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In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) 
as a practical platform for the development of novel brain–machine interface (BMI) 
controllers, which are based on spiking model neurons. We built the BNDE around a 
hard real-time system so that it is capable of creating simulated synapses from extra-
cellularly recorded neurons to model neurons. In order to evaluate the practicality of the 
BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was 
developed and tested using real-time closed-loop simulations. The present controller 
consists of two in silico medium spiny neurons, which receive simulated synaptic inputs 
from recorded motor cortical neurons. In the closed-loop simulations, the recordings 
from the cortical neurons were imitated using an external, hardware-based neural signal 
synthesizer. By implementing a reward-modulated spike timing-dependent plasticity 
rule, the controller achieved perfect target reach accuracy for a two-target reaching 
task in one-dimensional space. The BNDE combines the flexibility of software-based 
spiking neural network (SNN) simulations with powerful online data visualization tools 
and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired 
BMI controllers. We believe that the BNDE is the first implementation, which is capable 
of creating hybrid biological/in silico neural networks for motor neuroprosthetic control 
and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

Keywords: neuroprosthetics, brain–machine interface, motor cortex, spiking neuron models, spike  
timing-dependent plasticity

introduction

Advances in brain–machine interface (BMI) technologies have allowed rodents (Chapin et al., 1999; 
DiGiovanna et al., 2009; Manohar et al., 2012), monkeys (Taylor et al., 2002; Carmena et al., 2003; 
Velliste et al., 2008; Dethier et al., 2011; Pohlmeyer et al., 2014), and humans (Hochberg et al., 2006, 
2012; Collinger et al., 2013; Wodlinger et al., 2015) to control different prosthetic devices directly 
with their neuronal activity. In conventional BMI design approach, the main motivation has gener-
ally been to find an input–output mathematical model, which optimally transforms firing rates of 
cortical neurons into control signals for manipulation of a prosthetic actuator. In these systems, 
spike binning is performed in order to provide firing-rate inputs to the model used and this process 
leads to loss in the information encoded by the timing of neural spikes (Riehle, 1997; Hatsopoulos 
et al., 1998; Grammont and Riehle, 2003; Engelhard et al., 2013). Based on an input-output model 
or transform, information processing principles of these systems are fundamentally different from 
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those of natural neural circuits (Carmena, 2013). From a more 
biologically inspired design perspective, the BMI controllers 
could be formed using a spiking neural network (SNN). In such a 
control paradigm, the SNN would consist of biologically plausible 
model neurons and receive simulated synaptic inputs from the 
extracellularly recorded cortical neurons. The controller there-
fore would form a hybrid biological/in silico neural network with 
the neuronal circuits of the user’s brain. Its outputs would then 
be used in manipulating a neuroprosthesis (Figure 1). This novel, 
SNN-based design approach has the potential to bring several 
advantages in neuroprosthetic system control, adaptation, and 
implementation. First, the information encoded by spike timing 
could be used at the input layer of the SNN-based BMI control-
ler. Second, spike timing plays a critical role in neuroplasticity 
(Markram et  al., 2011), which is essential in neuroprosthetic 
learning (Koralek et  al., 2012). Therefore, the SNN-based BMI 
controllers updating their parameters by simulating mechanisms 
of spike timing-dependent plasticity might have superior adapta-
tion performance than existing firing rate-based neuroprosthetic 
systems. Third, implementation of the SNN-based BMI control-
lers into neuromorphic chips (Dethier et al., 2011; Indiveri et al., 
2011) can enable delivery of fully implantable, ultra low-power 
neuroprosthetic systems for paralyzed patients. In addition, the 
SNN-based design approach can also be beneficial in the field 
of neuroscience. The interactions of real neurons with model 
neurons could be investigated during neuroprosthetic control 
experiments and these investigations can provide new insights 
into the information processing principles in the motor cortex 
during neuroprosthetic control and learning.

Prosthe�c Control

SNN

Biological Neurons

Spike Sor�ng

Sensory
feedback

In Silico Neurons

FigUre 1 | Principal components of snn-based neuroprosthetic 
control paradigm. A spike sorting utility continuously acquires neural signals 
from the brain and extracts the timestamps of the spikes generated by real 
neurons. The spike events are then streamed to the biologically plausible 
model neurons as “virtual” synaptic inputs and these inputs trigger further 
information processing in the spiking neural network (SNN). Finally, the 
prosthetic control module monitors the spike event outputs of the SNN and 
translates them into prosthetic command signals for manipulation of the 
neuroprosthesis.

While offering to provide promising methods for neuroscience 
and BMI research, development process of SNN-based neuropros-
thetic controllers requires powerful and purpose-specific platforms, 
which are capable of (1) real-time SNN simulation, (2) providing 
biologically realistic synaptic interactions between real and model 
neurons, and (3) manipulating a robotic actuator according to the 
spike outputs of the model neurons in real-time. There are advanced 
software projects, such as RTXI (Lin et al., 2010; Kispersky et al., 
2011) and RELACS (Grewe et  al., 2011), for dynamic clamp 
experiments (Dorval et al., 2007), where a hybrid neural network 
is created by bidirectionally interfacing one or a few neurons with 
one or several model neurons through simulated synapses using 
intracellular recording and stimulation techniques. Moreover, 
NeuroRighter also provides practical tools for extracellular record-
ings and closed-loop stimulation of neural circuits in real-time 
(Rolston et al., 2010; Newman et al., 2012). However, these systems 
have not been specifically developed for creating simulated synaptic 
connections between a SNN and tens of extracellularly recorded 
neurons for real-time control of a robotic arm. Toward addressing 
the listed requirements of the SNN-based neuroprosthetic control 
paradigm, we implemented the “Bioinspired Neuroprosthetic 
Design Environment (BNDE).” The BNDE supports extracellular 
recording from 32 data acquisition (DAQ) channels and efficiently 
utilizes multiple CPU cores for computationally intensive real-
time SNN simulations. It realizes a real-time interface between a 
SNN and a motor neuroprosthesis. In this paper, we introduce the 
BNDE’s hardware and software techniques.

In the present article, we also demonstrate, on the BNDE, how 
to develop a novel, adaptive bioinspired BMI (B-BMI) control 
algorithm, which combines a reward-modulated spike timing-
dependent plasticity rule with a winner-take-all type classifier 
for one-dimensional control of a robotic arm and discuss its 
performance using real-time closed-loop simulations. Besides 
benefiting from the potential advantages of SNN-based neuro-
prosthetic control paradigm, which are listed above, the present 
B-BMI performs adaptation by simulating a possible mechanism 
of dopamine-dependent spike timing-dependent plasticity. 
A reward signal, which may correspond to phasic changes in 
dopamine concentration in natural neural circuits, is used to 
update synaptic weight parameters of the B-BMI. If the reward 
signal presented in the control architecture of the B-BMI can be 
extracted directly from the dopaminergic activity of the user’s 
brain during neuroprosthetic learning, this system can update 
its parameters without an external training signal (Mahmoudi 
et al., 2013; Marsh et al., 2015). The computational capacity of 
the BNDE has also been evaluated using a stress test paradigm 
for more sophisticated future BMI controller applications with 
higher number of model neurons and parameters.

Materials and Methods

The Bioinspired neuroprosthetic  
Design environment
The design philosophy of the BNDE aims to combine the flex-
ibility of software-based real-time signal processors and SNN 
simulators with powerful hardware resources around a standalone 
desktop PC (Figure 2). To achieve real-time performance for the 
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FigUre 2 | generic hardware and software components of the 
BnDe. (a) The hardware components. The BNDE is implemented around 
a desktop PC. Electrophysiology hardware provides analog neural 
signal inputs to the data acquisition card. The control hardware drives 
the servomotors of the neuroprosthesis and binary-stated components 

(e.g., LEDs, levers) of the experimental environment, and communicates 
with the BNDE through RS-232 interface. (B) The real-time (RT) tasks  
of the BNDE running on the RTAI-equipped PC. The information flow 
directions between RT tasks and hardware components are shown using  
arrows.
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tasks involved in SNN-based neuroprosthetic control, the BNDE 
was developed around a quad-core PC equipped with Real-time 
Application Interface (RTAI)1.

RTAI is an open-source, hard real-time extension for Linux 
operating system (Mantegazza et  al., 2000); it guarantees strict 
timing constraints of real-time applications while also allowing 
execution of standard Linux features and services (e.g., window 
system, keyboard/mouse inputs, file system, Linux applica-
tions, etc.) on the same system. In order to achieve this, RTAI 
handles the Linux operating system as a lowest priority task and 
enables (highest priority) real-time (RT) tasks to preempt Linux 
services whenever needed. As a consequence, no unexpected 
delays or interruptions occur in execution of the RT tasks. From 
the point of the user, working of the system remains the same 
as in a standard Linux operating system since standard Linux 
services are still allowed to run on the system when no RT task 
is executing (Mantegazza et al., 2000). Based on this feature of 
RTAI, we implemented the BNDE as a practical solution for the 
development process of neurally inspired BMI controllers; it has 
been equipped with both RT tasks and non-time-critical applica-
tions. While the RT tasks guarantees the timing constraints for 
biological–in  silico neuronal interactions through simulated 
synapses and real-time SNN simulations, the non-time-critical 
applications enable live visualization of experimental data and 
execution of graphical user interfaces (GUIs) for management 
of the behavioral experiments. Thus, the experimenter is able 
to monitor the spiking activity patterns and dynamics of the 
simulated neurons online while the RT tasks are performing the 
time-critical operations in the background.

