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In embodied computation (or morphological computation), part of the complexity of motor
control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-
like learning rule can be used to train systems with (partial) embodiment, and can be
extended outside of the scope of traditional neural networks. To this end, we apply
the learning rule to optimize the connection weights of recurrent neural networks with
different topologies and for various tasks. We then apply this learning rule to a simulated
compliant tensegrity robot by optimizing static feedback controllers that directly exploit
the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid
controllers that naturally integrate the computations that are performed by the robot body
into a neural network architecture. Our results demonstrate the universal applicability of
reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of
systems trained with the learning rule. This study strengthens our belief that compliant
robots should or can be seen as computational units, instead of dumb hardware that
needs a complex controller. This link between compliant robotics and neural networks
is also the main reason for our search for simple universal learning rules for both neural
networks and robotics.

Keywords: compliant robotics, Hebbian plasticity, morphological computation, recurrent neural networks,
tensegrity

1. Introduction

Hebbian theory has been around for over half a century (Hebb, 1949), but it still sparks the interest of
today’s researchers. Small changes to the basic correlation learning rule result in various well-known
algorithms, such as principal (Oja, 1982; Sanger, 1989) or independent component (Hyvrinen and
Oja, 2000; Clopath et al., 2008) extractor networks. The basic rule is biologically plausible as are some
of its variations (Mazzoni et al., 1991; Loewenstein and Seung, 2006). Whereas all these approaches
belong to the general category of unsupervised learning, rewardmodulatedHebbian (RMH) learning
is similar to reinforcement learning in that it can be used to tune a neural system to solve a specific
task without the need to know the desired output signals at the neural level (Fiete and Seung,
2006; Legenstein et al., 2010; Hoerzer et al., 2012; Soltoggio and Steil, 2013; Soltoggio et al., 2013).
When using RMH learning in a robotics context, a reward can be computed, e.g., by comparing the
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sensory inputs with the desired observations. The use of RMH
learning for optimizing robotmotor control has several additional
advantages. First, the basic learning rule is simple. There is no
need for complex mathematical operations and it can therefore
be efficiently implemented on various platforms in hardware
and software. Second, it allows for a distributed implementation:
a central unit can be responsible for a global reward, which
can then be broadcast to the learning units of local controllers.
Finally, RMH learning is an online learning approach. If the
reward mechanism remains active, the controller can adapt to
changes in the robotmorphology or dynamics, e.g., due to wear or
damage.

Class one tensegrity structures (Skelton and de Oliveira, 2009;
Caluwaerts et al., 2014) consist of compression members held
together by tension members in such a way that compression
members are never directly connected. In robotics, these are typi-
cally a set of rods, interconnected by tension elements (springs or
cables) between the rods’ endpoints. These structures can serve as
compliant robot bodies, by allowing some or all of the tension ele-
ments to be actuated. This results in flexible pin-jointed structures
that make efficient use of materials, and are both extremely robust
and lightweight (Caluwaerts et al., 2014). Tensegrities have also
been researched from various other perspectives, from architec-
ture and art (Snelson, 1965) to mathematics (Connelly and Back,
1998) and even biology (Ingber, 1997).

In previous work (Caluwaerts et al., 2012), we demonstrated
that the motor control of a tensegrity robot can be drastically
simplified by using its body as a computational resource. This
approach originated from the concepts of physical reservoir com-
puting (Verstraeten et al., 2007) and morphological computation
(Pfeifer and Bongard, 2007), both of which treat the use of phys-
ical systems or bodies as a computational resource in so-called
embodied computation. In Caluwaerts et al. (2012), we mainly
focused on approximating motor signals through a single layer
linear neural network acting as a feedback controller. The flexi-
bility and lack of joints of our tensegrity robot allowed for simple
learning rules, as the risk of failure due to mechanical stress or
hard constraints was minimal. As a consequence, the feedback
weights were learned by applying online supervised learning rules
to approximate the target motor signals, among which was a
supervised version of RMH learning.

Various forms of RMH learning rules have already been exten-
sively studied in the context of both spiking (Fiete and Seung,
2006; Izhikevich, 2007; Legenstein et al., 2008) and rate-based
(Loewenstein and Seung, 2006; Loewenstein, 2008; Soltoggio and
Steil, 2013; Soltoggio et al., 2013) neural networks. The learning
rule we handle uses noise as an exploratory term, similar to
Legenstein et al. (2010), and can be shown to approximate gradient
descend (Fiete and Seung, 2006). In this paper, we show that the
RMH learning rule can be extended to systems exhibiting partial
embodiment, i.e., agents that actively see and use their body as a
computational resource. In these partially embodied systems, the
computations that are performed by the body are naturally inte-
grated into the controller architecture. We use the term “partially”
to make the distinction with full embodiment, where agents do
not need a controller, and with “trivial” embodiment, where little
to no computations are offloaded to the body.

