
ORIGINAL RESEARCH ARTICLE
published: 06 January 2014

doi: 10.3389/fnbot.2013.00025

Curiosity driven reinforcement learning for motion
planning on humanoids
Mikhail Frank1,2,3*, Jürgen Leitner1,2,3, Marijn Stollenga1,2,3, Alexander Förster1,2,3 and

Jürgen Schmidhuber1,2,3

1 Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland
2 Facoltà di Scienze Informatiche, Università della Svizzera Italiana, Lugano, Switzerland
3 Dipartimento Tecnologie Innovative, Scuola Universitaria Professionale della Svizzera Italiana, Manno, Switzerland

Edited by:

Gianluca Baldassarre, Italian
National Research Council, Italy

Reviewed by:

Anthony F. Morse, University of
Skövde, Sweden
Hsin Chen, National Tsing-Hua
University, Taiwan
Alberto Finzi, Università di Napoli
Federico II, Italy

*Correspondence:

Mikhail Frank, Dalle Molle Institute
for Artificial Intelligence, Galleria 2,
CH-6928 Manno-Lugano,
Switzerland
e-mail: kail@idsia.ch

Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic
concepts and theory. Experimental results are generally limited to toy scenarios, such as
navigation in a simulated maze, or control of a simple mechanical system with one or two
degrees of freedom. To study AC in a more realistic setting, we embody a curious agent
in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework
consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub
while respecting constraints, and a high-level curious agent, which explores the iCub’s
state-action space through information gain maximization, learning a world model from
experience, controlling the actual iCub hardware in real-time. To the best of our knowledge,
this is the first ever embodied, curious agent for real-time motion planning on a humanoid.
We demonstrate that it can learn compact Markov models to represent large regions of
the iCub’s configuration space, and that the iCub explores intelligently, showing interest
in its physical constraints as well as in objects it finds in its environment.

Keywords: artificial curiosity, intrinsic motivation, reinforcement learning, humanoid, iCub, embodied AI

1. INTRODUCTION
Reinforcement Learning (RL) (Barto et al., 1983; Sutton and
Barto, 1998; Kaelbling et al., 1996) allows an agent in an environ-
ment to learn a policy to maximize some sort of reward. Rather
than optimizing the policy directly, many RL algorithms instead
learn a value function, defined as expected future discounted
cumulative reward. Much of early RL research focused on dis-
crete states and actions instead of continuous ones dealt with by
function approximation and feature-based representations.

An RL agents needs to explore its environment. Undirected
exploration methods (Barto et al., 1983), rely on randomly
selected actions, and do not differentiate between already
explored regions and others. Contrastingly, directed exploration
methods can focus the agent’s efforts on novel regions. They
include the classic and often effective optimistic initialization,
go-to the least-visited state, and go-to the least recently visited
state.

1.1. ARTIFICIAL CURIOSITY (AC)
Artificial Curiosity (AC) refers to directed exploration driven by
a world model-dependent value function designed to direct the
agent toward regions where it can learn something. The first
implementation (Schmidhuber, 1991b) was based on an intrinsic
reward inversely proportional to the predictability of the environ-
ment. A subsequent AC paper (Schmidhuber, 1991a) emphasized
that the reward should actually be based on the learning progress,
as the previous agent was motivated to fixate on inherently
unpredictable regions of the environment. Subsequently, a prob-
abilistic AC version (Storck et al., 1995) used the well known

Kullback-Leibler (KL) divergence (Lindley, 1956; Fedorov, 1972)
to define non-stationary, intrinsic rewards reflecting the changes
of a probabilistic model of the environment after new experiences.
Itti and Baldi (2005) called this measure Bayesian Surprise and
demonstrated experimentally that it explains certain patterns of
human visual attention better than previous approaches.

Over the past decade, robot-oriented applications of curios-
ity research have emerged in the closely related fields of
Autonomous Mental Development (AMD) (Weng et al., 2001)
and Developmental Robotics (Lungarella et al., 2003). Inspired by
child psychology studies of Piaget (Piaget and Cook, 1952), they
seek to learn a strong base of useful skills, which might be com-
bined to solve some externally posed task, or built upon to learn
more complex skills.

Curiosity-driven RL for developmental learning
(Schmidhuber, 2006) encourages the learning of appropri-
ate skills. Skill learning can be made more explicit by identifying
learned skills (Barto et al., 2004) within the option frame-
work (Sutton et al., 1999). A very general skill learning setting is
assumed by the PowerPlay framework, where skills actually corre-
spond to arbitrary computational problem solvers (Schmidhuber,
2013; Srivastava et al., 2013).

Luciw et al. (2011) built a curious planner with a high-
dimensional sensory space. It learns to perceive its world
and predict the consequences of its actions, and continu-
ally plans ahead with its imperfect but optimistic model.
Mugan and Kuipers developed QLAP (Mugan and Kuipers,
2012) to build predictive models on a low-level visuomo-
tor space. Curiosity-Driven Modular Incremental Slow Feature

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 1

NEUROROBOTICS

http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/about
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/journal/10.3389/fnbot.2013.00025/abstract
http://www.frontiersin.org/people/u/101065
http://www.frontiersin.org/people/u/106230
http://www.frontiersin.org/people/u/51579
http://www.frontiersin.org/people/u/23048
mailto:kail@idsia.ch
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

Analysis (Kompella et al., 2012) provides an intrinsic reward for
an agent’s progress toward learning new spatiotemporal abstrac-
tions of its high-dimensional raw pixel input streams. Learned
abstractions become option-specific feature sets that enable skill
learning.

1.2. DEVELOPMENTAL ROBOTICS
Developmental Robotics (Lungarella et al., 2003) seeks to enable
robots to learn to do things in a general and adaptive way, by trial-
and-error, and it is thus closely related to AMD and the work on
curiosity-driven RL, described in the previous section. However,
developmental robotic implementations have been few.

What was possibly the first AC-like implementation to run on
hardware (Huang and Weng, 2002) rotated the head of the SAIL
robot back and forth. The agent/controller was rewarded based on
reconstruction error between its improving internal perceptual
model and its high-dimensional sensory input.

AC based on learning progress was first applied to a physical
system to explore a playroom using a Sony AIBO robotic dog. The
system (Oudeyer et al., 2007) selects from a variety of pre-built
behaviors, rather than performing any kind of low-level con-
trol. It also relies on a remarkably high degree of random action
selection, 30%, and only optimizes the immediate (next-step)
expected reward, instead of the more general delayed reward.

Model-based RL with curiosity-driven exploration has been
implemented on a Katana manipulator (Ngo et al., 2012), such
that the agent learns to build a tower, without explicitly reward-
ing any kind of stacking. The implementation does use pre-
programmed pick and place motion primitives, as well as a set of
specialized pre-designed features on the images from an overhead
camera.

A curiosity-driven modular reinforcement learner has recently
been applied to surface classification (Pape et al., 2012), using
a robotic finger equipped with an advanced tactile sensor on
the fingertip. The system was able to differentiate distinct tactile
events, while simultaneously learning behaviors (how to move the
finger to cause different kinds of physical interactions between the
sensor and the surface) to generate the events.

The so-called hierarchical curiosity loops architec-
ture (Gordon and Ahissar, 2011) has recently enabled a 1-DOF
LEGO Mindstorms arm to learn simple reaching (Gordon and
Ahissar, 2012).

Curiosity implementations in developmental robotics have
sometimes used high dimensional sensory spaces, but each one,
in its own way, greatly simplified the action spaces of the robots by
using pre-programmed high-level motion primitives, discretizing
motor control commands, or just using very, very simple robots.
We are unaware of any AC (or other intrinsic motivation) imple-
mentation, which is capable of learning in, and taking advantage
of a complex robot’s high-dimensional configuration space.

