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In this article, we propose an architecture of a bio-inspired controller that addresses
the problem of learning different locomotion gaits for different robot morphologies. The
modeling objective is split into two: baseline motion modeling and dynamics adaptation.
Baseline motion modeling aims to achieve fundamental functions of a certain type of
locomotion and dynamics adaptation provides a “reshaping” function for adapting the
baseline motion to desired motion. Based on this assumption, a three-layer architecture
is developed using central pattern generators (CPGs, a bio-inspired locomotor center
for the baseline motion) and dynamic motor primitives (DMPs, a model with universal
“reshaping” functions). In this article, we use this architecture with the actor-critic
algorithms for finding a good “reshaping” function. In order to demonstrate the learning
power of the actor-critic based architecture, we tested it on two experiments: (1) learning
to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of
actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate
the advantages and disadvantages of different actor-critic based learning algorithms for
different morphologies. Finally, based on the analysis of the experimental results, a generic
view/architecture for locomotion learning is discussed in the conclusion.
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1. INTRODUCTION
Locomotion modeling for robotics aims to endow a robot with
the ability to propel itself in an environment. Traditional engi-
neering approaches can model locomotion on a rigid-body robot
with detailed modeling of a particular environment and body,
such as zero moment point model and inverse kinematics model
(for a review see Siciliano and Khatib, 2008). So traditional engi-
neering approaches based locomotion models can work quite well
in a constrained context but might have difficulties in adapting to
different environments. However, a lot of modern robots are built
on the basis of different animals, especially with distinct mor-
phologies, e.g., fish robot (Marchese et al., 2013), worm robot
(Ueno et al., 2014) and roboy humanoid (Pfeifer et al., 2014).
None of their morphologies can be easily modeled. Therefore,
bio-inspired approaches have been widely applied to model loco-
motion capabilities for such kind of robots (for a review see
Ijspeert, 2008, Li, 2014), providing more flexibility focusing on
the interaction with the environment and the emergence of dif-
ferent gaits. The dynamic systems theory was proposed by Thelen
(1996) for emphasizing the importance of environmental inter-
action on the development of locomotor systems. The salient
role of morphology (body) in the process of gait emergence was
highlighted by Pfeifer and Bongard (2006). In order to model a
locomotor system on a flexible body, we need to design (a) an
interaction process involving the body and the environment; (b)

a neural controller which can be adapted into a particular body
following a design methodology and find a proper gait with this
body in a particular environment. Therefore, in this article, key
components (a body, an environment and a neural controller) of
a locomotor system are highlighted and then a method for design-
ing a robotic locomotion system adaptable to these components
(based on learning) is proposed.

Figure 1 shows a schema in which three key components of
a locomotor system interact. The neural controller is a structure
that assimilates perceptual information from the environment
and the state space of the body. It can be highly complex
with brain-like functions such as memorization, perception (e.g.,
vision), learnability and so forth. The body is a physical medium
through which neural systems contact the environment. In most
robotics scenarios, it refers to a high DOF mechanical structure.
The environment is not specifically modeled but considered to
have a significant role affecting locomotion. In the mechanism
described by Figure 1, the neural controller emits control sig-
nals to the physical body and receives the perceived changes in
body states. The body receives the control signals and acts on the
environment. Between the body and the environment, the con-
tact force (e.g., supporting force, tangential force.) determines
the quality of locomotion. Then the neural controller can also
perceive information from the environment to evaluate its own
behavior in order to send out better control signals. However,
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FIGURE 1 | This figure sketches the mechanism of three-component

locomotion. The arrows indicate the functional information flow amongst
the components, the neural controller, the body and the environment.

without the complexity of modeling an environment and a
body like traditional engineering approaches, a methodology is
developed in this article for designing a neural controller that (a)
has the ability to learn in the above-mentioned three component
interaction process and (b) can be utilized on different morpholo-
gies. We provide an example instantiation and demonstrate its
generalizability by evaluating it on two robot morphologies.

In terms of neural controllers, choosing central pattern genera-
tors (CPGs) is one mainstream bio-inspired solution to modeling
quadrupedal locomotion (Degallier et al., 2008; Harischandra
et al., 2011; Zhao et al., 2012). CPGs are neural circuits which
are located in the spinal cord of vertebrates and able to gen-
erate rhythmic movement without sensory feedback (Orlovsky
et al., 1999; Latash, 2008). According to Grillner et al. (2005)
and Rybak et al. (2006), CPGs receive input from a lot of brain
parts (e.g., basal ganglia and brainstem) and muscles. This means
CPGs not only provide strong adaptation capabilities to a certain
type of locomotion but also are useful to explore fundamental
locomotion principles for transferring animal locomotion capa-
bilities to robots. In most work, CPGs are used as sensory-input-
dependent neural networks of which the output is considered
as a force or trajectory generator. According to Ijspeert et al.
(2013), there are two modeling objectives for locomotion capabil-
ities: One is a baseline behavior which contains core foundational
patterns for a type of motor ability, for example the coordina-
tion of joints. After this is accomplished, the second concerns
dynamic adaptation: how the baseline patterns can adapt to com-
plex and dynamical changes pertaining to the environment or
the physical body. On the basis of these two objectives, Section
2.1 will introduce the design of baseline behavior and dynamic
adaptation.

The concept of motor primitives has been defined by
researchers from biology as sets of force-fields generated by mus-
cle synergies (Mussa-Ivaldi, 1999). It is also coined as “building
blocks of movement generation” by Schaal et al. (2004) from the
perspective of motor control. A very important function of CPGs
for adaptation is the “reshaping” function which reshapes the out-
put of neural circuits into the required one (Rybak et al., 2006;

Ijspeert et al., 2013). Dynamic motor primitives (DMPs) can be
used as a universal morphed oscillator which can turn rhyth-
mic output into desired ones by constraining search space to a
period of rhythmic input (for details, please refer to Section 2).
Therefore, in our work, DMPs are used to model the function of
dynamics adaptation, a representation of “reshaping” function.
The model of DMPs is broadly used for motor learning (Peters,
2007; Kober et al., 2012) in a supervised learning algorithms
since it has a good capability of reshaping the output to differ-
ent dynamics with linear regression techniques. Therefore, in this
article, DMPs are chosen as an interface because of its learnability
with RL algorithms.

