fed through NCS Tools to the neural
model. This reward stimulus was injected into groups of neurons

Virtual Robot sees red

| —

Virtual Robot points to red

FIGURE 3 | A scenario of the virtual neurorobotic loop. (1) The external
cue (red or blue card) is presented by the human to the neurorobot (via the
camera); (2) The Information is processed by the neurorobot and is sent to
NCSTools; (3a) NCSTools stimulates the appropriate regions of the modeled
visual cortex; (3b) NCSTools server monitores the neurorobot and creates the
appropriate stimulus to send to proprioceptive feedback and premotor
movements; (4) This loop of events initiates the appropriate pointing
motion/action toward a colored ball; (5) After the robot has pointed to the

1 Virtual Robot points to blue
Virtual Robot sees blue
@ 2
A
/_
NCS Tools 4
Virtual Robot points to red
|\
3a
NCS
Simulation 5
- Virtual Robot points to blue
3b
Visual Premotor
Cortex Cortex

correct or incorrect colored ball, the human participant responded with a
“happy" or “sad” spoken phrase. This was processed by the ESP which
determined whether the participant encouraged or discouraged the action of
the virtual neurorobot; (6) The output of the ESP was coupled with the neural
model via NCSTools. This reward stimulus was injected into groups of
neurons (VC1 and VC2) to stimulate the corresponding synapses (to PMC1
and PMC2) that underwent STDR which reinforced or depressed learning
through time.
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(VC1 and VC2) to stimulate the corresponding synapses (to
PMC1 and PMC2) that underwent STDP, which reinforced learn-
ing through time.

The experiment started as follows. The human showed a col-
ored card randomly to the neurorobot (via the camera). On the
first few attempts, the neurorobot had an equal chance of answer-
ing correctly or incorrectly since it was not familiar with the
exercise. During this learning period, every time it chose the
correct (incorrect) colored ball the “happy” (“sad”) reward was
given. It took about 4 to 5 trials for the neurorobot to fully learn
the exercise. Once it was completely familiar with the drill, no
more rewards were necessary, but it continued to correctly point
to the right color for the rest of the experiment. Overall, as shown
in Figure 3 there were four possible scenarios: when the robot
was shown the red (blue) pattern and correctly pointed to the
red (blue) ball to its left (right), the human provided a happy
spoken response. However, if the neurorobot incorrectly pointed
right (left) to the blue (red) ball, a sad spoken response was given
to the neurorobot.

For this simple example the reward was provided by corre-
lated inputs between the previously activated visual column and
the correctly chosen premotor column as well as reward acti-
vated STDP. In this case the plasticity of the synaptic connections
was enabled during reward input. While the correlated firing
encouraged the facilitation of the synapses resulting in an overall
average increase in synaptic efficacy. It is important to emphasis
that this reward mechanism is independent of the ESP system.
The emotional classification can be used to activate any reward,
punishment or input stimulus to the neural model. More sophis-
ticated reward mechanisms such as those described in Florian
(2007); Izhikevich (2007); Frmaux et al. (2010); Friedrich et al.
(2011); O’Brien and Srinivasa (2013) will be explored in the
future.

6. RESULTS

The results of our emotional speech classification system and its
integration as a reward in a VNR scenario are presented below.

6.1. HUMAN EMOTIONAL SPEECH CLASSIFICATION PERFORMANCE
From the classification system, an English speaking human was
able to classify German speakers’ emotions (fear, anger, happy,

interpreted as either “fear” or “anger.” Additionally, the confusion
table showed that most of the error occurred when the listener
distinguished between “anger” and “happy,” when listening to
an angry emotion OR when the listener distinguished between
“happy” and “fear,” when listening to a happy utterance. This
occurred because the utterances between these two emotions had
similar features. This confusion can be expected between “anger”
or “fear,” and happy in similar systems. Therefore, the “happy”
and “sad” emotions were chosen for our neurorobotic application
below due to a classification accuracy of 98.6%.

6.2. EMOTIONAL SPEECH RECOGNITION SYSTEM PERFORMANCE

In Figure 2, the average pitch is represented for the two chosen
emotional classes (happy and sad) between the male and female
groups from the Berlin emotional speech database. The “happy”
utterance had a higher pitch frequency than the “sad” one, espe-
cially with female speakers. The “sad” male utterance had the
lowest average pitch frequency overall.