We first consider various analog recurrent neural network tasks
and setups. Second, we will demonstrate that the RMH learning
rule can be carried over beyond the scope of neural networks.
We train the linear feedback weights of a secondary controller
in a two-level control hierarchy for end-effector control in a
highly compliant, simulated class one tensegrity robot. The pri-
mary controller – a simple feed forward kinematic controller –
generates control signals derived from a very rough static inverse
model of the relationship between end-effector positions and
actuator signals. The secondary embodied controller, consisting
only of the robot body and linear feedback weights, handles the
dynamics, i.e., it tunes the primary control signals to result in
smooth and stable trajectories. In this task, only the desired end-
effector trajectories are known, not the control signals required to
generate them.

Thus far, in physical reservoir computing, embodied or mor-
phological computation has always been exploited using super-
vised learning techniques. This implies that the target motor
signals have to be known (e.g., determined using evolutionary
techniques as in our own previous work) and fixed. However, in
compliant robotics, it is important that the controller can adapt
to variability in its surroundings as well as to changes of its own
body. From this point of view, a reward-modulated approach is
much more suitable. We demonstrate how these systems can be
effectively trained in an entirely online manner.

2. Methods

In this section, we introduce the basic learning rule used
throughout the paper in the context of neural networks, and we
discuss additional changes to the rule to make it more suitable
for the targeted application in partially embodied control of a
tensegrity robot.

Throughout this work, we will employ the term observations
instead of state or network activity, in order to emphasize that the
learning rule is also applied in a more general context than neural
networks.

2.1. Hebbian Learning in Analog Recurrent
Neural Networks
Hebbian plasticity is a biologically plausible learningmethodology
for neural networks. A learning rule is calledHebbian if itmodifies
the weights between a set of presynaptic neurons x and postsynap-
tic neurons y as a function of their joint activity. Although Hebb
(1949) did not provide a precise mathematical formulation of his
postulate, a relatively general form can be written as:

∆WHebb = f(X,Y). (1)

Note that we have used capital X and Y1 to indicate that
the weight updates in the learning rule can depend on multiple
time steps, i.e., the history of the pre- and postsynaptic neuron
activations.

1We use the notation x to denote a scalar, x for a vector, and X for a matrix. In
general xi is the ith row of X and xi is the ith element of x.

Frontiers in Neurorobotics | www.frontiersin.org August 2015 | Volume 9 | Article 92

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Burms et al. Hebbian plasticity for partially embodied control

To apply Hebbian theory in a reinforcement learning setting,
we have to introduce the notion of a reward r into the learning
rule. Indeed, reinforcement learning aims at making behavior that
optimizes the reward more likely to happen. However, learning
new behaviors necessitates another tool, namely exploration. We
use noise z injected at the postsynaptic neurons for exploration.

If the exploratory noise causes an improvement in behavior, this
will result in a higher reward (and vice versa). A basic learning rule
based on this idea is:

∆W = rzxT. (2)

Note that the postsynaptic neuron activations y are only indi-
rectly considered in this weight update: the noise z can be viewed
as a cause for variations in y, and could be computed from the
expected and noisy postsynaptic activations.

However, this rule suffers from a number of basic flaws. First,
credit is only assigned to the exploratory noise that was inserted in
the same time step that the reward was received. For the learning
rule to be able to credit both past and present exploration, some
efficient notion of memory of the relationship between explo-
ration noise and the presynaptic neuron states needs to be present.
This can be achieved by computing the covariance between the
exploration and the presynaptic neuron states throughout multi-
ple time steps. To this end, we will apply the rule on a trial-by-trial
basis. Second, we note that in its current form, any significant
bias of the reward r will cause unfavorable results. The solution
to this is to predict the reward and subtract this from the obtained
reward, resulting in a learning rule of the form:

∆W = α(r − r̄)ZTX, (3)

in which r̄ is the predicted reward and where we have added a
learning rate parameter α. The matrices X and Z contain the
presynaptic neuron states and the exploratory noise throughout
the trial, respectively.

The predicted reward is sometimes ambiguously referred to as
the (short term) average reward. More precisely, it is the aver-
age (or expected) reward when noise is present in the system.
As we will demonstrate, the average reward is typically highly
dependent on the noise level of the system. The learning rule
therefore optimizes the expected reward while noise is present in
the system (i.e., max E[r|z]), under the assumption that this also
optimizes the performance when the exploration noise is removed
(i.e., max E[r|z = 0]).

Although RMH learning is stable in practice, it is possible
to constrain the norm of the weights. This can be useful to do
for practical reasons. In a robotics application, for example, this
would allow for limiting the required feedback gain and thus the
required motor power. In the Appendix, we show that in doing
so, the resulting learning rule very closely resembles Sanger’s rule
(Sanger, 1989).

2.2. Decorrelated Learning Rule for Robotics
Experiments
In partially embodied control, the dynamics of the robot body are
used directly as a computational resource. In our RMH learning
setup, this is equivalent to replacing part of the neural network

by the robot body, which receives inputs from the remaining neu-
rons. The observations, i.e., the sensor readouts, are fed back into
the neurons. The training procedure is now heavily constrained,
as it can only adapt synaptic weights of the remaining neurons,
whereas the part of the network that is replaced by the body
remains unchanged. Nonetheless, the RMH learning rule remains
applicable, but the observations x and the noise z now include the
sensor readouts and motor actuation noise, respectively.