As for the mechanism of interaction, reinforcement learn-
ing (RL) is a particularly effective mechanism for searching
proper “reshaping” functions in locomotion learning, especially
for robotic applications (Nakamura et al., 2007; Endo et al., 2008;
Li et al., 2013b). Nakamura et al. (2007) and Li et al. (2013b)
demonstrated CPG architectures without a general “reshaping”
function. The former developed a “reshaping” function based
on a predefined sum of several variables and the latter pro-
posed a “reshaping” function based on the limited sum of sensory
input. Proper joint dynamics cannot be properly found with lim-
ited “reshaping” function. In our work, periodic DMPs are used
to avoid this problem. Endo et al. (2008) aimed to learn leg
trajectories of a biped based on a detailed model of the body
(inverse kinematics). However, in our work, the body does not
need to be modeled, which makes our model able to be used
on different morphologies. The novelty of our method on the
implementation level focus on the emergence of a certain type
of gait in an interactive learning process provided by RL. From
the perspective of neuroscience, RL also sketches a bio-inspired
function for integrating different perceptual information, espe-
cially the actor-critic mechanism regarding basal ganglia (Wiering
and van Otterlo, 2012) emphasized by Grillner et al. (2008) in
their biological CPG structure. On this basis, we consider using
CPGs in an actor-critic RL schema (CPG-Actor-Critic) a suit-
able approach which we adopt after accomplishing the design
of the CPG architecture. Section 2.2 will introduce the use of
CPG-Actor-Critic.

Based on the above-mentioned perspective, in order to test
the neural controller, two experiments were conducted on two
different-morphology robots, the NAO robot (rigid body) and
ghost dog (soft body), for learning crawling and running, respec-
tively (Section 3). After that, the process of locomotion capa-
bilities emerging from baseline behaviors which serve as “prior
knowledge” is analyzed and the detailed analysis of dynam-
ics adaptation is shown in terms of joint dynamics. Finally in
Section 4, the conclusion regarding a generic neural structure of
locomotion learning is drawn for the purpose of implementing
locomotion learning in a robot.

2. METHODS AND THEORIES
2.1. DESIGN OF THE CPG ARCHITECTURE
CPGs have been investigated to model locomotion in many
robotic applications and there are also many existing CPG mod-
els inspired by the biological underpinnings of various levels
and species (Ijspeert, 2008). In this respect, oscillator models are
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the ones commonly used and with a lot of advantages. Firstly,
oscillator models can be easily modeled by ordinary differential
equations (ODEs). Secondly, dynamics of oscillators come from
the topology of couplings in the oscillator network, which is based
on the well-established dynamic systems theory, especially for the
symmetric topology (Golubitsky and Stewart, 2003). So oscilla-
tor models have a strong mathematical background. Moreover,
the focus of oscillator models is on how phase difference and
synchronization of different oscillators can be determined by the
topology couplings or frequencies of the oscillator populations,
rather than rhythm generation. So an oscillator in the model
is not a model of a neuron but rather works like a complete
oscillation center. If each DOF of a robotic body is controlled
by at least one oscillator, in terms of Grillner et al’s (Grillner,
1985) assumptions, oscillator models can handle the problem of
how each DOF is coordinated with others within a high-DOF
body. According to Grillner et al’s research (Grillner et al., 2008),
CPGs biologically are able to assimilate two functions: dynam-
ics adaptation and posture control. If each DOF of the robotic
joint controlled by an oscillator is considered as an adaptive
limit cycle, dynamics adaptation is the function of reshaping the
limit cycle and the posture control points to the ability of shift-
ing the oscillation center. There are also many oscillators with
such functionalities (Righetti and Ijspeert, 2006; Pouya et al.,
2010).

Rybak et al. (2006) uncovered a possible biological anatomy
of CPGs (Figure 2 left). In this structure, the rhythm genera-
tor (RG) layer provides a primitive source of oscillatory signals.
The pattern formation (PF) layer is a level on which all the
RGs are mutually connected to form the phase-separated out-
put. The dynamics adaptation (DA) represents the functions of
motoneurons of which the output is sent directly to muscle
fibers. In this layer, the output of PF layer is adapted into dis-
tinct dynamics in order to adapt to different environments or
interactions. After reshaping the output of PF layer in DA layer,
the RG itself turns out to be a “clocking” driver for CPGs. This
three-layer architecture has been implemented to model walk-
ing behaviors (Li et al., 2013b; Nassour et al., 2013). This also
matches the two objectives (Section 1) of locomotion model-
ing: from baseline behaviors to dynamics adaptation. RG and
PF layers represent the architecture of baseline behavior. These
two layers encode fundamental characteristics of one type of
locomotion. For example, crawling is experimentally observed
to be one type of locomotion featured by anti-phase move-
ment of the ipisilateral limbs and in-phase movement of diag-
onal limbs, as coupling information (Righetti et al., 2008). The
final layer is a layer of adapting baseline dynamics into desired
locomotion.

2.1.1. The method of designing the baseline behavior
Golubitsky and Stewart (2003) propose an approach to design-
ing the symmetric CPG topology based on the dynamic sys-
tems theory. A four-cell architecture (Figure 3) is widely used
to coordinate the main joints (the joints attached to the main
body, usually hip and shoulder joints) of a locomotor sys-
tem (Degallier et al., 2008; Li et al., 2011). It is mathemati-
cally proved that this architecture can simulate the synchrony

FIGURE 2 | Left: The functional structure of CPG anatomy; each block
represents one-layer functionality. Right: The neural structure of CPG
employed for crawling. The single circle above most represents the RG
layer as an oscillator. The recurrent neural network composed of connected
circles represents the function of the PF layer. The diamonds represent
functions of the DA layer. Within the PF-layer network, the four-cell network
in the dash-line frame controls the rhythms of pitch motion for Shoulders
and Hips. The other four outside the dash-line frame control the roll motion
of Shoulders and Hips. The arrow-head lines represent in-phase oscillation
(the phase difference between two oscillators is 0 or 2π ). The dot-head
lines represent anti-phase oscillation (the phase difference between two
oscillators is π ).

of different quadrupedal gaits, such as trot, walk, pace and
gallop. If the couplings are changed, the transition amongst
those gaits can be simulated too. On the other hand, as a
minimal topology of CPGs, it can be extended to an eight-
cell architecture by using zig-zag or cross coupling to generate
all kinds of gaits for quadrupeds according to Golubitsky and
Stewart (2003). Since all the quadrupedal animals have simi-
lar gaits and the four-cell architecture accounts for most such
gaits (Righetti, 2008), it can be used to model the basic dynam-
ics of each gait, including preliminary coupling, trajectory and
frequency.

Before using this architecture, the existence of stable periodic
solutions has to be determined according to the H/K theorem
(Golubitsky and Stewart, 2003; Righetti, 2008) (for details, please
refer to Supplementary Material). As examples of the H/K the-
orem, regarding the two gaits we are concerned with in this
article, we can mathematically prove that the stable periodic solu-
tions exist. Assume the nodes in Figure 3 control different joints
respectively (1: left shoulder, 2: right shoulder, 3: left hip, 4: right
hip. Knee and ankle joints are not controlled since it is not con-
venient for them to oscillate for a humanoid like NAO with big
feet. All the other joints are synchronized with the correspon-
dent joints controlled by the four-cell architectures, including
roll and elbow joints), we can start to permute the symmetric
characteristics of the architecture. In terms of crawling, a char-
acteristic of crawling gaits is the anti-phase and in-phase relation
of the ipsilateral limbs and diagonal limbs, respectively (for the
detailed mathematical meanings of H and K group, please refer to
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FIGURE 3 | The architecture of the four-cell CPG network. The condense
dashed, dashed, and straight arrow indicate ipsilateral, diagonal and
contralateral couplings.