1 www.rtai.org

As illustrated in Figure 2, the BNDE mainly executes five RT 
tasks, which present a framework for implementation of SNN-
based BMIs and behavioral paradigms for in vivo studies. These 
tasks are as follows: (1) spike sorting, (2) SNN simulation, (3) 
prosthetic control, (4) digital input–output (DIO) control, and 
(5) experiment control tasks. In this section, we briefly explain 
the role of these tasks; more detailed explanation about how each 
task works will be given in Section “Real-Time Closed-Loop 
Simulation Methods” by demonstrating the implementation of 
a SNN-based BMI.

The spike sorting task of the BNDE works in conjunction 
with a DAQ device to acquire and process the analog neural 
signals provided by a standard extracellular neural recording 
system consisting of microelectrode assemblies, signal filters, 
and amplifiers (Nicolelis et  al., 1997). In the BNDE, the DAQ 
device (National Instruments, PCIe-6259) is configured to 
perform continuous analog-to-digital conversion (ADC) with 
its maximum sampling rate of 31.25 kHz per channel and the 
spike sorting task executes the signal processing routines for 
extracting single-unit spikes through the neural data provided 
by the DAQ device. For each detected single-unit spike, the spike 
sorting task delivers an event to the post-synaptic neurons of 
the SNN to provide simulated synaptic interactions between 
biological and in silico neurons.

The SNN simulation task executes every 2 ms and performs 
numerical integrations to evaluate the dynamics of the neurons 
in the SNN. In the present implementation of the BNDE, there 
are two SNN simulation tasks each of which is assigned to a dif-
ferent CPU core (Table 1) and simulates half the neurons in the 
SNN. Thus, it becomes possible to allocate two cores of the CPU 
for computationally intensive SNN simulations. For implemen-
tation of the SNN, we utilize Izhikevich’s simple neuron model, 

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics/
www.frontiersin.org
http://www.rtai.org


August 2015 | Volume 9 | Article 84

Kocaturk et al. Toward hybrid networks for neuroprosthetic control

Frontiers in Neurorobotics | www.frontiersin.org

which is capable of exhibiting the rich dynamic repertoire of real 
neurons with simple differential equations (Izhikevich, 2003, 
2004, 2007b).

The prosthetic control and the DIO (digital input–output) 
control tasks operate in cooperation with the in-house built, 
microcontroller-based (Microchip, PIC18F4520) control hard-
ware, which enables the control of the experimental environ-
ment components by its embedded software modules [i.e., the 
servo control module and the Transistor–Transistor Logic (TTL) 
control module]. To achieve the communication with the control 
hardware, the BNDE utilizes a commercially available generic 
RS-232 interface controller which transmits and receives data at 
115.2 kbd/s.

The prosthetic control task is the intermediary between SNN 
simulation tasks and the servo control module of the control hard-
ware. It buffers the spike events received from the output layer of 
the SNN and translates them into pulse width commands to be 
handled by the servo control module. The servo control module 
then drives the three actuators or joints of a customized version 
of Lynxmotion AL5D robotic arm (Swanton, VT, USA) and 
returns the angle values of the joints through the same interface. 
By receiving the joint angles of the robotic arm, the prosthetic 
control task calculates the Cartesian position of the tip of the arm 
by forward kinematics.

The DIO control task receives the status of the digital inputs 
from experimental environment through the TTL control 
module of the control hardware and determines if the time to 
trigger an event is expired for a digital input. For instance, if a 
lever is pressed for a certain amount of time, it can trigger an 
event (successful lever press) and send it to experiment control 
task to request a trial initiation. In addition, it delivers digital 
outputs to the TTL control module to alter the binary state of 
the experimental environment components (e.g., turn LED off, 
release reward, etc.).

The experiment control task is the management center of 
the behavioral experiments. By receiving messages from the 
prosthetic and DIO control tasks, it decides if a trial should be 
initiated, ended, rewarded, etc. In addition, it informs the down-
stream tasks (i.e., SNN simulation, DIO control, and prosthetic 
control tasks) about the decisions it made so that they take action 
to apply the requirements of the experimental paradigm.

To utilize the system resources efficiently, the RT tasks of each 
module are assigned to run on a particular core of the CPU (Intel 
i7-950, Table 1).

In order to facilitate the SNN-based neuroprosthetic control 
studies, the BNDE was also equipped with non-time-critical 
applications, which provide GUIs and online data visualiza-
tion tools easing the management process of the experiments. 

TaBle 1 | The rT tasks of the BnDe and cPU core assignments.

rT task cPU core Task period (TP)

Spike sorting 0 512 μs
SNN simulation 1 and 2 2 ms
Prosthetic control 3 2 ms
Experiment control 3 2 ms
DIO control 3 2 ms

For the implementation of the GUIs, we utilized open-source 
GTK+libraries2. In addition, using the GtkDatabox libraries 
(sourceforge.net/projects/gtkdatabox), we implemented online 
data visualization utilities, which provide live display of the 
continuously changing signals (e.g., neural signals, dynamics of 
in silico neurons, neuronal spike trains, etc.).

The GUI for the spike sorting process enables the configura-
tion of the DAQ device and visualization of the acquired neural 
signals through a software-based oscilloscope. It also provides 
visualization tools for determination of the thresholds and 
templates for spike sorting process. The GUI related to the SNN 
simulation allows the user to build a neural network consisting 
of spiking neurons and visualize the dynamics of the neurons and 
spiking activity patterns of the real neurons during the behav-
ioral experiments. The other GUIs provide the software forms 
for adjustment of the parameters related to the management of 
the experiments (e.g., for submitting the maximum duration of a 
trial, the length of a valid lever press, etc.) and handle online data 
recording utilities, which periodically save experimental data to 
the hard drive of the system.

All software code for the BNDE and its libraries has been 
developed using C programing language. The libraries contain 
the routines for (1) creating and executing live data visualization 
tools, (2) building hybrid neural networks consisting of real 
neurons, which are extracellularly recorded, and model neurons, 
which are described using Izhikevich’s biologically plausible 
model (Izhikevich, 2007b), (3) communicating with the con-
trol hardware, (4) manipulating the three degree-of-freedom 
Lynxmotion AL5D robotic arm and calculating the Cartesian 
position of its endpoint by forward kinematics, (5) controlling 
the binary-stated experimental environment component, such as 
levers and LEDs, and (6) data recording. The libraries also include 
templates for messaging between the RT tasks. The messaging 
between the RT tasks of the BNDE is performed using the shared 
memory feature of the RTAI.

The BNDE has been developed using Ubuntu Linux 10.04 
LTS with kernel v2.6.32.2 and RTAI v3.8. In the current imple-
mentation, the COMEDI drivers with version 0.7.76 have been 
utilized for the DAQ card. GTK+ libraries with version 2.0 and 
GtkDatabox libraries with version 0.9.1.1 have been used for 
implementation of GUIs and online visualization tools.

Real-Time Biological/In Silico Neuronal Interaction in 
the Hybrid Neural Network
In order to acquire the neural signals and provide biologically 
realistic synaptic interactions between real and in silico neurons 
in the SNN-based neuroprosthetic control paradigm, we utilized 
the open-source DAQ card drivers provided by the COMEDI 
(Linux Control and Measurement Device Interface)3 project 
and the DAQ-related APIs provided by the RTAI developers1. 
Using these drivers and APIs, it becomes possible to bypass 
the interrupt management layers of the standard Linux kernel 
(Mantegazza et  al., 2000) and provide deterministic responses 
to the hardware interrupts of the DAQ device; a high priority 

2 www.gtk.org
3 www.comedi.org
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FigUre 3 | an example of spike event delivery between the tasks of 
the BnDe. SpSo: spike sorting task, Sim0 and Sim1: SNN simulation tasks, 
PrCo: prosthetic control task. The execution times of tasks are shown by the 
ticks on time axes. The tasks are periodically triggered. Task period for SpSo 
is 512 μs. The task periods for Sim0, Sim1, and PrCo are 2 ms as also 
shown in Table 1. In the present example, a neural spike time (tspike) is 
determined through the extracellular recordings according to the lowest peak 
of the spike waveform. A synaptic event for this spike is scheduled and 
delivered to the post-synaptic in silico neurons to be handled at tspike + Δtv 
and tspike + Δtw. After being depolarized, the neuron simulated by Sim1, but 
not the one simulated by Sim0, generates a spike at tse and then events are 
scheduled for tse + Δtm and tse + Δth to be handled by Sim0 and PrCo, 
respectively. Since the neuron simulated by Sim1 is inhibitory, it leads to 
hyperpolarization in the post-synaptic neuron simulated by Sim0. In the 
BNDE, whenever an event is generated, it is immediately transmitted to the 
target task by event scheduling. The scheduled event is then handled by the 
receiver task in the corresponding execution cycle. The value of an event 
transmission delay (Δtv, Δtw, Δtm, Δth) should not be smaller than the period of 
the task delivering the event so that the target task guarantees not to miss 
any scheduled event. The period of the tasks can be adjusted by the user 
according to the event transmission delay requirements of the BMI to be 
designed.
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RT task can be immediately executed whenever the DAQ device 
generates an interrupt.

