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COMBINATORIAL COMPLEXITY OF
LEARNING
Brains learn much better than comput-
ers, this has been discussed in a num-
ber of reviews on artificial intelligence,
pattern recognitions, and neural networks
(Perlovsky, 2001, 2006a). But why? Is there
a fundamental reason behind computers
being slow learners? Often slow learning is
discussed in terms of computational com-
plexity (Perlovsky, 1998), which is usually
measured by the number of operations.
Scientists have thought that faster com-
puters would be able to catch up with the
brain. Still, this has not happened despite
computers becoming increasingly faster.
Reviews (Perlovsky, 2001, 2006a; Perlovsky
et al., 2011) have explained why: compu-
tational complexity of learning algorithms
grows as a combinatorial (exponential)
function of the complexity of a problem
to be learned. This means that a learn-
ing algorithm might look like it’s quite
capable of learning, and indeed, it learns
solutions to simple problems. However,
slightly more complex problems require
not just slightly more computations, but
require significantly more. So much more,
in fact that learning problems of average
complexity require more learning exam-
ples and more computer operations than
all of the interactions of all elementary
particles in the entire life of the Universe
(In this article such complexity is called
“practically infinite.”).

The reason for combinatorial complex-
ity can be explained as follows: consider
first, an example of a simple problem
requiring no combinatorial complexity for
learning: recognition of a single isolated
object, which always appears exactly the
same. Learning consists in storing in mem-
ory the object’s image. Recognition con-
sists in matching the stored image to
a newly presented image: match or no

match. The complexity of this algorithm
approximately equals the number of pix-
els in an image. But in a real situation
the object is not always exactly same; the
algorithm has to account for variations
in viewing angles, distance, color, etc. In
addition, other objects are present with
their variabilities. Combinations of vari-
ous objects with their variabilities lead to
combinatorial complexity. Combinations
of all pixels in the field of view should be
considered. A human eye senses ∼10,000
pixels 10 times a second. Today, sensors
measure millions of pixels each second (or
more). The number of combinations of
these pixels is “practically infinite”; com-
binations of 100 pixels (a relatively simple
problem) are 100100; this number is close
to all of the interactions of all elementary
particles in the entire life of the Universe.

GÖDEL THEORY AND COMBINATORIAL
COMPLEXITY
Before considering how brains perceive
objects, let us consider a parallel to the
above complexity problem: the Gödel the-
ory (Gödel, 2001). Following (Penrose,
1994) it can be described as a proof that
the collection of all logical statements must
include unprovable statements, and there-
fore, there is no complete logical basis for
mathematics. Gödel’s theory received criti-
cal acclaim upon its publication in 1931; in
2000 the New York Times listed the Gödel
theory along with the theory of relativ-
ity among the greatest scientific achieve-
ments of the 20th century. However, the
consequences of this theory outside of
mathematical logic and the philosophy of
mathematics are limited. With one excep-
tion: the Lucas–Penrose argument (Lucas,
1961; Penrose, 1994), which suggests that
the mind is not a formal logical system.
Nevertheless, for decades artificial intel-
ligence has attempted to develop formal

logical models of the mind, and these
attempts continue today. Apparently, the
consequences of the Gödel theory have not
been appreciated. This article discusses the
much wider significance of the Gödel the-
ory for modeling the mind, as well as for
machine learning in general.

In developing his theory Gödel demon-
strated that all logical statements are
equivalent in some way to all sequences
of zeros and ones. It was essential for
Gödel to consider infinite sequences of
zeros and ones. The entire collection of
such sequences is infinite and contains all
infinite combinations of zeros and ones.
The number of such combinations is a con-
tinuum, a “larger” infinity than the count-
able infinity of the initial sequences. If
we limit the sequences to finite ones, say,
to the length N, they contain combina-
tions of zeros and ones of length N, and
their number is 2N . In particular, if N =
300 (not a very large number) the num-
ber of sequences is ∼100100, the “practi-
cally infinite” number discussed above. In
both cases of finite and infinite sequences
the number of combinations turns out
to be significantly larger than the origi-
nal sequence length. If Gödel’s arguments
are applied to any finite system, such as a
computer, or a brain, and only finite com-
binations are considered, Gödel’s proof
of the existence of unprovable statements
would not stand. A different difficulty
would be faced, the practically infinite
number of possible statements. No system,
the mind or a computer would ever be able
to count these statements; no algorithm
would be able to execute so many oper-
ations. Similar to the Gödelian case, the
number of combinations is “much larger”
than the initial complexity. The combina-
torial complexity of the logical algorithms
considered previously is related to Gödel’s
argument when applied to a finite system.
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As discussed above, machine learning
and mathematical models of the mind face
algorithmic difficulties related to com-
binatorial complexity. These difficulties
are related to the use of logic in algo-
rithms similar to the existence of unprov-
able statements in the Gödel theory. We
face the possibility that the combinatorial
complexity encountered since the 1950s
is of similar fundamental origin as the
Gödel theory, the fundamental limitation
of logic.

HOW THE MIND PERCEIVES OBJECTS
Nevertheless, the mind works, visual sys-
tems perceive objects. To understand
mathematically how this is possible, math-
ematicians have to consider the conse-
quences of the Gödel theory and the
Lucas–Penrose argument in full honesty.
The mind is not a logical system. To
make machines capable of learning and to
model mathematically the learning abili-
ties of the mind, new types of algorithms
are needed that avoid combinatorial com-
plexity. Several mathematical approaches
have been proposed to overcome the lim-
itations of logic; however, learning algo-
rithms still have to use logical statements
as a part of learning (Perlovsky, 2001;
Perlovsky et al., 2011) and combinatorial
complexity cannot be avoided. Logic lim-
itations have been overcome in dynamic
logic (Perlovsky, 2006b; Perlovsky et al.,
2011; Kovalerchuk et al., 2012), which
is not a collection of static statements
but a process-logic. These processes evolve
from vague-fuzzy states to logical states
(Perlovsky et al., 2011). Whereas a logical
state corresponds to an individual prop-
erty or object and their combinations have
to be considered, a vague state corresponds
to a multiplicity of properties and objects,
and no combinations have to be consid-
ered. Logical states appear only at the end
of the dynamic logic processes when a
learning problem is solved.

