
METHODS ARTICLE
published: 04 December 2013
doi: 10.3389/fnbot.2013.00021

Gradient boosting machines, a tutorial
Alexey Natekin1* and Alois Knoll2

1 fortiss GmbH, Munich, Germany
2 Department of Informatics, Technical University Munich, Garching, Munich, Germany

Edited by:

Marc-Oliver Gewaltig, Ecole
Polytechnique Federale de
Lausanne, Switzerland

Reviewed by:

Olivier Michel, Cyberbotics Ltd.,
Switzerland
Frederic Alexandre, Universiy of
Bordeaux, France

*Correspondence:

Alexey Natekin, fortiss GmbH,
Guerickstr. 25, 80805 Munich,
Germany
e-mail: natekin@fortiss.org

Gradient boosting machines are a family of powerful machine-learning techniques that
have shown considerable success in a wide range of practical applications. They are highly
customizable to the particular needs of the application, like being learned with respect to
different loss functions. This article gives a tutorial introduction into the methodology of
gradient boosting methods with a strong focus on machine learning aspects of modeling.
A theoretical information is complemented with descriptive examples and illustrations
which cover all the stages of the gradient boosting model design. Considerations on
handling the model complexity are discussed. Three practical examples of gradient
boosting applications are presented and comprehensively analyzed.

Keywords: boosting, gradient boosting, machine learning, regression, classification, robotic control, text

classification

1. INTRODUCTION
A common task that appears in different machine learning appli-
cations is to build a non-parametric regression or classification
model from the data. When designing a model in domain-specific
areas, one strategy is to build a model from theory and adjust
its parameters based on the observed data. Unfortunately, in
most real-life situations such models are not available. In most
situations even initial expert-driven guesses about the poten-
tial relationships between input variables are not available to
the researcher. The lack of a model can be circumvented if one
applies non-parametric machine learning techniques like neural
networks, support vector machines, or any other algorithm at
one’s own discretion, to build a model directly from the data.
These models are built in the supervised manner, which means
that the data with the desired target variables has to be prepared
beforehand.

The most frequent approach to data-driven modeling is to
build only a single strong predictive model. A different approach
would be to build a bucket, or an ensemble of models for
some particular learning task. One can consider building a set
of “strong” models like neural networks, which can be further
combined altogether to produce a better prediction. However, in
practice, the ensemble approach relies on combining a large num-
ber of relatively weak simple models to obtain a stronger ensemble
prediction. The most prominent examples of such machine-
learning ensemble techniques are random forests (Breiman, 2001)
and neural network ensembles (Hansen and Salamon, 1990),
which have found many successful applications in different
domains (Liu et al., 2004; Shu and Burn, 2004; Fanelli et al., 2012;
Qi, 2012).

The common ensemble techniques like random forests rely
on simple averaging of models in the ensemble. The family of
boosting methods is based on a different, constructive strategy
of ensemble formation. The main idea of boosting is to add new
models to the ensemble sequentially. At each particular iteration,
a new weak, base-learner model is trained with respect to the
error of the whole ensemble learnt so far. The first prominent

boosting techniques were purely algorithm-driven, which made
the detailed analysis of their properties and performance rather
difficult (Schapire, 2002). This led to a number of speculations as
to why these algorithms either outperformed every other method,
or on the contrary, were inapplicable due to severe overfitting
(Sewell, 2011).

To establish a connection with the statistical framework,
a gradient-descent based formulation of boosting methods
was derived (Freund and Schapire, 1997; Friedman et al.,
2000; Friedman, 2001). This formulation of boosting meth-
ods and the corresponding models were called the gradient
boosting machines. This framework also provided the essen-
tial justifications of the model hyperparameters and established
the methodological base for further gradient boosting model
development.

In gradient boosting machines, or simply, GBMs, the learning
procedure consecutively fits new models to provide a more accu-
rate estimate of the response variable. The principle idea behind
this algorithm is to construct the new base-learners to be maxi-
mally correlated with the negative gradient of the loss function,
associated with the whole ensemble. The loss functions applied
can be arbitrary, but to give a better intuition, if the error function
is the classic squared-error loss, the learning procedure would
result in consecutive error-fitting. In general, the choice of the loss
function is up to the researcher, with both a rich variety of loss
functions derived so far and with the possibility of implementing
one’s own task-specific loss.

This high flexibility makes the GBMs highly customizable to
any particular data-driven task. It introduces a lot of freedom into
the model design thus making the choice of the most appropri-
ate loss function a matter of trial and error. However, boosting
algorithms are relatively simple to implement, which allows one
to experiment with different model designs. Moreover the GBMs
have shown considerable success in not only practical appli-
cations, but also in various machine-learning and data-mining
challenges (Bissacco et al., 2007; Hutchinson et al., 2011; Pittman
and Brown, 2011; Johnson and Zhang, 2012).

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 1

NEUROROBOTICS

http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/about
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/journal/10.3389/fnbot.2013.00021/abstract
http://www.frontiersin.org/people/u/102019
http://www.frontiersin.org/people/u/42313
mailto:natekin@fortiss.org
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

From the viewpoint of Neurorobotics, ensemble models are
a useful practical tool for different predictive tasks, as they can
consistently provide higher accuracy results compared to con-
ventional single strong machine learning models. For example,
the ensemble models can efficiently map the EMG and EEG
sensor readings to human movement tracking and activity recog-
nition. However, these models can also provide valuable insights
into the models of neural formation and memory simulations.
Whilst artificial neural networks have the memory of the learned
patterns distributed within the connections of artificial neu-
rons, in boosted ensembles the base-learners play the role of the
memory medium and are forming the captured patterns sequan-
tially, gradually increasing the level of pattern detail. Advances
in boosted ensembles can find fruitful applications in the brain
simulation domain, as the ensemble formation models can be
coupled with the strategies of network growth. In particular,
if the base-learners are considered the nodes of the network,
which in the context of connectome will mean the neurons,
it will be possible to construct ensembles with various graph
properties and topologies, like small-world networks, which are
found in the biological neural networks. In order to proceed with
advanced neurorobotics applications of boosted ensemble mod-
els, it is essential to first define the methodology and algorithmic
framework for these models.

In this article, we would provide the newcomers to the GBMs
with both the formal description of the method and with consid-
erations for the model design, which are illustrated on a number
of practical examples. The article has a strong focus on machine
learning aspects of GBM modeling, therefore the methodology
section of the article is intended to readers with the appropri-
ate statistical background. In section II, we describe the boosting
methodology and the gradient boosting algorithm in detail. In
section III, we discuss the GBM design opportunities. In section
IV, regularization issues are concerned with a deeper insight into
the dependencies between the model hyperparameter presented.
section V provides the considerations for the model interpre-
tation. In section VI, the application examples of GBMs are
presented. In section VII, the overall GBM discussion and open
issues are given, which are followed by conclusions in section VIII.

2. METHODOLOGY
In this section we present the basic methodology and learn-
ing algorithms of the GBMs, as originally derived by Friedman
(2001). The tutorial is considered an introduction to the GBMs,
therefore the strict mathematical proofs of algorithms and their
properties are not covered in this article.

2.1. FUNCTION ESTIMATION
Consider the problem of function estimation in the classical
supervised learning setting. The fact that the learning is super-
vised leaves a strong restriction on the researcher, as the data
has to be provided with the sufficient set of proper target labeles
(which can be very costly to extract, e.g., come form an expen-
sive experiment). We arrive with the dataset (x, y)N

i= 1, where
x = (x1, . . . , xd) refers to the explanatory input variables and y
to the corresponding labels of the response variable. The goal is

to reconstruct the unknown functional dependence x
f−→ y with

our estimate f̂ (x), such that some specified loss function �(y, f)
is minimized:

f̂ (x) = y,

f̂ (x) = arg min
f (x)

�(y, f (x))
(1)

Please note that at this stage, we don’t make any assumptions
about the form of neither the true functional dependence f (x),
nor the form of the function estimate f̂ (x). If we rewrite the
estimation problem in terms of expectations, the equivalent for-
mulation would be to minimize the expected loss function over
the response variable Ey(�[y, f (x)]), conditioned on the observed
explanatory data x:

f̂ (x) = arg min
f (x)

Ex[
expected y loss︷ ︸︸ ︷

Ey(�[y, f (x)]) |x]︸ ︷︷ ︸
expectation over the whole dataset

(2)

The response variable y can come from different distributions.
This naturally leads to specification of different loss functions �.
In particular, if the response variable is binary, i.e., y ∈ {0, 1}, one
can consider the binomial loss function. If the response variable
is continuous, i.e., y ∈ R, one can use classical L2 squared loss
function or the robust regression Huber loss. For other response
distribution families like the Poisson-counts, specific loss func-
tions have to be designed. More details on the types of loss
functions are presented in the III section of the article.

To make the problem of function estimating tractable, we
can restrict the function search space to a parametric family of
functions f (x, θ). This would change the function optimization
problem into the parameter estimation one:

f̂ (x) = f (x, θ̂), (3)

θ̂ = arg min
θ

Ex
[
Ey

(
�

[
y, f (x, θ)

]) |x] (4)

Typically the closed-form solutions for the parameter estimates
are not available. To perform the estimation, iterative numerical
procedures are considered.

2.2. NUMERICAL OPTIMIZATION
Given M iteration steps, the parameter estimates can be written
in the incremental form:

θ̂ =
M∑

i= 1

θ̂i (5)

The simplest and the most frequently used parameter estimation
procedure is the steepest gradient descent. Given N data points
(x, y)N

i= 1 we want to decrease the empirical loss function J(θ) over
this observed data:

J(θ) =
N∑

i= 1

�(yi, f (xi, θ̂)) (6)

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

The classical steepest descent optimization procedure is based on
consecutive improvements along the direction of the gradient of
the loss function ∇J(θ). As the parameter estimates θ̂ are pre-
sented in an incremental way, we would distinguish the estimate
notation. By the subscript index of the estimates θ̂t we would con-
sider the t-th incremental step of the estimate θ̂. The superscript
θ̂t corresponds to the collapsed estimate of the whole ensemble,
i.e., sum of all the estimate increments from step 1 up till step
t. The steepest descent optimization procedure is organized as
follows:

1. Initialize the parameter estimates θ̂0

For each iteration t, repeat:

2. Obtain a compiled parameter estimate θ̂t from all of the
previous iterations:

θ̂t =
t− 1∑
i= 0

θ̂i (7)

3. Evaluate the gradient of the loss function ∇J(θ), given the
obtained parameter estimates of the ensemble:

∇J(θ) = {∇J(θi)} =
[

∂J(θ)

∂J(θi)

]
θ= θ̂t

(8)

4. Calculate the new incremental parameter estimate θ̂t :

θ̂t ←−∇J(θ) (9)

5. Add the new estimate θ̂t to the ensemble

2.3. OPTIMIZATION IN FUNCTION SPACE
The principle difference between boosting methods and conven-
tional machine-learning techniques is that optimization is held
out in the function space. That is, we parameterize the function
estimate f̂ in the additive functional form:

f̂ (x) = f̂ M(x) =
M∑

i= 0

f̂i(x) (10)

In this representation, M is the number of iterations, f̂0 is the ini-
tial guess and {̂fi}Mi= 1 are the function increments, also called as
“boosts.”

To make the functional approach feasible in practice, one can
follow a similar strategy of parameterizing the family of functions.
Here we introduce to the reader the parameterized “base-learner”
functions h(x, θ) to distinguish them from the overall ensemble
function estimates f̂ (x). One can choose different families of base-
learners such as decision trees or splines. Various choices of base-
learner models are considered and described in the appropriate
section of this article.