Supplementary Material). So the spatial-temporal group Hc and
spatial group Kc for crawling are:

Hc :
{(

(12), (34),
T

2

)
,

(
(13), (24),

T

2

)
, ((14), (23), 0)

}

Kc : { ((14), (23), 0
)}

where T is the period of one signal and T
2 is the phase shift in each

group. Obviously Hc/Kc
∼= Z2 which is cyclic (Righetti, 2008)

(also see Supplementary Material) and Kc is an isotropy group.
In terms of double-suspension gallop (front and rear feet are in
phase respectively), the spatial-temporal group Hg and spatial
group Kg of this gait are:

Hg : { ((12), (34), 0
)
,
(
(13), (24), a

)
,
(
(14), (23), a

)}
Kg : { ((12), (34), 0

)}
where a is the phase shift and a ∈ [0,T]. In the work described in
this article, a is equal to 2. Hg/Kg

∼= Zm (m � 2) which is cyclic
too (For the proof please refer to Supplementary Material) and Kg

is an isotropy group.
Within the four-cell CPG network, each node can be modeled

by an oscillator (e.g., numerical oscillators Li et al., 2013b or phase
oscillators Pouya et al., 2010). The advantage of using phase oscil-
lators is that the phase shift can be explicitly specified. Therefore,
in this article, a standard phase oscillator is chosen:

ṙi = ai(Ri − ri)

Ẇi = 2πωi + Ki

Ki =
∑

j

wji · rjsin
(
Wj − Wi − Pji

)

ωi = ω1i

e−100·Aexi + 1
+ ω2i

e100·Aexi + 1

Aexi = ri · sin
(

Wi + π

2

)
Ai = ri · sin(Wi)

where Ai is the output of this phase oscillator and Aexi is the fre-
quency control output. ri and Wi are the amplitude and phase
variables respectively. ωi is the frequency of the oscillator with ω1i

and ω2i controlling the ascending and descending frequency. Ki

is the connection term from the other oscillators to oscillator i.
wji is the connection weight of from oscillator j to i. Wj is the
phase of oscillator j and Pji is the phase difference from oscilla-
tor j to i (For example, in the four-cell network formed based
on the H/K theorem, the groups ((13), (24), θ) (θ is the phase
shift) are represented by setting P31 = θ (cell 1), P42 = θ (cell
2), P13 = −θ (cell 3) and P24 = −θ (cell 4), θ can be T

2 = π

for crawling or a = 2 for galloping). ai and Ri are the conver-
gence rate and converged value of amplitude respectively. In our
work, the parameter settings are as follows: ai = 50, Ri = 1.0,
w1i = w2i = 1.0.

In summary, corresponding to the RG and PF layer, a four-
cell CPG network is utilized as a baseline motion generator to
drive the motion of each joint (details are in Figure 2). This
baseline motion generator has the capabilities to maintain struc-
tural stability according to group theory (Golubitsky and Stewart,
2003) and has been verified to generate basic patterns of both
crawling and bipedal walking by adapting parameters w1i and
w2i (Degallier et al., 2008; Li et al., 2011, 2012). Moreover, the
prior knowledge about a specific gait is encoded in this baseline
behavior generator to reduce the workload of gait learning. For
example, taking advantage of the symmetric topology can reduce
the number of DOFs which are to be learned/optimized so that
the dimensions of further learning are lowered.

2.1.2. Design of the dynamics adaptation function
With a baseline behavior, in this section we will discuss how to
adapt it into a mature gait. This needs an architecture which can
reshape/shift the baseline dynamics to achieve DA. There are two
situations for DA in practical implementation: the body without
(proper) sensors and with useful sensors. In a lot of cases, because
of the mechanical design, some robots do not have useful sen-
sors for certain types of locomotion gait. For example, the NAO
robot does not have pressure sensors for crawling. So a general
approach is required for the situation whether there are proper
sensors or not. In fact, DA is a trivial function which involves
how different perceptual/sensory information (e.g., sensory feed-
back) contributes to reshaping the dynamics of each DOF. Since
there is no systematic approach to finding a reshaping mechanism
regarding to different sensory feedback and robots also have dif-
ferent sensor configurations, in this article, DA only focuses on an
abstract basic mathematical framework to achieve the same func-
tion of reshaping the dynamics based on the baseline behavior in
order to alter the trajectories/dynamics of each joint. Therefore,
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an architecture which can modify the joint movement is required.
According to Ijspeert et al. (2013)1, DMPs have two types of for-
mat: discrete and periodic. They differ in the forcing term f .
In our work, since the task is to learn a rhythmic movement,
the periodic DMPs are selected as a dynamics modifier and the
mathematical model of periodic DMPs is:

τ żi = α
(
β(gi − yi) − zi

)+ amp · Ai + f

τ ẏi = zi

f (Wi, p) =
∑N

j = 1 ψjvj∑N
j = 1 ψj

pi (1)

ψj = exp
(
hj(cos(Wi − cj) − 1)

)
(2)

τ ġi = αg(g0 − gi)

α = 8.0, β = α

4
, αg = α

2
(3)

cj ∼ (0, 2π)

where zi, yi and gi are the variables of the motor primitive.
amp is the weight of correspondent input from PF layer and
set to 27 which makes the output of motor primitives oscillate
between −1 and 1. Ai is the “clocking” input from the baseline
behavior (the PF layer). τ is the time constant which is equal
to the period ( 1

ωi
) of input Ai. f is the forcing term in which

ψj are fixed basis functions, vj are the weights and pi is the
amplitude which is equal to amp. N = 50 represents the num-
ber of basis functions. Using nonlinear arbitrary functions in f
is a well-defined approach in machine learning (Bishop, 2006)
for nonlinear regression and analogous to population coding in
computational neuroscience (Dayan, 2005). In Equation (2), hj is
a constant equal to 2 · N and Wi is the phase input from base-
line behaviors. cj is a vector containing N separations of the scope
in (0, 2π). g0 is the anchor point (g0 = 0). Equation group (3)
guarantees the damping convergence of the DMPs.

Theoretically, the forcing term f above is used as a universal
signal modifier. Assume F = amp · Ai + f is equal to the second-
order equation based on the optimal signal (yop):τ 2ÿop + ταẏop +
αβyop − αβgi, then substitute this equation to replace the F term,
then we can rewrite the DMPs equation:

żi = τ ÿop + α

τ

(
τ ẏop − zi

)+ αβ

τ
(yop − yi), τ ẏi = zi (4)

According to the theory of morphed oscillation (Ajallooeian et al.,
2013), Equation 4 is a second order morphed oscillator which can
adapt the baseline behavior into any limit cycle shape. Then the
task left is to figure out a mechanism for changing the parameters
of DMPs to converge to a desired gait. Therefore, the DMP model
is used as an interface for learning/adaptation.