In the BNDE, the 32-channel DAQ device is configured to 
generate an interrupt subsequent to acquiring 16 samples for 
each channel and the spike sorting task is configured to execute in 
response to the interrupts of the DAQ device. The sampling rate 
of the DAQ device is set to 31.25 kHz per channel. Therefore, the 
spike sorting task runs every 512 μs. Whenever the spike sorting 
task runs, it (1) writes acquired samples into a separate circular 
buffer for each DAQ channel, (2) filters the buffered neural 
signals by a fourth order Butterworth digital band-pass filter 
(cut-off frequency = 400 Hz–8 kHz), (3) up-samples the filtered 
neural data to 62.5 kHz by cubic interpolation to improve spike 
alignment performance for spike sorting, (4) detects the neural 
spikes by level thresholding. In the BNDE, a spike waveform is 
represented by 18 DAQ samples. Whenever the spike sorting 
task retrieves 18 samples for a detected spike waveform, it (1) 
runs template matching algorithm for sorting (as explained in 
Section “Spike Sorting via Template Matching”), (2) timestamps 
the sorted spike according to the lowest peak of its waveform, and 
(3) schedules synaptic events for the corresponding post-synaptic 
in silico targets (Figure 3).

The following algorithm briefly explains the routines of the 
spike sorting task. These routines also realize synchronization 
between the clocks of the DAQ hardware and the spike sorting 
task.

 1. Initialize DAQ card and read system time.
  tprevious = rt_get_time().
 2. Wait for DAQ interrupt (generated every 512 μs).
 3. Read system time.
  tcurrent = rt_get_time();
 4. Perform clock synchronization.
  texpected = tprevious + 512 μs.
  if texpected > tcurrent

  then tcurrent = tcurrent + Δtsync

  else tcurrent = tcurrent − Δtsync

 5. Buffer all acquired (512) samples, perform digital filtering 
and interpolation for all 32 channels.

 6. Perform spike sorting for GUI-activated single units.
 7. Timestamp sorted spikes according to tcurrent and schedule 

synaptic events for in silico neurons.
 8. Save system time for next acquisition.
  tprevious = tcurrent;
 9. Repeat step 2.

In the above algorithm, we set Δtsync to 0.5 μs so that the 
clock synchronization is achieved in the BNDE. In this algo-
rithm, tcurrent follows texpected with small synchronization steps.

For synaptic interactions in the hybrid neural network, each 
post-synaptic in  silico neuron has a separate circular buffer for 
each incoming synapse. As a result of this buffering mechanism, 
the spike sorting task and multiple SNN simulation tasks, which 
are run on different CPU cores, can simultaneously deliver sched-
uled synaptic events to any post-synaptic neuron. Therefore, 
no mutual exclusion lock, which suspends all CPU cores until 
unlocking, is used in synaptic event buffering mechanisms and 

the computational resources of the system are efficiently used for 
real-time SNN simulations.

In the BNDE, whenever a pre-synaptic (real or in silico) neuron 
fires, it schedules a synaptic event and writes this event into the 
corresponding synaptic event buffer of the post-synaptic neuron. 
At the beginning of each integration step, the post-synaptic 
neuron reads all its synaptic event buffers, sorts the events in the 
time domain in a separate buffer and performs integration by 
reading this buffer. Consequently, biologically realistic synaptic 
interactions between real and in silico neurons are realized. More 
details about the integration methods for simulating the SNN 
will be given in Section “Real-Time Closed-Loop Simulation 
Methods” by demonstrating the implementation of a SNN-based 
BMI controller on the BNDE.

Spike Sorting via Template Matching
In the BNDE, each single-unit, which is sorted from a recording 
channel, is modeled with a multivariate Gaussian distribution, 
N(μ, Σ). The likelihood of a detected spike waveform given 
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FigUre 4 | The spike sorting gUi of the BnDe displaying the spikes 
recorded from an awake rat, which was chronically implanted with a 
platinum/iridium microwire array in the forelimb area of the M1. Each 
spike in the BNDE is represented by 18 DAQ samples; therefore, the span of a 
spike waveform is 576 μs. In the present example, two single-units were 
well-isolated from one channel of the in vivo recordings. The spike waveforms 
of these units are shown by “blue” and “red” colors. The third unit, whose 

waveforms are shown by “yellow” color, is used to define noise or low-
amplitude spikes which are not suitable to be used in neuroprosthetic control. 
Each spike, whose amplitude exceeds a manually determined threshold, is 
sorted into one of these units appropriately by template matching as explained 
in Section “Spike Sorting via Template Matching.” The spike sorting GUI 
supports selection of (well-isolated) single-units, which can be connected to 
the in silico neurons of the BMI controller through simulated synapses.

August 2015 | Volume 9 | Article 86

Kocaturk et al. Toward hybrid networks for neuroprosthetic control

Frontiers in Neurorobotics | www.frontiersin.org

a particular single-unit or class Ci is given (Lewicki, 1998; 
Alpaydin, 2010):

 p x C
x x

( | ) / (( ) | | )
[ / ( ) ( )]

( / ) ( / )

( )
i

d
i

i
T

i iexp
= ∑

− − ∑ −−

1 2
1 2

2 1 2

1

π
µ µ

 
(1)

where x is the d-dimensional spike waveform data vector (d = 18 
samples), μi and Σi are mean and covariance matrix for unit Ci, 
respectively.

In the BNDE, the thresholds for spike detection and templates 
for spike sorting are manually determined by the experimenter 
using the GUIs implemented for these purposes. The thresholds 
are set using a software-based oscilloscope, which displays the 
acquired neural signal from a selected DAQ channel. When a 
spike detection threshold for a recording channel is set, the spike 
sorting GUI of the BNDE (Figure 4) starts to display the spike 
waveforms acquired from that channel online. Using the mouse 
cursor over the spike sorting GUI, the experimenter selects the 
spike waveforms belonging to a single-unit. Based on 60 selected 
spike waveforms, the spike sorting GUI forms a template for 1 
single-unit, described by μi and Σi. The spike sorting task, runs 
every 512 μs, then applies the likelihood function (Eq. 1) for each 
detected spike for each single-unit or class and sorts the detected 
spike into the single-unit (Ci) to which it has the highest probabil-
ity of belonging. Whenever a spike is sorted, the spike sorting task 

schedules synaptic events for the corresponding post-synaptic 
in silico cells (Figure 3). Moreover, the spike sorting GUI displays 
the sorted spike waveform with a color code corresponding to that 
unit (Figure 4). As an aside, μi, ∑−

i
1, and | | ,Σ i

1
2  utilized in Eq. 1, 

are evaluated by the spike sorting GUI only once when the spike 
waveforms are selected for forming the templates. In this way, it 
becomes computationally practical for the spike sorting task to 
apply the likelihood function (Eq. 1) for each detected spike.

Using the spike sorting GUI of the BNDE, a probability 
threshold for each isolated unit is submitted by the user so that an 
interfering signal, whose probability of belonging to any single-
unit is very low, are discarded from sorting. The waveforms of 
the detected interfering signals are plotted by the spike sorting 
GUI. Using the same GUI, all information related to the spike 
templates and thresholds are saved into a file to be used in later 
experiments.

The Bioinspired Brain–Machine  
interface controller
In this section, we describe the B-BMI controller, which is based 
on building a hybrid biological/in silico neural network consist-
ing of extracellularly recorded motor cortex neurons and model 
medium spiny neurons (MSNs).

The MSNs are inhibitory projection neurons and com-
prise the majority of the neuronal population in the striatum 
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(approximately 95% in the rat) (Tepper et al., 2007). They receive 
excitatory (glutamatergic) synaptic inputs from the cortical areas 
and dopaminergic inputs from the midbrain. The dopaminergic 
inputs, which may encode the difference between predicted and 
received rewards (namely reward prediction error) by biphasic 
activity changes (Schultz, 1998), modulate plasticity in the syn-
apses between the cortical neurons and the MSNs (Reynolds and 
Wickens, 2002; Wickens et al., 2003; Kreitzer and Malenka, 2008; 
Pawlak and Kerr, 2008).

The MSNs have unusual, bistable membrane potential 
properties. They have a high threshold for activation and very 
low activity profile during resting conditions (down-state). 
When they are depolarized by strong excitatory inputs, their 
membrane potentials remain in “up-state” for a prolonged 
period. In the up-state, the membrane potential is close to fir-
ing threshold and generation of a spike (Grillner et al., 2005; 
Izhikevich, 2007b).

By utilizing the knowledge related to bistable membrane 
potential properties and dopamine-dependent plasticity of 
MSNs, we created the B-BMI controller (B-BMI) to realize 
a two-target center-out reaching task in one-dimensional 
space (Figures  5 and 6). In the control paradigm, the living 
(extracellularly recorded) primary motor cortex (M1) units are 
partially connected to the in  silico MSNs through simulated 
excitatory synapses. The MSNs are then reciprocally connected 
through strong inhibitory synapses to build a mechanism for 
winner-take-all competition. In the present control paradigm, 
the MSN with the highest spike count is selected as the win-
ning neuron and the prosthetic action (moving to the “left” or 
“right”) corresponding to that neuron is applied by the base 
servomotor of the robotic arm in one-dimensional space. 
In case of equality among the spike counts of the MSNs, no 
winning neuron is selected and no prosthetic action is applied 
(“stationary”). The spike counts of the MSNs are calculated by 
binning the generated spikes every 26 ms with a sliding 104 ms 
time window.

