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Consciousness is a complex and multi-faceted phenomenon defying scientific explanation.
Part of the reason why this is the case is due to its subjective nature. In our previous
computational experiments, to avoid such a subjective trap, we took a strategy to
investigate objective necessary conditions of consciousness. Our basic hypothesis was
that predictive internal dynamics serves as such a condition. This is in line with theories
of consciousness that treat retention (memory), protention (anticipation), and primary
impression as the tripartite temporal structure of consciousness. To test our hypothesis,
we analyzed publicly available sleep and awake electroencephalogram (EEG) data. Our
results show that EEG signals from awake or rapid eye movement (REM) sleep states
have more predictable dynamics compared to those from slow-wave sleep (SWS).
Since awakeness and REM sleep are associated with conscious states and SWS with
unconscious or less consciousness states, these results support our hypothesis. The
results suggest an intricate relationship among prediction, consciousness, and time, with
potential applications to time perception and neurorobotics.
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1. INTRODUCTION

Consciousness is a complex and multi-faceted phenomenon defy-
ing scientific explanation. However, recent advances in neuro-
science methods and increased attention to the phenomenon have
led to serious scientific investigations of the subject (Edelman,
1989; Crick, 1994; Koch, 2007). Features and aspects of con-
sciousness include first-person nature, qualitative character, phe-
nomenal structure, subjectivity, self-perspectival organization,
unity, intentionality transparency, and dynamic flow (Van Gulick,
2004).

In this paper, we will focus on the dynamic, temporal nature
of consciousness (James, 1890). Time is central to brain function
since most of the major functions of the brain such as memory
(Shastri, 2002), prediction (Henn, 1987; Gross et al., 1999; Rao
and Sejnowski, 2000a; Kozma and Freeman, 2003), and motor
action (Graziano et al., 2002) unfold over time. Furthermore
there are temporal mechanisms at all scales, from fast and slow
synaptic dynamics (Markram et al., 1997; Bi and Poo, 1998) to
recurrent long-range projections among cortical and subcorti-
cal brain regions (Felleman and Van Essen, 1991; Douglas et al,,
1995), and long-term plasticity that form the basis of organismal
memory (Artola and Singer, 1987). Many of these temporal prop-
erties can potentially contribute to consciousness, but in this work
we will specifically investigate the relationship between predictive
dynamics and conscious states. Prediction has gained increasing
interest from researchers as one of the central functions of the
brain (Wolpert et al., 1995, 1998; Moller, 1997; Gross et al., 1999;
Kawato, 1999; Witney et al., 1999; Rao and Sejnowski, 2000b;
Wolpert and Flanagan, 2001; Diedrichsen et al., 2003; Bongard
et al., 2006). However, in the works above, prediction has not

been directly associated with consciousness. Husserl (1966) was
perhaps the first to notice the relationship between prediction
and consciousness, and proposed that consciousness is based on
a tripartite temporal structure that includes retention (memory),
protention (anticipation or prediction), and primary impression
(see chapter 6 in Dainton, 2006). Here we will focus on the
predictive aspect of conscious states.

In our previous computer simulation works, we argued that
predictable internal brain dynamic is a necessary condition of
consciousness (Kwon and Choe, 2008; Choe et al., 2012; Chung
et al., 2012). The argument was based on agency, self-awareness,
and high predictability of self-authored actions. Experimental
and theoretical support exists for this idea. For example, Daprati
et al. (1997) reviews experiments relating agency and anticipa-
tion of own action, and Hesslow (2002) suggested that simulation
of action relates to conscious thought (also see experiments on
body-ownership reported by Tsakiris et al., 2007).

In this article, we tested the hypothesis that predictable internal
brain dynamics are correlated with conscious states. We analyzed
public electroencephalogram (EEG) data from the PhysioBank
(Goldberger et al., 2000) to test our hypothesis. We took the
EEG data taken during awake and sleeping states, both slow-
wave sleep (SWS) and rapid eye movement (REM) sleep, and
measured the predictability in their dynamics. These three states
are associated with varying degree of consciousness, thus they
serve as a good testing ground for our analysis. Awake state is
conscious by definition, and REM state also generally consid-
ered conscious mainly due to lucid dreams during REM sleep
(LaBerge et al., 1981). Dreams do occur during SWS but com-
pared to REM sleep, memory and details lags behind significantly
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(Cavallero et al., 1992), thus consciousness seems to be reduced
or abolished. Our results based on predicting inter-peak inter-
val (IPI) in the EEG signals turned out to be consistent with
our hypothesis. Conscious states (awake or REM sleep) showed
high predictability while unconscious (or less conscious) states
(SWS) low predictability, i.e., awake and REM sleep EEG data
exhibited high predictability while SWS EEG data showed low
predictability.