We can now formulate the “greedy stagewise” approach of
function incrementing with the base-learners. For this purpose
the optimal step-size ρ should be specified at each iteration.

For the function estimate at the t-th iteration, the optimization
rule is therefore defined as:

f̂t ← f̂t−1 + ρth(x, θt) (11)

(ρt, θt) = arg min
ρ, θ

N∑
i= 1

�(yi, f̂t− 1)+ ρh (xi, θ) (12)

2.4. GRADIENT BOOST ALGORITHM
One can arbitrarily specify both the loss function and the base-
learner models on demand. In practice, given some specific loss
function �(y, f) and/or a custom base-learner h(x, θ), the solu-
tion to the parameter estimates can be difficult to obtain. To deal
with this, it was proposed to choose a new function h(x, θt) to
be the most parallel to the negative gradient {gt(xi)}Ni= 1 along the
observed data:

gt(x) = Ey

[
∂�(y, f (x))

∂f (x)
|x

]
f (x)= f̂ t− 1(x)

(13)

Instead of looking for the general solution for the boost increment
in the function space, one can simply choose the new function
increment to be the most correlated with −gt(x). This permits
the replacement of a potentially very hard optimization task with
the classic least-squares minimization one:

(ρt, θt) = arg min
ρ, θ

N∑
i= 1

[−gt(xi)+ ρh(xi, θ)
]2

(14)

To summarize, we can formulate the complete form of the
gradient boosting algorithm, as originally proposed by Friedman
(2001). The exact form of the derived algorithm with all the
corresponding formulas will heavily depend on the design
choices of �(y, f) and h(x, θ). One can find some common
examples of these algorithms in Friedman (2001).

Algorithm 1 Friedman’s Gradient Boost algorithm

Inputs:

• input data (x, y)N
i=1• number of iterations M

• choice of the loss-function (y, f)
• choice of the base-learner model h(x, θ)

Algorithm:

1: initialize f0 with a constant
2: for t = 1 to M do
3: compute the negative gradient gt(x)
4: fit a new base-learner function h(x, θt)

5: find the best gradient descent step-size ρt :

ρt = arg minρ

N

i=1
yi, ft−1(xi)+ ρh(xi, θt)

6: update the function estimate:
ft ← ft−1 + ρth(x, θt)

7: end for

�

�� [[

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 3

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

If we consider connections to earlier developments, it will
turn out that the well known cascade correlation neural networks
(Fahlman and Lebiere, 1989; Yao, 1993) can be considered
a special type of a gradient boosted model, as defined in
Algorithm 1. Since the input-side weights of each neuron become
fixed right after it was added to the network, this whole model can
be considered a GBM, where the base-learner model is just one
neuron and the loss function is the standard squared error. This
algorithm also maximizes the correlation between the error of the
whole network and the newly created neuron, which makes the
comparison more evident.

3. GBM DESIGN
To design a particular GBM for a given task, one has to provide
the choices of functional parameters �(y, f) and h(x, θ). In other
words, one has to specify what one is actually going to optimize,
and afterwards, to choose the form of the function, which will be
used in building the solution. It is clear that these choices would
greatly affect the GBM model properties. The GBM framework
provides the practitioner with such design flexibility.

This section provides the descriptions and illustrations of dif-
ferent families of loss functions and models of base-learners.
For additional information on derivation and properties of the
particular component of the GBM model please follow the corre-
sponding references.

3.1. LOSS-FUNCTION FAMILIES
Given a particular learning task, one can consider different loss
functions �(y, f) to exploit. This choice is often influenced by the
demand of specific characteristics of the conditional distribution.
The most frequent examples of such property is the robustness to
outliers, but other opportunities can also be considered.

To use an arbitrary loss function, one has to specify both the
loss function and the function to calculate the corresponding
negative gradient. Given these two functions, they can be directly
substituted into the GBM algorithm. In practice, many of the
loss functions have already been derived for the GBM algorithm
(Friedman, 2001; Schmid and Hothorn, 2008; Schmid et al., 2011).

Loss-functions can be classified according to the type of
response variable y. Specific boosting algorithms have been
derived for various families of the response, among which are
the regression, classification and time-to-event analysis tasks.
Depending on the family of response variable y we can systemize
the most frequently used loss-functions as follows:

1. Continuous response, y ∈ R:

• Gaussian L2 loss function
• Laplace L1 loss function
• Huber loss function, δ specified
• Quantile loss function, α specified

2. Categorical response, y ∈ {0, 1}:
• Binomial loss function
• Adaboost loss function

3. Other families of response variable:

• Loss functions for survival models
• Loss functions counts data
• Custom loss functions

To provide a better insight into the model design, we
will describe the loss-functions for continuous and categorical
response variables in more detail. Specific GBM algorithms have
also been derived for other types of response like the Poisson-
counts and the survival data, but we will not address these models
in this paper.

3.1.1. Loss functions for continuous response
When the response variable y is continuous, a regression task
is solved. A classic loss function, which is commonly used in
practice is the squared-error L2 loss:

�(y, f)L2 =
1

2
(y − f)2 (15)

In the case of the L2 loss-function, its derivative is the residual
y − f , which implies that the GBM algorithm simply performs
residual refitting. The idea behind this loss function is to penalize
large deviations from the target outputs while neglecting small
residuals. The illustration of this loss function is provided on
Figure 1A.

Another example is the absolute L1-loss, denoted as the
“Laplacian” loss function. The L1-loss corresponds to the median
of the conditional distribution, thus considered as the robust
regression loss. The L1 loss function takes the form:

�(y, f)L1 = |y − f | (16)

It may be of particular interest in tasks where the response vari-
able has long-tail error distribution. The function is illustrated on
Figure 1B.

One can also exploit the parameterized loss-functions as well.
A robust regression alternative to the L1 loss is the Huber loss
function. It comprises two parts, corresponding to the L2 and L1

losses. The Huber loss is designed as follows:

�(y, f)Huber, δ =
{

1
2 (y − f)2 |y − f | ≤ δ

δ(|y − f | − δ/2) |y − f | > δ
(17)

The cutting edge parameter δ is used to specify the robustification
effect of the loss-function. The intuition behind this parameter is
to specify the maximum value of error, after which the L1 loss has
to be applied. The Huber loss function is illustrated on Figure 1C.

A more general approach is based on predicting a conditional
quantile of the response variable (Koenker and Hallock, 2001).
This approach is distribution free and in general proves to pro-
vide good robustness to outliers. The quantile loss is organized as
follows:

�(y, f)α =
{

(1− α)|y − f | y − f ≤ 0

α|y − f | y − f > 0
(18)

The parameter α in this case specifies the desired quantile of the
conditional distribution. One can note that when α = 0.5, this
would coincide with the L1 loss, thus resulting in the conditional
median. Different parameterizations of the quantile loss function
are illustrated on Figure 1D.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 4

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

A B C D

E F G H

FIGURE 1 | Continuous loss functions: (A) L2 squared loss function; (B)

L1 absolute loss function; (C) Huber loss function; (D) Quantile loss

function. Demonstration of fitting a smooth GBM to a noisy sinc(x) data: (E)

original sinc(x) function; (F) smooth GBM fitted with L2 and L1 loss; (G)

smooth GBM fitted with Huber loss with δ = {4, 2, 1}; (H) smooth GBM fitted
with Quantile loss with α = {0.5, 0.1, 0.9}.

To demonstrate the properties of the described loss functions
we will consider an artificially generated dataset. The dataset is
sampled from a sinc(x) function with two sources of artificially
simulated noise: the gaussian noise component ε ∼ N(0, σ2)

and the impulsive noise component ξ ∼ Bern(p). The impulsive
noise term is added to illustrate the robustification effects. The
generated dataset is illustrated on Figure 1E.

To keep the experiment focused on the loss-function specifics
we would assume that the learning was done in an optimal
way. In this experiment the base-learner functions applied were
the P-splines. The resulting GBM models of this experiment are
presented on Figures 1F–H.

One can note that the median of the distribution is less affected
by the impulsive noise whereas the L2 loss function is slightly
biased due to the caused deviations. The quantile losses in their
turn give a good estimation of the corresponding conditional
distribution quantiles.

Following the idea of applying various loss-functions, one can
for example model the conditional box-plots. From the compu-
tational perspective, this type of modeling would only result in
increasing the number of different GBM models built by the num-
ber of desired statistics of the conditional distribution. However,
it must be kept in mind that the resulting confidence intervals
are a model approximation rather than true statistics. It is also
important to note that the learned quantile models do not have
to be necessary consistent with each other, as they are all learned
separately.

3.1.2. Loss functions for categorical response
In the case of categorical response, the response variable y typ-
ically takes on binary values y ∈ {0, 1}, thus, assuming that it
comes from the Bernoulli distribution. To simplify the notation,
let us assume the transformed labels ȳ, putting ȳ = 2y − 1 and
making ȳ ∈ {−1, 1}. In this case, the probability of class-wise

response can be estimated by minimizing the negative log-
likelihood, associated with the new class labels:

�(y, f)Bern = log(1+ exp(−2ȳf)) (19)

This loss function is commonly referred to as the Bernoulli
loss. The illustration of the Bernoulli loss function is given on
Figure 2A. The chart shows the loss function defined over the val-
ues of ȳf . Please note, that in this notation, positive values of ȳf
correspond to the correct discrimination.

Another common choice of categorical loss-function is the
simple exponential loss, as it is used in the Adaboost algorithm
(Schapire, 2002). Following the same notation as in the Bernoulli
loss, the Adaboost loss function is therefore defined as:

�(y, f)Ada = exp(−ȳf) (20)

It is possible to establish a connection between the influence
trimming of GBMs with the Adaboost loss function and weight
trimming Adaboost algorithm (Friedman, 2001). The illustra-
tion of the Adaboost loss is given on Figure 2B. The notation for
this loss-function chart is the same as we used in the figure with
Bernoulli loss.

To demonstrate the properties of the categorical loss func-
tions we will construct another artificial dataset. Originally, all
the data comes from a 2-dimensional normal distribution, with
zero mean and identity-covariance matrix. The points that lie
within the inner circle of unit radius r = 1 belong to one class and
are colored with black, whereas all the other points are assigned
to another class, colored with dark gray. For this setting, we use
two sources of noise: 2-dimensional gaussian noise (ε1, ε2), εi ∼
N(0, 0.32) and a random misclassification error ξ, which ran-
domly switches the class. The random misclassification results

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 5

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

A B

C D

FIGURE 2 | (A) Bernoulli loss function. (B) Adaboost loss function. (C)

GBM 2d classification with Bernoulli loss. (D) GBM 2d classification with
Adaboost loss.

in slightly heavier tails of the distances of class-error distribu-
tions and thus, will allow us to contrast the difference between
loss functions. The resulting dataset together with the marginal
density plots of each class is presented on Figures 2C,D.

For both of the inspected models on Figure 2, the model com-
plexity was chosen equally in terms of the number of boosting
iterations M. It is, therefore, interesting to note that the mod-
els achieved similar accuracy, with equal confusion matrices.
However, despite these two similarities, geometrically these mod-
els are considerably different. Due to the fact that the exponen-
tial loss of Adaboost model contrasts misclassified points much
more, the corresponding model began capturing the boundary,
“far”-outlying points, much earlier than the other model.