The in silico MSNs of the B-BMI are described using the equa-
tions of Izhikevich’s simple neuron model (Izhikevich, 2007b) 
and the synaptic interactions are provided by fast conductance-
based synaptic currents (Vogels and Abbott, 2005) as in Stewart 
and Bair (2009):

 Cv′ η γη γ= −( ) −( ) − − −( ) − −( )k v v v v u v E v Er t  (2)

 u a u′ = −( )bv  (3)

where ν is membrane potential, u is membrane recovery variable, 
νr is the resting membrane potential, νt is the threshold potential, 
C is membrane capacitance, a is a constant, which describes time 
scale of u, b is a constant, which describes the sensitivity of u, 
k is a scaling constant, η and γ are total excitatory and inhibi-
tory synaptic conductances, respectively. Eη and Eγ represent 
excitatory and inhibitory synaptic reversal potentials. Arrival of 
a synaptic event from biological or in silico pre-synaptic neuron 
leads to a step-wise increase in the appropriate conductance 
variable; η → η + wi for an excitatory event and γ → γ + wi for an 
inhibitory event, where wi is the conductance value or “weight” 
of the i-th synapse of the neuron. When there is no incoming 

event, the total conductance values decay with time constants 
τη and τγ:

 η′ η τη= − /  (4)

 γ ′ γ τγ= − /  (5)

When the membrane potential exceeds a voltage peak (νpeak), 
i.e., the neuron generates a spike, the membrane potential and 
membrane recovery variable are reset as follows:

 v v≥ peak then
v c
u u d

←
← +





 (6)

The neuron model parameters for the MSNs are a  =  0.01, 
b = −20, c = −55 mV, d = 150, C = 50 pF, k = 1, νr = −80 mV, 
νt  =  −25  mV, νpeak  =  40  mV (Izhikevich, 2007b). Through a 
number of trial-and-error studies to implement an effective 
winner-take-all operation in the system, the reversal potentials 
and the time constants for conductance values were set as follows: 
Eη = 0 mV, Eγ = −110 mV, τη = 6 ms, and τγ = 20 ms. The synaptic 
delays between the M1 units and the MSNs are selected from a 
uniform distribution between 3 and 5 ms and the delays between 
MSNs are selected from a uniform distribution ranging from 2.5 
to 3.0 ms.

Learning in the network is provided by reward-modulated 
spike-timing-dependent plasticity (STDP), where a global reward 
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signal leads to long-term potentiation (LTP) or depression (LTD) 
in the excitatory synapses (Frémaux et  al., 2010). The initial 
weights of the synapses are given equally and the weight (wij) of 
the synapse between the i-th motor cortex unit and the j-th MSN 
is updated every 26 ms as follows:

 w t w t wij ij ij+( ) = ( ) +1 ∆  (7)

 ∆w w t r t e tij ij ij= ( ) ( )µ ( )  (8)

where μ is the learning rate, eij(t) is the binary-stated (0 or 1) 
eligibility trace, which is triggered when the post-synaptic node j 
fires after the pre-synaptic node i within a time window of 40 ms 
and is terminated 100 ms after being triggered (Izhikevich, 2007a; 
Chadderdon et al., 2012; Dura-Bernal et al., 2014; Neymotin et al., 
2013). r(t) is the current global reward signal evaluated as follows:

 r t R S t( ) = −( ) ( )1 k  (9)

where S(t) is the sensory error (−1 or +1), which represents the 
consistency or discrepancy between the user’s expected move-
ment direction and the actual robotic action. The sensory error 
is extracted from the movements of the robotic actuator every 
26 ms and determines the sign of the global reward signal r(t). 
If the tip of the robot moves toward the currently selected target, 
the value of S(t) is 1, otherwise −1. Rk is the positive reward 
estimate (successful target reach estimate) for the k-th target and 
is updated at the end of each trial as a running mean (Vasilaki 
et al., 2009):

 R n
m

R n
m

Rk k k k T( ) = −





−( ) +1 1 1 1  (10)

where nk is the trial number for the corresponding k-th target, RT 
is the binary reward variable which indicates if the trial is ended 
with successful target reach or not (1 or 0), and m is the width of 
the averaging window.

After updating all synaptic weights using Eq. 7, a “homeo-
static synaptic plasticity” rule (Turrigiano, 1999; Abbott and  

Nelson, 2000; Royer and Paré, 2003) is utilized to stabilize the 
excitability of the MSNs; the excitatory synaptic weights are 
normalized so that the sum of all weights of excitatory synapses 
to the j-th MSN is kept at a constant value W:

 w t
w t

w t
Wij

ij

i ij

+( ) =
+( )

+( )∑
1

1
1

 (11)

In addition, the weight of the excitatory synapses is limited by 
a maximum value (wmax) in order to avoid excessive increase in a 
synaptic weight. The value of wmax is determined as follows:

 w W Nmax j= α( / )  (12)

where Nj is the total number of excitatory synapses to the j-th 
MSN. α is a scaling constant which is >1 and determines the 
amount of the difference between wmax and the average of the 
weights of the excitatory synapses to the j-th MSN.

real-Time closed-loop simulation Methods
To evaluate the practicality of the BNDE for neuroprosthetic 
control experiments and study the performance of the B-BMI, we 
performed real-time closed-loop simulations, which involved a 
behavioral paradigm and an external, hardware-based neural sig-
nal synthesizer. The neural signal synthesizer and the behavioral 
paradigm were designed to realize a full system test in which all 
the software and hardware modules of the BNDE are utilized. The 
behavioral paradigm involves external binary inputs (e.g., button 
press) to initiate neuroprosthetic control trials and binary outputs 
to indicate the position of the targets (e.g., LED targets, Figure 6B) 
to be reached. Additionally, the neural signal synthesizer provides 
analog signals to the DAQ device of the system to imitate the 
extracellular recordings of in  vivo experiments. The present 
closed-loop simulation paradigm also demonstrates an example 
of how to develop a SNN-based BMI controller using the BNDE.

In the closed-loop simulation paradigm, the MSNs of the 
B-BMI are simulated by the SNN simulation tasks of the BNDE 
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FigUre 7 | closed-loop simulation platform and neural network 
architecture for the Bioinspired BMi (B-BMi). (a) Closed-loop simulation 
platform for the B-BMI. The signal synthesizer (Synt-A) generates Poisson-
distributed (inverted) pulse signals to simulate extracellular recordings from 18 
primary motor cortex (M1) neurons and provides inputs for 18 analog channels 
of the DAQ device. SNN simulation tasks run the B-BMI by simulating the 
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and extracellular recordings from primary motor cortex (M1) 
neurons are simulated by the neural signal synthesizer. The 
synthesizer, implemented using a microcontroller (Microchip 
PIC18F4520), provides simulated neural signals to the analog 
input channels of the DAQ hardware of the BNDE through its 
output pins (Figure 7A). Each output pin of the synthesizer is 
associated with a synthetic M1 neuron and when a synthetic 
neuron generates a spike, the corresponding pin of the micro-
controller produces an inverted 100-μs-duration pulse. As in 
previous studies in which closed-loop simulations were utilized 
for development of reinforcement learning-based BMI control 
algorithms (Mahmoudi and Sanchez, 2011; Mahmoudi et  al., 
2013), the synthetic neurons were created to reproduce the 
directional tuning properties of real M1 neurons. In the synthe-
sizer, there are three cortical neuronal ensembles, each of which 
consists of six M1 neurons (Figure 7B). The neurons of the first 
ensemble are tuned to the “left” and the ones belonging to the 
second ensemble are tuned to the “right” direction. Additionally, 
the neurons of the remaining ensemble are tuned to “no direc-
tion” as uncorrelated neurons have been observed in in vivo neu-
roprosthetic control experiments (Sanchez et al., 2004; Wahnoun 
et al., 2006; Mahmoudi et al., 2013). The M1 neurons of the signal 
synthesizer are connected to the in silico MSNs through simulated 
synapses as explained in Figure 3; using the spike sorting task of 
the BNDE, the spikes sorted from the recordings are delivered 
to the in silico MSNs as synaptic events. As shown in Figure 7B, 
two-thirds of the synthetic neurons are connected to only one 

MSN and remaining one-third are connected to both MSNs. Note 
that, in this configuration, some neurons with directional tuning 
are connected to only one MSN, which represents the prosthetic 
action toward the opposite direction (e.g., neuron 2 in Figure 7B 
is tuned to left but connected only to right action MSN). Thus, 
the M1 neurons, regardless of directional tuning, are partially 
connected to the MSNs through simulated excitatory synapses.

In order to simulate the directional tuning properties of the 
motor cortical neurons, we programed the neural signal syn-
thesizer to produce Poisson-distributed spikes according to the 
tuning map shown in Figure 7B. Since the synthesizer was devel-
oped around a low computing power (8-bit) microcontroller, a 
fast 32-bit linear congruential pseudo-random generator (Press 
et al., 1992) was utilized to provide the random numbers for the 
Poisson-distributed spike generation process:

 x s x s+( ) = ( ) +1 1664525 1013904223  (13)

where x is the generated 32-bit number, s is the number of the 
iteration and x(0) = 0. We studied the statistical properties of the 
present number generator and decided it was adequate for roughly 
simulating the firing rate properties of the motor cortex neurons 
in the development process of the B-BMI. In the closed-loop 
simulations, the Poisson-distributed spike generation process is 
run every 2 ms for each synthetic neuron. Throughout the simu-
lations, the synthesizer continuously generates spikes according 
to the baseline firing rate estimates of the neurons. When a trial 
starts, it begins to apply the directional tuning properties of the 
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neurons according to the selected target. The plot in Figure 8 is 
a snapshot from the spike sorting GUI of the BNDE while it was 
plotting the (digital band-pass filtered) waveforms of the neural 
spikes acquired from a channel of the signal synthesizer.