Dynamic logic algorithms model
uncertainty by using similarity functions
among representations of concepts and
incoming data. Often, these similarity
functions are modeled functionally simi-
lar to probability densities. The dynamic
logic idea “from vague-to-crisp” is imple-
mented by initiating probability density
functions with large variances. In the iter-
ative dynamic logic processes variances

might be reduced to small values, resulting
in logic-like very narrow pdfs.

Dynamic logic algorithms have over-
come the limitations of logic, have solved
previously unsolvable problems, and have
not only reached, but exceeded the per-
formance of the human mind (Perlovsky,
2010). Brain imaging experiments have
demonstrated that dynamic logic and
its vague-to-crisp processes are adequate
models for actual brain-mind perception
processes (Bar et al., 2006; Perlovsky,
2009). Perception in the brain works fast
by matching top-down and bottom-up
signals via evolving vague “top” men-
tal representations into logical (or nearly
so) representations matching sensory data,
while avoiding combinatorial complexity.

CONSCIOUS AND UNCONSCIOUS
MENTAL OPERATIONS, LOGICAL BIAS
Brain imaging experiments demonstrat-
ing the vague-to-crisp perception in neural
mechanisms (Bar et al., 2006) have also
demonstrated that vague mental states and
the entire dynamic logic process (taking
∼500 ms) are unconscious. Only the final
near-logical crisp representation match-
ing sensory percepts is available to con-
sciousness. Most of the brain’s operations
(more than 99%) are inaccessible to sub-
jective consciousness. The mind operates
with “islands” of conscious-logical states
in an ocean of unconsciousness; it “jumps”
among conscious-logical islands over an
ocean of unconscious states. And all the
while we remain subjectively convinced
that we are conscious. Since consciousness
deals only with logical states, it is biased
toward logic. For thousands of years logic
has occupied a privileged position in our
understanding of the mind’s operations.
This might explain why, after Gödel’s pub-
lications received wide recognition, logic
still occupies a firm place in artificial intel-
ligence, modeling the mind, and in psy-
chology.

DISCUSSION
A popular machine learning approach is
statistical learning theory (SLT, Vapnik,
1999). Unlike dynamic logic, it is not
related to the cognitive mechanisms of
the brain-mind. Its similarity to dynamic
logic is in taking on the problem of com-
plexity. Many problems successfully solved
by dynamic logic, an improvement by

orders of magnitude over all other known
solutions (Perlovsky et al., 2011), cannot
be approached by SLT; direct compar-
isons for other problems have not been
published. In his book Vapnik empha-
sized logic, relating reality and rationality.
Does the SLT idea of iteratively finding
support vectors overcome Gödelian lim-
itations of logic and related complexity?
This might be an interesting topic for
future research. The idea of a provably
self-improving algorithm has been resur-
rected recently by J. Schmidhuber (e.g.,
Steunebrink and Schmidhuber, 2012).
However, other interesting ideas by this
author seem to be reduced to logic and
combinatorial complexity in their imple-
mentation approaches. It remains to be
seen if the complexity difficulty will be
overcome in future.

An exciting parallel with dynamic logic
is explored in Wrede et al. (2012). These
authors suggest that in the initial stage
of learning, before having compositional
ability, infants use a vague hierarchy with
teleological representation of the final
goal. Even if detailed compositional under-
standing is not yet available, having a
vague representation of the final goal
enables them to learn quickly, significantly
reducing complexity of choices.

Certain principles of Gestalt psy-
chology are confirmed in contemporary
neuroscience. They are mathematically
modeled by dynamic logic. For example,
top-down and bottom-up signal inter-
action is reminiscent of a Gestalt idea
(that objects in their entirety are per-
ceived before their parts). Gestalt goals to
maintain stable percepts in a noisy world
are modeled via models-representations.
However, these ideas are not specific to
dynamic logic. Dynamic logic has mod-
eled them mathematically, overcoming the
problem of complexity.

Dynamic logic is computable.
Operations used by computers imple-
menting dynamic logic algorithms are
logical. But these logical operations are
at a different level than human thinking.
Compare the text of this article as stored in
your computer and the related computer
operations to the human understanding
of this article. The computer’s operations
are logical, but on a different level from
your “logical” understanding of this arti-
cle. A computer does not understand the
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meaning of this article the way a human
reader does. The reader’s logical under-
standing is on top of 99% of the brain’s
operations that are not “logical” at this
level. Our logical understanding is an end
state of many illogical and unconscious
dynamic logic processes.

The mind’s “first principles” do not
include logic. Nature uses different “first
principles” at its different levels of orga-
nization. Thermodynamics is not based
on Newton’s laws, and this was a sub-
ject of special fascination to Einstein,
who emphasized that thermodynamics is
a physical science with its own first prin-
ciples defined at an intermediate level of
organization (Einstein, 1967). It is inter-
esting to note that Aristotle, the inventor
of logic, did not use logic in his theory
of the mind (forms; Aristotle, 1995). In
his theory, forms are dynamic entities that
evolve from vague states to crisp states
in the process of “mind meeting matter”
that today we call matching top-down and
bottom-up signals.
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