In the context of loss-functions, we say “much earlier” because
it is true that at some point in the learning process we can overes-
timate the model-complexity and thus overfit the data with both
types of loss functions. However, due to the nearly linear impact
of outliers to the Bernoulli loss, the Bernoulli model is typically
less-sensitive to this type of erroneous labeling in the data.

3.2. SPECIFYING THE BASE-LEARNERS
A particular GBM can be designed with different base-learner
models on board. A diverse set of base-learners have been intro-
duced in the literature thus far. In this subsection, we will briefly
describe and illustrate the base-learner models that are most
frequently used in practice.

The commonly used base-learner models can be classified into
a three distinct categories: linear models, smooth models and
decision trees. There is also a number of other models, such as
markov random fields (Dietterich et al., 2004) or wavelets (Viola
and Jones, 2001), but their application arises for relatively specific
practical tasks. The base-learner model systematization with the
corresponding examples of functions is organized as follows:

1. Linear models:

• Ordinary linear regression
• Ridge penalized linear regression
• Random effects

2. Smooth models:

• P-splines
• Radial basis functions

3. Decision trees

• Decision tree stumps
• Decision trees with arbitrary interaction depth

4. Other models:

• Markov Random Fields
• Wavelets
• Custom base-learner functions

An important design opportunity is that nothing prevents the
practitioner from specifying a complex model, utilizing several
classes of base-learner models in one GBM. This means that the
same functional formula can include both smooth additive com-
ponents and the decision trees components at the same time.
Another example would be to split the explanatory variables into
the categorical and smooth subspaces and fit different boosted
base-learner models to each of the subspaces simultaneously.

Another important feature of the base-learner specification is
that they can be designed for different models of variable interac-
tions. If we consider the ANOVA decomposition of the function
estimate f̂ , different interaction terms would correspond to the
different interrelationships between explanatory variables:

f̂ (x) =
∑

j

fj(xj)+
∑

jk

fjk(xjk)+
∑
jkl

fjk(xjkl)+ . . . (21)

3.2.1. Additive base-learners
Using the additive base-learner models explicitly assumes that
there is no interaction between the explanatory variables. Yet,
there has been mounting empirical evidence that for most practi-
cal tasks, simple additive models corresponding to the first term
of the ANOVA decomposition, provide considerably accurate
results (Schapire, 2002; Wenxin, 2002). Another important obser-
vation is that the resulting additive models are interpretable by
design, allowing the practitioner to investigate each of the model
components separately.

The learning algorithm for additive GBM models slightly dif-
fers from the algorithm we described earlier. At each iteration,
several additive base-learner candidates, built atop some ran-
domly chosen variables, are fitted simultaneously. Next, the best
of these models is chosen, based on the residual sum of squares
criterion. One property of this learning process is that it often
leads to the situation, when many of the explanatory variables are
omitted, thus, naturally leading to a sparser solution.

Motivation for using the additive representation with linear
and generalized linear models (GLM) instead of the common
GLM model with some penalty, is particularly based on the desire

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 6

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

to fit a sparse model. This becomes especially important in tasks
with many categorical variables, like the data that comes from
medical and biological experiments. The resulting gradient boost-
ing fitting leads to a relatively easy variable-selection procedure by
design.

The choice of boosting the additive models is also sometimes
dictated by the computational considerations. Consider using the
spline base-learner functions for boosting the generalized additive
model (GAM). In order to fit a multivariate spline model with
respect to interactions, the number of knots in the spline grid will
grow exponentially with the number of variables.

To illustrate the additive GBM model with additive base-
learners, we again refer to the artificial dataset, simulated from
sinc(x) function. For demonstrative purposes, we will omit the
impulsive noise component and choose the L2 loss and use
the smooth spline base-learner functions. To provide a better
intuition into the process of fitting a smooth additive boosting
models, the resulting fits are evaluated for different number of
boosting iterations M. The resulting demonstration is presented
on Figures 3A–D.

When M = 1, we obtain a single penalized spline model, par-
tially fitting the central part of the wave function. When we
increase the number of iterations M, the accuracy of the fitted
model grows gradually until the function is fitted considerably
well. More details on the properties of GLM and GAM boost-
ing models can be found in Buhlmann (2006) and Schmid and
Hothorn (2007).

3.2.2. Decision tree base-learners
A computationally-feasible way of capturing interactions between
variables in GBM models is based on using the decision tree mod-
els. Although interactions between several explanatory variables
would remove the interpretability property of additive models,
this can not be considered a significant drawback as there are still
several tools for tree-based GBM interpretation.

The idea behind a decision tree is to partition the space of
input variables into homogenous rectangle areas by a tree-based
rule system. Each tree split corresponds to an if-then rule over
some input variable. This structure of a decision tree naturally
encodes and models the interactions between predictor vari-
ables. These trees are commonly parameterized with the number
of splits, or equivalently, the interaction depth. It is also possi-
ble to have one of the variables be split in a particular several
times.

A special case of a decision tree with only one split (i.e., a
tree with two terminal nodes) is called a tree stump. Therefore,
if one wants to fit an additive model with tree base-learners, it is
possible to do this using the tree stumps. In many practical appli-
cations small trees and tree-stumps provide considerably accurate
results (Wenxin, 2002). Moreover, there is much evidence that
even complex models with rich tree structure (interaction depth >

20) provide almost no benefit over compact trees (interaction
depth ≈ 5).

One important property of the decision trees is that by design,
a single decision tree always extrapolates the function with the
constant value. An implication of this is that even a simple
function like a straight line with a non-zero angle can not be
approximated correctly with a single decision tree.

To demonstrate a GBM designed with the decision tree base-
learners, we will use the same sinc(x) dataset as we used to
illustrate the additive models. For this experiment, we also used
the L2 loss. As the dimension of the explanatory variables is equal
to one, we chose to use the tree-stumps. The resulting fitted
models are shown on Figures 3E–H).

To demonstrate the progress of the fitting procedure, the
number of iterations M was varied from 1 to 500. The similar
behavior of consecutive improvements in the fit accuracy, when
the number of iterations M increases, is apparent on this chart.

To conclude this section we must note that although there is
a wide variability of possible design options, in most practical

A B C D

E F G H

FIGURE 3 | P-Spline GBM model for different numbers of boosts: (A) M = 1; (B) M = 10; (C) M = 50; (D) M = 100. Decision-tree based GBM model for
different numbers of boosts: (E) M = 1; (F) M = 10; (G) M = 50; (H) M = 100.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 7

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

tasks one doesn’t have to exhaustively try every possible combi-
nation of them. The choice of the loss function is often a matter
of a particular task, whether to make the model more robust
or not. Therefore, we advise the practitioners to first try fitting
their models with classical loss functions, i.e., L2 loss for regres-
sion and Bernoulli loss for classification. As for the base-learner
model, we would recommend to first try using tree stumps or low-
interaction trees, because they usually perform reasonably well on
many real-world datasets.

4. REGULARIZATION
The most important concern about building a machine-learning
model from data is the resulting model’s generalization capabili-
ties. If the learning algorithm is not applied properly, the model
can easily overfit the data. This means that it will predict the
training data itself rather than the functional dependence between
input and response variables. These concerns are obviously the
same for GBMs.

It is easy to imagine a situation where new base-learners are
added to the ensemble until the data is completely overfitted.
Overfitting a GBM is possible with different types of base-learners
with very different loss-functions. On Figures 4A,B, we illustrate
overfitting for both regression and classification tasks.

To decrease the overfitting effects in GBMs, a number of dif-
ferent approaches were introduced. They help to constrain the

A B

C D

E F

FIGURE 4 | Examples of overfitting in GBMs on: (A) regression task; (B)

classification task. Demonstration of fitting a decision-tree GBM to a noisy
sinc(x) data: (C) M = 100, λ = 1; (D) M = 1000, λ = 1; (E) M = 100,
λ = 0.1; (F) M = 1000, λ = 0.1.

fitting procedure and thus balance the predictive performance
of the resulting model (Sutton, 2005; Zhang and Yu, 2005; Zou
and Hastie, 2005). In this section, we will describe the most
efficient regularization techniques that are most frequently used
in GBMs.

4.1. SUBSAMPLING
The simplest of the regularization procedures introduced for
GBMs is subsampling. The subsampling procedure has shown to
improve the generalization properties of the model, at the same
time reducing the required computation efforts (Sutton, 2005).

The idea behind this method is to introduce some random-
ness into the fitting procedure. At each learning iteration only
a random part of the training data is used to fit a consecu-
tive base-learner. The training data is typically sampled without
replacement, however, replacement sampling, just as it is done in
bootstrapping, is yet another possible design choice.

The subsampling procedure requires a parameter called the
“bag fraction.” Bag fraction is a positive value not greater than
one, which specifies the ratio of the data to be used at each itera-
tion. For example, bag = 0.1 corresponds to sampling and using
only 10% of the data at each iteration. Another useful property
of the subsampling is that it naturally adapts the GBM learning
procedures to large datasets when there is no reason to use all the
potentially enormous amounts of data at once.

When the amount of data, measured by the number of data
points N is not of practical concern, setting the default value
bag = 0.5 gives a reasonable result for many practical tasks. If
an optimal bag fraction is of interest, one can simply estimate it
by comparing predictive performance under different parameter
values.

However, one should also consider the effect of reducing the
sample size on the model estimates. If the number of points
becomes too low, one might receive a poorly fit model due to the
lack of degrees of freedom. Therefore, some basic sanity-check
analysis is essential before reducing the sample size.

It is also important to note the “big data” argument, as a con-
sequence of the sample size reduction. In general, the more data
there is available for the fitting a base-learner, the more accurate
will the estimate be, if sufficient data was used. Therefore, when
there are large amounts of data, one may consider a trade-off
between the number of points, used for fitting each of the base-
learners and the accuracy improvement, achieved by each of the
base-learners.

One can easily arrive at a situation, when it is more effi-
cient to have a larger number of base-learners, learnt with the
lower bag rate. This means that the GBM ensemble will reach the
desired accuracy with a larger number of base-learners and lower
bag than the one with smaller amount of more carefully fitted
base-learners with larger bag.

4.2. SHRINKAGE
The classic approach to controlling the model complexity is the
introduction of the regularization through shrinkage. Shrinkage
is commonly used in ridge regression where it literally shrinks
regression coefficients to zero and, thus, reduces the impact of
potentially unstable regression coefficients.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 8

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

In the context of GBMs, shrinkage is used for reducing, or
shrinking, the impact of each additional fitted base-learner. It
reduces the size of incremental steps and thus penalizes the
importance of each consecutive iteration. The intuition behind
this technique is that it is better to improve a model by taking
many small steps than by taking fewer large steps. If one of the
boosting iterations turns out to be erroneous, its negative impact
can be easily corrected in subsequent steps.

The simplest form of regularization through shrinkage is the
direct proportional shrinkage (Friedman, 2001; Hothorn et al.,
2010). In this case the effect of shrinkage is directly defined as
the parameter λ ∈ (0, 1]. The regularization is applied to the final
step in the gradient boosting algorithm:

f̂t ← f̂t− 1 + λρth(x, θt) (22)

It is a common pattern that the smaller parameter λ and there-
fore, the lower the shrinked boosted increments are, the better
generalization is achieved. But, the cost of improving the general-
ization properties is the convergence speed. Choosing a stronger
value of λ will increase the number of iterations M, required for
convergence to a similar empirical loss minimum. For example, a
decrease in λ by a factor of 10 implies an increase in the number
of iterations M by a similar factor, slightly higher than 10.