In the present closed-loop simulation paradigm, the spike 
sorting task of the BNDE is configured to perform sorting for 
multiple single-units for each recording channel as in an in vivo 
recording experiment. For each channel, “three single-units” 
are defined. The spike templates for the “first” single-units are 
generated by connecting the neural signal synthesizer to the 
input channels of the DAQ hardware. The templates for the 
“second” and “third” single-units are produced by applying 
two different sinusoidal waveforms to the input channels of the 
DAQ hardware. Since all spikes in the closed-loop simulations 
are generated by the neural signal synthesizer (Figure 7A), the 
spike sorting task sorts them into the “first” single-units, which 
correspond to M1 neurons of the synthesizer, and forwards the 
sorted spikes to the corresponding post-synaptic in silico MSNs 
(Figure 7B). In this paradigm, computational load of the spike 
sorting task for any detected spike is as much as the one in a 
real in vivo recording experiment, in which the spikes are sorted 
into up to three single-units for each channel, because it performs 
template matching by applying the likelihood function (Eq. 1) for 
“all three single-units” for each detected spike (see Spike Sorting 
via Template Matching).

According to behavioral paradigm utilized in the real-time 
closed-loop simulations (Figure 9), each trial starts by an exter-
nal digital input (i.e., button press), which is provided by the 

experimenter at arbitrary times. When the button is pressed for 
26 ms, the DIO control task of the BNDE senses the external input 
through the TTL control module of the control hardware and 
sends a “trial start request” message to the experiment control 
task. After receiving the trial start request, the experiment control 
task selects a target (left or right) randomly and initiates a trial by 
delivering a message to the SNN simulation, the DIO control, and 
the prosthetic control tasks. The “trial start” message also includes 
the information regarding the selected target side (i.e., left or 
right). Thence, (1) the SNN simulation task, implementing the 
B-BMI, determines the value of the positive reward estimate Rk( ) 
corresponding to the selected target to apply Eq. 7 throughout the 
trial, (2) the prosthetic control task sets the Cartesian coordinates 
of the selected target to sense whether the target is acquired dur-
ing a trial, (3) the DIO control task commands the TTL control 
module to turn the target LED on (Figure  6) and provides an 
input for the neural signal synthesizer. According to this input 
from the TTL control module, the neural signal synthesizer starts 
to generate the neural activity pattern related to the selected target 
(Figure 7B).

Forty milliseconds after a trial initiates, the prosthetic control 
task starts to periodically handle the spike events received from 
the SNN simulation tasks. Every 26  ms, it calculates the spike 
counts of the MSNs with a sliding 104-ms time window, selects 
the neuron with the highest spike count as the winning neuron 
and applies the prosthetic action corresponding to the winning 
neuron by delivering a command to the servo control module of 
the control hardware. This command rotates the (digital) base 
servomotor of the robotic arm −1°/+1° for the winning left/right 
actions or keeps it stationary in case of an equality among the 
spike count of the MSNs. When the spike counts of both MSNs 
are equal to 0, it also keeps the robotic arm stationary. Six milli-
seconds after delivering the pulse width command, the prosthetic 
control task receives the angle values of the joints through the 
servo control module and determines the Cartesian position of 
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the tip of the arm by forward kinematics. If the tip of the robot 
moves toward the selected target in the last movement step 
(26 ms), the prosthetic control task sends a positive sensory error 
[S(t) = 1] message to the SNN simulation task. If not, it delivers a 
negative sensory error (−1). Based on the sensory error messages 
received from the prosthetic control task, the SNN simulation 
tasks periodically (every 26 ms) update the weights of the plastic 
synapses by applying Eq. 7.

Based on the Cartesian position of the tip of the robotic arm, 
the prosthetic control task periodically checks if the correct or 
wrong target is reached within the maximum trial duration (i.e., 
3  s). If the correct (selected) target is reached, the prosthetic 
control task sends a “reward request” message to the  experiment 
control task. If the wrong (opposite) target is reached by the 
robotic arm, a “punishment request” message is delivered to 
the experiment control task. By receiving such a request message, 
the experiment control task ends a trial by sending a message 
to the SNN simulation, DIO control, and prosthetic control 
tasks. The message to the SNN simulation tasks includes the 
information related to correct or wrong target reach so that it can 
update the positive reward estimate for the selected target, Rk , by 
applying Eq. 10. The message to the DIO control task cancels the 
inputs to the target LED and the neural signal synthesizer. Thus, 
the synthesizer starts to generate the baseline spiking activity for 
the simulated cortical neurons. Finally, by receiving the “trial end 
message” from the experiment control task, the prosthetic control 
task directs the robotic arm back to its default position in the 
middle of the targets to prepare it to be used in the next trial.

In addition to the trial end messages, a trial is also terminated by 
the experiment control task when it is not completed by a correct or 
wrong target reach event within the maximum trial duration. When 
there appears a trial timeout, the experiment control task sends 
the “trial end message” to the downstream modules as in wrong 
target reach case. Thus, the positive reward estimate for the selected 
target, Rk , is decreased, DIO control task cancels the input to the 
neural signal synthesizer and the prosthetic control task directs the 
robotic arm back to the default position. At the end of each trial, a 
refractory period of 2 s is applied to allow the robotic arm to reach 
its default position and to let the data writing processes to create 
new data folders for the recordings related to the next trial.

Throughout the closed-loop simulations, i.e., during the trials 
and inter-trial periods, the spike sorting task is always enabled to 
extract the spike events from the acquired data using the methods 
explained in Section “Real-Time Biological/In  Silico Neuronal 
Interaction in the Hybrid Neural Network” and schedule syn-
aptic events for the post-synaptic in silico neurons. Additionally, 
throughout the closed-loop simulations, the SNN simulation 
tasks evaluate the dynamics of the in silico cells and deliver the 
generated spike events to the prosthetic control task with a trans-
mission delay of 3 ms (Figure 3). The prosthetic control task sorts 
the incoming events in the time domain and processes them only 
when the robotic control is enabled after a trial initiation.

For the simulation of the SNN, Parker–Sochacki (PS) method 
(Parker and Sochacki, 2000) is applied with the techniques pre-
sented by Stewart and Bair (2009) so that full-double precision 
accuracy is achieved in the numerical integrations. Whenever 
the SNN simulation tasks are triggered by timer interrupts, they 

perform numerical integrations for the differential equations 
describing the synaptic interactions and neuronal dynamics in 
the system (Eqs 2–5). For the integrations, the global step size 
is set to 250 μs. Prior to realizing integration for a global time 
step, the incoming synaptic events are sorted in the time domain. 
As PS method allows, the global integration step size is split into 
local substeps separated by the incoming synaptic events (if there 
is any) and integration for a global step size is realized through a 
single 250-μs-step or multiple substeps, accordingly. Whenever 
a spike is generated by a neuron, an event is scheduled for the 
post-synaptic neuron and the prosthetic control task (Figure 3) 
with nanosecond precision, which is the precision of the system 
time provided by RTAI.

stress Test Methods
In order to evaluate the real-time computational capacity of 
the BNDE for its future uses in the design of more advanced 
SNN-based BMI controllers, which utilize a higher number of 
neurons or variables, we developed and implemented a stress test 
paradigm. In this paradigm, we utilized the same closed-loop 
simulation setup and the behavioral paradigm as the one men-
tioned in Section “Real-Time Closed-Loop Simulation Methods.” 
Additionally, we inserted 150 MSNs into the SNN and connected 
an extra neural signal synthesizer (Synt-B) to the remaining 14 
channels of the DAQ board (Figure 10). However, these additional 
neurons and the signal synthesizer had no function in neuropro-
sthetic control; they were added into the closed-loop simulation 
platform only for stressing the hardware and software resources 
of the BNDE while the B-BMI was learning the control of the 
neuroprosthesis. In this scenario, the additional MSNs received 
inputs both from Synt-A and Synt-B through probabilistically 
connected excitatory synapses (connection probability = 0.66, the 
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right targets in terms of the joint angle corresponding to the base servomotor 
of the robotic arm.
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synaptic delays were selected from a uniform distribution ranging 
from 3 to 5 ms.). Moreover, these neurons were connected to each 
other through inhibitory synapses with a connection probability 
of 0.2; the transmission delays were selected from a uniform 
distribution between 2.5 and 3.0 ms. Consequently, each of the 
additional MSNs received approximately a total of 50 synapses 
from each other and from the signal synthesizers. Throughout 
the stress tests, each unit of the Synt-B continuously generated 
Poisson-distributed spikes with an estimated firing rate of 80 Hz 
independent from trial initiation or termination. The spike sort-
ing task applied template matching algorithm (see Spike Sorting 
via Template Matching) for three single-units for each channel as 
in the closed-loop simulation paradigm.

results

The B-BMi learning Performance
Prior to starting the experiment to test the learning performance 
of the B-BMI, we determined the total weight of the excitatory 

synapses to the MSNs, W in Eq. 11, and the weight of the inhibi-
tory synapses between the MSNs to provide a winner-take-all 
functionality in the network. While the Synt-A was generating 
baseline spike activity according to the tuning map as shown in 
Figure 7B, we empirically set the value of W to 110 nS to provide 
a baseline firing rate of approximately 2–5  Hz for the MSNs. 
The weight of the inhibitory synapses, which were non-plastic 
throughout the experiment, was set to a value of 40 nS to provide 
strong inhibition between the MSNs. The weight of the excitatory 
synapses to the MSNs was equal to each other at the beginning of 
the experiment and was continuously updated during the trials.