Although this situation is similar to RMH learning in neural
networks, it differs in the fact that most of the physical state of
the robot remains hidden to the observer and the number of
observable signals that can be fed into the trainable neural network
is relatively small. Furthermore, the dynamics of the observed
variables tend to be highly correlated. For example, stiffening the
structure typically causes an increase in all sensor values.

The RMH learning relies on the varying influence of explo-
ration noise on the observed variables. As wewill show, a common
influence (increase or decrease) of the noise on all observed
variables reduces the effectiveness of the learning rule. A simple
approach to overcome this issue is to decorrelate the observations.
In Caluwaerts et al. (2012) (see Appendix), we showed that a
decorrelation layer that uses Sanger’s rule (Sanger, 1989) offers a
biologically plausible solution for this. In this work, we take amore
pragmatic approach and decorrelate X on a trial-by-trial basis,
using the Moore–Penrose pseudoinverse. The resulting learning
rule is given by:

∆W = α(r − r̄)ZTX(XTX + λI)
−1

, (4)

with λ acting as a regularization parameter determining the
strength of the decorrelation. A slight variant of this rule is:

∆W = αH(r − r̄)ZTX(XTX + λI)
−1

, (5)

where H(·) represents the Heaviside step function. In this variant
of the learning rule, weight updates only occur when the observed
reward is better than expected. This is not strictly necessary, but
we found that it slightly improved our results.

This learning rule is similar to ridge regression, the differ-
ence being that the algorithm will try to reproduce the noise Z
(instead of a desired output) proportionally to the reward with
injected noise, relative to the expected reward. We used a large
regularization parameter (λ = 1), which results in only a minor
decorrelation of the sensor variables, yet is enough to allow for
efficient learning. A high-regularization parameter allows for sim-
ple covariance estimators, in case a more biologically plausible
version of the rule is desired.

3. Experiments

3.1. Neural Network Experimental Setup
Before presenting our results in a robotics context, we first study
RMH plasticity in discrete time recurrent neural networks with
hyperbolic tangent activation functions. They receive input, which
we denote U and a readout function provides observations of the
network state. Additionally, exploration noise Z is injected into
the network. The network update equation is given by:

x[k + 1] = tanh(Wx[k] + W inu[k + 1] + z[k + 1]). (6)
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For each of our neural network experiments, the network is
initialized according to the reservoir computing approach (Ver-
straeten et al., 2007). This implies that we initialized the weights
randomly (i.i.d. standard normally distributed samples) and then
tune the network dynamics to a useful regime. This is achieved
by rescaling the weight matrix W such that its spectral radius –
the largest amongst the absolute values of its eigenvalues – is such
that the learning converges. For the experiments we will describe,
we obtained good performance for initial spectral radii in [0.80,
1.2], i.e., stable or almost stable networks. This differs from related
approaches, such as Legenstein et al. (2010) and Hoerzer et al.
(2012), where initially chaotic networks are used. The inputweight
matrixW in was sparsely initialized (20% non-zero elements) with
i.i.d. normally distributed values with standard deviation (SD)
0.05. All networks contained 100 neurons.

Figure 1 shows our learning setup for neural networks. The
neural network to be trained is the central element. A reward is
provided after a trial based on the network observations through-
out that trial. A trial is defined as the number of time steps in
which the network tries to perform a task of interest. In parallel
to the network, a reward prediction system estimates the expected
reward based on the network inputs. The RMH learning rule
finally combines information from the network state, exploration
noise, reward, and estimated expected reward to compute an
update ∆W of the network weights.

3.2. Neural Network Experiments
The networks used for the three tasks described below are shown
in Figure 2. They only differ in the way observed outputs are
generated and in the subset of weights that can be modified by
the learning rule. In the first two networks, two neurons are
randomly selected as output-generating neurons, and the output
is computed as the sum of their states. The third network has three
output-generating neurons and has an output equal to the product
of these neurons’ states.

FIGURE 1 | Overview of the learning setup for recurrent neural
networks. The initially random recurrent neural network receives the
inputs U and the exploration noise Z. The state of the postsynaptic
neurons is computed by applying the hyperbolic tangent function to the
sum of the inputs, the noise, and the weighted sum of the presynaptic
neurons. Observations are made of the state of the network and after
every trial (fixed number of time steps), a reward is computed, based on
the observations made during the last trial. In parallel, a simple reward
prediction network predicts the expected reward for the given input. The
learning rule then updates the weights between the presynaptic and
postsynaptic neurons, by using the reward, the expected reward, the
exploration noise, and the states of the presynaptic neurons.

In all networks, the weights to and from the output neurons
are fixed and recurrent. This prevents the learning algorithm from
generating solutions in which the observation neurons become a
pure output layer, which does not influence the state of the rest of
the network. In the networks for tasks 1 and 3, all other internal
weights are modifiable. In task 2, the training is further restricted
by fixing the input weights for half of the remaining neurons. This
means that about half of the network is a random recurrent neural
network. In a neural or neurorobotics context, we can see this
as a rudimentary model for a trainable network interacting with
an untrained dynamical system, such as another brain area or a
physical body, e.g., the partially embodied control of a robot arm
with a neural network.