Some methods learn internal models, such as hand-eye motor
maps (Nori et al., 2007), inverse kinematic mappings (D’Souza
et al., 2001), and operational space control laws (Peters and
Schaal, 2008), but these are not curiosity-driven. Moreover, they
lack the generality and robustness of full-blown path planning
algorithms (Latombe et al., 1996; LaValle, 1998; Li and Shie, 2007;
Perez et al., 2011).

1.3. THE PATH PLANNING PROBLEM
The Path Planning Problem is to find motions that pursue goals
while deliberately avoiding arbitrary non-linear constraints, usu-
ally obstacles. The ability to solve the path planning problem in
practice is absolutely critical to the eventual goal of deploying
complex/humanoid robots in unstructured environments. The
recent textbook, “Planning Algorithms” (LaValle, 2006), offers
many interesting approaches to planning motions for complex
manipulators. These are expensive algorithms, which search the
configuration space to generate trajectories that often require
post-processing. Thus robots, controlled by algorithmic planners,
are typically very deliberate and slow, first “thinking,” often for
quite some time, then executing a motion, which would be simple
and intuitive for humans.

1.4. REACTIVE CONTROL
In the 1980s, a control strategy emerged, which was completely
different from the established plan first, act later paradigm.
The idea was to use potential fields (Khatib, 1986; Kim and
Khosla, 1992), and/or dynamical systems (Schoner and Dose,
1992; Iossifidis and Schoner, 2004, 2006), and/or the sensor sig-
nals directly (Brooks, 1991) to generate control commands fast,
without searching the configuration space. Control is based on
some kind of local gradient, which is evaluated at the robot’s cur-
rent configuration. As a result, sensors and actuators are tightly
coupled in a fast, light weight action/observation loop, allowing
a robot to react quickly and smoothly to changing circumstances.
Nevertheless, reactive controllers are shortsighted and prone to
getting stuck in local minima/maxima, making them relatively
bad path planners.

1.5. A CURIOUS CONFLUENCE
In this paper, we introduce a curiosity-driven reinforcement
learner for the iCub humanoid robot (Metta et al., 2008), which
autonomously learns a powerful, reusable solver of motion plan-
ning problems from experience controlling the actual, physical
robot.

The application of RL to the path planning problem (or more
precisely the process of embodying the agent at a sufficiently low
level of control) has allowed us to incorporate two approaches,
planning and reactive control, which for the most part have been
treated separately by roboticists until now. The integrated system
benefits from both approaches while avoiding their most prob-
lematic drawbacks, and we believe it to be an important step
toward realizing a practical, feasible, developmental approach to
real, non-trivial robotics problems. Furthermore, the system is
novel in the following ways:

1. In contrast to previous implementations of artificial curiosity
and/or intrinsic motivation in the context of developmental
robotics, our system learns to control many degrees of freedom
(DOFs) of a complex robot.

2. Planning algorithms typically generate reference trajectories,
which must then be passed to a controller. Our RL system,
on the other hand, learns control commands directly, while
still yielding a resolution complete planner. This greatly sim-
plifies many practical issues that arise from tracking a reference

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

trajectory and results in a lighter, faster action/observation
loop.

3. Rather than relying on reactive control to generate entire
motions, we only use it to implement actions. Thus the com-
pleteness of the planner is preserved, although its robustness
is improved by the added capacity of each action react to
unforeseen and/or changing constraints.

2. MATERIAL AND METHODS
In order to build a developmental learning system capable of
exploiting the iCub’s high DOF configuration space, we begin
by looking at the path planning literature, where there exist
two classes of algorithms, capable of generating high dimen-
sional reference trajectories. Single query algorithms, such as
Rapidly Exploring Random Trees (RRT) (LaValle, 1998; Perez
et al., 2011), interpolate two points in configuration space, with-
out reusing knowledge from one query to the next. Multiple query
algorithms on the other hand, such as Probabilistic Road Maps
(PRM) (Latombe et al., 1996; Sun et al., 2005), store a compressed
representation of the configuration space and satisfy queries by
operating on that data structure, rather than searching the high
DOF configuration space directly. In the case of PRM, the config-
uration space is represented by a graph, which can even be grown
incrementally (Li and Shie, 2007). PRM’s compact, incrementally
expandable representation of known motions makes it a likely
antecedent to or template for a development learning system,
but there are several problems, which are all related to separation
between planning and control.

To build up a PRM planner, one must first sample the con-
figuration space to obtain a set of vertices for the graph. The
samples are then interpolated by trajectories, which form the set
of edges that connect the vertices. The feasibility of each sam-
ple (vertex) and trajectory (edge) must be preemptively verified,
typically by forward kinematics and collision detection computa-
tions, which collectively amount to a computationally expensive
pre-processing step. The configuration of the robot must remain
on the verified network of samples and trajectories at all times, or
there may be unwanted collisions. This implies that all the trajec-
tories in the graph must also be controllable, which is in general
difficult to verify in simulation for complex robots, such as the
iCub, which exhibit non-linear dynamics (due to do friction and
deformation) and are thus very difficult to model faithfully. If
these problems can be surmounted, then a PRM planner can be
constructed, however, the configuration of the robot’s workspace
must be static, because moving anything therein may affect the
feasibility of the graph edges.

All of these problems can be avoided by embodying the plan-
ner and giving the system the capacity to react. If there were a
low-level control system, which could enforce all necessary con-
straints (to keep the robot safe and operational) in real time,
then the planner could simply try things out, without the need to
exhaustively and preemptively verify the feasibility of each poten-
tial movement. In this case, reference trajectories would become
unnecessary, and the planner could simply store, recall, and issue
control commands directly. Lastly, and perhaps most importantly,
with the capacity to react in real time, there would be no need to
require a static workspace.

This new embodied planner would differ from its antecedent
PRM planner in several important ways. There would be no
need to require that the configuration of the robot be on any
of the graph edges. In fact the graph would no longer repre-
sent a network of distinct trajectories, but rather the topology
of the continuous configuration space. Each edge would no
longer represent a particular trajectory, but rather a more gen-
eral kind of action that implements something like try to go
to that region of the configuration space. Such actions would be
available not when the true robot configuration is on a graph
vertex, but rather when it is near that vertex. The actions may
or may not succeed depending on the particular initial configu-
ration of the robot when the action was initiated as well as the
configuration of the workspace, which must not necessarily be
static.

Allowing the planner to control the hardware directly offers
considerable benefits, but it also requires a more complex repre-
sentation of the configuration space than the plan first, act later
paradigm did. Whereas the PRM planner made do with a sim-
ple graph, representing a network of trajectories, the embodied
version seems to require a probabilistic model, which can cope
with actions that may have a number of different outcomes.
In light of this requirement, the embodied planner begins to
look like a Markov Decision Process (MDP), and in order to
exploit such a planner, the state transition probabilities, which
govern the MDP, must first be learned. However, this presents a
problem in that experiments (trying out actions) are very expen-
sive when run on robotic hardware, which is bound to real
time, as opposed to simulations, which can be run faster than
real time, or parallelized, or both. Therefore, an efficient explo-
ration method is absolutely critical, which motivates our use of
curiosity-driven RL.

2.1. ACTION IMPLEMENTATION
We have put considerable energy into developing the low-
level control system described above, the Modular Behavioral
Environment (MoBeE; Figures 1 and 2) (Frank et al., 2012), the
details of which are beyond the scope of this paper. In this section,
we describe MoBeE only insofar as to define the notion of action
as it pertains to our RL system.

MoBeE controls the robot constantly, at a high frequency,
according to the following second order dynamical system:

Mq̈(t)+ Cq̇(t)+ K(q(t)− q∗) =
∑

fi(t) (1)

The vector function q(t) ∈ R
n is the robot configuration, and

the matrices M, C, and K contain mass, damping, and spring
constants, respectively. The position vector q∗ is an attrac-
tor, and constraints on the system are implemented by forcing
it via fi(t), which provides automatic avoidance of kinematic
infeasibilites having to do with joint limits, cable lengths, and
collisions.