Figure 11 shows the raster plot of the spikes generated by the 
Synt-A and the MSNs during the first trial of the experiment. 
Prior to the trial, the Synt-A generated baseline spike activity. 
Upon initiation of the trial by a button press, the left target was 
selected by the experiment control task of the BNDE and the 
Synt-A started to produce the activity pattern for the left direc-
tion as it had been programed to imitate the tuning properties 
of motor cortex neurons (Figure  7B). The synaptic weights of 
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FigUre 12 | learning performance of the B-BMi. (a) Target reach 
performance. The selected target for each trial is represented by red stems  
(L for left trial and R for right trial) and the blue stems shows if the target was 
acquired (1) or not (0) within maximum trial length. (B) The positive reward 
(successful target reach) estimate related to each target at the end of the trials 
(red for left, green for right target reach-related positive reward estimate).  
(c) The length of the trials. The wrong or correct target reach ends the trial 
before its maximum allowed length (3 s). (D) Trajectory error. The percent of the 

robotic actions, that does “not” direct robotic arm toward the selected target. 
The robotic actions are selected every 26 ms according to the spike count of 
the MSNs. Three actions were available: left, right and stationary. (e,F) The 
weight of the excitatory synapses of the left (e) and right (F) MSNs at the 
beginning of each trial. Convergence in synaptic weights was achieved at 
around trial 40 by updating the synaptic weights. At trial 50, the tuning map of 
the motor cortex units was reversed. At trial 77, 100% target reach accuracy 
was regained for the reversed tuning map.
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the excitatory synapses to the MSNs were updated based on the 
sensory error extracted every 26 ms from the one-dimensional 
movements of the robotic arm. The trial was not rewarded since 
the robotic arm did not acquire the target within the maximum 
trial length of 3 s.

The learning performance of the B-BMI is shown in Figure 12. 
As the control algorithm was naïve at the beginning of the experi-
ment, the excitatory synaptic weights of the MSNs were set to 
be equal to each other and the positive reward (successful target 
reach) estimate for each target (Rk in Eq. 9) was set to 0. In the 
first trial, the target was not achieved within the maximum trial 
length of 3 s as shown in Figures 11 and 12C. Thus, the trial was 
ended by a timeout and the positive reward estimate value Rk( ) 
for the selected left target stayed at 0 at the end of the first trial 
(Figure 12B). In this trial, approximately 50% of the pulse width 

commands, which are evaluated by the prosthetic control task 
and delivered to the control hardware every 26 ms, were not for 
directing the robotic arm toward selected left target. In other 
words, approximately 50% of the delivered commands were to 
keep it stationary or to direct it toward right. In this configuration, 
depending on the learning rate (0.02), perfect target reach accu-
racy was achieved after two unsuccessful trials. As the number of 
trials ending with a successful target reach increases, the positive 
reward estimate for each target climbed to “1.” At around trial 40, 
the excitatory synaptic weights of the MSNs converged at around 
trial 40 as shown in Figures 12E,F. As shown in Figures 12C,D, 
when the trajectory error is around 0%, the length of a trial was 
around 1 s.

In order to test the generalization performance of the 
B-BMI, at trial 50, we reversed the directional tuning map of 
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TaBle 2 | execution times of the rT tasks during running only the B-BMi and the stress test.

Only B-BMi stress test (B-BMi + 150 Msns) Task period (μs)

rT task average (μs) Maximum (μs) average (μs) Maximum (μs)

Spike sorting 59 145 71 188 512
SNN simulation 0 7 22 767 1614 2000
SNN simulation 1 7 20 770 1578 2000
Prosthetic control 5 55 6 61 2000
Experiment control 2 31 2 28 2000
DIO control 3 15 3 15 2000
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the motor cortex units; i.e., the tuning property of the units 
for left direction was switched to be generated for the right 
direction, and vice versa. In addition, the firing rate estimate 
of the units for the baseline activity remained the same. In this 
reversal learning paradigm, from the view of the MSNs, the 
task was to update the synaptic weights effectively to regain 
the perfect target reach accuracy. From Figure  12D, we can 
see dramatic increase in trajectory error in trial 50. In this 
trial, the trajectory error was 100% and the trial length was 
around 1  s since the robotic arm directly reached the wrong 
target. As the target reach accuracy of the control algorithm 
decreased, the reward estimate for the targets also diminished. 
At trial 69, target reach accuracy of the algorithm started to 
increase again and corresponding reward estimate value for 
the selected target was updated accordingly (Figure 12B). As 
the reward estimate for the targets rose, the trajectory error 
declined. At around trial 120, the synaptic weights of the MSNs 
converged to their final values and stayed there until the end of 
the experiment (Figures 12E,F). After convergence (between 
trial 120 and 200), the average trajectory error percentage was 
approximately 5.9%.

Performance of the BnDe
In order to evaluate the performance of the BNDE, we ran two 
test cases: First, we ran the B-BMI using the closed-loop simula-
tion methods explained in Section “Real-Time Closed-Loop 
Simulation Methods” (“only B-BMI paradigm”). Second, we 
ran the stress test paradigm explained in Section “Stress Test 
Methods” (“B-BMI + 150 MSNs”). Each test case was run for 2 h 
while online visualization and data recording tools of the BNDE 
were enabled. For each test case, 500 trials were performed on 
the system. Additionally, at trial 50 of each test, the tuning map 
for the motor cortex units were reversed as mentioned in the 
previous section.

At the end of both test cases, the SNN simulation task and 
the prosthetic control task did not miss any spike event gen-
erated by the neural signal synthesizers (Synt-A&B) and the 
SNN simulation tasks; all spike events extracted by the spike 
sorting task were processed by the SNN simulation tasks on 
their scheduled time and prosthetic control task handled all 
spike events in the corresponding time bin (Figure 3). During 
these tests, we observed execution times of the RT tasks and 
deviations in their periods (i.e., jitters) in order to evaluate the 
real-time performance of the system. Based on measurements 
through 100,000 consecutive execution cycles, average jitter 
for the tasks triggered by the timer interrupts of the system 

(i.e., all tasks except for spike sorting task) was <1 μs, with a 
maximum of 20–25 μs. For the spike sorting task, which was 
triggered by the interrupts of the DAQ hardware, the average 
jitter was approximately 9 μs, with a maximum of 110–120 μs. 
In the BNDE, spikes are timestamped according to the system 
time at which the spike sorting task is triggered to execute (see 
Real-Time Biological/In  Silico Neuronal Interaction in the 
Hybrid Neural Network). Therefore, these jitters could lead to 
a negligible error in spike timestamping process. Thanks to the 
clock synchronization algorithm explained in Section “Real-
Time Biological/In  Silico Neuronal Interaction in the Hybrid 
Neural Network,” the error in spike timestamping is even less 
than these jitter levels.

Table 2 presents the average and maximum execution times 
of the RT tasks during both tests based on 100,000 execution 
cycles. From the table, we can see that increasing the number 
of the MSNs for the stress test, as expected, also increased 
the execution time of the SNN simulation tasks. By addition 
of the Synt-B into the simulation platform for the stress test 
paradigm, the average execution time for the spike sorting 
task also increased due to operation of template matching 
algorithm for additional 14 DAQ channels. However, the 
execution time for other tasks was not significantly affected 
by such increases since they were run on different cores of 
the CPU.

During running only the B-BMI and the stress test paradigm, 
the BNDE recorded (1) the timestamps of the spikes generated by 
both the biological and in silico neurons, (2) the input and output 
events related DIO control task, (3) the pulse width commands 
sent to the servo control module, (4) joint angle values received 
from the servo control module, and (5) the statistics related to 
the experiments. At the end of the performance test for the only 
B-BMI case, the BNDE recorded 48 MB of data. In the case of the 
stress test, as the number of the spiking units was increased by an 
addition of a neural signal synthesizer (Synt-B) and 150 MSNs to 
the SNN simulator, the BNDE recorded 1.18 GB of data in 2 h. 
During the stress tests, the average spiking activity per simulated 
MSN was approximately 41 Hz.