In fact, DMPs are widely used to model discrete motor learn-
ing (Peters, 2007; Kober et al., 2012) and rhythmic movement
(Ijspeert et al., 2013). In terms of periodic movement learning,

1In Ijspeert et al’s work, they refer to “dynamic movement primitives” which
is “dynamic motor primitives” in this article.

Nakanishi et al. (2004) and Gams et al. (2009) employed demon-
strated signals to learn motor primitives of rhythmic motion with
local weighted regression. However, supervised learning might
not always be the case for locomotion learning. Infants learn
to crawl by interacting with the environment rather than being
demonstrated how each joint moves dynamically (Clearfield,
2004; Kail and Cavanaugh, 2012). Locomotion learning based on
reinforcement learning (RL) without demonstrated signals and
motor primitives is also popular (Morimoto et al., 2005; Endo
et al., 2008). However, as the motor primitives model has a good
learnability, in this article, an approach of using motor primitives
and RL for locomotion learning without demonstrated signals is
proposed.

2.2. THE MECHANISM: CPG-ACTOR-CRITIC
The CPG-Actor-Citic architecture has been used for explor-
ing and learning complex locomotion patterns for both bipeds
(Nakamura et al., 2007; Endo et al., 2008; Li et al., 2013b) and
quadrupeds (Kohl and Stone, 2004; Li et al., 2013a). Inspired
by Grillner et al. (2008), the functions of CPG-Actor-Critic con-
nects the layered architecture to an behavioral selection learning
(RL) process in which the optimal parameters of CPGs are deter-
mined. The actor, by generating actions, explores the state space
of the body and the critic evaluates the actions taken by observing
rewards in order to send improved control signals to the body.
In this article, two modern policy-focused RL techniques are
used for this continuous-space learning problem of DMPs. One is
episodic natural actor critic (eNAC) (Peters, 2007) and the other
is policy learning by weighting exploration with returns (PoWER)
(Kober et al., 2012). eNAC has been empirically demonstrated
to be a “winner” algorithm for policy gradient approaches, out-
performing FDG (Finite Definite Gradient) and VPG (“Vanilla”
Policy Gradient) (Peters, 2007). Also, PoWER is a faster RL learn-
ing algorithm better than the other “family” members, such
as eRWR (episodic Reward-Weighted Regression) (Kober et al.,
2012). In this article, we also intend to implement and com-
pare these two state-of-the-art algorithms on locomotion learning
tasks using DMPs.

Generally speaking, in the parameter space for using DMPs,
a policy-based actor is used to sample/explore the continu-
ous action space. Equation 5 shows a time-variant actor used
for DMPs.

a = θTψf (x, t) + εt (5)

εn
t ∼ N

(
0, (σ n)2)

where a is the output vector of an actor and θ is the policy param-
eter vector reflecting the weights vj in motor primitives. ψf is the
vector of normalized basis functions of motor primitives. εt is
the gaussian exploration vector with standard deviation σ which
contains the standard deviation for each basis function at time
t and εn

t is the exploration for the nth basis function in εt . In
most of cases, the σ is kept constant for all the parameters. It has
been mathematically proved that both eNAC and PoWER using
DMPs can also use an actor exploring only in the state-dependent
parameter space (Shown in Equation 6) (Kober et al., 2012).
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a =
(
θT + εT

t

)
ψf (x, t), t = 1, 2, 3...T (6)

εn
t ∼ N(0, (σ n)2)

According to Kober et al. (2012), the disadvantages of using
state-independent exploration is: (1) Large variance in param-
eter updates. (2) The effect of perturbation could be washed
out if exploration is too frequent as the system works like a
low-pass filter. (3) It could possibly damage the completeness
of system execution. On the other hand, the advantage of using
state-dependent exploration in the actor is able to reduce the
computational load by not executing a matrix multiplication
θT

t ψf (s, t). Moreover, when the DMPs are used in the case that
each basis function is activated only once in one period, the explo-
ration can be further simplified to be executed at the beginning
by using a time-invariant exploration εT

0 . In the following section
part, the update mechanism of the critic for each algorithm will
be introduced.

2.2.1. Policy gradient approach
Policy gradient is a well-established method used to update the
parameterized action space. Since the normal “vanilla” gradient
suffers the slow learning rate, natural policy gradient is formed
by adding a regularized term in normal gradient approach to
force the update path to follow the steepest direction (Kober
et al., 2012).

Since learning locomotion might be a repetitive task (Adolph
et al., 2012), episodic natural actor critic (eNAC) using natu-
ral gradient is selected. NAC is proposed by Kakade (2001) and
further developed and used in motor learning by Peters (2007);
Peters and Schaal (2008). eNAC is mathematically constructed on
the NAC approach and uses episodic exploration for each roll-
out. In the practical work, eNAC generates a sufficient number
of rollouts in order to get the realization of gradient information
around the current state. It transforms the traditional RL prob-
lem of solving the Bellman equation to an explorative process of
linear regression using DMP basis functions. Assume there are H
rollouts the eNAC algorithm generates for each update, then the
update rule for the critic can be summarized as below (for a math-
ematical introduction to eNAC, please refer to Supplementary
Material):

[
w
J

]
=
(
φφT

)−1
φR.

φ =
[

s∑
t = 1

αt � logT(πθ (ut |xt))w, 1

]T

1:H

R =
[

T∑
t = 1

αt r(xt, ut)

]T

1:H
θ ′ = θ + αw

where 1 : H represents H samplings within one trial (refer to
details in the Algorithm). φ is the basis matrix containing H basis
vectors for H rollouts and constant 1 in it is used to determine

the baseline J avoiding large-variance updates. αt is the theoret-
ical discounting factor. R is the average reward vector in which
r is the instant reward (for the detailed eNAC proof, please refer
to Peters, 2007). w is the estimated steepest gradient according to
your sampling rollouts and used to update the parameter θ to θ ′
with α learning rate (α = 0.1).

2.2.2. Expectation Maximization based policy search
Expectation maximization (EM) is a useful tool as a machine
learning technique to find out the optimal solutions based on
increasing the value of the lower bound for the cost function
(Bishop, 2006). According to Kober et al. (2012), a critical draw-
back of policy-gradient is its difficulty in determining the learning
rate and the unsteadiness to reward values. This is why usually
EM-based policy approaches can converge faster than policy-
gradient approaches. A normal EM-based policy search algorithm
works to find out the θ ′ which maximizes the lower bound L(θ ′)
on a cost function. Likewise, in order to find the maximum value
of L(θ ′), the derivative of it is set to zero (Equation 7, for the
details please refer to Supplementary Material).