An action, for the purposes of RL, means setting the attractor
q∗ to some desired configuration. When such an action is taken,
q(t) begins to move toward q∗. The action terminates either when
the dynamical system settles or when a timeout occurs. The action

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 3

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 1 | MoBeE and the iCub. MoBeE (left) prevents the iCub
humanoid robot (right) from colliding with the table.
Semi-transparent geometries represent force fields, and when these

collide with one another (shown in red), they generate repulsive,
constraint forces, which in this case push the hands away from
the table surface.

FIGURE 2 | The modular behavioral environment (MoBeE) architecture.

MoBeE implements low-level control and enforces all necessary
constraints to keep the robot safe and operational in real time, such that the
curious RL agent (left) is able to experiment with arbitrary control
commands. A kinematic/geometric model of the iCub humanoid robot (top)

is driven by streaming motor encoder positions from the hardware (right).
The model computes fictitious constraint forces, which repel the robot from
collisions, joint limits, and other infeasibilities. These forces, fi (t) in
Equation (1), are passed to the controller (middle), which computes the
attractor dynamics that governs the actual movement of the robot.

may or may not settle on q∗, depending on what constraint forces,
fi(t) are encountered during the transient response.

2.2. STATE-ACTION SPACE
The true configuration of the robot at any time t can be any real
valued q ∈ R

n, however, in order to define a tractable RL problem,

we discretize the configuration space (Figure 3) by selecting m
samples, Q = {qj|j = 1 . . . m} ⊂ R

n. The sample set Q defines

a set of states 1 S = {sj|j = 1 . . . m}, such that
m⋃

j= 1
sj = R

n. Each

state, sj ∈ S, is the Voronoi region associated with the correspond-
ing sample, qj ∈ Q. That is to say, each sample, qj ∈ R

n, defines a
state, sj ⊂ R

n, where every point, q ∈ sj, is closer2 to qj than to any
other point q ∈ Q. The states in our Markov model are the sets,
s ∈ S, not the points, q ∈ Q, and to say that the robot is in some
particular state, s, at some particular time, t, means that the real
valued configuration of the robot, q(t) ∈ s.

An action is defined by setting MoBeE’s attractor, q∗ = qg

(Equation 1), where qg ∈ Q is the sample in some goal state sg(a).
When an action is tried, the robot moves according to the tran-
sient response, q(t), of the dynamical system, which eventually
settles at q(t →∞) = q∞. However, depending on the constraint
forces encountered, it may be that q∞ ∈ sg(a) or not.

2.2.1. Connecting states with actions
An action, a, intends to move the robot to some goal state sg(a),
a waypoint along the path that will eventually be generated by
the reinforcement learner. But which states should be connected
to which other states? In order that our Markov model devel-
ops into an effective path planner, we want to connect each

1Generally, throughout this formalism we use uppercase letters to denote sets
and lowercase letters to denote points. However, we have made an exception
for the states, sj ∈ S, which themselves comprise sets of robot configurations,
sj ⊂ R

n. Although this is somewhat abusive from a set theoretic standpoint, it
allows us to be consistent with the standard RL notation later in the paper.
2The distance metric employed is the Euclidean norm, in this case:√

(q− qj) · (q− qj).

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 4

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 3 | The discrete state-action space. The sample set
Q = {qj |j = 1 . . . m} (dots) defines the Voronoi regions, or states
S = {sj |j = 1 . . . m} (bounded by dotted lines). An action a (gradient),
exploits MoBeE’s attractor dynamics to pull the robot toward some goal
state, sg(a) ∈ S. When the robot is in the initial state, q(t0) ∈ s, and
the agent selects a, MoBeE switches on the attractor (Equation 1) at
the point qg ∈ sg(a). The agent then waits for the dynamical system to
settle or for a timeout to occur, and at some time, t1, checks which of
the states, sj contains the final real valued configuration of the robot,
q(t1). Often the state-action, (s, a), terminates in the goal state sg(a),
but sometimes, due to constraint forces, it does not. This gives rise to
a set of state transition probabilities
T (s, a) = {T (s, a, s′1), T (s, a, s′2), . . . , T (s, a, s′m)}, which correspond to the
states, {sj |j = 1 . . . m}.

state to its k nearest neighbors 3 in a way that makes sense with
respect to the dimensionality of the configuration space, n. To
this end, we choose k = 2n, as an n-dimensional hypercube has 2n

vertices.
With each state, s, is associated a set of actions, A(s), which

intend to move the robot from s to each of k nearby goal states,
A(s) = {ag |g = 1 . . . k}, and the set of all possible actions, A, can
therefore be expressed as the union of the action sets belonging to

each state, A =
m⋃

s= 1
A(s).

This notion of connecting neighboring states makes intuitive
sense given the problem domain at hand and the resulting Markov
model resembles the Roadmap graph used by the PRM plan-
ner (Latombe et al., 1996). Although the action set, A, is quite
large (|A| = |S|), each state only has access to the actions, A(s),
which lead to its k nearest neighbors (|A(s)| = k). Therefore, the
number of state-actions remains linear in the number of states.
We advise the reader that wherever the standard state-action
notation, (s, a), is used, it is implied that a ∈ A(s).

2.2.2. Modeling transition probabilities
Although each action intends to move the robot to some par-
ticular goal state, in principal they can terminate in any state in
the set {sj|j = 1 . . . m}. Therefore, we must learn state transition
probabilities to represent the connectivity of the configuration

3Again, the distance metric employed is the Euclidean norm, in this case:√
(qg − qi) · (qg − qi).

space. A straightforward way of doing this would be to define
a probability distribution over all possible outcomes sj for each
state-action (s, a):

T(q∞ ∈ sj|s, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(q∞ ∈ s1|s, a)

p(q∞ ∈ s2|s, a)

...

p(q∞ ∈ sm|s, a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

To build up the distributions, T(q∞ ∈ sj|s, a), we would simply
initialize all probabilities to zero and then count the occur-
rences of observed transitions to the various states, sj, result-
ing from the various state-actions (s, a). We would, however,
find this approach to be relatively wasteful, because much of
the state-action space is deterministic. In practice, we find that
there are only three kinds of distributions that come out of
applying RL algorithms to our Markov model. A state-action,
(s, a), can terminate deterministically in the goal state sg(a)

(Equation 3), it can terminate deterministically in some other
state sj �= sg(a) (Equation 4), or it can be truly non-deterministic
(Equation 5), although the non-zero components of T are
always relatively few compared to the number of states in the
model.

p(q∞ ∈ sj|s, a) =
{

1 if sj = sg(a)

0 if sj �= sg(a)
(3)

p(q∞ ∈ sj|s, a) =
{

1 if sj = s∗ �= sg(a)

0 if sj �= s∗ (4)

p(q∞ ∈ sj|s, a)

{
> 0 if sj ∈ S1

= 0 if sj ∈ S0

∣∣∣∣ S0 ∪ S1 = S, |S0|
 |S1| (5)

This is intuitive upon reflection. Much of the configuration space
is not affected by constraints, and actions always complete as
planned. Sometimes constraints are encountered, such as joint
limits and cable length infeasibilities, which deflect the trajec-
tory in a predictable manner. Only when the agent encounters
changing constraints, typically non-static objects in the robot’s
operational space, do we see a variety of outcomes for a particular
state-action. However, even in this case, the possible outcomes, s′,
are a relatively small number of states, which are usually in the
neighborhood of the initial state, s. We have never constructed
an experiment, using this framework, in which a particular state-
action, (s, a), yields more than a handful of possible outcome
states, s′.

We can and have used distributions of the form shown in
Equation (2) to model the outcomes of state-actions in our RL
framework. However, we have found a better way to represent the
distribution, which is more parsimonious, and facilitates a better
AC signal.

2.3. ARTIFICIAL CURIOSITY
What is interesting? For us humans, interestingness seems closely
related to the rate of our learning progress (Schmidhuber, 2006).
If we try doing something, and we rapidly get better at doing it,
we are often interested. Contrastingly, if we find a task trivially

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 5

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

easy, or impossibly difficult, we do not enjoy a high rate of learn-
ing progress, and are often bored. We model this phenomenon
using the information theoretic notion of information gain, or KL
divergence.