During the performance tests for running only the B-BMI and 
the stress test paradigm, we were able to monitor the plot of the 
dynamics of the MSNs and raster of the spike events generated 
by the neural signal synthesizers (Synt A&B). Figure 13 shows 
a snapshot from the GUI of the BNDE while it was plotting the 
raster of the spikes online during the 462nd trial of the stress test. 
Additionally, Figure  14 shows the snapshot of the GUI while 
plotting the dynamics of three manually selected MSNs during 
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FigUre 13 | raster plot of the spikes generated by synt-a&B during 462nd trial of the stress test. The first six rows present the tuned activity of the 
neurons simulated by the Synt-A. Last 14 rows reflect the activity pattern of the high-frequency spiking neurons of the Synt-B. The time interval between the vertical 
dashed lines is 300 ms.
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the same trial. The uppermost graph in Figure 14 illustrates the 
membrane potential dynamics of the MSN, which corresponds 
to the left prosthetic action and the graph in the middle presents 
those of the MSN corresponding to the right action. Finally, the 
bottom graph shows the high-frequency spiking activity of one 
of the 150 MSNs added into the system for the stress tests. The 
green vertical lines in Figures 13 and 14 mark the timepoint on 
which the control of the robotic actuator was enabled and the 
red lines indicate the timepoint on which the trial was ended by 
acquisition of the right target. Even though the GUIs are capable 
of plotting 3-s history of the raster of the spikes and the neuronal 
dynamics, we took the snapshot of the same 1.5  s portion of 
the visualized part in order to provide a higher resolution image 
here.

Discussion

The BnDe
In the present work, one of our goals was to implement a platform 
capable of creating simulated synaptic connections from extra-
cellularly recorded neurons to model neurons for development 
of SNN-based BMI controllers. Since the software-based SNN 
simulations provide a flexible method for investigating the behav-
ior of the neuronal circuits, we preferred to develop this platform 
around a desktop PC. In order to satisfy the strict timing con-
straints of the real-time SNN simulations and biological/in silico 
neuronal interactions on PC, we used RTAI, a real-time extension 
for Linux operating system. Utilization of RTAI provided several 
benefits in establishment process of the BNDE. First, it enabled 
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FigUre 14 | Dynamics of the Msns during 462nd trial of the stress test 
in response to the spike events presented in Figure 13. When the trial was 
started and the robot control was enabled (vertical green line), the MSN 
corresponding to right action was activated (switched mostly to up-state) by the 
increasing activity of the simulated motor cortex units (graph in the middle) and 
suppressed the activity of the left action MSN (uppermost graph) through the 

inhibitory synapse. At the end of the trial by successful target reach (vertical red 
line), the MSNs returned to their baseline activities with the decrease in the 
activities of the pre-synaptic motor cortex units. The bottom graph represents 
the neuronal dynamics of one of the MSNs, which were added into SNN for the 
stress test paradigm. The time interval between the vertical dashed lines is 
300 ms and the voltage difference between the horizontal dashed lines is 30 mV.
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development of real-time applications, which are equipped 
with powerful GUIs capable of live visualization of the spiking 
activity of the biological and in  silico neurons (Figures 13 and 
14). Second, by the support of the COMEDI drivers, the RTAI 
provides deterministic response to the interrupts of a DAQ 
device. Thus, the neural data acquired from the brain (Figure 4) 
or neural signals synthesizers (Figure 8) could be processed in 
real-time. Third, since the RTAI provides serial port drivers, it 
became possible to perform the control of a robotic actuator 
according to the outputs of a SNN-based BMI controller, which 

was trained using the position-related feedbacks received from 
the actuator. Finally, the use of the open-source software provided 
by RTAI and COMEDI projects significantly decreased the costs 
in establishment of the BNDE. Even though there are advanced 
software projects such as RTXI4 and RELACS5, which are based 
on RTAI and COMEDI for dynamic patch clamp studies, real-

4 www.rtxi.org
5 www.relacs.net

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics/
www.frontiersin.org
http://www.rtxi.org
http://www.relacs.net


August 2015 | Volume 9 | Article 817

Kocaturk et al. Toward hybrid networks for neuroprosthetic control

Frontiers in Neurorobotics | www.frontiersin.org

time neural DAQ and stimulation, there is no work which specifi-
cally targets creating hybrid neural networks for control of motor 
neuroprostheses. In this work, we demonstrate how the BNDE 
establishes simulated synaptic connections from extracellularly 
recorded motor cortex neurons to model neurons for neuropros-
thetic control. We also present how the BNDE efficiently utilizes 
multiple CPU cores for computationally intensive real-time 
SNN simulations. The scheduled event buffering mechanisms 
(see Real-Time Biological/In Silico Neuronal Interaction in the 
Hybrid Neural Network), which are specifically designed to avoid 
use of mutual exclusion locks, allow efficient utilization of com-
putational resources of the system. The tasks running on different 
CPU cores can simultaneously deliver events to the target tasks 
without waiting for each other to unlock any mutual exclusion. 
Moreover, based on utilization of RTAI, the BNDE can also be 
used for interfacing a SNN for the control of a three degree-of-
freedom robotic arm without requiring a DAQ device.

The other motivation for this study was to evaluate the real-time 
performance of the BNDE prior to its use in animal experiments. 
In order to test all its implemented software components, we 
connected an external, hardware-based neural signal synthesizer 
to the analog input channels of the DAQ hardware and devel-
oped the B-BMI controller using the simulated cortical inputs 
provided by this signal synthesizer (Figure  7A). Additionally, 
we interfaced the B-BMI with a robotic arm operating in real-
world. Using the behavioral paradigm presented in Figure  9, 
which involved external binary inputs (e.g., button press) to 
initiate neuroprosthetic control trials and outputs to indicate the 
position of the targets (e.g., LED targets), the system learned the 
control of the robotic arm for a two-target reaching task in one-
dimensional space. In these simulations, the spike sorting task 
of the BNDE sorted the spikes by applying the template match-
ing algorithm for multiple single-units as in in  vivo recording 
experiments (see Real-Time Closed-Loop Simulation Methods). 
In addition to the real-time closed-loop simulations with neural 
signal synthesizers, the classification performance of the spike 
sorting utility of the system was also validated by performing 
in vivo neural recordings from the rat motor cortex (Figure 4). 
These performance profiles indicate that the BNDE can be used 
in future in vivo neuroprosthetic control experiments.

Since we plan to utilize the BNDE in the long run for develop-
ment of BMI controllers, which are based on larger scale SNNs 
or larger number of neuron/synapse model parameters, we 
examined its performance by a stress test paradigm involving 
simulation of 150 neurons, which received dense synaptic con-
nections from each other and the synthetic units of the neural 
signal synthesizers (see Stress Test Methods). Throughout the 
stress test, the BNDE was capable of manipulation of the neu-
roprosthesis using the B-BMI while simulating additional 150 
MSNs without missing any spike event generated by the neural 
signal synthesizers or the simulated MSNs.

Since the COMEDI project provides drivers for a variety of 
DAQ boards, the BNDE can be implemented using products of 
other vendors as long as the drivers for those boards support 
adequate sampling frequency for spike sorting. In addition, the 
DAQ boards should be capable of being programed to deliver 
on-board buffered data to the system memory periodically and 

generate an interrupt at the end of data delivery process so that 
the spike sorting task can be triggered in response to the inter-
rupts. Moreover, the DAQ device, which is to be utilized, should 
be capable of buffering an adequate amount of samples into its 
on-board memory and deliver them to the system memory at 
an appropriate frequency; if the data transmission period, and 
the resultant interrupt generation period, for the DAQ device is 
too low, then the GUIs of the system might be unusable due to 
consumption of the system resources for processing these exces-
sively frequent high-priority hardware interrupts. We determined 
an appropriate period (512 μs corresponding to 16 scans) for the 
DAQ interrupt generation in the BNDE so that all the compo-
nents of the system worked smoothly.

In the BNDE, memory allocation for the data required for 
spike sorting and spike waveform displaying is realized during 
compile time by setting a software configuration parameter. This 
parameter represents the maximum number of the single-units, 
which can be sorted from a DAQ channel. Therefore, the num-
ber of the single-units, which can be defined per channel, can 
be easily increased by changing this parameter during compile 
time as long as the spike sorting GUI has space to display the 
spike waveforms related to each single-unit (Figure  4). Based 
on the template matching algorithm used (see Spike Sorting via 
Template Matching), spike sorting is realized by running Eq. 1 
for all defined single-units for each DAQ channel. Consequently, 
execution time of the spike sorting task increases almost linearly 
proportionally to the number of single-units for which spike 
sorting is activated. Table 2 presents the execution time of the 
spike sorting task during closed-loop simulations and the stress 
test. From this table, a baseline for execution time of the spike 
sorting task can be perceived. This baseline execution time 
is related to data buffering, digital filtering, and up-sampling 
processes, which are performed by the spike sorting task for all 
32 DAQ channels even if there is no spike sorting is activated for 
any single-unit.

We used a quad-core PC in the present implementation 
of the BNDE. As the software architecture of the BNDE and 
RTAI allows the SNN to be simulated by multiple RT tasks 
assigned to different cores of the CPU, the number of neurons, 
which can be simulated by the system, can be improved by 
utilization of CPUs consisting of a higher number of cores. 
Additionally, in the present study, we utilized PS integration 
method with double precision accuracy in order to maximize 
the accuracy in the SNN simulations. By sacrificing the accu-
racy in numerical integrations, a higher number of neurons 
can be simulated in the system using well-known integration 
methods, such as Euler and Runge-Kutta methods (Stewart 
and Bair, 2009).