∂θ ′L(θ ′) = 0 (7)

With the actor in Equation 5, it can generate an algorithm called
episodic reward weighted regression (eRWR). But in our work,
authors are more interested in a more efficient algorithm derived
from the actor using the Equation 6, the policy learning based on
weighted exploration with returns (PoWER). The derivation of
PoWER is given in Supplementary Material. The update rule of
PoWER is:

θ ′ = θ +
(

T∑

t = 1

W(s, t)Qπ (s, a, t)

)−1

(
T∑

t = 1

W(s, t)εtQπ (s, a, t)

)

Where W(s, t) = ψ(s, t)ψ(s, t)T(ψ(s, t)T�ψ(s, t))−1. εt is the
exploration in Equation 6 and Q(s, a, t) is the action-state func-
tion based on the policy π with exploration� which is a diagonal
deviation matrix.

2.2.3. Continuous action space learning logic
In the above-mentioned algorithms, the convergence condition
is set to be θ ′ ≈ θ which might be difficult to achieve when the
reward function is not explicitly bounded as in the case of super-
vised RL with clear targets (Peters, 2007). Therefore, a general
continuous action space learning logic is required to help us intu-
itively judge if the algorithm converges or not. Cacla (continuous
action learning automaton) proposed by van Hasselt and Wiering
(2007) and proved to outperform some typical RL methods (like
SARSA, Q(λ), NAC and so on) (Hasselt, 2007), offers an update
logic by exploring around the current state. If the value of the
state increases after the action is taken, the update is executed.
The schema of Cacla is shown in Algorithm 2.2.3. In the case
of episodic learning, Monte-Carlo difference is used instead of
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typical temporal difference since the prediction value function
V(s′) for next future step s′ is not explicitly observable (Jaakkola
et al., 1995).

Algorithm 2.2.3

• Initialize the parameter θ and state space s
• Repeat:

◦ Perform the exploration on policy π(a|θ , s) and gener-
ate actions for rollouts (the number of rollouts H > 1).

◦ Calculate the value function V difference between cur-
rent state s and the future state s′:

◦ Value function estimation/approximation:
1. Temporal difference: δ = r − λV(s′) + V(s), esti-

mate V(s′) = V(s) + βδ, where r is the immediate
reward and β is the learning rate.

2. Monte-Carlo difference for episodic learning: δ =
R − V(s), estimate V(s′) = V(s) + βδ, where R is
the reward for one episode.

◦ Update judge: if δ > 0: Update the policy toward the
good actions with gradients.

• Until no update is executed as the algorithm cannot find
any better solution any more.

Using Cacla as an update logic is very useful for determining
the condition of update (δ > 0) the termination of the algorithm
for unbounded reward functions. In order to adapt eNAC and
PoWER into the Cacla logic, we can modify the algorithm as fol-
lows (only the detailed modification is shown below neglecting
the unchanged part):

• ....

• Repeat:

◦ M trials each of which includes 10 rollouts (H=10), In
each rollout, action is generated by a = (

θT + εT
t

)
ψf

where εt ∼ N
(
0, σ 2 ∗ I

)
(σ = 0.1) for t = 1, 2, 3. . . .s

◦ Calculate the value function V difference between
current state s . . .

◦ . . . .

◦ Update judge: if δ > 0: eNAC —- Calculate the gradi-
ent g: [

w
J

]
=
(
φφT

)−1
φR.

where R = [r1, r2, · · · rH]T and
φ = [�1, �2, · · · , �H]T . ri represents the accu-
mulated reward in this episode ri = ∑s

t=1 rewardt and
�i = ∑s

t = 1 σ
2(εtψ)ψT . Then update θ ′ = θ + αw

PoWER —- Calculate the update for each parameter θi:

θ ′
i = θi + E

{∑T
t = 1 σ

2
i εi,t Qπ

}
∑T

t = 1 σ
2
i Qπ

where Qπ is the action-state function and εi,t represents
the output of an actor for parameter i at time t. σ is the
variance of the policy.

• ....

Generally speaking, in this section, a locomotion system with the
theme “two systems (the baseline system and DMPs) and one
mechanism” is introduced as a design methodology for CPG-
Actor-Critic. The design of each system also might be flexibly
replaceable by more sophisticated systems. For example, the base-
line behavior can be a complicated coupled network of which each
node stands for one advanced baseline motion generator (Buchli
et al., 2006; Gams et al., 2009). In the next section, we will test this
method on two different robotic platforms.

3. EXPERIMENTS AND ANALYSIS
In this section, two experiments are reported for two different
purposes. Firstly, the experiment 1 is to test and verify the learn-
ability of the DMPs based CPG-Actor-Critic by using eNAC only
since DMPs are always used in the regression approach. In this
experiment, standard crawling (Wikipedia, 2013) is learned on
the NAO robot which does not have pressure sensors for crawling.
Secondly, the whole system is transferred to the ghostdog robot,
whose body is softer and more flexible than the NAO robot, to
test the transferability of the system to distinct morphologies and
compare the two algorithms, eNAC and PoWER, on the more
challenging locomotion task (more likely to find differences in
performance this way).

3.1. EXPERIMENT 1: LEARNING TO CRAWL
The objective of experiment 1 is to verify the capability of DMPs
based CPG-Actor-Critic on limit-cycle reshaping and postural
control. There are two sub-experiments: One is to test the learn-
ability of the CPG architecture by using a generic “reshaping”
mechanism [Equation (1) with the same targeted posture-the
same spineline angle]. The other is to test if the generic motor
primitives can also adjust the joint posture (shifting centers of
limit cycles) under the condition that the posture control reward
is set to two different targets.

With the eNAC algorithm above-mentioned, the robot is able
to explore the dynamics of each joint on its own according to the
specific reward function. Figure 4 shows the standard crawling
(crawling on knees and hands Wikipedia, 2013). The main joints
controlled by CPGs are the ones located at the hip and shoul-
der. The elbow oscillates with the rhythms of the shoulder pitch.
Since crawling is left-and-right symmetric (Righetti et al., 2008),
the number of degrees of freedom (DOFs) can be reduced from 8
(left and right joints) to 4 (left or right joints only). Therefore,
the parameters for standard-crawling learning are 4 · 50 = 200
(where 4 is the number of DOFs and 50 is that of basis func-
tions). From our previous work Li et al. (2013a), the move
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distance and spineline angle (Figure 4) are two significant factors
to evaluate the quality of crawling behaviors. Accordingly, in the
CPG-Actor-Critic architecture, the reward function is composed
of two terms (rdistance and rangle) as two evaluation landmarks for
the above-mentioned two variables:

rreward = rdistance + rangle

rdistance = exp(
D

2
) − 1

rangle = exp(e) − 1

with e = N(x0, σ = 0.02) (8)

where D is the distance the robot crawls every episode. e is a
gaussian distribution with the center x0 and variance σ . Using

FIGURE 4 | The standard crawling posture on knees and hands and the

main joints controlled by CPGs. The distance and spineline angle indicate
the quality of crawling. The spineline angle is controlled by a gaussian
function.

e enables maintaining the posture of standard crawling without
learning some extreme postures (Li et al., 2013a). In the case of
infants learning to crawl, this function works similar to parents’
hands adjusting or holding up the infant’s body when (s)he is
crawling.