2.3.1. KL divergence
KL Divergence, DKL is defined as follows, where Pj and Tj are the
scalar components of the discrete probability distributions P and
T, respectively.

DKL(P||T) =
∑

j

ln

(
Pj

Tj

)
Pj (6)

For our purposes, T represents the estimated state transition
probability distribution (Equation 2) for a particular state-action,
(s, a), after the agent has accumulated some amount of experi-
ence. Once the agent tries (s, a) again, an s′ is observed, and the
state transition probability distribution for (s, a) is updated. This
new distribution, P, is a better estimate of the state transition
probabilities for (s, a), as it is based on more data.

By computing DKL(P||T), we can measure how much our
Markov model improved by trying the state-action, (s, a), and we
can use this information gain to reward our curious agent. Thus,
the agent is motivated to improve its model of the state-action
space, and it will gravitate toward regions thereof, where learning
is progressing quickly.

There is, however, a problem. The KL divergence is not defined
if there exist components of P or T, which are equal to zero. This
is somewhat inconvenient in light of the fact that for our appli-
cation, most of the components of most of the distributions, T
(Equation 2), are actually zero. We must therefore initialize P and
T cleverly.

Perhaps the most obvious solution would be to initialize T
with a uniform distribution, before trying some action for the first
time. After observing the outcome of the selected action, P would
be defined and DKL(P||T) computed, yielding the interestingness
of the action taken.

Some examples of this kind of initialization are given in
Equations (7–10) 4. Clearly the approach solves the numerical
problem with the zeros, but it means that initially, every action
the agent tries will be equally interesting. Moreover, how inter-
esting those first actions are, |DKL(P||T)|, depends on the size of
the state space.

DKL({1, 2, 1} || {1, 1, 1}) = 0.0589 (7)

DKL({2, 1, 1} || {1, 1, 1}) = 0.0589 (8)

DKL({1, 1, 2, 1, 1} || {1, 1, 1, 1, 1}) = 0.0487 (9)

DKL({1, 1, 1, 2, 1, 1, 1} || {1, 1, 1, 1, 1, 1, 1}) = 0.0398 (10)

The first two examples, Equations (7), (8), show that regardless
of the outcome, all actions generate the same numerical inter-
estingness the first time they are tried. While not a problem in

4We have intentionally not normalized P and T, to show how they are gen-
erated by counting observations of q∞ ∈ sj. In order to actually compute
DKL(P||T), P and T must first be normalized.

Algorithm 1: Observe(s,a,s′,T(s, a),R(s, a))

begin
if there is no bin, Ts′(s, a), in T(s, a) to count occurrences
of s′ then

append a bin, Ts′(s, a) to T(s, a)

Ts′(s, a)← 1
end
P← T(s, a)

Ps′ ← Ps′ + 1
R(s, a)← DKL(P||T(s, a))

T(s, a)← P
end

theory, in practice this means our robot will need many tries
to gather enough information to differentiate the boring, deter-
ministic states from the interesting, non-deterministic ones. Since
our actions are designed to take the agent to a goal state, sg(a),
it would be intuitive if observing a transition to sg(a) were less
interesting than observing one to some other state. This would
drastically speed up the learning process.

The second two examples, Equations (9), (10) show that the
interestingness of that first try decreases in larger state spaces, or
alternatively, small state spaces are numerically more interesting
than large ones. This is not a problem if there is only one learner
operating in a single state-action space. However, in the case of
a multi-agent system, say one learner per body part, it would be
convenient if the intrinsic rewards gotten by the different agents
were numerically comparable to one another, regardless of the
relative sizes of those learners’ state-action spaces.

In summary, we have two potential problems with KL
Divergence as a reward signal:

1. Slowness of initial learning
2. Sensitivity to the cardinality of the distributions

Nevertheless, in many ways, KL Divergence captures exactly what
we would like our curious agent to focus on. It turns out we can
address both of these problems by representing T with an array of
variable size, and initializing the distribution optimistically with
respect to the expected behavior of the action (s, a).

2.3.2. Dynamic state transition distributions
By compressing the distributions T and P, i.e., not explicitly rep-
resenting any bins that contain a zero, we can compute the KL
divergence between only their non-zero components. The process
begins with T and P having no bins at all. However, they grow in
cardinality as follows: Every time we observe a novel s′ as the result
of trying a state-action (s, a), we append a new bin to the distribu-
tion T(s, a), and initialize it with a 1, and copy it to yield P(s, a).
Then, since we just observed (s, a) result in s′, we increment the
corresponding bin in P(s, a), and compute KL(P||T). This process
is formalized in Algorithm 1.

The optimistic initialization is straightforward. Initially, the
distribution T(s, a) is empty. Then we observe (Algorithm 1)
that (s, a) fails, leaving the agent in the initial state, s. The KL
divergence between the trivial distributions {1} and {2} is 0, and

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 6

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

therefore, so is the reward, R(s, a). Next, we observe that (s, a)

succeeds, moving the agent to the intended goal state, sg(a).
The distribution, T(s, a), becomes non-trivial, a non-zero KL
divergence is computed, and thus R(s, a) gets an optimistically
initialized reward, which does not depend on the size of the state-
action space. Algorithm 2 describes the steps of this optimistic
initialization, and Table 1 shows how T(s, a) and R(s, a) develop
throughout the initialization process.

The distributions T, as initialized above, are compact and
parsimonious, and they faithfully represent the most likely out-
comes of the actions. Moreover, the second initialization step
yields a non-zero KL Divergence, which is not sensitive to the

Algorithm 2: Curious_Explore(S,A,T,R,γ,δ)

begin
for each state-action (s ∈ S, a ∈ A(s)) do

Observe(s, a, s, T(s, a), R(s, a))

Observe(s, a, sg(a), T(s, a), R(s, a))

end
while true do

Value_Iteration(S, A, T, R, γ, δ)

s← sj|q(tbefore) ∈ sj

agreedy ← a |V(s, a) = argmax({V(s, a)|a ∈ A(s)})
run agreedy on the robot
s′ ← sj|q(tafter) ∈ sj

Observe(s, a, s′, T(s, a), R(s, a))

end
end

Algorithm 3: Value_Iteration(S,A,T,R,γ,δ)

begin
for each state-action (s ∈ S, a ∈ A(s)) do

V(s, a)← 0.0
end
for each state s ∈ S do

V(s)← 0.0
end
while true do

max_delta← 0.0
for each state-action (s ∈ S, a ∈ A(s)) do

Vnew(s, a)← R(s, a)+ γ
∑

s′ T(s, a, s′)V(s′)
if Vnew(s, a)− V(s, a) > max_delta then

max_delta← Vnew(s, a)− V(s, a)

end
V(s, a)← Vnew(s, a)

end
for each state s ∈ S do

V(s)← argmax({V(s, a)|i = s})
end
if max_delta < δ then

break
end

end
end

size of the state space. Importantly, the fact that our initial-
ization of the state transition probabilities provides an initial
measure of interestingness for each state-action allows us, without
choosing parameters, to optimistically initialize the reward matrix
with well defined intrinsic rewards. Consequently, we can employ
a greedy policy, and aggressively explore the state-action space
while focusing extra attention on the most interesting regions.
As the curious agent explores, the intrinsic rewards decay in a
logical way. A state-action, which deterministically leads to its
goal state (Table 2) is less interesting over time than a state-
action that leads to some other state (Table 3), and of course
most interesting are state-actions with more possible outcomes
(Table 4).

2.4. REINFORCEMENT LEARNING
At the beginning of section 2, we made the claim that a PRM
planner’s compact, incrementally expandable representation of
known motions makes it a likely antecedent to a developmen-
tal learning system. Furthermore, we observed that many of the

Table 1 | Initialization of state transition probabilities.