Using the serial port driver of RTAI, which guarantees real-
time serial communication, the prosthetic control task delivers 
pulse width command messages to the control hardware every 
26  ms with low latency. Each pulse width command message 
consists of 10 bytes and includes the pulse width commands 
for all three servo motors of the robotic arm used. In the real-
time simulations presented in this work, one of the pulse width 
commands delivered to the control hardware was for driving 
the base servomotor of the robotic arm for left/right movements 
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and the other two pulse width commands were for keeping the 
remaining servo motors stationary. In the present system design, 
whenever the control hardware receives a pulse width command 
message from the prosthetic control task, it immediately applies 
pulses for the all three servo motors within maximum 6  ms. 
From Figure 11, we can see the inertia of the robotic arm from 
the difference between the delivered pulse width commands and 
actual trajectory of the robotic arm. These performance results 
indicate that the present system can provide suitable feedback 
for the BMI user during in vivo experiments. The communication 
protocol used between the prosthetic control task and the control 
hardware technically supports three-dimensional control of the 
present robotic arm since it can deliver commands to control 
hardware for all three servo motors and read the value of their 
joint angles every 26 ms.

Since the RTAI and COMEDI libraries enable utilization of 
multiple DAQ devices on a single PC, additional DAQ devices can 
be inserted into the system so that the number of units isolated 
from the neural recordings can be increased to provide a higher 
number of synaptic connections to the model neurons from the 
real neurons. The number of DAQ cards, which can be inserted 
into the system, is limited by the PCI/PCI Express ports of the 
system used. Since the spiking model neurons are event-driven 
computing units, their utilization in neuroprosthetic design can 
enable development of bidirectional BMIs, which hold potential 
for substituting malfunctioning brain circuits (Berger et  al., 
2012; Hogri et  al., 2015). RTAI and COMEDI libraries utilized 
in development of the BNDE also support hard real-time control 
of the digital outputs of DAQ devices. Therefore, the BNDE can 
be improved further to control some optical (Han et al., 2009) or 
electrical stimulation (Venkatraman and Carmena, 2011) devices 
through the digital output channels of DAQ devices. The spike 
outputs of the SNN simulation task of the BNDE could be used to 
stimulate the brain tissue in a bidirectional BMI control paradigm.

The B-BMi
A B-BMI controller is proposed using real-time closed-loop 
simulations. It utilizes two model MSNs, each of which repre-
sents one of two prosthetic actions and competes with the other 
through strong inhibitory synapses. The total weights of the 
excitatory synapses to each MSN (W in Eq. 11) and the weights of 
the inhibitory synapses between the MSNs are adjusted to realize 
a winner-take-all operation in the system. It would be interesting 
to determine the type of Izhikevich neuron, which provides the 
best speed for switching between the selected actions and the 
best noise robustness for a selected action in a winner-take-all 
type classification operation. This topic is out of the scope of the 
present work, we intend to investigate this topic in the near future.

Learning (or adaptation) in the B-BMI was achieved by 
reward-modulated spike timing-dependent plasticity. The excita-
tory synapses leading to correlated pre- and post-synaptic activity 
were tagged using eligibility traces. A positive global reward signal, 
which may characterize a phasic increase in dopamine concentra-
tion, led to LTP in the eligibility-tagged synapses (Reynolds et al., 
2001; Schultz, 2001). In contrast, a negatively signed global reward 
signal, which may represent a phasic depression in dopamine 
concentration, caused LTD in the tagged synapses (Reynolds and 

Wickens, 2002). In the present paradigm, the sign of the global 
reward signal [r(t)] was determined by the sensory error [S(t)], 
which was extracted from the movements of the robotic arm. The 
robotic movements toward the currently selected target led to an 
increase in reward expectancy and a positive global reward signal, 
and opposite-direction movements triggered a negative reward 
signal. Additionally, reaching behavior toward each target was 
treated as a different task to be learned and the system held a 
separate positive reward (successful target reach) estimate value 
Rk( )  for each task (Frémaux et al., 2010). As the reward estimates 

increased by acquisition of the correct targets in consecutive tri-
als, the magnitude of the global reward signal [r(t)] was degraded 
(Tobler et al., 2005) so that the synaptic weights were automati-
cally stabilized when perfect target reach accuracy was ensured 
for each target (Figure  12). Learning speed and convergence 
characteristics of the synaptic weights in the present controller 
can be modified by changing the learning rate in Eq. 8 and the 
reward estimate averaging window size in Eq. 10.

The B-BMI controller always aims to maximize the positive 
reward (successful target reach) estimate value Rk( ) for any 
selected target. To this end, when the positive reward estimate 
value, in a trial, is “<1” for the selected target, the controller 
updates the weights of the excitatory synapses of the MSNs 
during reaching movements. During the (correct) movements 
toward the selected target, the weights of all tagged synapses 
are increased. In contrast, during the movements toward the 
wrong target, the weights of the tagged synapses are decreased. 
Therefore, the probability of selecting the correct prosthetic 
movement for a given motor cortex activity pattern is increased 
by trial-and-error, by reinforcement learning (Chadderdon 
et  al., 2012; Neymotin et  al., 2013). When the value of posi-
tive reward estimate value Rk( )  reaches “1,” synaptic weight 
update automatically stops and the convergence in the system is 
achieved. Whenever the value of reward estimate Rk( )  becomes 
“<1” due to wrong target reach or trial timeout, the synaptic 
weights are re-updated in the system to maximize the value of 
Rk  again.

In the present study, the units of the neural signal synthe-
sizer (Synt-A) simulated the spiking behavior of motor cortical 
(excitatory) regular spiking neurons. During the inter-trial 
periods, the units generated baseline activity, which was char-
acterized by low-frequency spike trains and, during the trials, 
the units with directional tuning increased their spiking activity 
according to selected target (Putrino et al., 2010) (Figure 7B). 
As it is possible to distinguish the (excitatory) regular spiking 
units from (inhibitory) fast spiking ones through the electro-
physiological recordings (Fee et al., 1996; Putrino et al., 2010), 
we foresee that it will be possible to provide artificial excitatory 
synaptic inputs to the simulated MSNs from the cortical regular 
spiking units during future in  vivo neuroprosthetic control 
studies. In addition, throughout the closed-loop simulations, 
the tuning map for the units of the neural signal synthesizer 
was static; the tuning properties of the units did not alter by 
experienced rewards. Since the motor cortex neurons have the 
capability to adapt their activity patterns for efficient control of 
neuroprostheses (Koralek et al., 2012; Arduin et al., 2014), we 
expect that cortical neuroplasticity will have a positive effect on 
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the performance of the developed control algorithm (Ganguly 
et al., 2011). The learning rate in Eq. 8 determines the adapta-
tion between the brain and the B-BMI. When it is decreased, 
the contribution of the brain, by neuroplasticity, is expected to 
be more pronounced in the neuroprosthetic control. In contrast, 
increases in the learning rate will have pronounced effect on the 
adaptability of the B-BMI. If the learning rate is set too high, 
then the co-adaptation between the brain and the B-BMI may 
not be accomplished.

conclusion

We present the BNDE as a practical platform for creating hybrid 
biological/in  silico neural networks and developing neurally 
inspired neuroprosthetic systems. Additionally, we propose a 
novel BMI controller (the B-BMI), which was designed on the 
BNDE using real-time closed-loop simulations. Performance 
profiles of these simulations, involving a behavioral paradigm 
and an external neural signal synthesizer, not only show that the 
BNDE is capable of creating simulated synaptic connections from 
real neurons to in silico neurons during behavioral experiments 
but also present an important proof-of-concept for SNN-based 
neuroprosthetic control.

The proposed BMI controller, the B-BMI, is based on a hybrid 
neural network consisting of real motor cortical neurons and 
in silico MSNs. In this control paradigm, the MSNs are represented 
by Izhikevich’s biologically plausible model (Izhikevich, 2007b) 
and receive simulated synapses from motor cortical neurons. 
Adaptation of the present controller is realized by simulating a 
possible mechanism of dopamine-dependent synaptic plastic-
ity; a reward signal, which may characterize phasic changes in 
dopamine concentration, is used to update the weights of the 
eligibility-tagged synapses. Future work will be aimed at studying 

the performance of the present BMI controller by realizing in vivo 
experiments and investigating the dopaminergic neuronal activ-
ity during neuroprosthetic learning.

The control architecture of the B-BMI is fundamentally 
distinct from those of conventional neuroprosthetic systems. 
Conceptually, most of the conventional systems utilize an 
input–output mathematical model, which maps motor cortical 
activity into user’s intended prosthetic actions. In these systems, 
a “spike binning” preprocess is also performed to provide corti-
cal firing-rate inputs to the input–output model used and this 
preprocessing leads to loss in the information encoded by timing 
of the spikes. In contrast, in the present system, the control of 
the neuroprosthesis is realized in a more biologically plausible 
manner. Cortical spike events are directly forwarded to the model 
neurons through simulated synapses without spike binning and 
the neural information provided by spike timing is also used by 
the present BMI controller.

The BNDE provides a low-cost and extendible solution for 
development of novel BMI control algorithms, which utilize 
model neurons as neural information processors. It allows the 
neuroprosthetic designer to visualize the dynamics of the hybrid 
neural network online and manage the behavioral experiments 
through GUIs while time-critical spike sorting, real-time SNN 
simulation, and neuroprosthetic control are realized in the back-
ground. Since the BNDE has been developed on RTAI (a real-
time extension for Linux); its software components can easily be 
modified for a wide variety of PC hardware platforms.
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