We purposely chose to have different and unconventional tasks
and setups, to display the wide applicability of reward-modulated
Hebbian learning. In what follows, we describe the three neu-
ral network tasks in more detail. We first consider problems
with discrete input spaces. More precisely, we solve the 2-bit
delayed XOR problem and a 3-bit decoder task. Our third exam-
ple has a continuous input space and a more complex readout
function.

3.2.1. Task 1: Proof-of-Principle
3.2.1.1. Inputs
The input signal for this task represents a single bit stream. A zero
bit is coded as the negative half period of a sine wave, a one bit as
the positive half. For each trial, we randomly select one of the four
possible 2-bit input sequences.

3.2.1.2. Desired output
The neural network has to compute the so-called 2-bit delayed
XOR task, i.e., the exclusiveOR function applied to the last two bits
of its input stream, represented as binary values. More concretely,
the output of the network should be as close as possible to plus one
or minus one during the last half of the second bit.

The XOR task is a common test or benchmark, because the
patterns are not linearly separable. A linear network cannot obtain
optimal performance for all inputs simultaneously. Therefore, this
task is a simple test to verify if the learning rule can exploit
the non-linear effects of the network. The task also requires the
network to remember a specific part of the input, while ignoring
inputs that occurred more than one bit length in the past.

3.2.1.3. Neural network structure
The observations are computed by adding the states of two output
neurons, which have fixed (i.e., untrained) incoming and outgoing
connections. All other weights are trainable.

3.2.1.4. Reward function
Throughout this manuscript, we use different reward functions.
The main reasons for this is that some reward functions are more
appropriate for a specific task and to show that the learning rule
does not depend on a specific reward function. For the results
presented for the 2-bit XOR task, we usedminus themean squared
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A B C

FIGURE 2 | Network structures for the recurrent neural network
tasks. The networks are simulated in discrete time with hyperbolic
tangent neurons (yellow nodes). Full lines are fixed connections, while
dashed lines are trained. The reward is evaluated at the output neuron
over the green period of time (one reward per trial). (A) Task 1 (2-bit
delayed XOR): the output equals the sum of two neurons, but only the

internal connections can be modified by the algorithm. (B) Task 2 (3-bit
decoder): the output equals the sum of two neurons as in the XOR task,
but now only half of the internal weights can be modified. (C) Task 3
(continuous input task): the output equals the product of three neurons.
The network has to reproduce the reversed input from the first 5 time
steps of each trial.

hinge loss, as the hinge loss is a more appropriate reward function
for a binary classification task:

r2bitn =
−1
5

19∑
k=15

max
(
0, 1 − tn[k]

(
xo0[20n + k] + xo1[20n + k]

))2
,

(7)
where n indicates the number of the current trial, xo are the
neurons that generate the observations and tn[k] are the desired
observations.

3.2.1.5. Prediction of the expected reward
Estimating the expected reward is trivial in the case of a modest
number of different inputs. For the results presented here, we
averaged the last 50 rewards per input sequence.

3.2.2. Task 2: Partially Embodied Computation
3.2.2.1. Inputs
For this task, the input is the same as for the previous task. For
each trial, we now randomly select one of eight possible 3-bit input
sequences.

3.2.2.2. Desired outputs
The network now has to act as a 3-bit digital-to-analog decoder,
i.e., it has to produce one of eight equidistant analog values
in the range [–1, 1], corresponding to the decimal interpretation of
the last three encoded bits it received. Similar to the previous task,
the desired value has to be present on the output during the second
half of the third bit. This task ismore complex and non-linear than
the previous one and it requires more memory as well.

3.2.2.3. Neural network structure
The output generation is identical to task one. However, this time
only half of the internal weights are trainable.

3.2.2.4. Reward function
For the 3-bit decoder task, the reward value r3bit is defined as
minus the mean squared error of the observations during the last

FIGURE 3 | Overview of task 3: the network has to reproduce part of
the first input (black line) in reverse at the end of the trial (dashed blue
line). More precisely, the first 5 steps of the first input are to be reproduced in
reverse at the end of the trial (12 time steps total). The input space consists of
a straight line originating and ending in [0, 1]. A second input indicates when
the network has to start producing the desired observations.

five time steps of a trial:

r3bitn =
−1
5

29∑
k=25

(
tn[k] − xo0 [30n + k] − xo1[30n + k]

)2
. (8)

3.2.2.5. Prediction of the expected reward
The rewards were estimated in the same way as in the previ-
ous task.

3.2.3. Task 3: Non-Linear Observation Function
The task at hand is to reproduce part of the input in reverse after
a delay (see Figure 3).

3.2.3.1. Inputs
The network receives two input signals. The first input signal
consists of sequences of 12 time steps per trial. The first 5 of
these steps form a linear segment between two values, which
are sampled with uniform probability form [0, 1] for each trail.
The final value is held constant for two more time steps. The
final 5 time steps again form a linear segment that is obtained by
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connecting the last value from the first 5 steps with a third random
sample from [0, 1].

Because the trials are fed into the system one by one, it is not
clear to the network when a trial starts. The second input, a binary
signal, is used to inform the network when it has to generate the
desired output.