Observation T P R = DKL(P||T)

– {} {} –

si {1} {2} 0

sg(a) {2,1} {2,2} 0.0589

Table 2 | A predictable action ends in the predicted state.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sg(a) {2,2} {2,3} 0.0201

sg(a) {2,3} {2,4} 0.0095

sg(a) {2,4} {2,5} 0.0052

Table 3 | A predictable action ends in a surprising state.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sj {2,2,1} {2,2,2} 0.0487

sj {2,2,2} {2,2,3} 0.0196

sj {2,2,3} {2,2,4} 0.0103

Table 4 | An unpredictable action.

Observation T P R = DKL(P||T)

init {2,1} {2,2} 0.0589

sa {2,2,1} {2,2,2} 0.0487

sb {2,2,2,1} {2,2,2,2} 0.0345

sc {2,2,2,2,1} {2,2,2,2,2} 0.0283

sg(a) {2,2,2,2,2} {2,3,2,2,2} 0.0142

sa {2,3,2,2,2} {2,3,3,2,2} 0.0133

sb {2,3,3,2,2} {2,3,3,3,2} 0.0125

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 7

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

weaknesses of PRMs can be avoided by embodying the planner
and coupling it to a low-level reactive controller. Proxied by this
low-level controller, the planner is empowered to try out arbitrary
control signals, however, it does not necessarily know what will
happen. Therefore, the PRM’s original model of the robot’s state-
action space, a simple graph, is insufficient, and a more powerful,
probabilistic model, an MDP is required. Thus, modeling the
robot-workspace system using an MDP arises naturally from the
effort to improve the robustness of a PRM planner, and accord-
ingly, Model-Based RL is the most appropriate class of learning
algorithms to operate on the MDP.

Having specified what action means in terms of robot control
(section 2.1), described the layout and meaning of the state-
action space (section 2.2), and defined the way in which intrinsic
reward is computed according to the AC principal (section 2.3),
we are ready to incorporate these pieces in a Model-Based RL sys-
tem, which develop into a path planner as follows: Initially, sets
of states and actions will be chosen, according to some heuris-
tic(s), such that the robot’s configuration space is reasonably well
covered and the RL computations are tractable. Then, the state
transition probabilities will be learned for each state-action pair,
as the agent explores the MDP by moving the robot about. This
exploration for the purposes of model learning will be guided
entirely by the intrinsic reward defined in section 2.3, and the
curious agent will continually improve its model of the iCub and
its configuration space. In order to exploit the planner, an exter-
nal reward must be introduced, which can either be added to or
replace the intrinsic reward function.

The MDP, which constitutes the path planner, is a tuple,
< S, A, T, R, γ >, where S is a finite set of m states, A is a finite
set of actions, T is a set of state transition probability distribu-
tions, R is a reward function, and γ is a discount factor, which
represents the importance of future rewards. This MDP is some-
what unusual in that not all of the actions a ∈ A are available
in every state s ∈ S. Therefore, we define sets, A(s), which com-
prise the actions a ∈ A that are available to the agent when it

finds itself in state s, and A =
m⋃

s= 1
A(s). The set of state transition

probabilities becomes T :
m⋃

s= 1
A(s)× S→ [0, 1], and in general,

the reward function becomes R :
m⋃

s= 1
A(s)× S→ R, although

the intrinsic reward, Rintrinsic :
m⋃

s= 1
A(s)→ R, varies only with

state-action pairs (s, a), as opposed to state-action-state triples
(s, a, s′). The state transition probabilities, T, are learned by
curious exploration (Algorithm 2, γ = 0.9, δ = 0.001), the RL
algorithm employed is value iteration (Algorithm 3), and the
intrinsic reward is computed as shown in Algorithm 1.

3. RESULTS
Here we present the results of two online learning experiments.
The first one learns a motion planner for a single limb, the iCub’s
arm, operating in an unobstructed workspace, while other body
parts remain motionless. The planner must contend with self-
collisions, and infeasibilities due to the relative lengths of the
cables, which move the shoulder joints. These constraints are

static, in that they represent properties of the robot itself, which
do not change regardless of the configuration of the workspace.
Due to the static environment, a PRM planner would in prin-
cipal be applicable, and the experiment provides a context in
which to compare and contrast the PRM versus MDP planners.
Still, the primary question addressed by this first experiment
is: “To what extent does AC help the agent learn the state
transition probabilities for the MDP planner in this real-world
setting?”

In the second experiment, the iCub is positioned at a work
table, which constitutes a large obstacle in its workspace. Three
curious agents, unaware of one another’s states, learn planners for
the iCub’s torso and two arms, respectively. One could in princi-
pal define a single curious MDP planner for the whole body, but
this would result in an explosion of the state-action space such
that running actual experiments on the iCub hardware would be
prohibitively time consuming. The modular, parallel, multi-agent
configuration of this second experiment is designed to address
the question: “Can curious MDP planners scale to intelligently
control the entire iCub robot?” And in observing the behavior
emergent from the interactions between the 3 learners, this will
be the question of primary importance. Also noteworthy, how-
ever, is that from the perspective of the arms, which do not
know that the torso is moving, the table seems to be non-static.
By analyzing the arm learning while disregarding the torso, one
can gain insight into how the curious MDP planner copes with
non-static environments, which would render the PRM planner
inoperable.

3.1. PLANNING IN A STATIC ENVIRONMENT—LEARNING TO AVOID
SELF-COLLISIONS AND CABLE LENGTH INFEASIBILITIES

In the first experiment, “Planning in a static environment,” we
compare the exploration of our artificially curious agent (AC),
to two other agents using benchmark exploration strategies from
the RL literature. One explores randomly (RAND), and the other
always selects the state-action least tried (LT)5.

The state space is defined by choosing samples, which vary
in 4 dimensions corresponding to three shoulder joints and the
elbow. Each of these joints is sampled at 25%, 50%, and 75%
of its range of motion, resulting in a 4D hyper-lattice with 81
vertices, which are connected to their 24 = 16 nearest neighbors
as per section 2.2.1, yielding 81× 16 = 1296 state-actions. The
intuition behind this choice of state space it comprises a compact
yet reasonably well dispersed set of pre-reach poses.

The task is to find the infeasible region(s) of the configura-
tion space, and learn the according state transition probabilities
such that the agent can plan motions effectively. The task is rel-
atively simple, but it is none the less a crucial aspect of any
path planning that should take place on the iCub. Without delib-
erately avoiding self-collisions and cable length infeasibilities,
a controller can and will break the iCub’s cables, rendering it
inoperable.

In comparing the AC agent with the RAND agent and the
LT agent, we find that AC produces, by far, the best explorer

5If there are multiple least-tried state-actions (for example when none have
been tried), a random one from the least tried set is selected.

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 8

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 4 | State-action space coverage during early learning. The policy based on Artificial Curiosity (AC) explores the state-action space most efficiently,
compared to policies based on random exploration (RAND) and always selecting the least tried state-action (LT). Time is measured in state transitions.

(Figure 4). In the early stages of learning, AC and LT try only
novel actions, whereas RAND tries some actions repeatedly. Early
on (before the agent has experienced about 220 state transitions),
the only difference evident between AC and LT is that AC visits
novel states more aggressively. This is intuitive upon reflection,
as AC values states with many untried state-actions, and will tra-
verse the state space to go find them, whereas LT has no global
knowledge and just chooses the locally least tried state-action,
regardless of where it leads. As learning continues, this key dif-
ference between AC and LT also begins to manifest in terms of
the coverage of the action space. In fact, AC tries all possible
state-actions in about 1

2 the time it takes LT.
Moving on to the tabulated number of times that each state

was visited and each state-action was tried, after 4000 state tran-
sitions, again we see that AC exhibits preferable behavior to LT
and RAND (Figure 5). AC results in distributions of visits over
states and tries over state-actions, which are more uniform than
those resultant of RAND and LT. Moreover, we see a number of
large spikes, where the AC agent became very interested in certain
state-actions. In fact, these are the actions that run the robot into
its constraints, and therefore do not cause the anticipated state
transition (Equation 4). While most of the state-actions’ rewards
decay according to Table 2, these spikes were generated by state-
actions whose rewards are governed by Table 3, and they are thus
more interesting to the agent.