During the offline mode, 92 samples from the Berlin emo-
tional speech database (Burkhardt et al., 2005) were used to train
(31 samples) and test (61 samples) the system. As shown in
Table 2, 33 phrase samples of the 34 total happy samples (male
and female combined) were correctly classified as happy while
one was classified incorrectly as sad, giving an error of 5.6%. Out
of the 27 total sad phrase samples (male and female combined),
25 were classified correctly while two were incorrectly classified
as happy, giving an error of 13.3%. If we separate the male and
female results, all 16 of the happy male phrase samples were cor-
rectly classified as happy, giving a 0% error. All of the 12 sad
female samples were also correctly classified as sad, giving an error
of 0%. The overall average error for all 61 phrase samples was
4.7%, which corresponds to a system accuracy of 95.3%. Note:
Approximately 33% of the total 160 samples were used to train
the system.

During the live mode, 160 samples from live recordings were
used to train (83 samples) and test (77 samples) the system. As
shown in Table 3, 41 phrase samples of the 42 total happy samples

Table 2 | Offline Mode Recognition confusion matrix.

and sad) with an accuracy of 88.6%, as shown in the confu- Category Happy-M  Sad-M  Happy-F  Sad-F  Emor
sion matrix in Table 1. The vertical category column represents
the actual class (Berlin emotional speech database recordings) Happy-M 16 0 0 0 0.0%
where the horizontal category row is the classification of the emo- ~ S34-M 2 13 0 0 13:3%
tion by the human subjects. For instance, Out of the 70 German ~ HaPPy-F 0 0 v ! 5.6%
“happy” tones 56 were correctly classified and 14 were incorrectly ~ S8d-F 0 0 0 12 0.0%
Average error 4.7%
Table 1 | Human classification confusion matrix. Table 3 | Live Mode Recognition confusion matrix.
Category Anger Fear Happy Sad Error Category Happy-M Sad-M Happy-F Sad-F Error
Anger 62 3 5 1.4%  Happy-M 22 0 0 0 0.0%
Fear 5 62 1 2 1.4%  Sad-M 0 16 0 0 0.0%
Happy 5 8 56 1 20.0%  Happy-F 0 0 19 1 5.0%
Sad 0 1 1 68 2.9%  Sad-F 0 0 0 19 0.0%
Average error 11.4%  Average error 1.3%
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were correctly classified as happy while 1 was classified incorrectly
as sad, giving an error of 5%. Out of the 35 total sad phrase sam-
ples, none were classified incorrectly, giving an error of 0%. The
overall average error for all 77 phrase samples was 1.3%, which
corresponds to a system accuracy of 98.7%. Note: Approximately
50% of the total 160 samples were used to train the system.

6.3. VIRTUAL NEUROROBOTIC AND REWARD-BASED LEARNING

In our neurorobotic application, the simple spiking neuron
model used was an important aspect of the system, and it is
illustrated in Figure4. Once the camera captured either red
or blue color, the visual information was processed and sent
to NCSTools, as described in Section 5. The information was
then converted and sent to NCS running on a remote comput-
ing cluster. The brain architecture was composed of two areas:
the visual cortex (VC) and the premotor cortex (PMC) divided
into four areas of 10 neurons: VC1, VC2, PMC1, and PMC2.
Each VC column was connected to both PMC columns with a
probability of connections of 50% and a connection strength of
0.006 LS. Only the connections from VC1 — PMCI1 and VC2
— PMC2 had reinforcement learning synapses (positive STDP)
where the other connections got depressed though time (neg-
ative STDP). Therefore, as the red pattern was presented VC1
activity increased, and consequently increased PMCI firing. On
the other hand, when the blue pattern was presented VC2 activ-
ity increased, and consequently increased PMC2 firing. As the

simulation proceeded, the competing neural areas of visual and
motor processing were monitored by NCSTools. The resulting
activity was correlated with a pointing action to one of two
colored balls that matched the color presented. After the robot
pointed, a spoken reward was given to the robot if it pointed to
the correct colored ball. The reward, analogous to a dopaminergic
increase, resulted in an STDP dependent increase in synaptic effi-
cacy (Zou and Destexhe, 2007). STDP was defined in Section 4,
and in the model the maximum positive and negative amounts
of synaptic modification (A) were 20 and 10 respectively; the
positive and negative windows (At) were 50 ms and 100 ms,
respectively; and the positive and negative decay constants (t)
were both 5 ms.

The Graphical User Interface (GUI) is an option given to
users for visualizing aspects of the neural model in real-time.
The user can specify each tab with the information of either:
main window, stimulation input (VCs), and motor areas (PMCs).
As shown in Figures 5A,B the average synaptic weight over the
simulation time can be monitored. As an example for a 9s sim-
ulation, Figure 5A shows both average synaptic weights increase
between VC1 (VC2) and PMC1 (PMC2), which shows evidence
that the neurorobot’s correct decisions were reinforced over time.
However, the average synaptic weights between “non-learning”
synapses (VC1 to PMC2 and VC2 to PMC1) show no increase
over time (Figure 5B). To support these results, the firing activ-
ity of both PMC1 and PMC2 is represented in (Figures 5C-F).