An example of exploiting the shrinkage regularization is illus-
trated on Figures 4C–F. For this demonstration we used the L2

loss and the decision-tree base-learners. We didn’t separate the
dataset into training and validation set, because we wanted to
show the geometric effects of shrinkage.

From Figure 4 we can deduce some interesting patterns. First
of all, decreasing the shrinkage parameter requires more itera-
tions to achieve the accuracy, compared to the non-regularized
learning. Besides, we can see that using shrinkage results in cap-
turing more details as it relies on a larger amount of boosts
and thus, provides more continuity. This is especially important
for decision-trees because, as previously discussed, they are very
limited to capturing details by design.

Exploiting shrinkage in learning allows the decision-tree
GBMs to capture more continuity in the modeled effects. The
same effect of smoothing the decision-tree ensemble would also
hold true for higher dimensional data, and that’s why authors
claim that it is desirable to train GBMs with infinitesimal step-
sizes (Friedman, 2001; Buhlmann, 2006).

Analyzing Figure 4, one can note the effect of overfitting on
the Figure 4D. This naturally leads us to the question of how does
the shrinkage affect overfitting, or in the case of GBM, how does it
affect the dependence between the learning error and the number
of iterations.

To investigate this question in more detail, let us now consider
the fitting experiment with both training and validation sets. Of
the 300 initial points, we use randomly resampled 200 of them
for training, and another 100 for validation. All the other exper-
iment parameters remain unchanged. The learning error curves
for GBMs with different λ parameters are presented on Figure 5.

From Figure 5A we can see that the training set error is
substantially falling, but the speed of this improvement heavily
depends on the shrinkage parameter λ. A much more important

A B

C D

FIGURE 5 | Error curves for GBM fitting on sinc(x) data: (A) training set

error; (B) validation set error. Error curves for learning simulations and
number of base-learners M estimation: (C) error curves for cross-validation;
(D) error curves for bootstrap estimates.

effect from a practical point of view is the validation set error
behavior, which is shown on Figure 5B. The validation-error
hyperparameter M, corresponding to the error minima of each of
the models, is highlighted with circles. We can see that increasing
the shrinkage leads to both finding a better hyperparameter M
minima and to improving the generalization of the model. The
latter corresponds to the fact that shrinked models have a flat-
ter plateau beyond their error minimas, and it takes them many
more iterations to initiate overfitting. Yet, it also means that these
models will naturally take longer to learn.

4.3. EARLY STOPPING
Using regularization techniques described above, one can signif-
icantly improve the generalization properties of a GBM model.
However, given a shrinkage parameter λ, the optimal number of
iterations Mopt, in the sense of the validation set performance,
can be different from the initially pre-specified one M. We have
illustrated this phenomenon on the Figure 5.

Once important practical consideration that can be derived
from Figure 5 is that one can greatly benefit from early stop-
ping (Zhang and Yu, 2005). This means that if the ensemble was
trimmed by the number of trees, corresponding to the validation
set minima on the error curve, the overfitting would be circum-
vented at the minimal accuracy expense. Another observation is
that the optimal number of boosts, at which the early stopping
is considered, varies with respect to the shrinkage parameter λ.
Therefore, a trade-off between the number of boosts and λ should
be considered.

In practice one typically chooses the shrinkage parameter λ

beforehand and varies the number of iterations M with respect
to the chosen shrinkage. One possible approach to choosing the
number of iterations M would be to use an information cri-
terion like Akaike’s AIC or some sort of minimum description

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 9

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

length criteria. However, they have been shown to overshoot
the true number of iterations (Hastie, 2007) and thus are not
recommended for practical usage.

The most frequently used approach to deal with this trade-off
relies on the cross-validation procedure. Cross-validation pro-
vides means for testing the model on withheld portions of data,
while still using all of the data at the processing stages.

First, the shrinkage parameter λ, the maximum number of
iterations Mmax and the cross-validation parameter k, corre-
sponding to the number of validation folds, are specified. The
data is then partitioned into k disjoint non-overlapping subsets.
Afterwards, for each of the k subsets of the data, one of them is
set aside as the validation set and the others are used for fitting
a GBM model. The fitted GBM is then tested on the validation
set to produce the held-out estimates of the predictive perfor-
mance. At last, the validation performance is aggregated from
each of the folds, for example, by averaging the validation set per-
formances. This aggregated measure serves as estimate of model
generalization on the validation set.

One may note that besides cross-validation one can use a sim-
ilar procedure to test the model on bootstrap samples (Hofner
et al., 2012). Bootstrap is essentially useful for parameter estima-
tion when the training dataset is considerably small. In bootstrap-
ping, we choose the number of bootstrap samples B similarly to
the number of folds k in cross-validation. Afterwards, at each iter-
ation we randomly sample with replacement the original data,
which leads to approximately 63% of the unique original data
entries in each sample. This means that if we had a sample
of {1,2,3}, the resulting bootstrap samples can, for example, be
{1,1,3} or {3,2,2}. The held-out estimates are evaluated on the
left-out original data entries, the so-called “out of the bag” val-
ues. These values are then aggregated in the same fashion, as in
the cross-validation.

The results of this procedure are illustrated in Figures 5C,D.
For this experiment we used the same parameter setting as in
all the other regularization experiments, with the same train-
ing and validation sets. For the hyperparameter specification we
chose λ = 0.5, Mmax = 3000, k = 10 folds for cross-validations
and B = 25 for boostsrapping.

As we can see from the simulation plots, the average behav-
ior of the held-out errors is rather similar. And from both of
these plots we can deduce very similar estimates of the optimal
number of iterations M. Namely, the cross-validation estimate
is MCV

opt = 255, the bootstrap estimate is Mboot
opt = 241, while the

optimum of the validation set was Mopt = 245. It means that
both methods provide us with considerably good estimates of the
number of iterations.

5. MODEL INTERPRETATION
In practice, it can be of great utility to be able to interpret the
resulting model. As we have previously discussed, additive GBM
models can be trivially explained, as the additive components cor-
respond to the marginal dependence plots by design. One only
has to predict each additive component over a grid of values of
the corresponding variable and plot it.

When one uses an ensemble of decision trees with high inter-
action depth, the same visualization approach is inapplicable.

And despite the simplicity of a simple decision tree, when there
are thousands of trees in the ensemble it becomes challenging to
interpret such models. However, even decision tree GBMs can be
interpreted with the appropriate tools.

Several tools have been designed to alleviate interpretation
problems in decision-tree based GBMs. Therefore, even high
interaction-based GBMs should not be considered completely
black boxes, as the resulting models can provide important
insights into the captured dependencies. In this section we
describe the most common tools for GBM interpretation.

5.1. RELATIVE VARIABLE INFLUENCE
A common practical task is to identify the variable importance.
To perform feature selection in decision-tree ensembles the main
modeled effects are not separated from the effects caused by inter-
actions. Therefore, one cannot strictly analyze the captured effects
in a similar fashion to the regression coefficients. For this purpose,
the variable influence for the decision tree ensembles, based on
the decision trees influences(Breiman et al., 1983), was proposed
(Friedman, 2001).

If we consider a likelihood framework of GBMs, and for sim-
plicity assume the L2 loss, it follows that the increase in log
likelihood is proportional to the increase in sums of squares
explained by the model. Each split on a variable in a decision tree
increases the log likelihood of the whole ensemble and the sum of
log likelihood increases across all trees.

Let us define the influence of the variable j in a single tree T.
Consider that the tree has L splits, therefore we are looking for
all the non-terminal nodes from the root to the L− 1 level of the
tree. This gives rise to the definition of the variable influence:

Influencej(T) =
L− 1∑
i= 1

I2
i 1(Si = j) (23)

This measure is based on the number of times a variable is selected
for splitting, i.e., current splitting variable Si is the same as the
queried variable j. The measure also captures weights of the influ-
ence with the empirical squared improvement I2

i , assigned to the
model as a result of this split. To obtain the overall influence of
the variable j in the ensemble, this influence should be averaged
over all trees.

Influencej = 1

M

M∑
i= 1

Influencej(Ti) (24)

The influences are further standardized so that they add up to
100%. Influences do not provide any explanations about how the
variable actually affects the response. The resulting influences can
then be used for both forward and backward feature selection
procedures.

5.2. PARTIAL DEPENDENCE PLOTS
Visualization is one of the most comprehensive ways of interpre-
tation. We have already stated that additive GBMs can be plotted
fairly easily. In decision-tree GBMs similar model representation
can be achieved with partial dependence plots. Partial depen-
dence implies the demonstration of the effect of a variable on the

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 10

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

modeled response after marginalizing out all other explanatory
variables.

Although the correct way of obtaining the marginal plots
would be to numerically integrate out other variables over a suit-
able grid of values, it can be very computationally consuming in
practice. An easier approach is therefore commonly used, when
the marginalized variables get fixed with a constant value, equal
to their sample mean.

These graphs might not be a perfect representation of the cap-
tured effects, especially if the variable interactions significantly
impact the resulting model. However, partial dependence plots
can provide a useful basis for interpretation that has been noted
practical in different applications (De’ath, 2007; Hutchinson
et al., 2011; Pittman and Brown, 2011).

The same idea with visualization can be applied to couples
of variables, therefore allowing one to inspect and analyze the
most important interactions. To identify the interactions of inter-
est, one might first use the relative variable influence and then
produce pairwise dependence plots.

We shall illustrate the described interpretations options in the
following section on several real world application examples.

6. APPLICATIONS
In the previous sections we have discussed various aspects of the
GBM design on synthetic and toy data examples. In this sec-
tion we will provide explicit walkthroughs of applying GBMs
to several real-world applications. All of the considered mod-
els were evaluated in R programming language with gbm and
mboost packages. Although ensemble models are considered more
resource-consuming than their competitor methods, a single PC
will be enough for most applications that do not deal with the Big
Data. For all of the described applications in this section a single
Windows PC with Intel Core i7-2670QM and 12GB of RAM was
used.

6.1. EMG ROBOTIC ARM CONTROLLER
In our first practical application we would consider building a
regression model to map the EMG signals to the robotic hand
controller, in a manner described in Vogel et al. (2011). The
data was provided by the TUM Roboterhalle machine learning
laboratory.

In this application, we will focus on walking through the whole
GBM model application solution, where our main focus will be
on investigating the properties of different base-learner models.

6.1.1. Application description
In the original setting (Vogel et al., 2011), nine surface EMG elec-
trodes, positioned on the hand, were used to record the muscular
activity of the person performing different hand movements.
These movements were then visually tracked to gather the actual
spatial positions of the hand. Combined, this data was used to
design a robotic arm control system. The machine learning task
was intended to reconstruct the hand’s position and orientation
from the EMG channels and then to use it online as the robotic
hand control.

In our application we would consider a slightly altered experi-
ment setup than the originally described one (Vogel et al., 2011).
In our case, we will have only eight EMG channels available for

modeling. The 9th channel was omitted due to experiment design
considerations.

To make the application walkthrough easier, we will focus our
analysis on predicting only the first output variable, which cor-
responds to the first coordinate of the hand position. This is
done to simplify the examples and focus on the GBM design
specifics. Predicting other output variables is equivalent to build-
ing another GBM models for each of the variables. Yet the final
accuracy results are provided for all the hand positions simulta-
neously.