3.1.1. Sub-experiment: Reshaping-mechanism test
In this Experiment, with the average spineline angle fixed at
30◦ (x0 = 1.05), the robot learns to crawl in three independent
runs and finally converges to three different results by balanc-
ing the distance maximization and posture maintenance. Every
experiment starts with the same initial posture with (x0 = 1.08,
approximately 28◦) and performs a pre-learning non-crawling
behavior with no crawling distance (Figure 5). However, after
learning, the standard crawling emerges through the interaction
amongst the CPG-Actor-Critic architecture, the humanoid body
and the environment (For the detailed performance, please refer
to the video Li, 2013a). Interestingly, the three learning trials con-
verge with similar smooth reward curves (Figure 6) but different
results (Figure 7).

In order to clearly investigate the reasons of the formation of
crawling, the joint dynamics are shown separately in Figure 7.
Since the standard crawling is a whole-body motion, the CPG-
Actor-Critic autonomously decides how to adapt the motion of
each joint. The adaptive changes of pitch joints for shoulders and
hips focus on the adjustment of their amplitudes (Figures 7A,B).
Especially, the HipPitch joint tends to swing more backward
so that robot can crawl forward with more force. Interestingly,
extracting from the results in our experiments (Figures 7C,D),
the significant factor determining whether the robot can crawl
forward properly is the roll motion. Not only are the ampli-
tudes of roll joints in shoulders and hips statistically adapted, but

FIGURE 5 | Left: the beginning and termination snapshots of crawling before learning. Right: the beginning and termination snapshots of crawling after
learning.
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FIGURE 6 | Learning curves of three experiments. exp1-n represents the
result of the nth run in the experiment 1.

also are the phases of CPGs controlling roll joints shifted com-
pared to the original CPG output without learning. It seems the
DA layer modeled as motor primitives has the capability to deal
with the reshaping of different limit cycle output and even to
adjust the phase difference which is set inappropriately in the
PF layer. Apart from these, it can also tune the posture. From
the joint dynamics of roll motion, it is clearly observed that the
limit cycles of roll joints are shifted, in which case the oscilla-
tion centers of roll joints are adaptively adjusted. Compared to
the explicit posture-control terms in our previous work Li et al.
(2013a,b), the implicit terms grounded in the motor primitives
can integrate two functions: DA and posture control. To ver-
ify the functionality of posture control, we conduct a second
experiment.

3.1.2. Sub-experiment: Posture adjustment
In the experiment 2, the objective is to verify the capability of
the proposed CPG-Actor-Critic architecture on the adjustment
of joint posture. Actually, the spineline angle reward proffers a
control signal of limiting the whole-body posture. With a loose
control coefficient [e.g., σ > 0.02 in Equation (10)] or without
the spineline restriction, the robot will only consider the maxi-
mization of crawling distance, ignoring the maintenance of the
posture. This causes a convergence to an extreme crawling behav-
ior. In human reality, parents always need to guide a right posture
by holding up or lifting the infant’s body when they are crawling.
Therefore, the posture limitation is necessary.

For testing the posture control abilities, two spinelines are cho-
sen (x0 = 1.03 and x0 = 1.08, approximately 31◦ and 28◦). Two
independent learning experiments are performed respectively for
each of these two spineline-angle controlled postures. With the
results obtained, the comparison of limit cycles of joints in 4
runs are given in Figure 8. For each group of the results (black
and red curves), the crawling joint dynamics converge to similar
limit cycles. In terms of the motion of pitch joints (shoulders and
hips), from Figures 8A,B, the deviation between two limit-cycle
centers is blurry. However, it is conspicuous for the roll joints,
especially hip roll joints (Figures 8C,D). The limit-cycle centers
are both shifted rightwards for shoulder and hip roll motion from
posture 2 (28◦ spineline angle) to posture 1(31◦ spineline angle).

This limit-cycle-center shifts correspond to the closing-inward
and opening-outward posture changes of shoulder and hip joints.
This is a typical whole-body motion of lifting the center of grav-
ity of the body and increasing the spineline angle. Compared to
the explicitly allocated posture-change terms in previous work Li
et al. (2013a,b), using motor primitives can interactively rule out
the unnecessary joints for posture control. For example, in the
experiment 2, to change from posture 1 to posture 2, the system
determines to fixating on altering the posture of roll joints other
than pitch joints based on the whole-body motion logic.

3.2. TRANSFERRED TEST ON THE PHYSICAL ROBOT
In this article, with 7 learned sets of parameters, the learned CPGs
are transferred to the physical NAO robot for testing. In all the
experiments, the popular Webots simulator (Michel, 2004) based
on ODE (open dynamics engine) is used. In order to successfully
test the learned motion from the simulated robot to the physical
one, some preconditions have to be realized. As discussed in pre-
vious work Li et al. (2013a), the possible failures of transferred
results on physical robots could be caused by the disparity in
physics engines and difference between simulation time and real
time. In our work, the frequency of the CPG is doubled while
being transferred. 5 out of 7 results can be successfully trans-
ferred except the results for the posture (x0 = 1.03). After the
CPG amplitudes of pitch joints are reduced to 70%, the failed
transferring becomes successful. Figure 9 shows the snapshots of
one-step crawling on the physical robot (for details, please refer to
the video Li, 2013b). Compared to the previous implementation
with only optimized postures, the left-right curvy motion of the
spineline, a typical characteristic of crawling behaviors (Righetti
et al., 2008), emerges after learning.

3.3. EXPERIMENT 2: LEARNING DOUBLE-SUSPENSION GALLOP
In this experiment, the CPG-Actor-Critic architecture is trans-
ferred to the puppy robot (ghostdog) with a flexible body for
learning the double-suspension gallop, a typical dog running
Gait (dog). The rear limbs are synchronized in phase and so are
the front limbs. The main joints controlled by the CPGs are the
rear and front hip joints. The knee part of this robot is fully
passive with a spring-damper system. In order to maximize the
running distance, a reward based on the distance only is used,
in which case the robot is required to run as fast as possible in
a time-fixed episode. Similar to the reward function of learning
to crawl, we adopt the distance-related part of that reward func-
tion as the only learning landmark. With both eNAC and PoWER,
the objectives of experiment 2 include: 1. Test the morphological
transferability of the CPG-Actor-Critic. 2. Compare the learning
efficiency of eNAC and PoWER.