“point right”

Spoken reward of
Correct pointing response

STDP Learning at synapses

FIGURE 4 | Brain architecture in the virtual neurorobotic interface.
Simple spiking neuronal model composed of two areas: the visual
cortex (VC) and the premotor cortex (PMC). Each area is divided into
two columns VC1, VC2, and PMC1, PMC2 (10 neurons each),
respectively. Each VC area has feedforward connections to both PMC
regions (P =50% and Max. conductance = 0.006 uS). The synaptic

- Connection
Connections Pro?ua/l;lllty Strength
)
(nS)
VC1-PMC1 50 0.006
VC2-PMC2 50 0.006
VC1-PMC2 50 0.006
VC2-PMC1 50 0.006
VC1 | VC2 | PMC1 | PMC2
Numbers
of Excit. 10 10 10 10
Neurons

connections from VC1 (VC2) to PMC1 (PMC2) use STDP as a learning
mechanism. As the red (blue) is presented to VC1 (VC2) the activity of
the corresponding column increases, which make PMC1 (PMC2) fire.
When the neurorobot points correctly to “red” (“blue”) a spoken
reward is given, which stimulates the corresponding synapses VC1 —
PMC1 (VC2 — PMC2).
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FIGURE 5 | Average synaptic weights and firing activities. The GUI
monitors the synaptic strengths over time as an average of all
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increase in their strengths (note: the blue and red lines are
superimposed); (C and E) PMC1 and PMC2 firing rates increase as
learning occurs—the neurorobot makes correct choices; (D and F)
PMC1 and PMC2 firing rates do not increase when the neurorobot is
not rewarded—makes incorrect choices.

They increase as reinforcement occurs (Figures 5C,E) when the
neurorobot was rewarded, but they show no significant changes
when the neurorobot is not rewarded (Figures 5D,F). The PMCI
and PMC2 average firing rates increased from 4.21 to 9.63 Hz and
from 4.34 to 10.59 Hz, respectively (Figures 5C,E). However, the
average rate changed from 3.89 to 3.95 Hz in Figure 5D and from
3.91 to 4.02 Hz in Figure 5F.

7. DISCUSSION AND FUTURE WORK

Robotic applications seem to be the future of our society due
to a rapid evolution in advanced technologies. Many develop-
ers, researchers, and scientists have focused on physical robots
(Breazeal and Aryananda, 2002; Hegel et al., 2006) that mimic
human emotions by recognizing the emotional content in a
human’s speech. On the other hand, we have paid more attention
to how the brain and its related biological processes, and cogni-
tion, are involved in human-robot interactions. The development
of our VNR has emphasized the integration of ESP as a reward
into a virtual neurorobotic system.

During our human emotional speech classification perfor-
mance, seven English speaking humans were able to classify
German speakers’ emotions (fear, anger, happy, and sad) with
an accuracy of 88.6%, which provided a benchmark for our
emotional speech classification system. Since there was a 98.6%

accuracy between the “happy” and “sad” utterances, these were
chosen to be used as a spoken reward in our virtual neurorobotic
application.

Using the Berlin emotional speech database, the average pitch
(extracted from our system) between two emotional classes
(“happy” and “sad”) and groups of speakers (male and female)
was significantly different. This confirmed that RAPT was a suc-
cessful method for extracting the pitch out of every sample. Using
the libSVM model, our offline mode system performance had an
accuracy of 95.3% and our live recognition system performance
attained similar accuracy by classifying the different emotions
correctly 98.7% of the time.

Based on the system performances, we created a scenario
where natural speech was used as a reward during a simple
exercise. Our emotional speech processing system accurately dis-
tinguished between two classes of emotions, happy and sad, and
provided a more natural and efficient way for training a child-
like robot. ESP was translated to the presented VNR example
to encourage or discourage the neurorobot’s actions. The plas-
ticity of the synaptic connections was shown as an increase in
the synaptic strengths (between VCI and PMCI1, and VC2 and
PMC2) and in the firing rates of PMC1 and PMC2 when a
reward was given. On the other hand, the absence of reward
showed no significant synaptic strengths nor firing rates increase
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in the concerned regions. These results give a preliminary eval-
uation when a spoken reward was used as an external stimulus
into a neuromorphic brain architecture. In terms of applica-
tions, an emphasis was placed on robotic and automated agents.
However, our system is by no means limited to that specific

application.

Overall, we described how our spoken reward system was
successfully used as reinforcement learning and allow our neuro-
robot to learn a simple exercise and make ideal choices based on
visual cues. The ability to monitor and modify simulations in real-
time was incredibly useful, especially when we further improve to
spiking networks to a larger scale. More importantly, this could
demonstrate another step towards multi-scale visualization of
neural simulations in a virtual environment.
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