In the following, we will present our EEG data analysis method
and the results, and discuss limitations of our findings and their
implications on time perception and neurorobotics.

2. MATERIALS AND METHODS

2.1. EEG DATA

For our analysis, we used the EEG data from PhysioBank.
PhysioBank is a free online database that has a large, growing
collection of digitized physiological signals and related data for
the biomedical research community (Goldberger et al., 2000).
The particular data set we used is the Sleep-EDF Database which
includes recordings obtained from Caucasian males and females
(21-35 years old) under no medication. The recordings contain
horizontal EOG, Fpz-Cz, and PzOz EEG, sampled at 100 Hz. The
details of the Sleep-EDF Database is described in Kemp et al.
(2000). Among these data sets, we used the Fpz-Cz EEG data of
the four subjects (two males and two females) from the database.
An EEG amplifier measures voltage difference between different
points on the scalp. The Fpz-Cz EEG is the measure of the two

electrodes that are located at the Fpz (above the nasion) and the
Cz position (top of the head), respectively.

2.2. EEG DATA ANALYSIS

Figure 1 shows the EEG data sets we used for our analysis, from
Kemp et al. (2000). We used EEG signals from four subjects with
recordings during awake state (A,B), REM sleep (C,D), and SWS
(E,F). We convolved the EEG signal with a Gaussian filter with
o = 1 to smooth the signals. This was done to avoid sharp, high
frequency peaks that made prediction difficult in all conditions
(awake, REM, and SWS).

We used a multi-layer neural network to measure the pre-
dictability of the EEG time series data. The idea is to train a
neural network to predict future data points in the EEG time
series, based on data points in the past. A more predictable
data set will result in lower training error. Neural networks
like these have been shown to be effective non-linear predic-
tors for time-varying signals (Principe et al., 1992). Due to
the non-linear property, compared to linear predictors such as
autoregressive models (Blinowska and Malinowski, 1991), neu-
ral networks are known to give generally better performance
(Coyle et al., 2005). Note, however, that the particular type of
algorithm used to measure predictability is not of central impor-
tance and we expect similar results with any other reasonable
algorithm.

The specific method we used was based on our earlier work
reported in Kwon and Choe (2008), with one minor difference
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FIGURE 1 | EEG Data. EEG data (Kemp et al., 2000) from the PhysioBank (circles). (C) REM, raw data. (D) REM, smoothed and peaks identified. (E)
(Goldberger et al., 2000) are shown. Each row represents data from each SWS, raw data. (F) SWS, smoothed and peaks identified. Each data set had
subject (four total) and each column represents different states. (A) Awake, 30,000 data points but here we are showing only the first 1000 for a better
raw data. (B) Awake, smoothed (Gaussian filter, o = 1), and peaks identified view of the details.
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that exact error values were measured in this study instead of
using the adaptive error rates. We trained a multi-layer neural
network where the inputs are k past data points (k = 10 in our
case) and the target output is the current data point in each EEG
time series (Figure 2). Each EEG time series was traversed with a
window of size 10 to construct the input set and the value imme-
diately following the time window was used as the target value,
thus forming the data set.

Using the neural network predictor described in Figure 2,
given an EEG data sequence, we measured how predictable the
k + 1-th data point is, given the past k data points. For each
data set, a separate neural network was trained. The network
was trained using the Levenberg—Marquardt algorithm, following
Hagan and Menhaj (1994). In the algorithm, a damping param-
eter A determines how much the algorithm will approximate
Newton’s method (small A) or gradient descent (large ). The
parameter A was initially set to 0.001 with its decrease factor set
to 0.1 and increase factor to 10 (for details on A adjustment, see
Hagan and Menhaj, 1994).

Initially, we applied the above approach to predict the con-
volved EEG time series directly. However, we were not able to
find any significant difference in predictability across the three
different conditions. Based on our successful pilot analysis of
single neuron recording (spike train) data, where we were able
to predict the inter-spike interval (ISI), we considered detect-
ing the EEG signal peaks and predicting the inter-peak interval
(IPI), or inter-peak distance (Tyner and Knott, 1983, p. 83). Please
refer to the Discussion section for more information regard-
ing neuronal ISI prediction and why we did not include those
results here.

Output

FIGURE 2 | A neural network predictor for time series data. A multi-layer
neural network consisting of kK = 10 input units, 10 hidden units, and one
output unit was trained. The input values were taken from k consecutive
values from a time series leading up to time t (time step t — k+ 1 to t), and
the target output value set to the value at time step t + 1. The network is
activated in a feed-forward manner, through the connections, and the error
in the output vs. the target value back propagated to adjust the connection
weights. See the text for more details.