6.1.2. Data processing
To proceed with the analysis, data has to be properly processed.
At first, the absolute values of the EMG channels are taken. Next,
due to the fact that the sampling frequency of the EMG channels
is 10 times higher than that of the camera-tracking, the absolute
values of the EMG signals are chunked into 10-point intervals.
Afterwards the maximum values over these intervals are used to
form a new feature, which is of the same sampling frequency
and sample length as the target output variables. At this point,
the feature proxy is ready, and can already be fed into the GBM
model.

The resulting pre-processed signals can then be used for fur-
ther feature extraction. The simplest design choice is to smooth
the signal with the moving average, however, one can con-
sider mining more sophisticated features like the rolling standard
deviations. In this application we will assume that the original
positions of the hand can be efficiently reconstructed with the
low-frequency components of the EMG signals only.

We chose to extract only the moving averages with the sliding
window width chosen to be 50 points, which is equivalent to the
last 500 ms of readings. The overview of the feature processing
of one particular EMG channel is given on Figure 6. Note that
the sets of indices on Figures 6A–D are different due to different
sampling rates.

After the processing is finished, we arrive at eight signal fea-
tures and 27,161 observations. Originally, the controller was first
trained on all of the available data and then tested live, with-
out knowing the correct labels, as the hand-tracking device was
not available. In our case, we train the models on one half the
available data and validate it on the other part. The train/test sep-
aration is organized sequentially: the first 100 points are used for
training, the following 100 for validation, the next 100 points are
used for training again and so on. As a consequence, the train-
ing set consists of 13,561 points and the test set consists of 13,600
points.

6.1.3. GBM design
Our primary concern in this application is to model the con-
ditional expectation of the target output variable. The model
performance metric to be used will be the root mean squared
error (RMSE), evaluated for each of the position variables yi,
i = 1, 2, 3:

RMSEi =
√√√√√ N∑

j= 1

1

N
(yij − ŷij)

2 (25)

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 11

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

A B C D

FIGURE 6 | EMG processing: (A) raw EMG data; (B) absolute EMG sensor values; (C) chunked EMG data; (D) moving average smoothed data.

The compiled, 3D error metric shall be defined as:

M3DE =
N∑

i= 1

1

N

√
(y1i − ŷ1i)

2 + (y2i − ŷ2i)
2 + (y3i − ŷ3i)

2

(26)
As the process of waving hands was very continuous, the tar-
get value distribution is not significantly affected by outliers and
severe distribution-violating artifacts. Therefore, we will consider
the conventional L2 loss for our purposes.

After we have specified the loss-function, we have to choose the
base-learner model. As the primary objective of this application
is to describe properties of different base-learner models on the
real-world application, we will proceed with consecutive building
four GBMs with the most frequently used base-learner models.

We shall proceed with boosting the additive GBM models, at
first applying the linear base-learners and then the spline learn-
ers. Afterwards, the tree based base-learners will be applied to the
same learning task in both additive and interaction-based forms.
At last, we shall compare the models based on their performance
accuracy on the held-out test set.

The next design choice is for the learning hyperparameters,
specifically the number of boosts M and the regularization λ. As
stated in the regularization section of the article, one can estimate
the number of boosting iterations M with the help of either boot-
strapping or cross-validation with respect to previously-chosen
value of λ.

Since we didn’t have any prior information, we set parameters
λ = 0.01, Mmax = 1000 and proceed with the bootstrap estimates
of M. Setting λ = 0.01 is some sort of the default value. Using
lower values of the regularization parameter will consider higher
awareness of overfitting. For estimating the optimal number of
iteration M we take B = 25.

6.1.4. Model evaluation
Now we can proceed to the GBM model evaluation with the
above mentioned design and hyperparameter settings. We remind
the reader, that all of the aforementioned analysis is pro-
vided for building a regression model for the first positional
variable only.

At first, we shall consider the estimates of the optimal number
of iterations for the additive GBM models. We shall infer these

estimates from the out-of-bag estimates on the convergence plots
of these models. The corresponding convergence plots with the
bootstrap estimates of the number of iterations are presented on
Figures 7A,B.

From these convergence plots several implications can be
deduced. The first of them is the high compactness of the boot-
strap estimates (gray lines). This means that the data is very
concise and the chosen hyperparameter setup is generalizing the
data well. Another implication is that the number of boosting
iterations was chosen of the appropriate scale for both addi-
tive models. The linear model on Figure 7A could even have the
number of iterations lowered twice without significant loss of
accuracy. And the spline GBM model on Figure 7B can actu-
ally have the number of iterations increased, although this won’t
contribute to the performance dramatically as the result already
behaves as if the model has converged.

After the additive models are learnt, we can validate
them on the held-out test set. The linear GBM achieves the
Mean 3D error = 0.136 performance on the test set, while the
spline-based GBM reaches Mean 3D error = 0.105. This differ-
ence will become even more noticeable if we compare the
obtained predictions of both models. The sample predictions are
presented on Figure 7E. It is clear that both models approximate
the function considerably well, although the linear one is less
accurate due to its design simplicity.

The next step of the analysis is to apply the tree-based
GBM models. We will follow the same hyperparameter settings,
Mmax = 1000, λ = 0.01, and B = 25. To make a better illustra-
tion of the importance of modeling the interactions, we will
analyze two tree-based GBMs: the boosted stumps and boosting
the trees with interaction depth of 4. The choice of the inter-
action depth is heuristic-based and could be analyzed in more
detail, but we consider the chosen level of interactions suitable.
The corresponding convergence plots for the tree-based GBMs are
presented on Figures 7C,D.

From the convergence plots on Figures 7C,D we can make
some new, model-specific implications. First of all, the stump-
based GBM achieves nearly the same accuracy as the spline-based
model. And the tree-based model with higher interaction depth
is considerably more accurate than any of the GBM models built.
Moreover, due to the increased model complexity, the conver-
gence was achieved much faster, which means that the optimal

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 12

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

A

E F

B C D

FIGURE 7 | Bootstrap estimates of M for the EMG robotic control data.

(A) Held-out error for linear GBMs; (B) held-out error for spline GBMs; (C)

held-out error for stump-based GBMs; (D) held-out error for tree-based

GBMs with interaction depth d = 4. (E) Sample prediction of the additive
GBMs for the EMG robotic control data; (F) sample prediction of the
tree-based GBMs for the EMG robotic control data.

number of iterations M for the tree-based GBM is approximately
650 instead of a 1000.

In terms of the resulting accuracy, the stump-based GBM
reaches the Mean 3D error = 0.104 performance on the test
set, while the higher interaction tree-based GBM reaches
Mean 3D error = 0.081. This difference becomes more appealing
if we compare the resulting prediction plots of both models like
we did previously for additive models. The sample predictions are
presented on Figure 7F.

We can see that the stump-based GBM not only achieves nearly
the same accuracy and convergence rates, but also predicts values
very similar to the ones predicted by the spline-based GBM. And
the GBM with trees of higher interaction depth achieve a visually
noticeable better prediction accuracy. These predictions are still
not perfect, as the capability of designing a perfect mapping from
the available features might be not possible at all. However, the
resulting model achieves reasonably high accuracy.

So far we have been investigating the accuracy of different
GBM model designs. To evidence the usefulness of this method,
we will apply other popular machine learning techniques and
compare their obtained performances. The chosen methods are
the Linear Regression, the Support Vector Machine(SVM) with
radial kernel and the Random Forest (RF). The optimal hyper-
parameters for the SVM and RF models were chosen by the
fivefold cross-validation applied to the grid-search. The algorithm
accuracy comparisons are given in Table 1.

We note that both the tree-based GBMs and the RF reach sim-
ilar high accuracy. However, one should be aware that the RF
builds trees as deep as needed, therefore modeling much more
accurate and complex interaction structure. Yet, increasing the
GBM tree-depth to d = 8 didn’t give any increase in accuracy. So
we can say that both ensemble techniques are almost equally accu-
rate on this data, maybe in some sense complementary, as these
methods behave slightly better than one another on different

Table 1 | Machine learning algorithm accuracy.

Method RMSE1 RMSE2 RMSE3 M3DE

GBM, linear 0.100 0.087 0.095 0.136

GBM, spline 0.081 0.063 0.084 0.105

GBM, stumps 0.079 0.063 0.085 0.104

GBM, trees, d = 4 0.063 0.054 0.066 0.081

Linear regression 0.100 0.087 0.095 0.136

Support vector machine 0.076 0.069 0.084 0.100

Random forests 0.062 0.054 0.067 0.081

target variables. Therefore, the GBMs achieve the highest possible
accuracy on the mined features, sharing its first place with RF.

6.1.5. Model interpretation
After we have built the GBM models, we want to investigate the
captured dependencies. At first we will analyze the partial depen-
dence plots of the built GBMs. We shall start with the additive
GBM models, as the detailed analysis of the resulting models
obtained is trivial. These plots will be especially descriptive due
to the low dimensionality of the learning problem. The par-
tial dependence plots for the additive GBMs are presented on
Figure 8.

From the obtained partial dependence plots, we can see that
both linear and spline models are considerably similar in the
effects they capture. Another interesting property is that the lin-
ear GBM resulted in a sparser model than the one, which could be
achieved by performing simple LSE linear regression estimation.
Namely, the eighth EMG channel turned out to be omitted by the
sequential boosted learning, assigning it the zero coefficient and
thus discarding it from the resulting formula. However, the stan-
dard Linear Regression model also assigned the eighth channel a

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

very low coefficient, which had an insignificant t-statistic, thus,
meaning that it would have been dropped off by the conventional
analysis too.

Our next step is to analyze the partial dependence plots of the
tree-based GBMs. We must note that the partial dependence plots
for the non-stump GBM was obtained by using the average values
of the marginalized parameters due to the non-trivial interaction
model. The resulting partial dependence plots of the tree-based
GBMs are shown on Figure 9.

One can easily see that the partial dependence plots of both the
stump and non-stump GBMs are very similar, even though they
were obtained by slightly different procedures. Moreover, partial
dependence plots of the spline-based GBM on Figure 8 provide
very similar results as compared to the obtained tree-based plots.
This can be explained by the fact that we have captured very
similar patterns and dependencies in the data.

However, the non-stump tree GBM achieved a higher accuracy
than both the stump-based and the spline-based models, having

FIGURE 8 | Partial dependence plots of additive GBMs for the EMG robotic control data. The gray line corresponds to the linear GBM; the black line
corresponds to the spline-based GBM.

FIGURE 9 | Partial dependence plots for tree-based GBMs on the EMG robotic control data. The gray line corresponds to the stump-based GBM; the
black line corresponds to the tree-based GBM with interaction depth d = 4.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 14

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

almost similar marginal partial dependencies. We are interested
in visualizing the interactions that can be of high interest for the
practitioner in order to analyze the resulting model. As we have
noted in the previous section, the tree-based ensemble methods
have the special relative variable influence statistic to capture the
relative variable importance in the presence of a large number of
random interaction effects. The mined relative variable influence
statistic from both tree-based GBMs is given on Figure 10.

From the variable influence two important facts can be out-
lined. First of all, the resulting model mostly depends on three
EMG sensors only, which brings in considerations for potential
dimension reduction, namely the third, fourth and sixth chan-
nels. Another point is that the effect of the captured interactions
must increase the relative influence of a variable, compared to
its influence in the stump-based GBM. This positive difference is
most noticeable for the fourth and seventh channels. To investi-
gate the pairwise interactions, we therefore chose the pairs of (3,4)
channels and (4,7) for visualization.