The decay of the intrinsic reward over the state-action space
over time is shown in Figure 6. The uniformity of the decay is
intuitive, since whenever there exists a spike in the reward func-
tion, the AC agent goes and gets it, thereby gaining experience and

decrementing the reward for the state-action tried. Thus, differing
rates of decay (Tables 1–4) govern the frequency with which the
agent tries the different state-actions.

The learned MDP is pictured in Figure 7. Since the workspace
of the arm is unobstructed, most of the state-actions behave
as expected, reliably taking the agent to the intended goal
state (Equation 3). These deterministic state-actions, shown
in gray, are boring. The interesting ones, each shown in a
different color, took the agent to a novel state, which was
not represented in the initial state transition distribution for
that state-action. Since the environment is static, one would
expect even these novel state transitions to be determinis-
tic (Equation 4), and some of them are (red, yellow, purple,
light blue). However, the other state-actions (green, brown,
and dark blue) sometimes lead to the intended goal state
and sometimes lead to one other state, despite the static con-
straints and the fact that each state-action always runs the same
control code.

The fact that static constraints do not necessarily lead to
deterministic state transitions is quite interesting. It shows that
the iCub, an advanced, light-weight, cable-driven robot, exhibits
important non-linearities, due to its mechanics and/or embed-
ded control systems, which prevent it from reliably and repeat-
ably executing precise motions. Therefore, a plan first, act later
approach, such as PRM planning, will never work well on robots
such as the iCub. Plans will sometimes fail at runtime, and not
necessarily in a repeatable manner. In fact the lighter and more
flexible robots get, the more non-linearities will dominate their
dynamics, which is an important motivation for continuing to

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 9

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 5 | Distributions of visits over states and tries over

actions. Our curious agent (AC) visits states and tries actions in a
more uniformly than to policies based on random exploration (RAND)
and always selecting the least tried state-action (LT). Note the few
state-actions, which have been tried many times by AC. These are

affected by the cable length constraints in the iCub’s shoulder. They
terminate in an unexpected way, which is interesting or surprising to
the agent, and they therefore receive more attention. These data are
compiled over 4000 state transitions, observed while controlling the
real, physical iCub humanoid robot.

develop more robust solutions, such as the MDP motion planning
presented here.

3.2. DISCOVERING THE TABLE WITH A MULTI-AGENT RL SYSTEM
In the second experiment, we control both of the iCub’s arms and
its torso, 12 DOF in total. A hypercube in 12 dimensions has 4096
vertices, and a rank 3 hyper-lattice has 531,441 vertices. Clearly,
uniform sampling in 12 dimensions will not yield a feasible RL
problem. Therefore, we have parallelized the problem, employing
three curious agents that control each arm and the torso sepa-
rately, not having access to one another’s state. The state-action
spaces for the arms are exactly as described in the previous exper-
iment, and the state-action space for the 3D torso is defined in
an analogous manner (25%, 50%, and 75% of each joint’s range
of motion), resulting in a 3D lattice with 27 vertices, which are
connected to their 23 = 8 nearest neighbors as per section 2.2.1,
yielding 27× 8 = 216 state-actions.

We place the iCub in front of a work table, and all three learn-
ers begin exploring (Figure 8). The three agents operate strictly
in parallel, having no access to any state information from the
others, however, they are loosely coupled through their effects
on the robot. For example, the operational space position of the
hand (and therefore whether or not it is colliding with the table)

depends not only on the positions of the joints in the arm, but
also on the positions of the joints in the torso. Thus, we have
three interacting POMDPs, each of which has access to a different
piece of the complete robot state, and the most interesting parts of
the state-action spaces are where the state of one POMDP affects
some state transition(s) of another.

When the torso is upright, each arm can reach all of the states
in its state space, but when the iCub is bent over at the waist,
the shoulders are much closer to the table, and some of the
arms’ state-actions become infeasible, because the robot’s hands
hit the table. Such interactions between the learners produce
state-transition distributions, like the one shown in Figure 9,
which are much richer than those from the previous experiment.
Moreover these state-actions are the most interesting because
they generate the most slowly decaying intrinsic reward of the
type shown in Table 4. The result is that the arms learn to avoid
constraints as in the first experiment, but over time, another
behavior emerges. The iCub becomes interested in the table, and
begins to touch it frequently. Throughout the learning process,
it spends periods of time exploring, investigating its static arm
constraints, and touching the table, in a cyclic manner, as all
the intrinsic rewards decay over time in a manner similar to
Figure 6.

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 10

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 6 | Decay of intrinsic reward over time. These snapshots of the reward distribution state-actions (x-axis) over time (from top to bottom) show how
our curious agent becomes bored as it builds a better and better model of the state-action space. Time is measured in state transitions.

In Figure 10, we have tabulated the distribution of tries over
the state-action space for each of the three learners after 18,000
state transitions, or a little more than two full days of learning.
As in the previous experiment, we see that the curious agent
prefers certain state-actions, selecting them often. Observing the
behavior of the robot during the learning process, it is clear that
these frequently chosen state-actions correspond to putting the
arm down low, and leaning forward, which result in the iCub’s
hand interacting with the table. Furthermore, the distribution
of selected state-actions for the right arm and the left arm are
very similar indeed. This is to be expected, since the arms are
mechanically very similar and their configuration spaces have
been discretized the same way. It is an encouraging result, which
seems to indicate that the variation in the number of times dif-
ferent state-actions are selected does indeed capture the extent to
which those state-actions interfere with (or are interfered with by)
the other learners.

The emergence of the table exploration behavior is quite
promising with respect to the ultimate goal of using MDP based
motion planning to control an entire humanoid intelligently. We
partitioned an intractable configuration space into several loosely
coupled RL problems, and with only intrinsic rewards to guide
their exploration, the learning modules coordinated their behav-
ior, causing the iCub to explore the surface of the work table

in front of it. Although the state spaces were generated using a
coarse uniform sampling, and the object being explored was large
and quite simple, the experiment nevertheless demonstrates that
MDP motion planning with AC can empower a humanoid robot
with many DOF to explore its environment in a structured way
and build useful, reusable models.

3.2.1. Planning in a dynamic environment
There is an alternative way to view the multi-agent experiment.
Because the arm does not have access to the torso’s state, the
experiment is exactly analogous to one in which the arm is the
only learner and the table is a dynamic obstacle, moving about as
the arm learns. Even from this alternative viewpoint, it is none the
less true that some actions will have different outcomes, depend-
ing on the table configuration, and will result in state transition
distributions like the one shown in Figure 9. The key thing to
observe here is that if we were to exploit the planner by placing an
external reward at some goal, removing the intrinsic rewards, and
recomputing the value function, then the resulting policy/plan
will try to avoid the unpredictable regions of the state-action
space, where state transition probabilities are relatively low. In
other words, training an MDP planner in an environment with
dynamic obstacles, will produce policies that plan around regions
where there tend to be obstacles.

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 11

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 7 | The learned single-arm MDP planner. The 4D state
space is labeled as follows: shoulder flexion/extension (1,2,3), arm
abduction/adduction (a,b,c), lateral/medial arm rotation (I,II,III), elbow
flexion/extension (A,B,C). Each color represents an interesting
state-action, which often takes the agent to some unexpected state.
Each arrow of a particular color represents a state transition
probability and the weight of the arrow is proportional to the
magnitude of that probability. Arrows in gray represent boring
state-actions. These work as expected, reliably taking the agent to
the intended goal state, to which they point.