3.2.3.2. Desired outputs
The network must learn to recall the input during the first 5 steps
and reproduce them in reverse order during the last 5 steps of the
trial. The system must ignore the remaining 7 input samples.

3.2.3.3. Neural network structure
The observations are computed by multiplying the states of three
internal neurons, which have fixed (i.e., untrained) incoming and
outgoing connections. All the other weights are trainable.

3.2.3.4. Reward function
The reward function used here is minus the mean absolute error
of the observations:

rcontn =
−1
5

4∑
k=0

|u [12n + k] −
2∏

j=0

xoj [12n + 11 − k] |. (9)

3.2.3.5. Prediction of the expected reward
The expected reward r̄ estimates the performance of the sys-
tem given the noise level σ. Furthermore, the reward is input
dependent, therefore r̄ estimates the following quantity:

r̄ = E[r|u, σ]. (10)

Various algorithms can be used to estimate this quantity.
We employed the well known recursive least squares algorithm
(Kailath et al., 2000) to learn a simple online estimator of this
quantity, which we applied to the input sequences u and the
network state x at the end of a trial.

3.3. The Tensegrity Robot
The general setup of our simulated tensegrity robot control prob-
lem is shown in Figure 4. It is similar to the neural network setup
represented in Figure 1, but the entire recurrent neural network
has been replaced with the simulated tensegrity robot. As a result,
the only remaining trainable weights are those of a simple linear
feedbackW, projecting the output to the input.

The tensegrity structure used for our experiments has four
struts and is shown in Figure 5. It is based on the standard three
strut tensegrity prism (Pugh, 1976) to which a shorter rod has
been added that acts as a compliant end-effector. The bottom three
nodes of the original prism have been fixed through ball-joints.
The resulting structure has seventeen k= 20N·m–1 springs, 14 of
which are actuated (the lengths of the other three bottom springs
are fixed). The controller time step was 50ms and gravity was not
modeled.

Instead of observing the state of the neurons, we measure the
spring forces:

xi = fi (11)
= max(k(li − l0i ), 0). (12)

FIGURE 4 | Overview of the way the learning rule is applied to
compliant tensegrity structures. The setup is similar to the recurrent neural
network setup of Figure 1. The neural network has been replaced by the
combination of the compliant robot body and the neural linear feedback
weights. It now receives input from the kinematic controller. Force sensors on
the springs act as presynaptic neurons for the trained weights and the
actuator signals correspond to the postsynaptic neurons. The learning rule
adapts the feedback weights from the force sensors to the motor signals. The
observations used for reward computation are based on the trajectories of an
end-effector.

Actuators changing the equilibrium lengths of the springs
replace the postsynaptic neurons andmotor babbling takes on the
role of the exploration noise:

l0 = linit + Wx + u + z. (13)

All tensegrity experiments were performed in our tensegrity
simulator, which is based on an Euler–Lagrange formulation of
the tensegrity dynamics (Skelton and deOliveira, 2009, chapter 5).
For more details on the simulation setup, we refer to Caluwaerts
et al. (2012).

3.4. Hierarchical End-Effector Control for the
Tensegrity Robot
The task we consider is writing characters with the top node of
the rod suspended in the tensegrity structure. More precisely, the
node has to trace letters in a horizontal (XY) plane. The characters
were taken from UCI Character Trajectories Data Set (Bache and
Lichman, 2013), integrated and then subsampled and rescaled.

The robot is controlled by combining a feed forward kinematic
controller and a learned static linear feedback controller. The
kinematic controller provides the input signals u in equation
(13). We sampled 100 random spring lengths to create a set of
configurations for the kinematic controller. To write a character,
the kinematic controller selects a combination of spring lengths
that move the end-effector as close as possible to the desired
position when the structure is in equilibrium.

The reward function used for the next experiments tries to
bring the end-effector close to the desired trajectory:

rtraj =
−1
s

s−1∑
k=0

max(∥n[k] − c[k]∥ − 0.01, 0), (14)

where s is the number of steps required to write the current
character, c[k] the vector containing the target position at time k
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FIGURE 5 | Tensegrity structure used for the experiments. The top node of the center rod is used as an end-effector to draw in the XY plane. In this example, the
robot draws an “S” as can be seen on the left. The right figure shows another perspective to demonstrate that the reward does not depend on the vertical position.

(relative to the beginning of the trial) and n[k] the position in the
XY plane of the end-effector at time k. This reward function will
cause the learning rule to stop improving a feedback controller
w.r.t. a point on the trajectory in case the end-effector is within
1 cm of the target position.

3.5. Robustness Against Failures
To demonstrate the robustness of the controllers as well as a more
practical application of the learning rule, we simulated various
actuator failures. In this case, we used amore realistic feed forward
controller. Again starting from a simple kinematic controller, we
now optimized the inputs u in equation (13) at each time step
using a basic exploration method. More precisely, a small amount
of noise z is injected at each time step and the change in expected
reward is observed. If an improvement of the expected reward is
observed after a trial, we reproduce the noise in the feed forward
controller u= ukin + uexpl by using ∆Uexpl =Z when the expected
reward (of the trial) improved and ∆Uexpl = 0 when it did not.
In the previous equations, ukin refers to the original kinematic
controller discussed in the previous section.