To analyze the chosen interaction effects, we shall consider
plotting the 2-dimensional interaction plots. These plots are gen-
erated by averaging out all the input variables except for the ones
that were chosen for building a chart. The corresponding inter-
action plots are given on Figure 11, built in comparison with the
stump-based trivial interaction structure.

One can see that the difference between that two interaction
plots look considerable, but the second pair of channels (4,7) pro-
vides a more significant difference between the two GBM models
of Figures 11B,D. These plots could be used by the EMG experts
to get a better understanding of the resulting control model and
its underlying effects.

6.1.6. Application conclusion
In this application we have shown how to successfully build GBM
models with different base-learner models and how do the results
have to look like. The resulting models provided good perfor-
mance results in the sense of predictive accuracy, as compared to
the commonly used machine learning techniques. Afterwards, we
have extensively shown how to interpret the obtained GBM mod-
els with respect to the base-learner model, used in designing a
particular GBM.

6.2. EMG PHYSICAL ACTION CLASSIFICATION
In our previous practical example we built a regression model for
robotic control based on readings from EMG sensors. For our

FIGURE 10 | Relative variable influence for tree-based GBMs on the

EMG robotic control data.

next example we will also consider exploitation of the EMG read-
ings, but this time they will be used for monitoring and classifying
human physical activities. The dataset for EMG-based physi-
cal activity classification was obtained from the UCI Machine
Learning Repository (Bache and Lichman, 2013). We will use only
the set of measurements of the first EMG experiment participant,
thus omitting the data from the three other subjects.

In this application, we will focus on all the stages of building a
GBM model solution for the classification example.

6.2.1. Application description
The learning task for this dataset is to build a physical activity
classifier, based on the EMG sensor readings. There are 20 classes,
each corresponding to a particular type of activity. These classes
are then grouped into two metaclasses of activities: normal and
aggressive ones. The list of classes is given on Table 2.

We will consider learning the task of correctly classifying the
EMG activity vectors into each of the 20 given classes.

6.2.2. Data processing
The number of EMG channels in this dataset is also equal to 8.
The data processing is carried out in exactly the same way as the
procedure, previously applied to the EMG robotic controller data.
Specifically, at first the absolute value of the EMG channels is

A B

C D

FIGURE 11 | Interaction plots of the tree-based GBMs on the EMG

robotic control data. (A) stump-based GBM, channels 3 and 4; (B)

stump-based GBM, channels 4 and 7; (C) tree-based GBM (d = 4),
channels 3 and 4; (D) tree-based GBM (d = 4), channels 4 and 7.

Table 2 | Physical action classes.

Normal Bowing, clapping, handshaking, hugging, jumping,

running, seating, standing, walking, waving

Aggressive Elbowing, frontkicking, hamering, headering, kneeing,

pulling, punching, pushing, sidekicking, slapping

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 15

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

taken, afterwards it is chunked into 10-point intervals with their
maximum values, and at last the 10-point moving average filter is
applied.

After the data processing is finished, we arrive at a dataset of
18,691 points. We follow the same consideration of training and
test set separation, so the training set consists of 9300 points and
the test set of 9391 points.

6.2.3. GBM design
In this application we are mostly concerned with the class-wise
accuracies for each of the classes Ci, i = 1, . . . , 20. If we consider
the output of the GBM as the class-label, equivalent to the class
with the highest GBM output value, the class-wise accuracy is
formulated as follows:

ECi =
1

N

N∑
i= 1

δ(̂f (xi), yi) (27)

The δ(̂f (xi), yi) is the Kronecker’s delta function, which equals
to 1, when the values coincide, and 0 otherwise. As there are 20
classes considered, using more sophisticated accuracy metrics is
complicated, thus, for the first classification task we will use the
average class-wise accuracy Eaverage:

Eaverage = 1

20

20∑
i= 1

ECi (28)

As the data consists of 20 classes, we will follow the standard
approach of learning a multi-class model in a “one vs. all” fash-
ion. This means that we will consecutively build 20 one-class
GBMs, learned to classify only one distinct class. The “one vs. all”
approach is common to other classification algorithms like SVMs
(Rifkin and Klautau, 2004). Just as in the previous EMG example,
we will analyze one particular GBM model for the first class in
more detail, however, we will also provide the resulting obtained
accuracy for the whole 20-class problem.

When building a binary, 2-class classifier with the GBM mod-
els, it is desired to have both classes to share some reasonable
portions of the data, like 50% of the points per class. However,
even though the distribution of the class labels in the dataset is
nearly uniform (classes are represented with equal frequencies),
“one vs. all” classifiers will have this balance dramatically differ-
ent. Approximately 5% of the points will be relevant to the desired
class in each of the 20 models. To compensate for this effect,
classes receive an additional weight vector, assigning weights of
wfp = 20 to the false positives error and wfn = 1 to the false nega-
tives. The weights are then simply multiplied by the classification
error at each iteration of the learning process.

The GBM design choices for this application will be similar to
the ones, used in our previous EMG application. The most accu-
rate results were previously achieved on the EMG data with the
GBMs, taking interaction effects into account. In this application
we will concentrate on using tree-based GBMs as the base-learner
models, with the initial interaction depth set to d = 4. The choice
of the loss function doesn’t require any specific customization,
therefore we will use the Bernoulli loss for this application.

6.2.4. Model evaluation
We will consider using the same hyperparameter values, as in
the previous EMG example. Namely, the hyperparameter choice
is λ = 0.01, Mmax = 1000, and B = 25. More accurate learning
parameters, λ = 0.001, Mmax = 10,000, will also be considered,
as the learning process will be carried out much slower and
thus, will hopefully lead to more accurate results. The resulting
convergence plots are given on Figures 12A,B.

Both convergence plots look very similar and motivate to
decrease the number of boosting iterations by half. If we evaluate
both models on the test data, we will receive nearly the same clas-
sification accuracy of 89.1%. This indicates that there is no need
to perform overly accurate learning and that the standard guess
of λ = 0.01 worked for this data well. The resulting confusion
matrix for the 20-class problem is presented on Figure 12C.

The resulting confusion matrix shows that our method has
achieved reasonably-high accuracy on this problem. One can note
that the two meta-classes of aggressive and normal actions are
very well separated, having a correct classification rate of 98.8%.
If the metaclass binary classification problem was considered, one
could achieve even higher accuracy, because class-wise specific
details make the models more specific and thus, less generalizing.

It is also noticeable that the method fails at correctly pre-
dicting only the aggressive actions. Specifically, the highest
misclassification rate is between the 2nd, 5th, and 9th classes.

A

C

B

FIGURE 12 | (A) Bootstrap estimates of M for the EMG classification data,
held-out error with λ = 0.01. (B) Bootstrap estimates of M for the EMG
classification data, held-out error with λ = 0.001. (C) Confusion matrix for
the EMG activity classification test set.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 16

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

Namely, these classes correspond to the activities of frontkicking,
kneeing and sidekicking. This might indicate that these classes of
activities are naturally very hard to distinguish from the EMG
measurements only. To finish the evaluation of the EMG classi-
fication, let us compare the performance of the obtained GBM
model with other machine learning algorithms. We will validate
the GBM performance with Logistic Regression (LR), SVM and
RF. The optimal parameters for the non-linear methods were
once again chosen by the fivefold cross-validation applied to the
grid-search. The algorithm accuracy comparisons are given in
Table 3.

6.2.5. Model interpretation
In a classification task one can still investigate any of the pre-
viously defined visualization tools like partial dependence plots.
For each of the consecutive 20 classifiers, values above or below
zero would correspond to the contribution of labeling the queried
point to the marginal classes −1,1, i.e., “not in the class” and
“belonging to the class,” respectively. The resulting partial depen-
dence plots for the first class (Bowing) are given on Figure 13.

We can also apply the same inference tools to further ana-
lyze the resulting GBM model. For example, the relative variable

Table 3 | Machine learning algorithm accuracy.

Method Eaverage (%)

Logistic regression 84.7

Support vector machine 86.6

Random forest 84.8

GBM, trees, d = 4 89.1

influence of the obtained GBM model is given on Figure 14A and
the 3D interaction plots are given on Figures 14B,C.

6.2.6. Application conclusion
In this application we have shown how to apply the GBM models
to the classification tasks, having the example take into account

A

B C

FIGURE 14 | (A) Relative variable influence of the EMG activity classifier for
Bowing class. (B) Interaction plot of the EMG activity classifier for Bowing
class, channels 1 and 3. (C) Interaction plot of the EMG activity classifier for
Bowing class, channels 1 and 7.

FIGURE 13 | Partial dependence plots for the EMG activity classifier based on the decision-tree GBM.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 17

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

multiple classes. This time the GBMs, applied to the mined signal
features, outperformed other methods considered as benchmarks
in terms of accuracy. Yet it is worth noting that even the linear
classifier worked reasonably well on this data. One can also con-
sider mining more sophisticated features from the EMG channels,
however, with even the simplest moving averages one can achieve
high classification performance.

6.3. TEXT CLASSIFICATION
One of the important properties of GBMs that we have pre-
viously mentioned is the possibility of building sparse models.
This property can be desirable in a number of practical cases,
for example when the predictor data comes from a very high
dimensional distribution whilst containing very little, sparsely
distributed information.

In this application we will focus on the specific GBM design,
when the sparse model or the data is considered. A common
example of such data is the so-called document-term matrices
and similar data structures. The rows of a document term matrix
correspond to a particular document and columns reflect the fre-
quency of a particular word occurrence in this document. As the
number of words is considerably high, many of them seldom
appear in the set of the documents analyzed, thus showing zero
frequency in most of the documents.

6.3.1. Application description
We will consider the analysis of the GBM model performance on
the CNAE-9 dataset (Bache and Lichman, 2013). This dataset was
generated with the intent to automatically classify Brazilian com-
panies based on their text descriptions into 9 classes, according to
their economic activities. The data consists of 1080 rows, corre-
sponding to documents, and has 856 columns, representing fre-
quencies of particular words. A notable property of the data is that
it is very sparse: 99.22% of the resulting matrix is filled with zeros.

6.3.2. Data processing
The original data collection and processing are of lesser impor-
tance in this application, more details on these questions can be
found in Ciarelli and Oliveira (2009). Here we would just apply
the GBMs to the available dataset without any manipulations on
its features, or any external expert-driven knowledge involved.

Due to the sparsity of the data, the previous approaches to
solving this classification problem relied on different dimension
reduction techniques (Ciarelli and Oliveira, 2009; Ciarelli et al.,
2010). To make the processing even more simplified, we will con-
sider building a sparse GBM model “off the shelf” by design. Just
as we had to build a 20-class model in the EMG classification case
study, we would be following the same strategy with this dataset.
Specifically, we will be building nine GBM models for each class
in the similar “one vs. all” fashion with each model weighted the
same way as previously, with false positive weights wfn = 9.

For the purposes of results comparison, we will use the com-
mon train and test set conventions as in the previous works that
touched upon this dataset (Ciarelli and Oliveira, 2009; Ciarelli
et al., 2010), taking the first 900 points for training and the
remaining 180 points for testing the model. The final accuracy
and the corresponding confusion matrix will therefore be assessed
on the test set points.

6.3.3. GBM design
In this application, due to having much more than two classes,
we will once again consider the simple average accuracy Eaverage

as the model evaluation criteria:

ECi =
1

9

9∑
i= 1

ECi (29)

Since we didn’t have any prior information, we set parameters
λ = 0.01, Mmax = 1000 and proceed with the bootstrap estimates
of M. Setting λ = 0.01 is some sort of the default value. Using
lower values of the regularization parameter will consider higher
awareness of overfitting. For estimating the optimal number of
iteration M we take B = 25.