FIGURE 8 | Autonomous exploration. This composite consists of images
taken every 30 s or so over the first hour of the experiment described in
section 3.2.1. Although learning has just begun, we already begin to see
that the cloud of robot poses is densest (most opaque) near the table. Note
that the compositing technique as well as the wide angle lens used here
create the illusion that the hands and arms are farther from the table than
they really are. In fact, the low arm poses put the hand or the elbow within
2 cm of the table, as shown in Figure 8.

4. DISCUSSION
In this paper we have developed an embodied, curious agent, and
presented the first experiments we are aware of, which exploit
AC to learn an MDP based motion planner for a real, physical

FIGURE 9 | State space and transition distribution for an interesting

arm action in multi-agent system. The 4D state space is labeled as
follows: shoulder flexion/extension (1,2,3), arm abduction/adduction (a,b,c),
lateral/medial arm rotation (I,II,III), elbow flexion/extension (A,B,C). The red
arrows show the distribution of next states resultant of an interesting
state-action, which causes the hand to interact with the table. Each arrow
represents a state transition probability and the weight of the arrow is
proportional to the magnitude of that probability. Arrows in gray represent
boring state-actions. These work as expected, reliably taking the agent to
the intended goal state, to which they point.

humanoid robot. We demonstrated the efficacy of the AC concept
with a simple learning experiment wherein one learner controls
one of the iCub humanoid’s arms. The primary result of this first
experiment was that the iCub’s autonomous exploratory behav-
ior, guided by AC, efficiently generated a continually improving
Markov model, which can be (re)used at any time to quickly
satisfy path planning queries.

Furthermore, we conducted a second experiment, in which
the iCub was situated at a work table while three curious agents
controlled the its arms and torso, respectively. Acting in parallel,
the three agents had no access to one another’s state, however,
the interaction between the three learners produced an inter-
esting emergent behavior; guided only by intrinsic rewards, the
torso and arm coordinated their movements such that the iCub
explored the surface of the table.

4.1. SCALABILITY
From the standpoint of scalability, the state spaces used for the
arms and torso were more than tractable. In fact the time it took
the robot to move from one pose/state to another exceeded the
time it took to update the value function by approximately an
order of magnitude. From an experimental standpoint, the limit-
ing factor with respect to the size of the state-action space was the
time it took to try all the state-actions a few times. In these exper-
iments we connected states to their 2n nearest neighbors, where n

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 12

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

FIGURE 10 | Frequency of actions taken by three curious agents in

parallel. The most interesting actions are selected much more often
than the others. They correspond to moving the arm down and

leaning the torso forward. This results in the iCub robot being
interested in the table surface. Note the similarity in the behavior of
the two arms.

is the dimensionality of the configuration space, and we ran the
learning experiments for some 12 and 50 h, respectively.

Increasing the number of states in the MDPs would undoubt-
edly yield a more powerful planner, but it would also increase the
time required to learn the models sufficiently. One way to mit-
igate this effect would be to reduce the number of connections
between states. In fact, our impression from qualitative observa-
tion of the learning process is that the connectivity of the state
space was denser than necessary. Alternatively, we could of course
allow the robot to learn for longer. After all, children require years
to learn the kinds of skills we are trying to replicate.

4.2. DIVERSITY OF ACTIONS
In these experiments, the implementation of actions (section 2.1)
was designed to facilitate motion planning for the purpose of
avoiding non-linear constraints on the robot configuration such
as such as unwanted collisions. The actions simply set an attractor
in configuration space via the MoBeE framework at the Voronoi
center of a region of configuration space, which defines a state.
The robot then moved according to the transient response of the
dynamical system within MoBeE. The result was that our MDP
functioned as a sort of enhanced version of a PRM planner, how-
ever, the RL framework presented here is in principal capable of
much more.

In addition to the position control presented here, our MoBeE
framework supports force control in both joint space and opera-
tional space, and as far as our RL implementation is concerned,
actions can contain arbitrary control code. Therefore, future
curious agents for the iCub will benefit from different action
modalities, such as operational space reaches or even learned
dynamic motion primitives (Schaal et al., 2005).

4.3. BOOTSTRAPPING THE STATE SPACE
In our view, the main shortcoming of the work presented here
is that we have constructed the state-action spaces by hand. In
the future, it would be greatly desirable to automate this process,
perhaps in the form of an offline process that can run in the back-
ground, searching for sets of interesting poses (Stollenga et al.,
2013), and incrementally expanding the state-action space. The
only part of this proposition, which is unclear, is how to evalu-
ate the quality of the samples that should potentially define new
states.

4.4. HIERARCHIES OF AGENTS
The experiment “Discovering the table” is promising with respect
to the goal of extending our multi-agent MDP motion planning
to hierarchies of agents. The interesting (most frequently selected)
state-actions, as discovered by the current system, constitute each

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

agent’s ability to interact with the others. Therefore they are
exactly the actions that should be considered by a parent agent,
whose job it would be to coordinate the different body parts. It
is our strong suspicion that all state-actions, which are not inter-
esting to the current system, can be compressed as “irrelevant” in
the eyes of such a hypothetical parent agent. However, to develop
the particulars of the communication up and down the hierarchy
remains a difficult challenge, and the topic of ongoing work.

ACKNOWLEDGMENTS
The authors would like to thank Jan Koutnik, Matt Luciw, Tobias
Glasmachers, Simon Harding, Gregor Kaufmann, and Leo Pape,
for their collaboration, and their contributions to this project.

FUNDING
This research was supported by the EU Project IM-CLeVeR,
contract no. FP7-IST-IP-231722.

REFERENCES
Barto, A. G., Singh, S., and Chentanez, N. (2004). “Intrinsically motivated learn-

ing of hierarchical collections of skills,” in Proceedings of the 3rd International
Conference Development Learning (San Diego, CA), 112–119.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive ele-
ments that can solve difficult learning control problems. IEEE Trans. Syst. Man
Cybern. SMC-13, 834–846. doi:10.1109/TSMC.1983.6313077

Brooks, R. (1991). Intelligence without representation. Artif. Intell. 47, 139–159.
doi: 10.1016/0004-3702(91)90053-M

D’Souza, A., Vijayakumar, S., and Schaal, S. (2001). Learning inverse kinematics.
Int. Conf. Intell. Robots Syst. 1, 298–303. doi: 10.1109/IROS.2001.973374

Fedorov, V. V. (1972). Theory of Optimal Experiments. New York, NY: Academic
Press.

Frank, M., Leitner, J., Stollenga, M., Kaufmann, G., Harding, S., Forster, A., et al.
(2012). “The modular behavioral environment for humanoids and other robots
(mobee),” in 9th International Conference on Informatics in Control, Automation
and Robotics (ICINCO).

Gordon, G., and Ahissar, E. (2011). “Reinforcement active learning hierarchical
loops,” in The 2011 International Joint Conference on Neural Networks (IJCNN)
(San Jose, CA), 3008–3015. doi: 10.1109/IJCNN.2011.6033617

Gordon, G., and Ahissar, E. (2012). “A curious emergence of reaching,” in
Advances in Autonomous Robotics, Joint Proceedings of the 13th Annual TAROS
Conference and the 15th Annual FIRA RoboWorld Congress, (Bristol: Springer
Berlin Heidelberg), 1–12. doi: 10.1007/978-3-642-32527-4_1

Huang, X., and Weng, J. (2002). Novelty and reinforcement learning in the value sys-
tem of developmental robots. eds. C. G. Prince, Y. Demiris, Y. Marom, H. Kozima
and C. Balkenius (Lund University Cognitive Studies), 47–55. Available online
at: http://cogprints.org/2511/

Iossifidis, I., and Schoner, G. (2004). “Autonomous reaching and obstacle avoid-
ance with the anthropomorphic arm of a robotic assistant using the attractor
dynamics approach,” in Proceedings ICRA’04 2004 IEEE International Conference
on Robotics and Automation. Vol. 5 (IEEE, Bochum, Germany), 4295–4300. doi:
10.1109/ROBOT.2004.1302393

Iossifidis, I., and Schoner, G. (2006). Reaching with a redundant anthropomorphic
robot arm using attractor dynamics. VDI BERICHTE 1956, 45.