In this setup, we now simulate actuator failures by resetting one
or more actuators to the original kinematic controller instead of
the optimized ones, i.e., u= ukin. At the same time, the kinematic
controller is no longer optimized, and instead the learning rule
starts learning a set of feedback weights to compensate for the
actuator failure.

4. Results

4.1. Neural Network Experiments
We first demonstrate the learning rule’s capabilities using the
neural network tasks. For these experiments, we always chose the
noise level to be σ = 0.05 and set the learning rate to be as high as
possible, without making the networks diverge. In the context of
the basic learning rule [equation (3)] this was α = 0.005, whereas
the decorrelated version [equation (4)] allowed a much higher

learning rate α = 0.5. The initial spectral radius was chosen to
be 0.95.

Figure 6 shows the evolution of the reward and the spectral
radius for the discrete input tasks (tasks 1 and 2). We performed
10 runs with different random initializations and input sequences.
For both tasks, and for every run, we observe that the network
indeed learns to solve the task almost perfectly, as the rewards
converge to their maximal value of 0.

These experiments also show how the spectral radius evolves
as the average reward increases. In the case of the 2-bit delayed
XOR task, every run of the algorithm for different initial random
weights resulted in a final spectral radius of approximately 1.2,
which indicates that the learning rule tunes the memory of the
network. In the case of task 2, the learning rule is only allowed
to modify half of the internal weights of the recurrent neural
network. The network structure can be considered as a model
for partially embodied computation, i.e., we replace part of the
original trainable network by a fixed one, which acts as a dummy
for a physical body.Nonetheless, the learning rulemanages to tune
the network dynamics to have a spectral radius close to 1.05 after
300,000 trials, which eventually converges to 1.10 (not shown),
thus exhibiting the necessary memory.

We compared our results to an approach in which the trainable
weights are updated based on an estimate of the noise, instead of
using the real noise, similar to the EH rule described in Legenstein
et al. (2010). The noise is estimated as the difference between the
neural input a, and the expected neural input ā, zestim = a − ā.
The expected neural input ā is simply an exponentially weighted
moving average of a with a smoothing factor of 0.8. However, we
found that this approach performed severely worse on the tasks we
considered. A typical example of a 300 neuron network2 trained
on the 3-bit decoder task is shown in Figure 7. The top panel plots
the evolution of the reward during the training. It shows that not

2The experimental results using only 100 neurons are qualitatively similar, but less
pronounced.
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FIGURE 6 | Evolution of the reward and the spectral radius for the 2-bit delayed XOR task (left) and the 3-bit decoder task (right). The plots show the
average, best, and worst rewards and the average spectral radius out of 10 runs. Each run has different random initializations and input sequences.

FIGURE 7 | Evolution of the reward and spectral radius (top) and the
noise estimation NMSE (bottom) for the 3-bit decoder task, using a
learning rule that uses an estimate of the exploration noise instead of
the real noise. The network consisted of 300 neurons, instead of 100, and
was trained over a longer period than the experiments shown in Figure 6.

only is training much slower but also goes through a couple of
bifurcations from which it is eventually unable to recover. The
bottom panel shows why it is difficult to train the networks using
this rule. We see that the noise estimation error slowly increases
as the training continues. For this learning rule to work well, we
require a good estimate of the noise throughout the entire learning
process.

As a second comparison, we evaluated the performance of
the covariance matrix adaptation evolution strategy (CMA-
ES) (Hansen and Ostermeier, 2001), one of the most popular
evolutionary algorithms. The algorithm is used on the 2-bit

FIGURE 8 | Evolution of the reward for the delayed XOR task, using
CMA-ES. The task was simplified by removing all forms of stochasticity.

delayed XOR task. To make the task a bit simpler, we removed
all sources of stochasticity (noise, initial neuron state), but apart
from this, the setup is completely identical (identical network
architecture, same initialization). The objective function to be
maximized is the average reward across the four different possible
inputs. Figure 8 shows the evolution of the reward during the first
300,000 trials. Comparing this to left panel of Figure 6, we can
see that, although the RMH rule is able to find a good solution
after 300,000 trials, CMA-ES is still nowhere near converging to
a solution. The likely explanation for this is that, because the
search space is so huge (about 10,000 dimensions), sample-based
approaches like this one require an unfeasible number of samples.

Figure 9 shows in more detail what the embodied network of
task 2 has learned, by overlaying the network output during 50
random orderings of the input sequences. Note that the classifica-
tion result must only be available at the output during 5 time steps
at the end of each trail (indicated by red crosses in the figure).
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FIGURE 9 | State trajectories for the 3-bit classification task. The
top row shows the eight input sequences. The next two rows show the
state trajectories of the two output neurons, which are summed to
compute the observations for the given input sequence of the top row.

The bottom row shows the observations (the sum of the two middle
rows). The desired observation at the end of the trial is indicated by red
crosses. The plots were generated by overlaying 50 random orderings of
the input sequences.