To measure IPI, we used a simple local search (whether data
point at ¢ has a higher value than its immediate neighbors at
t — 1 and t 4 1) to detect the local peaks in the convolved EEG
data (Figures 1B,D,F, marked with circles). From these peak loca-
tions, we calculated the inter-peak interval (IPI), and collected a
sequence of IPI values for each EEG data set. A unique neural
network was trained for each of the 12 combinations of experi-
mental subject and conscious state (Awake, REM, SWS). To train
and test each network, the IPI time series was calculated from the
relevant EEG dataset, and split into training set (60%), validation
set (15%), and test set (25%).

3. RESULTS

The IPI prediction error on novel data (not used during train-
ing or validation) are summarized in Figure3 and the error
distributions shown in Figure 4.

The results show that, for all four subjects, on average, both
awake state and REM have lower IPI prediction error than SWS
(Figure 3). All differences, except for REM vs. AWAKE state
for subject 4, were significant (t-test, p < 107, where n varied
[~2000] depending on how many peaks were in each data set; see
below for details on statistical analysis). These results support our
hypothesis regarding the predictability of internal state dynamics
and conscious states (i.e., they should be correlated).

For t-test, the absolute error in IPI prediction was log-
transformed to correct for the positive skewness of the IPI error
distributions (Figure 4). The effect size (Cohen’s d) was about
medium (d > 0.5) for all REM vs. SWS, between small and
medium (0.2 <d < 0.5) for all AWAKE vs. SWS and for all
REM vs. AWAKE states (except for REM vs. AWAKE for sub-
ject 4). See Table1 for details. A medium effect size is large
enough to compare means without further statistical analysis,
while a small effect size requires further analysis (Cohen, 1977).
The statistical power of ¢-test depends on three factors: the mean
differences, the residual variance, and the sample size. Given a
fixed Cohen’s d, increasing sample size improves statistical power;
since the degrees of freedom of the #-test are increased, the mean
differences do not need to be as large to be significant (Kenny,
1987). Based on this, we can assert the main interpretation above.

We also ran the Fast Fourier Transform (FFT) power spectral
analysis with the EEG data to rule out the possibility that of our
findings simply reflect the varying power of alpha waves in the
three tested conditions. Alpha waves are in the frequency range
of 7.5-12.5Hz (Berger, 1929) and are known for synchronous,
and coherent sinusoidal oscillations in EEG brain signals (Nunez
et al., 2001; Gerrard and Malcolm, 2007). Therefore, alpha waves
are probably most predictable neural oscillations in EEG brain
signals. In our FFT power spectral analysis results (Figure5),
alpha waves were not notably observed for all data, even in the
awake states. This is partly because alpha waves are reduced with
open eyes, drowsiness, and sleep. Note that in the EEG data
we analyzed the participants were conducting normal activity at
home with open eyes when the AWAKE EEG data were recorded.
Therefore, it seems that there is no strong association between IPI
prediction and the alpha wave spectral power in the EEG data.

There were a couple of interesting properties we observed in
the results. First, REM data had the lowest IPI prediction error,
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FIGURE 3 | Summary of EEG IPI prediction error results (mean and
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dynamics may be more prominent during conscious states. All differences
were significant (t-test, p < 107%), except for REM vs. AWAKE for subject 4.
See text for details. Awake state having higher IP| prediction error than REM
state is somewhat unexpected, which we will discuss further in the
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consistent for all four subjects. REM has the highest peak near zero error,
closely followed by awake state, and finally SWS which shows the lowest
peak. SWS has the heaviest tail, meaning that high error values are much
more common than awake state or REM. (A) Subject 1, (B) subject 2, (C)
subject 3, (D) subject 4.

Table 1 | Effect size (Cohen’s d).

REM vs. SWS Awake vs. SWS REM vs. Awake
Subject 1 0.6605 0.3173 0.3647
Subject 2 0.5104 0.2013 0.3225
Subject 3 0.5027 0.2515 0.2586
Subject 4 0.4534 0.3927 0.0368

even compared to the awake state. This was somewhat unex-
pected since we hypothesized predictability will be correlated
with the degree of consciousness and by default we expected
that the awake state is the most conscious. This is an interesting
counterintuitive result. Second, all error distributions have a
broader spread toward positive error, relative to negative error
(i.e., the distribution is positively skewed, with skewness ranging
from 0.86 to 1.69, Figure4). Since the error is calculated as
error = true — predicted, underestimation of the IPI seems more
error-prone than overestimation. This could be due to the skew-
ness in the IPI distribution itself (Figure 6): See the Discussion
section for a detailed discussion on both phenomena.