6.3.4. Model evaluation
To build a GBM one has to choose the type of base-learners
and the loss-function to optimize, plus several hyperparame-
ters. As there is no specific need to modify the loss function, we
will once again choose the Bernoulli loss. But the base-learner
choice is significantly motivated by the data geometry. There
is no need to introduce the smooth terms because the data is
sparse and rarely contains values different from zero and one.
Moreover, the choice of non-stump decision trees, (i.e., trees
with non-trivial interactions) might bring the exceeding com-
plexity into the model. It will result in the unstable fit, which
will be prone to overfitting due to excessive leaves, correspond-
ing to 0-levels of different variables. As a consequence, GLMs and
tree-stumps would behave similarly due to the specifics of the
described data distribution. Therefore we will consider only the
GLM base-learner model.

After we have chosen the loss function and the type of base-
learners, we have to specify the learning hyperparameters M and
λ. In the particular setting, we want to add function increments as
small and accurate as possible due to the high awareness of over-
fitting the data. The initial setup of λ = 0.01, Mmax = 100,000
and the common B = 25 are a good startup for this experiment. It
is worth noting that using subsampling has to be done very care-
fully, as one can easily arrive at completely degenerate variables
with all zero-values, once again due to the sparsity of the data.
In its turn, in this particular setting using cross-validation is less
desirable than bootstrapping, however, both of these methods can
lead to this problem.

The bootstrap estimates for the number of base-learners M
of the GBM described above with λ = 0.01 are presented in
Figure 15A. This chart represents the convergence rates for the
GBM, fitted only for the first class, but similar pictures can be
obtained for any of the other eight classes. We can deduce that
although the held-out errors don’t start growing with the num-
ber of iterations substantially increased, there might be no actual
demand in this exceeding amount of learning.

The test set classification result from building the above men-
tioned model with all the 100,000 boosts reaches exactly 95%, or
171 correct out of 180. Reducing the number of iterations M by
half, M = 50,000 leads to a slight decrease in test set accuracy to
94.44%.

Now we will arrange a similar simulation experiment with the
same learning parameters, except with the shrinkage reduced to

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 18

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

A

C

B

FIGURE 15 | (A) Bootstrap estimates of M for class 1 of CNAE, held-out
error with λ = 0.01. (B) Bootstrap estimates of M for class 1 of CNAE,
held-out error with λ = 0.001. (C) Confusion matrix for the CNAE-9 test set.

λ = 0.001. The resulting bootstrap estimates for the first class
GBM are presented in Figure 15B.

Although the training error at the end of the learning pro-
cess is higher than that of the previous experiment, the test set
error remains at the same level with 95% correct classifications,
which indicates the similar generalization properties of the model
designed. In the previous works with other models, tested on this
dataset, the maximal test set accuracy achieved was 92.78%, with
the kNN classifier used on the dimensionality reduced to 200. The
confusion matrix of the λ = 0.001 GBM on the test set is shown in
Figure 15C. Values inside the boxes correspond to the percentage
of the points of the actual class that have been assigned a chosen
predicted class.

From the resulting confusion matrix we can see that the
method works well on sparse data. If we analyze the confusion
matrix, we can deduce that most of the errors come from the
last 9th class. If we possessed the means to control the experi-
ment and wanted to improve the accuracy of the deployed system,
then we would have suggested investing more time into feature
engineering to improve the predictions of that class.

6.3.5. Application conclusion
We have successfully achieved an accurate result on the current
application. But accuracy alone doesn’t necessary imply anything
about the fitted model behavior. Although we have built the
overall resulting model from 9 one-class GBMs, each of the mod-
els relies on approximately 70 variables. The total number of the
unique variables in the resulting 9-class boosted GLM model is
246. This is considerably sparse when compared to the original
856 dimensions, however, each of the classes relies on even lower

dimensional sub-models. Given the original labels of the classes
and variable names, one could also make a more detailed anal-
ysis of the low-dimensional variable interconnections between
classifiers.

Together with the high-accuracy of the resulting model, we
can conclude that this approach could easily and efficiently be
adopted in the equivalent industrial application, not requiring
any complex model design, just “off-the-shelf.”

7. DISCUSSION
7.1. RESEARCH DIRECTIONS
There are two groups of promising neurorobotics applications for
GBMs: the high-accuracy pattern recognition applications and
the ensemble-based neural simulations. When considering pat-
tern recognition problem, one can efficiently assess tasks like
speech and motion recognition with boosted temporal models
like HMM (Hu et al., 2007; Du et al., 2011). Another important
application is the extraction of relevant information from large
amounts of data. It is a general purpose problem, which has been
efficiently solved with boosted ensemble models in the webpage
ranking area (Burges et al., 2006; Clemencon and Vayatis, 2009).
The same boosted ensemble ranking approach can be adopted
in problems with the neural activity data (Lewickiy, 1998; Lotte
et al., 2007).

In ensemble-based simulations, the main idea is to consider
GBMs as the graph of submodels, where nodes are defined by
base-learners and the edges are either shared parameters of base-
learners (e.g., branch of the tree) or some calculated measure of
similarity between base-learners [e.g., correlation of the residu-
als or the Kullback-Leibler divergence (Shibata, 1997; Runnalls,
2007)]. It is then feasible to involve graph formation techniques
like preferential attachment and rewiring into the learning pro-
cess in order to achieve different graph topologies. This would
allow a flexible yet very natural way to simulate neural structures
within the traditional pattern recognition problems. Based on dif-
ferent properties of the obtained graph (Bullmore and Sporns,
2009) one would be able to investigate properties of the resulting
ensemble model, comparing it to the behavior of the real neural
models (Latora and Marchiori, 2001; Li and Chen, 2003; Simard
et al., 2005). Besides, graph representation of the ensemble mod-
els would allow one to visually examine the resulting models
through graph visulization tools and layouts (Fruchterman and
Reingold, 1991; Hu, 2005).

7.2. GBM DRAWBACKS
Gradient boosting machines are a powerful method that can
effectively capture complex non-linear function dependencies.
This family of models has shown considerable success in various
practical applications. Moreover the GBMs are extremely flex-
ible and can easily be customized to different practical needs.
However, all these results and benefits do not come for free.
Although GBMs can be considered to be a methodological
framework than a particular method, they still have several draw-
backs.

The most noticeable problem of the GBMs that arises in
practice is their memory-consumption. The cost of storing a
predictive model depends on the number of boosting iterations
used for learning. As we discussed in the regularization section, to

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 19

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

reduce the effects of overfitting, the optimal number of iterations
for a suitable shrinkage parameter can be considerably large. In
some accuracy-intensive applications like intrusion detection sys-
tems, the desired number of iterations can easily be of the range
of tens of thousands. Handling such massive models requires the
storage of all the parameters of each of the fitted base-learners.
This problem can be partially circumvented with the extensive
usage of sparse base-learners or with the methods of the ensem-
ble simplification (Chen et al., 2009; Kulkarni and Sinha, 2012).
However, this problem with the memory consumption is com-
mon to all the ensemble methods and shows up more significantly
with the increased number of models one chooses to store.

Another problem of GBM that naturally arises from the high
memory-consumption is the evaluation speed. To use the fit-
ted GBM model to obtain predictions, one has to evaluate all
the base-learners in the ensemble. Despite the simplicity of each
of the base-learners, when the ensemble is considerably large,
obtaining predictions at a fast pace can become time-consuming.
Therefore, using GBMs in intensive online tasks would most
likely require the practitioner to accept a trade-off between the
model complexity and the desired number of function evalua-
tions per time interval. However, when the GBM ensemble is
already learnt, one can take full advantage of parallelization to
obtain the predictions.

Despite the parallelization of the function evaluation, the
learning procedure is essentially sequential and has problems with
parallelization by design. This is not a unique problem of GBMs,
but unlike many other ensemble techniques like random forests,
this makes them on average slower to learn. This issue can be par-
tially alleviated using the mini-batch learning and other tricks to
improve the computation costs of gradient-based learning (Cotter
et al., 2011), however, the learning algorithm still relies on the
previously learned fits, by design. A different approach to paral-
lelization of the GBMs would be to parallelize each of the boosting
iterations, which can still bring improvement in the evaluation
speed.

The above mentioned problems are purely computational and
thus can be considered the cost of using a stronger model. As
we have described, GBMs are highly applicable, providing vari-
ous useful properties to the practitioner. Moreover, as previously
discussed, they allow for relatively easy result interpretation, thus
providing the researcher with insights into the fitted model.

And as we previously noted, GBMs can be considered as a
framework for model design, thus giving practitioners the oppor-
tunity not only to customize, but also to design very specific novel
GBM models for particular tasks. This high flexibility has led to
development of a wide range of GBM algorithms, both designed
for different specific loss-functions and utilizing different data-
specific base-learners.

Another shortcoming of the GBMs is that there is currently
no fast and efficient model and implementation of the smooth
continuous base-learner that capture interactions. As we have
seen from the application examples, interactions between vari-
ables can play a crucial role in the particular predictive model
design. However, only decision trees can efficiently capture non-
trivial interactions between variables in reasonable computation
time. It is yet worth noting, that batch exploitation of sev-
eral base-learners can potentially neglect this problem, but such

algorithms are currently not used in practice due to specificity in
the GBM model design.

8. CONCLUSION
In this tutorial we have presented the methodology of the gradi-
ent boosting machines. Both the theoretical framework and the
design options were described and illustrated. We have discussed
all the essential stages of designing a particular model for one’s
practical needs. Interpretation issues have been addressed and
presented as an essential part of the analysis.

The capabilities of the GBMs were investigated on a set of
real-world practical applications. In every case, GBMs provided
excellent results in terms of accuracy and generalization. In addi-
tion, the GBMs offered additional insights into the resulting
model design, allowing for deeper investigation and analysis of
the modeled effects.

ACKNOWLEDGMENTS
We would like to thank Prof. Patrick van der Smagt, Jorn Vogel,
and Justin Bayer from TUM Roboterhalle for providing the
robotic control data. We also want to thank Mrs. Amy Bucherl for
helping us with the language polishing. The authors would also
like to thank the anonymous reviewers for their valuable remarks
and comments. In the course of the article, all of the results and
illustrations were created in the R programming language. The
GBM model implementations for this article were taken from the
gbm and mboost R packages.

REFERENCES
Bache, K., and Lichman, M. (2013). UCI Machine Learning Repository. Irvine,

CA: University of California, School of Information and Computer Sciences.
Available online at: http://archive.ics.uci.edu/ml/citation_policy.html

Bissacco, A., Yang, M.-H., and Soatto, S. (2007). “Fast human pose estimation
using appearance and motion via multi-dimensional boosting regression,”
in IEEE Conference on Computer Vision and Pattern Recognition, CVPR’07.
(Minneapolis, MN). doi: 10.1109/CVPR.2007.383129

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi:
10.1023/A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1983). Classification
and Regression Trees.Belmont, CA: Wadsworth Publishing.

