
EDITORIAL
published: 13 September 2013
doi: 10.3389/fnbot.2013.00013

Value and reward based learning in neurorobots
Jeffrey L. Krichmar1 and Florian Röhrbein2*

1 Department of Cognitive Sciences, Department of Computer Science, University of California, Irvine, CA, USA
2 Department of Informatics VI, Technische Universität München, Garching, Germany
*Correspondence: florian.roehrbein@in.tum.de

Edited by:

Alois C. Knoll, Technische Universität München, Germany

Keywords: value system, neuromodulation, reinforcement learning, action selection, neurorobotics, reward-based learning, basal ganglia, embodied

cognition

Organisms are equipped with value systems that signal the
salience of environmental cues to their nervous system, causing a
change in the nervous system that results in modification of their
behavior. These systems are necessary for an organism to adapt
its behavior when an important environmental event occurs. A
value system constitutes a basic assumption of what is good and
bad for an agent. These value systems have been effectively used
in robotic systems to shape behavior. For example, many robots
have used models of the dopaminergic system to reinforce behav-
ior that leads to rewards. Other modulatory systems that shape
behavior are acetylcholine’s effect on attention, norepinephrine’s
effect on vigilance, and serotonin’s effect on impulsiveness, mood,
and risk. Moreover, hormonal systems such as oxytocin and its
effect on trust constitute as a value system. A recent Research
Topic in Frontiers of Neurorobotics explored value and reward
based learning. The topic comprised of nine papers on research
involving neurobiologically inspired robots whose behavior was
shaped by value and reward learning, adapted through interac-
tion with the environment, or shaped by extracting value from
the environment.

Value systems are often linked to reward systems in neurobiol-
ogy and in modeling. For example, Jayet Bray and her colleagues
developed a neurorobotic system that learned to categorize the
valence of speech through positive verbal encouragement, much
like a baby would (Jayet Bray et al., 2013). Their virtual robot,
which interacted with a human partner, was controlled by a large-
scale spiking neuron model of the visual cortex, premotor cortex,
and reward system. An important issue in both biological and
artificial reward systems is the credit assignment problem that
is, how can a distal cue be linked to a reward. In other words,
how can you extract the stimulus that predicts a future reward
from all the noisy stimuli that you are faced with? Soltoggio and
colleagues introduce the principle of rare correlations to resolve
this issue (Soltosggio et al., 2013). By using Rarely Correlating
Hebbian Plasticity, they demonstrated classical and operant con-
ditioning in a set of human-robot experiments with the iCub
robot.

The notion of value and reward has often been formalized in
reinforcement learning systems. For example, Li and colleagues
show that reinforcement learning, in the form of a dynamic actor-
critic model, can be used to tune central pattern generators in
a humanoid robot (Li et al., 2013). Through interaction with
the environment, this dynamical system developed biped loco-
motion on a NAO robot that could adapt its gaits to different

conditions. Elfwing and colleagues introduced a scaled version
of free-energy reinforcement learning (FERL) and applied it to
visual recognition and navigation tasks (Elfwing et al., 2013). This
novel algorithm was shown to be significantly better than stan-
dard FERL and feedforward neural network RL. Another related
method, Linearly solvable Markov Decision Process (LMDP) has
been shown to have advantages over RL in optimal control pol-
icy (Kinjo et al., 2013). Kinjo and colleagues demonstrated the
power of LMDP for robot control by applying the method to
a pole balancing task, and a visually guided navigation prob-
lem using their Spring Dog robot which has six degrees-of-
freedom.

Value does need not be reward-based; curiosity, harm, nov-
elty, and uncertainty can all carry a value signal. For example,
in a biomimetic model of the cortex, basal ganglia and phasic
dopamine, Bolado-Gomez and colleagues (Bolado-Gomez and
Gurney, 2013) showed that intrinsically motivated operant learn-
ing (i.e., action discovery) could replicate rodent experiments,
in a virtual robot. In this case, phasic dopaminergic neuromod-
ulation carried a novelty salience signal, rather than the more
conventional reward signal. In a model called CURIOUSity-
DRiven, Modular, Incremental Slow Feature Analysis (Curious
Dr. MISFA), Luciw and colleagues showed that curiosity could
shape the behavior of an iCub robot in a multi-context envi-
ronment (Luciw et al., 2013). Their model was inspired by
cortical regions of the brain involved in unsupervised learn-
ing, as well as neuromodulatory systems responsible for pro-
viding intrinsic rewards through dopamine and regulating levels
of attention through norepinephrine. Different neuromodula-
tory systems in the brain may be related to different aspects of
value (Krichmar, 2013). In a model of multiple neuromodu-
latory systems, Krichmar showed that interactions between the
dopaminergic (reward), serotoninergic (harm aversion), and the
cholinergic/noradrenergic (novelty) systems could lead to inter-
esting behavioral control in an autonomous robot. Finally, in an
interesting position paper, Friston, Adams, and Montague suggest
that value is evidence, specifically log Bayesian evidence (Friston
et al., 2012). They propose that reward or cost functions that
underlie value in conventional models of optimal control can be
cast as prior beliefs about future states, which is simply accu-
mulation of evidence through Bayesian updating of posterior
beliefs.

As can be gleaned from reading the papers in the Research
Topic, as well as the empirical evidence and studies they are built
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on, Value and Reward Based Learning is an active and broad area
of research. The application to neurorobotics is important for
several reasons: (1) It provides an embodied platform for testing
hypotheses regarding the neural correlates of value and reward,

(2) it provides a means to test more theoretical hypotheses on
the acquisition of value and its function for biological and artifi-
cial systems, and (3) it may lead to the development of improved
learning systems in robots and other autonomous agents.
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