3.3.1. Morphological Transferability
In the experiment 1, the learning architecture has already been
demonstrated to be workable on a rigid-body system, the NAO
robot. However, a complete architecture should also be able to
work on different morphologies, especially in the case that a
robot’s body cannot be accurately modeled in terms of its mor-
phological flexibility. Then the learning/adaptation system can
help the robot to find out solutions by itself with some prior
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FIGURE 7 | The dynamics of joints (Shoulder Pitch and Roll, Hip Pitch,

and Roll) before and after learning. The left side of (A–D) represent the
trajectory change for each joint and the right side of (A–D) represent limit

cycles of each joint. In each figure, the blue line indicates the original joint
motion without learning and the red solid lines, black dashed lines and purple
dashed lines show the results of experiment 1–3 after learning.
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FIGURE 8 | The figure shows the limit cycles of each controlled joint

with 2 independent learning experiments for two different body

postures. (A–D) represent the limit cycles of each joint before and after
learning. The blue solid lines represent the limit cycles for each joint before

learning. Red solid and dashed lines indicate the limit cycles for tested
posture 1 (x0 = 1.03, ∼31◦). Black solid and dashed lines indicate the limit
cycles for tested posture 2 (x0 = 1.08, ∼28◦). pn-n is the abbreviation of
posture n-experiment n.

FIGURE 9 | The implementation on the physical robot. This figure shows the video snapshot of one-crawling-step NAO robot on a wooden flat table (One
crawling step means one time alternation of the supporting leg and arm).

knowledge. In this article, the baseline behaviors serve as prior
knowledge and the emergence of a particular gait based on this
prior knowledge becomes so intriguing. Figure 10 presents the
snapshots of double-suspension gallop gait before and after learn-
ing. The difference before and after learning is so conspicuous
(For the details, please refer to the video Li, 2013c). Before learn-
ing, the puppy robot can move very hard by scratching the
ground. But after learning, a new gait emerges from the previ-
ous ground-scratching behavior. In the new gait, it seems the
robot can take advantage of its own characteristics of the phys-
ical body to move as fast as possible. In Figure 10, the third
snapshot of two after-learning gaits both demonstrate that the
robot uses the spring of rear legs to bounce up the whole body
in the air so that it can move much further and the first snap-
shot of two after-learning gaits also both demonstrate that the
spring of front legs are used to reduce the impact when the body
hits the ground from the air. These phenomena possibly indicate

that the CPG-Actor-Critic might have the ability to realize the
morphological advantages of a certain body.

In details, Figure 11 presents the learning results of converged
joint dynamics. For each RL technique of eNAC and PoWER,
there are three learning trials conducted with the same initial
conditions (posture and position). The ghostdog robot learns
repeatedly in the simulator and is automatically reset by supervi-
sor functions according to Michel (2004). It is shown in Figure 11
that each batch of three trials by eNAC and PoWER qualitatively
converge to similar joint dynamics respectively. There are some
common features of the converged dynamics captured by both
eNAC and PoWER. Firstly, as for the front legs, the changes focus
on increasing the amplitude of joint oscillation. Secondly, as for
the rear legs, both eNAC and PoWER change the originally equal
stance and swing phase to the dynamics in which the stance phase
is much longer than swing phase. In terms of double-suspension
gallop, a longer stance phase (T1 and T1′) on the rear legs drive
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FIGURE 10 | The snapshots of gallop gait under three conditions. The first row shows the original gait without learning, the middle row shows the
converged gait after eNAC learning and the final row shows the converged gait after PoWER learning.

the front legs off the ground and a shorter swing phase (T2 and
T2′) of the rear legs makes them follow the move direction and
finish the phase transition from swing to stance as fast as possible
when the front legs hit the ground.

3.3.2. Comparison between eNAC and PoWER
According to Kober et al. (2012), as a typical gradient based
approach, eNAC suffers the problem of finding out a proper
learning rate in the supervised learning. It is an open problem
for policy gradient approaches in terms of good learning perfor-
mance but EM-based policy search can avoid this problem. In
order to compare eNAC and PoWER for RL cases, a stable learn-
ing rate is chosen to be used in eNAC (α = 0.1, when α > 0.5,
five trials are conducted but none of them can successfully and
stably learn with more than 20 updates (less than 20 updates is
considered as failure). When α = 0.2, 0.3, 0.4, the failure rate is
about 20%, 20%, 40% for five trials respectively). Figure 12 shows
that PoWER outperforms eNAC in learning speed by boosting
the reward in three trials respectively. eNAC is able to optimize
the moving distance but it gets stuck in some local optima while

PoWER can find better solution (further distance in the same
period). This result is similar to the cases presented in Kober et al.
(2012) supervised learning experiments (i.e., PoWER outper-
forms eNAC in terms of learning rate and results). Nevertheless,
eNAC is very sensitive to the reward value. When the reward value
increases, the update variance starts to increase and the stabil-
ity of learning starts to deteriorate. But PoWER is quite stable
to the reward value change. In terms of convergence, the conver-
gence of PoWER and eNAC is determined by δ with Cacla logic.
Because of the different learning speed, Cacla converged as no
further expected return of samples can make δ positive so that
the final converged expected reward oscillates around the average
optima (Figure 12). However, eNAC converged as δ is almost zero
(|δ| < 10−4).

3.4. SUMMARY
In this section, the DMPs based CPG-Actor-Critic architecture
is tested for its learnability on a rigid body robot, the NAO
humanoid, for learning to crawl. Then it is transferred to a “soft”-
bodied robot, the ghostdog robot, for learning double-suspension
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FIGURE 11 | The front and rear joint dynamics of the ghostdog

robot before and after learning with eNAC and PoWER in three

trials (marked by eNAC1 ∼ 3 and PoWER1 ∼ 3). T 1, T 2, T 1′, and T 2′

represent the ascending time and descending time of the joint
dynamics tuned by eNAC and PoWER after learning. Before learning,
T 1 = T 2 and T 1′ = T 2′.
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FIGURE 12 | The learning curve of eNAC and PoWER over 400 episodes which comprise three trials. The reward reflects the distance the robot moves in
the same period.

gallop. Two advanced RL algorithms (eNAC and PoWER) are
utilized and the results are compared. With two state-of-the-art
RL techniques, qualitatively similar gaits emerge from the inter-
action amongst the CPG controller, the environment and the
body in an actor-critic mechanism. In both experiments, DMPs
work as an universal limit cycle modifier to reshape the existing
baseline behavior into optimal gait dynamics. The functionality
of DMPs is a mathematical framework for optimizing/learning
locomotion gaits without explicit sensory feedback but serves as
a mechanism functionally similar to sensory-feedback-reshaping
(Grillner et al., 2008; Ijspeert et al., 2013).

4. CONCLUSION
4.1. eNAC AND PoWER
eNAC and PoWER, as two different RL algorithms, are based on
the policy gradient and the EM-based policy search, respectively.
They are compared the first time for learning a periodic motion.
According to the results in Experiment 2, we can summarize the
difference between them as follows:

(1) Learning speed. PoWER searches a better policy faster than
eNAC as the small learning rate α of policy gradient slows
down the learning speed of policy gradient approaches.