Buhlmann, P. (2006). Boosting for high-dimensional linear models. Ann. Stat. 34,
559–583. doi: 10.1214/009053606000000092

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Burges, C. J. C., Ragno, R., and Le, Q. V. (2006). “Learning to rank with
non-smooth cost functions,” in Advances in Neural Information Processing
Systems, eds B. Schölkopf, J. C. Platt, and T. Hoffman (Cambridge, MA:
MIT Press), 193–200. Available online at: http://books.nips.cc/papers/files/
nips19/NIPS2006_0574.pdf

Chen, H., Tino, P., and Yao, X. (2009). Predictive ensemble pruning by
expectation propagation. IEEE Trans. Knowl. Data Eng. 7, 999–1013. doi:
10.1109/TKDE.2009.62

Ciarelli, P., and Oliveira, E. (2009). “Agglomeration and elimination of
terms for dimensionality reduction,” in Ninth International Conference on
Intelligent Systems Design and Applications, ISDA’09 (Pisa), 547–552. doi:
10.1109/ISDA.2009.9

Ciarelli, P., Salles, E., and Oliveira, E. (2010). “An evolving system based on prob-
abilistic neural network,” in Eleventh Brazilian Symposium on Neural Networks
(SBRN) (Sao Paulo), 182–187. doi: 10.1109/SBRN.2010.39

Clemencon, S., and Vayatis, N. (2009). Tree-based ranking methods. IEEE Trans.
Inf. Theory 55, 4316–4336. doi: 10.1109/TIT.2009.2025558

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. (2011). “Better mini-batch
algorithms via accelerated gradient methods,” in Advances in Neural Information

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 20

http://archive.ics.uci.edu/ml/citation_policy.html
http://books.nips.cc/papers/files/nips19/NIPS2006_0574.pdf
http://books.nips.cc/papers/files/nips19/NIPS2006_0574.pdf
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Natekin and Knoll Gradient boosting machines, a tutorial

Processing Systems 24 eds J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger (Cambridge, MA: MIT Press), 1647–1655. Available online at:
http://books.nips.cc/papers/files/nips24/NIPS2011_0942.pdf

De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology
88, 243–251. doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

Dietterich, T. G., Ashenfelter, T. D. A., and Bulatov, Y. (2004). “Training conditional
random fields via gradient tree boosting,” in Proceedings of the 21st International
Conference on Machine Learning (ICML), (Banff, AB). Available online
at: http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=
10.1.1.58.6703

Du, J., Hu, Y., and Jiang, H. (2011). Boosted mixture learning of Gaussian
mixture Hidden Markov models based on maximum likelihood for speech
recognition. IEEE Trans. Audio Speech Lang. Process. 19, 2091–2100. doi:
10.1109/TASL.2011.2112352

Fahlman, S., and Lebiere, C. (1989). The Cascade-Correlation Learning Architecture.
Technical Report, Carnegie Mellon University, Pittsburgh, PA.

Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Gool, L. (2012). Random forests
for real time 3D face analysis. Int. J. Comput. Vis. 1, 1–22. doi: 10.1007/s11263-
012-0549-0

Freund, Y., and Schapire, R. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139.

Friedman, J. (2001). Greedy boosting approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a sta-
tistical view of boosting. Ann. Stat. 28, 337–407. doi: 10.1214/aos/1016218222

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-directed
placement. Softw. Pract. Exper. 21, 1129–1164. doi: 10.1002/spe.4380211102

Hansen, L., and Salamon, P. (1990). Neural network ensembles. IEEE Trans. Pattern
Anal. Mach. Intell. 12, 993–1001. doi: 10.1109/34.58871

Hastie, T. (2007). Comment: boosting algorithms: regularization, prediction and
model fitting. Stat. Sci. 22, 513–515. doi: 10.1214/07-STS242A

Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M. (2012). Model-Based
Boosting in R: a Hands-on Tutorial Using the R Package Mboost. Technical
Report, Department of Statistics, University of Munich. doi: 10.1007/s00180-
012-0382-5

Hothorn, T., Buhlmann, P., Kneib, T., Schmid, M., and Hofner, B. (2010). Model-
based boosting 2.0. J. Mach. Learn. Res. 11, 2109–2113. Available online at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.168.2648

Hu, T., Li, X., and Zhao, Y. (2007). “Gradient boosting learning of Hidden Markov
models,” in Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’06) (Toulouse). doi: 10.1109/ICASSP.2006.1660233

Hu, Y. F. (2005). Efficient and high quality force-directed graph drawing. Math.
J. 10, 37–71. Available online at: http://www.mathematica-journal.com/issue/
v10i1/graph_draw.html

Hutchinson, R. A., Liu, L.-P., and Dietterich, T. G. (2011). “Incorporating
boosted regression trees into ecological latent variable models,” in AAAI’11,
(San Francisco, CA), 1343–1348. Available online at: http://www.aaai.org/ocs/
index.php/AAAI/AAAI11/paper/view/3711

Johnson, R., and Zhang, T. (2012). Learning Nonlinear Functions Using Regularized
Greedy Forest. Technical Report. arXiv:1109.0887. doi: 10.2172/1052139

Koenker, R., and Hallock, K. F. (2001). Quantile regression. V J. Econ. Perspect. 15,
143–156. doi: 10.1257/jep.15.4.143

Kulkarni, V., and Sinha, P. (2012). “Pruning of random forest classifiers: a survey
and future directions,” in International Conference on Data Science Engineering
(ICDSE) (Cochin, Kerala), 64–68. doi: 10.1109/ICDSE.2012.6282329

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world networks.
Phys. Rev. Lett. 87:198701. doi: 10.1103/PhysRevLett.87.198701

Lewickiy, M. S. (1998). A review of methods for spike sorting: the detection and
classification of neural action potentials. Netw. Comput. Neural Syst. 9, 53–78.
doi: 10.1088/0954-898X/9/4/001

Li, C., and Chen, G. (2003). Stability of a neural network model with small-world
connections. Phys. Rev. E 68:052901. doi: 10.1103/PhysRevE.68.052901

Liu, Y., Wang, Y., Li, Y., Zhang, B., and Wu, G. (2004). “Earthquake prediction by
RBF neural network ensemble,” in Advances in Neural Networks - ISNN 2004,
eds F.-L. Yin, J. Wang, and C. Guo (Berlin; Heidelberg: Springer), 962–969. doi:
10.1007/978-3-540-28648-6_153

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review
of classification algorithms for EEG-based brain-computer interfaces. J. Neural
Eng. 4, R1–R13. doi: 10.1088/1741-2560/4/2/R01

Pittman, S. J., and Brown, K. A. (2011). Multi-scale approach for predicting
fish species distributions across coral reef seascapes. PLoS ONE 6:e20583. doi:
10.1371/journal.pone.0020583

Qi, Y. (2012). “Random forest for bioinformatics,” in Ensemble Machine Learning,
eds C. Zhang and Y. Ma (New York, NY: Springer), 307. doi: 10.1007/978-1-
4419-9326-7_11

Rifkin, R., and Klautau, A. (2004). In defense of one-vs-all clas-
sification. J. Mach. Learn. Res. 5, 101–141. Available online at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.174

Runnalls, A. R. (2007). A Kullback-Leibler approach to Gaussian mixture reduc-
tion. IEEE Trans. Aerosp. Electron. Syst. 43, 989–999. doi: 10.1109/TAES.2007.
4383588

Schapire, R. (2002). The boosting approach to machine learning: an overview.
Nonlin. Estimat. Classif. Lect. Notes Stat. 171, 149–171. doi: 10.1007/978-0-387-
21579-2_9

Schmid, M., and Hothorn, T. (2007). Boosting Additive Models Using Component-
Wise p-Splines. Technical Report, Department of Statistics, University of
Munich. doi: 10.1016/j.csda.2008.09.009

Schmid, M., and Hothorn, T. (2008). Flexible boosting of accelerated failure time
models.. BMC Bioinformatics 9, 269. doi: 10.1186/1471-2105-9-269

Schmid, M., Hothorn, T., Maloney, K. O., Weller, D. E., and Potapov, S. (2011).
Geoadditive regression modeling of stream biological condition. Environ. Ecol.
Stat. 18, 709–733. doi: 10.1007/s10651-010-0158-4

Sewell, M. (2011). Ensemble Learning. Technical Report, Department of Computer
Science, University College London. Available online at: http://www.cs.
ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_11_02.pdf

Shibata, R. (1997). Bootstrap estimate of Kullback-Leibler information for model
selection. Stat. Sin. 7, 375–394.

Shu, C., and Burn, D. H. (2004). Artificial neural network ensembles and their
application in pooled flood frequency analysis. Water Resour. Res. 40, 1–10. doi:
10.1029/2003WR002816

Simard, D., Nadeau, L., and Kröger, H. (2005). Fastest learning in small-world
neural networks. Phys. Lett. A 336, 8–15. doi: 10.1016/j.physleta.2004.12.078

Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting.
Handb. Stat. 24, 303–329. doi: 10.1016/S0169-7161(04)24011-1

Viola, P., and Jones, M. (2001). “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR 2001, (Kauai, HI). doi:
10.1109/CVPR.2001.990517

Vogel, J., Castellini, C., and vander Smagt, P. (2011). “EMG-based teleoperation
and manipulation with the DLR LWR-III,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (San Francisco, CA). doi:
10.1109/IROS.2011.6094739

Wenxin, J. (2002). On weak base hypotheses and their implications for boost-
ing regression and classification. Ann. Stat. 30, 51–73. Available online at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.9366

Yao, X. (1993). A review of evolutionary artificial neural networks. Int. J. Intell. Syst.
8, 539–567. doi: 10.1002/int.4550080406

Zhang, T., and Yu, B. (2005). Boosting with early stopping: convergence and
consistency. Ann. Stat. 33, 1538–1579. doi: 10.1214/009053605000000255

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the
elastic net. J. R. Stat. Soc. B (Methodological) 67, 301–320. doi: 10.1111/j.1467-
9868.2005.00503.x

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 24 July 2013; accepted: 21 October 2013; published online: 04 December
2013.
Citation: Natekin A and Knoll A (2013) Gradient boosting machines, a tutorial. Front.
Neurorobot. 7:21. doi: 10.3389/fnbot.2013.00021
This article was submitted to the journal Frontiers in Neurorobotics.
Copyright © 2013 Natekin and Knoll. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licen-
sor are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neurorobotics www.frontiersin.org December 2013 | Volume 7 | Article 21 | 21

http://books.nips.cc/papers/files/nips24/NIPS2011_0942.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.58.6703
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.58.6703
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.168.2648
http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3711
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3711
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.174
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_11_02.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_11_02.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.9366
http://dx.doi.org/10.3389/fnbot.2013.00021
http://dx.doi.org/10.3389/fnbot.2013.00021
http://dx.doi.org/10.3389/fnbot.2013.00021
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Gradient boosting machines, a tutorial
	Introduction
	Methodology
	Function Estimation
	Numerical Optimization
	Optimization in Function Space
	Gradient Boost Algorithm

	GBM Design
	Loss-Function Families
	Loss functions for continuous response
	Loss functions for categorical response

	Specifying the Base-Learners
	Additive base-learners
	Decision tree base-learners

	Regularization
	SUBSAMPLING
	Shrinkage
	Early Stopping

	Model Interpretation
	Relative Variable Influence
	Partial Dependence Plots

	Applications
	EMG Robotic ARM Controller
	Application description
	Data processing
	GBM design
	Model evaluation
	Model interpretation
	Application conclusion

	EMG Physical Action Classification
	Application description
	Data processing
	GBM design
	Model evaluation
	Model interpretation
	Application conclusion

	Text Classification
	Application description
	Data processing
	GBM design
	Model evaluation
	Application conclusion

	Discussion
	Research Directions
	GBM Drawbacks

	Conclusion
	Acknowledgments
	References