4. DISCUSSION

In this article, we analyzed publicly available EEG data from
sleep and awake states to measure the predictability of the signals

under conscious (awake and REM sleep) and unconscious (SWS)
conditions. We found that the predictability of EEG signals cor-
related with the degree of consciousness. These results support
our earlier hypothesis that predictable internal brain dynamics
is a necessary condition of consciousness. In the following, we
will discuss potential issues and interesting observations from our
study, and propose potential applications of our finding to time
perception and neurorobotics.

There are potential limitations of our approach as we briefly
mentioned in the Materials and Methods section. We measured
predictability in the inter-peak interval in the EEG signals, not
directly on the raw EEG signals. Predictability measured on raw
EEG signals did not show any significant differences among the
three conditions: awake, REM, and SWS (pilot results, data not
shown). This could be due to multiple factors, one of which is the
nature of the EEG signals. For example, EEG signals are weighted
mixtures of on-going electrical activity in the brain. Also, gen-
erally reduced levels of activity during SWS may result in flatter
signals (slowly changing and low-amplitude, further confounded
by mixing) which may be easier to extrapolate from. Based on this
observation, we initially analyzed single neuron spike train data
obtained during sleep and awake states by Steriade et al. (2001).
Using the data, we used the same feed-forward neural network
predictor to predict the inter-spike interval (ISI) under awake,
REM, and SWS conditions. Our results were consistent with what
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we reported here, however, the data set was very small (on the
order of 100 spikes per condition, compared to thousands of
peaks in the EEG data) so we could not draw meaningful conclu-
sions. However, since we found that using discrete events (spikes)
instead of the continuous wave form gave promising results, we
tried to recover such events in the EEG data which led us to the
inter-peak interval (IPI) measure. (Note that the above is sim-
ply our motivation to use EEG IPI, and not a claim that we are
extracting spike timing information from the EEG signals.) Aside
from the dynamic data we discussed above (raw EEG, IPI based on
EEG, or ISI), event-related potential (ERP) could have been ana-
lyzed. However, ERPs are by definition event-related, thus they
are anchored to specific tasks or stimuli. Furthermore, ERPs are
averages of over large number of trials. Due to these reasons, ERPs
may not be suitable for studying ongoing baseline states such
as awake, dreaming, or sleep, although they may be effective in
detecting transition events between these on-going states (Ogilvie
etal., 1991).

One rather unexpected result was that the IPI prediction error
was lower for REM sleep than awake state, and significantly so
[t-test, p < 107° in all cases (except for REM vs. AWAKE for sub-
ject 4)]. Does this mean that subjects are more conscious during
REM sleep than when they are awake? The reason for this may
again be due to the mixed nature of EEG signals, plus the nat-
ural sources of randomness in the stimulus environment during
the awake state. Because the awake EEG signals are driven both by

the internal brain dynamics and the external stimuli, a mixture
of the two may be slightly less predictable. A possible way to iso-
late the internal vs. external sources would be to use blind source
separation, e.g., independent components analysis (Delorme and
Makeig, 2004), and correlate the isolated components with the
stimulus statistics. This way, we can rule out the externally driven
signal variability during awake state. Our prediction is that the
predictability of these internal components would be as high as
that of the REM data.

Another interesting property of the IPI prediction error dis-
tribution is its positive skewness under all conditions (Figure 4).
Positive skewness means more positive error than negative error,
which indicates underestimation of IPI (since error = true —
predicted). One possible explanation for this is that the prediction
mechanism may be tuned more to shorter IPIs as the EEG signals
generally tend to show high-frequency bursts followed by occa-
sional pause of low-frequency intervals. The IPI distribution itself
(Figure 6) shows that, for all cases, the distributions are positively
skewed, and so the number of IPI values smaller than the mean is
more frequent than those with values larger than the mean. This
trend can explain the positive skewness of the IPI prediction error.

Finally, we would like to discuss briefly some implications
of our results on time perception and neurorobotics. Our main
findings were (1) the existence of predictable dynamics and its
relation to conscious states, and (2) its discrete (peak to peak
event) and slow (~100 to 150 ms, compared to action potentials)

Frontiers in Neurorobotics

www.frontiersin.org

June 2014 | Volume 8 | Article 18 | 5


http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Yoo et al.

Predictable brain dynamics and consciousness

nature (Figure 6). First, the very existence of such regular and
predictable internal dynamics could be a foundation for time per-
ception mechanisms, for example, as a pace maker or a internal
metric against which order and duration (Wittmann and Paulus,
2008; Maniadakis et al., 2009) can be inferred. Second, the dis-
crete and slow nature of such predictable dynamics could be well
suited to behavior and cognition, by providing partitionings in
perceived internal time that correspond to behavioral/cognitive
time scales. A deeper understanding of this connection can
lead to robust time perception and control mechanisms for
neurorobotics.
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