As trails follow each other continuously, the variability of the
state trajectories is due to the different initial states. Clearly, the
network has learned the correct time window, as the classification
result is available at the right time and only depends on the two
previous bits and not on older inputs. We can identify a number
of separate trajectories that keep track of the possible outcomes.
It can be seen that within a trial, each additional bit that is offered
at the input reduces the number of possible states of the system by
half. Interestingly, the two neurons that generate the observations
have different state trajectories, because the learning rule only
quantifies the performance based on the observations, without
directly enforcing a specific behavior of the neurons responsible
for the observations.

Although the network was trained without any noise on the
input signals, the resulting behavior is robust against such noise.
In Figure 10, we show the behavior of the network when input
noise is present. This plot was generated by first applying k-means
clustering on the trajectories and then estimating the variance of
each centroid. Shown are the various centroids and the SD of each.
We see that the network is robust against high amounts of noise
on the input data (σ up to 0.5), as the original trajectories are
maintained.

The same noise robustness can be observed on the last andmost
elaborate task. Figure 11 visualizes the rewards during testing for
various state noise levels, using 100,000 random input trials per
noise level. The noise was added to the internal neurons of the
network, but not to the three neurons, which generate the obser-
vations. Each graph in the top panel shows the average rewards
of the trained networks, across the whole spectrum of possible
input sequences for a given level of input noise (increasing from
left to right). The bottom panel shows the reward distribution,

averaged across the different input trials, for each noise level.
We see that without noise, the average reward remains close to
its optimal value of 0 for most input patterns, although some
regions of the input pattern space seem to be slightly more
difficult. This demonstrates that the learning rule also works,
although less perfectly than in the previous cases, when the
relation between the internal states in the network and the way
they are translated into actions and rewards is highly non-linear
and when the input patterns do not fall into discrete categories.
As noise levels increase, the average reward decreases, but only
slightly, again displaying the noise robustness of the trained
networks.

Finally, we show the virtue of the decorrelation learning rule
[equation (4)] by slightly modifying the setup of the 3-bit decoder
task. Instead of using uncorrelated Gaussian noise with SD
σ = 0.05 for exploration, we generate the noise by sampling from
a Gaussian distribution with SD σ = 0.035. The mean of the
distribution is in turn sampled from a Gaussian with identical
SD and zero mean, but only once per trial. During a single trial,
the mean noise value is kept constant. This sampling procedure is
nearly equivalent to the original one, except for the fact that two
samples within the same trial are now highly correlated.

Figure 12 compares the default and the decorrelation learning
rules by plotting the average reward evolution for both the orig-
inal task 2 setup and the setup with correlated noise. Again, we
performed 10 runs with different random initializations and input
sequences to generate each curve. In the left panel, we observe
that in the context of uncorrelated noise, both learning rules give
virtually identical results. In the case of correlated exploration
noise though, the decorrelation learning rule does much better
than the default one. The default RMH rule is able to learn at the
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FIGURE 10 | Evaluation of a network trained for the 3-bit decoder task
under the influence of input noise. The noise amplitude increased from left
to right. The eight possible inputs are shown from top to bottom. The gray area

indicates 1 SD around the observations for each of the different state
trajectories (thick lines). The red crosses indicate the target observations at the
end of the trial.

FIGURE 11 | Reward distribution for task 3 during testing with different state noise levels. (Top) average reward (negative mean absolute error) for the whole
range of input combinations. The horizontal and vertical axes of each plot indicate the initial and final values of the linear segments that need to be reproduced, in
reverse order, at the output. (Bottom) sample distribution of the rewards for all inputs. The amount of injected state noise increases from left to right.
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start of a run, but quickly falls back and eventually settles on a
suboptimal result. In contrast to this, the decorrelating version of
the learning rule exhibits a very healthy learning curve and is only
slightly affected by the fact that the exploratory noise is correlated.

4.2. Tensegrity Experiments
Having shown the applicability of reward-modulated Hebbian
learning on different tasks, using diverse setups, we now move on
the tensegrity robot experiment. In this experiment, only a set of
feedbackweights are trainable, i.e., all neurons in a neural network
controller have been replaced by the robot body.

The left panel of Figure 13 shows how the tensegrity robot
performs when drawing characters between 20 and 68 time steps
long (1–3.4 s). A different set of feedback weights was learned
for each character; therefore, it is easy to predict the expected
reward. To clarify, we estimated the expected reward for each
character individually by averaging the rewards obtained during
the previous 30 trials. As can be seen from the top row, the initial
performance of the system with only the kinematic controller is

very low, whereas the combination of both controllers, using our
RMH learning rule [equation (5)], performs considerably better.

The plot on the right of Figure 13 shows the learning curves
for each character, indicating that for most characters good results
were obtained after 1000–1500 trials, which would be equiva-
lent to <1 h real robot time for most characters. It is possible
to accelerate learning by further tuning the learning parameters.
We used a conservative level of exploration noise (σ = 5mm)
and a learning rate α = 1, which consistently resulted in stable
feedback controllers. The learning rule did not achieve the same
final reward for all characters (e.g., the “m”). This is due to physical
limitations enforced on the motor commands.