Itti, L., and Baldi, P. F. (2005). “Bayesian surprise attracts human attention,” in
Advances in neural information processing systems (NIPS), 547–554.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:
a survey. J. Artif. Intell. Res. 4, 237–285.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res. 5, 90.

Kim, J., and Khosla, P. (1992). Real-time obstacle avoidance using harmonic
potential functions. IEEE Trans. Rob. Automat. 8, 338–349.

Kompella, V., Luciw, M., Stollenga, M., Pape, L., and Schmidhuber, J. (2012).
“Autonomous learning of abstractions using curiosity-driven modular incre-
mental slow feature analysis,” in Proceedings of the Joint International Conference
Development and Learning and Epigenetic Robotics (ICDL-EPIROB-2012) (San
Diego, CA). doi: 10.1109/DevLrn.2012.6400829

Latombe, J., Kavraki, L., Svestka, P., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Rob. Automat. 12, 566–580. doi: 10.1109/70.
508439

LaValle, S. (1998). Rapidly-exploring random trees: a new tool for path planning.
Technical report, Computer Science Department, Iowa State University.

LaValle, S. (2006). Planning Algorithms. Cambridge, MA: Cambridge University
Press. doi: 10.1017/CBO9780511546877

Li, T., and Shie, Y. (2007). An incremental learning approach to motion planning
with roadmap management. J. Inf. Sci. Eng. 23, 525–538.

Lindley, D. V. (1956). On a measure of the information provided by an experiment.
Annal. Math. Stat. 27, 986–1005. doi: 10.1214/aoms/1177728069

Luciw, M., Graziano, V., Ring, M., and Schmidhuber, J. (2011). “Artificial curiosity
with planning for autonomous perceptual and cognitive development,” in IEEE
International Conference on Development and Learning (ICDL), vol. 2 (Frankfurt
am Main), 1–8. doi: 10.1109/DEVLRN.2011.6037356

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental
robotics: a survey. Connect. Sci. 15, 151–190. doi: 10.1080/0954009031000
1655110

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). “The icub
humanoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems
(New York, NY: ACM), 50–56.

Mugan, J., and Kuipers, B. (2012). Autonomous learning of high-level states and
actions in continuous environments. IEEE Trans. Auton. Mental Dev. 4, 70–86.
doi: 10.1109/TAMD.2011.2160943

Ngo, H., Luciw, M., Foerster, A., and Schmidhuber, J. (2012). “Learning skills
from play: artificial curiosity on a katana robot arm,” in Proceedings of the 2012
International Joint Conference of Neural Networks (IJCNN) (Brisbane, Australia).

Nori, F., Natale, L., Sandini, G., and Metta, G. (2007). “Autonomous learning of
3d reaching in a humanoid robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (San Diego, CA), 1142–1147.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems
for autonomous mental development. IEEE Trans. Evol. Comput. 11, 265–286.
doi: 10.1109/TEVC.2006.890271

Pape, L., Oddo, C. M., Controzzi, M., Cipriani, C., Förster, A., Carrozza, M. C., et al.
(2012). Learning tactile skills through curious exploration. Front. Neurorobot.
6:6. doi: 10.3389/fnbot.2012.00006

Perez, A., Karaman, S., Shkolnik, A., Frazzoli, E., Teller, S., and Walter, M.
(2011). “Asymptotically-optimal path planning for manipulation using incre-
mental sampling-based algorithms,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (San Francisco, CA: IEEE), 4307–4313.
doi: 10.1109/IROS.2011.6094994

Peters, J., and Schaal, S. (2008). Learning to control in operational space. Int. J. Rob.
Res. 27, 197. doi: 10.1177/0278364907087548

Piaget, J., and Cook, M. T. (1952). The Origins of Intelligence in Children. New York,
NY: International Universities Press. doi: 10.1037/11494-000

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2005). “Learning movement
primitives,” in International Symposium on Robotics Research, Vol. 15, eds.
D. Paolo and C. Raja (Berlin Heidelberg: Springer), 561–572. doi: 10.1007/
11008941_60

Schmidhuber, J. (1991a). “Curious model-building control systems,” in Proceedings
of the International Joint Conference on Neural Networks. Vol. 2 (Singapore: IEEE
Press), 1458–1463.

Schmidhuber, J. (1991b). “A possibility for implementing curiosity and bore-
dom in model-building neural controllers,” in Proceedings of the International
Conference on Simulation of Adaptive Behavior: From Animals to Animats, eds
J. A. Meyer and S. W. Wilson (Cambridge, MA: MIT Press/Bradford Books),
222–227.

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curios-
ity, creativity, music, and the fine arts. Connect. Sci. 18, 173–187. doi:
10.1080/09540090600768658

Schmidhuber, J. (2013). POWERPLAY: training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem. Front.
Psychol. 4:313. doi:10.3389/fpsyg.2013.00313

Schoner, G., and Dose, M. (1992). A dynamical systems approach to task-
level system integration used to plan and control autonomous vehi-
cle motion. Rob. Auton. Syst. 10, 253–267. doi: 10.1016/0921-8890(92)
90004-I

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 14

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Frank et al. RL for motion planning

Srivastava, R. K., Steunebrink, B. R., and Schmidhuber, J. (2013). First experi-
ments with POWERPLAY. Neural Netw. 41, 130–136. doi: 10.1016/j.neunet.2013.
01.022

Stollenga, M., Pape, L., Frank, M., Leitner, J., Förster, A., and Schmidhuber, J.
(2013). “Task-relevant roadmaps: a framework for humanoid motion plan-
ning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Tokyo.

Storck, J., Hochreiter, S., and Schmidhuber, J. (1995). “Reinforcement driven infor-
mation acquisition in non-deterministic environments,” in Proceedings of the
International Conference on Artificial Neural Networks. Vol. 2 (Paris: Citeseer),
159–164.

Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., and Reif, J. H. (2005). Narrow passage
sampling for probabilistic roadmap planning. IEEE Trans. Rob. 21, 1105–1115.
doi: 10.1109/TRO.2005.853485

Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and semi-
MDPs: a framework for temporal abstraction in reinforcement
learning. Artif. Intell. 112, 181–211. doi: 10.1016/S0004-3702(99)
00052-1

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction, Vol.
1. Cambridge, MA: Cambridge Univ Press.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., et al.
(2001). Autonomous mental development by robots and animals. Science 291,
599–600. doi: 10.1126/science.291.5504.599

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 05 July 2013; accepted: 04 December 2013; published online: 06 January
2014.
Citation: Frank M, Leitner J, Stollenga M, Förster A and Schmidhuber J (2014)
Curiosity driven reinforcement learning for motion planning on humanoids. Front.
Neurorobot. 7:25. doi: 10.3389/fnbot.2013.00025
This article was submitted to the journal Frontiers in Neurorobotics.
Copyright © 2014 Frank, Leitner, Stollenga, Förster and Schmidhuber. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 7 | Article 25 | 15

http://dx.doi.org/10.3389/fnbot.2013.00025
http://dx.doi.org/10.3389/fnbot.2013.00025
http://dx.doi.org/10.3389/fnbot.2013.00025
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Curiosity driven reinforcement learning for motion planning on humanoids
	Introduction
	Artificial Curiosity (AC)
	Developmental Robotics
	The Path Planning Problem
	Reactive Control
	A Curious Confluence

	Material and Methods
	Action Implementation
	State-Action Space
	Connecting states with actions
	Modeling transition probabilities

	Artificial Curiosity
	KL divergence
	Dynamic state transition distributions

	Reinforcement Learning

	Results
	Planning in a Static Environment—Learning to Avoid Self-Collisions and Cable Length Infeasibilities
	Discovering the Table with a Multi-Agent RL System
	Planning in a dynamic environment

	Discussion
	Scalability
	Diversity of Actions
	Bootstrapping the State Space
	Hierarchies of Agents

	Acknowledgments
	Funding
	References