(2) Converged results. Both PoWER and eNAC possibly get stuck
in local optima according to Kober et al. (2012). However,
PoWER can converge to better results than eNAC.

4.2. DMPs BASED CPG-ACTOR-CRITIC
In this article, the proposed CPG-Actor-Critic based on DMPs
seems to be able to optimize/learn a gait given an initially rough
baseline behavior and a body. The forcing term f (Wi, p) in
Equation (1) works like sampling sensors which “perceive” a suf-
ficiently large number of proprioceptive points of the CPGs so
that it can adapt them flexibly into distinct dynamic patterns
on the basis of actor-critic interaction. Even though this imple-
mentation of motor primitives with RL approaches instead of

supervised learning opens a new page for locomotion learning,
this approach still has some disadvantages: Firstly, learning might
be slow. In the experiments, each one takes about 6–7 h to com-
plete. Therefore, the learning process might not be transferred
to the physical robot. On the other hand, a fast learning mech-
anism might be needed for a fast adaptation to the dynamical
environmental changes in our architecture. The potential solu-
tion is either to develop a higher level of cognitive interpretation
of environmental needs for switching different learned gaits (e.g.,
in Aoi and Tsuchiya, 2005) or use a faster learning algorithm in
a fast adaptation mechanism (e.g., in Manoonpong et al., 2013).
Secondly, the frequency is not adaptive. In the work presented
above, all the CPG frequencies are fixed. Even though the motor
primitives can innately preserve the learned dynamics when the
frequency is changed, it still cannot guarantee that the new fre-
quency patterns still can work when the whole-body dynamics
change with the oscillation frequency. As a matter of fact, after
reducing the frequency from 1.0 to 0.5, the robot’s body dynam-
ics change and the crawling in experiment 1 cannot be properly
presented. The solution to this problem might be to use hybrid
learning based on eNAC by counting in the frequency parameters
(Kober, 2012). Thirdly, the implementation of CPGs is not energy
efficient. In our work, the CPGs are used as trajectory generators.
The layered architecture still lacks an adaptive approach to alter-
ing the stiffness of joints. On the other hand, low energy efficiency
might be a natural flaw of rigid body robots. Even though force
control might be able to improve the energy issues on a rigid body,
the inflexibility of the body is still a stumbling block preventing a
robot from being energy-efficient for locomotion. Finally, the lack
of a memory architecture. Even though DMPs can optimize/learn
gaits from the prior knowledge, it cannot memorize the relation
between the environment and parameter space. This is an open
problem for locomotion modeling.

In conclusion, DMPs based CPGs are able to not only learn
demonstrated/supervised signals (Gams et al., 2009) but also
adapt to flexible patterns based RL approaches in our work. Even
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though it is not a complete solution for the integration of sen-
sory feedback (e.g., moving distance, spineline angle and muscle
reflex. Muscle reflex is not used in our work since the NAO robot
does not have pressure sensors on the hand), it offers a mathemat-
ical solution to mimic the same function of sensory feedback in
reshaping and shifting limit cycles. The advantage of using DMPs
as a dynamic adaptation tool can be summarized as follows:

(1) an optimizer for an existing gait. Since there is no context-free
locomotion capability and the environment is not possible
to model, using a well-designed gait and optimize it in the
environment in which the original gait cannot work well.

(2) a gait searcher. Given prior knowledge about a certain gait
and a body, locomotion modelers might have difficulty in
determining the detailed motion of each DOF/joint. Using
DMPs with RL mechanism enables seeking out the optimal
solution. In this article, two experiments show the process
of the emergence of a particular gait based on its baseline
motion (prior knowledge).

4.3. A GENERIC VIEW: TWO SYSTEMS AND ONE MECHANISM
A lot of inspiration related to locomotion learning/development
can be extracted from cognitive science (e.g., Thelen, 1996), neu-
roscience (e.g., Schore, 1994; Grillner et al., 2008), psychology
(e.g., Clearfield, 2004; Adolph et al., 2012) and robotics (e.g.,
Pfeifer and Bongard, 2006). From the perspective of Thelen
(1996), locomotion development/learning is focused on the for-
mation and adaptation of the so-called “attractors” in a dynamic
system. This assumption indicates that locomotor system design
should not be focused on how a static system can be modeled
but how a dynamic system might develop in the interaction with
environments. The stagnation is only one “special” attractor of
the system. In this sense, DMPs have been assumed to repre-
sent locomotion attractors in Ijspeert et al’s work (Ijspeert et al.,
2013). Both Schore (1994) and Grillner et al. (2008) imply that
locomotion learning might be RL-related from the perspective
of neuropsychology and neural structures. From the psycholog-
ical point of view, Clearfield (2004) indicates the developmental
relation of locomotion to spatial memory including the distance.
Adolph et al. (2012) recently explained why the repetitiveness
is important for infants to learn locomotion. Finally, Pfeifer
and Bongard (2006) rethink the locomotion and emphasize the
interaction between the body and the environment. Based on
the above view of locomotion from different angles, locomotion
learning is an affective-related, interactive and repetitive process
with cognitive cues.

Therefore, in order to have a sketch of a dynamic locomo-
tor system composed of the three components mentioned in
Section 1, in this article, we propose the “two systems and one
mechanism” architecture. Two systems cover one baseline motion
system and one adaptation system. The former includes a gen-
eral model which is able to handle basic locomotion functions
(e.g., the coordination and synchronization of DOFs, gait transi-
tion). The latter comprises basic adaptation function/interface to
adapt basic locomotion dynamics into context-specific dynamics.
One mechanism is an affective-modulated process of organizing

FIGURE 13 | The generic architecture of locomotion learning. The
dashed-line blocks represent the choices of input. The other blocks
represent the functions of each layer.

how the DA can happen with more complex perceptual informa-
tion (e.g., visual signals) and determining what context-specific
dynamics the locomotor system should adapt into.

The general architecture based on the points above-mentioned
in Figure 13 explains an applicable schema for locomotion learn-
ing. The baseline motion generator can be modeled based on
demonstrated signals (Nakanishi et al., 2004; Gams et al., 2009)
or prior knowledge (Righetti, 2008). After this is accomplished,
the basic motion dynamics is to be adapted into context-
related dynamics by an interactive mechanism. In our modeling
approach, the four-cell architecture encodes the basic patterns of
different kinds of gaits. Each cell in this architecture can also be
modeled as a complicated neural system and more neural systems
are coupled in this network. DMPs, as a mathematical dynam-
ics modifier, work with actor-critic RL mechanism (Kober and
Peters, 2010) to optimize/learn a locomotor system. In the future
work, a sophisticated memory system, which includes short-term
memory and long-term memory, is required in our system to
map the contextual factors into parameter space. Also, a sensory
feedback integration will be considered to be used together with
DMPs based CPG-Actor-Critic.
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