Finally, we simulate actuator failures. The results of these exper-
iments are presented in Figure 14. As could be expected, the
performance immediately drops significantly after each failure. By
applying the RMH learning rule to the feedback controller, the
system is able to recover from the various failures. To investigate
the stability of the learning rule, each experiment was performed
30 times, with similar results.

FIGURE 12 | Comparison of the default and the decorrelated RMH learning rules. The evolution of the average reward for the 3-bit decoder task is shown in
the presence of uncorrelated (left) and correlated (right) noise. The plot is generated using ten runs with different random initializations and input sequences.

FIGURE 13 | Writing characters with a tensegrity end-effector. (Top left) characters drawn with only the kinematic feed forward controller active. (Bottom left)
characters drawn with the kinematic feed forward controller and the learned feedback controller active. (Right) learning curves for the different characters. The legend
indicates the length of a trial.
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FIGURE 14 | Robustness of the learning rule for the writing task.
Initially, a feed forward controller is optimized. We then simulate a failure by
making a single actuator follow its initial trajectory from trial 1000 onward. At
the same time, the learning rule starts learning a set of feedback weights to
compensate for the actuator failure. Similarly, we simulate a two actuator
failure after trial 2000. At time 3000, we simulate a failure of an actuator

directly attached to the end-effector. The top row shows the results for
writing an “a” character, while the bottom row shows the results for a “b.”
The left column show the results when the feedback includes the spring
forces and the square of the spring forces, while the right column only
includes the spring forces. The plots show the mean, maximum, minimum,
and SD of the reward over 30 runs.

5. Discussion

Hebbian theory is a well-established approach to explain synaptic
plasticity between neurons. Over the years, many variations of
the basic learning rule have been developed. Each of these had a
specific application, ranging fromunsupervised feature extraction
to reinforcement learning. In this work, we handled Hebbian-like
learning rules in which the synaptic plasticity is based on the
correlation of the presynaptic neurons and an exploratory noise
signal. The plasticity was modulated by a reward signal, resulting
in a learningmethod thatmaximizes the expected reward of a trial.

We showed that this kind of learning can be applied outside
the scope of traditional neural networks, namely in embodied
computation. While similar rules have already been presented,
we focused on reward learning in constrained recurrent neural
networks and compliant robots. The rationale for this is our
belief that both can be seen as computational resources and can
therefore benefit from similar learning techniques.

Our work builds upon Legenstein’s (Legenstein et al., 2010),
who considered simulated motor control tasks in combination
with an instantaneous reward signal in an initially chaotic neural
network. One significant difference with respect to our experi-
mental setup is that Legenstein estimated the exploration noise
as well as the expected reward. This allows for uncontrolled
or unknown noise sources to be used, which adds to the bio-
logical plausibility of the method learning (Faisal et al., 2008).
Covariance and noise-based rules have a strong biological foun-
dation (Loewenstein and Seung, 2006; Soltani and Wang, 2006;

Loewenstein, 2008). For example, it is well-known that neural
networks in biology have intrinsic noise sources (Faisal et al.,
2008), which could be used for learning (Maass, 2014). While this
type of noise can sometimes be measured by external means (e.g.,
voltage clamps), a plasticity rule within the biological substrate
cannot generally observe the noise signals, hence the importance
of the noise estimator in Legenstein’s rule. In this work, we con-
sidered this approach briefly, but observed unfavorable results.
The noise estimation scheme used by Legenstein requires the
input and network dynamics to be temporally stable on small
time scales, which likely explains our observations. However,
apart from its biological plausibility, such a scheme is unnecessary
in our context, as significant uncontrolled noise sources seem
unlikely in robotics. Finally, we remark that Legenstein’s learning
rule extends various earlier techniques with similar mathematical
formulations (Fiete and Seung, 2006; Loewenstein and Seung,
2006; Loewenstein, 2008).

Another important difference of the learning rule that we
considered with more biologically plausible alternatives, like the
ones presented in Legenstein et al. (2008) and Soltoggio and Steil
(2013), is that we employed trial-based learning. The fact that
rewards are always distributed at the end of a learning episode in
our setup allowed us to accumulate covariances throughout the
episode, instead of making use of eligibility traces to keep track of
the covariances in the recent past. This, in fact, makes it easier to
solve the distal reward problem, since credit can only be assigned
to exploration that happened during the same trial that the reward
was received.
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Our study of RMH learning in neural networks shows that the
considered learning rule works for a wide range of conditions
(trainability and observation functions) and for very different
tasks. In addition, we have interpreted the network configuration
of task 2, in which an entire subnetwork was not trainable, as a
model for partially embodied computation. An interesting ques-
tion in this case is whether learning in the trainable part of the
neural networkwas fundamentally necessary in order to recognize
the input patterns, or, in contrast, whether the necessary compu-
tations were already present in the network dynamics. In this case,
as in a traditional reservoir computing setup, the learning only
needed to provide a suitable mapping from the internal dynamics
to the observation function.

The presented results show that after training, the system state
evolves along a fixed number of highly robust trajectories. This
phenomenon is not commonly observed in reservoirs without
trained feedback weights, indicating that training half of the net-
work at least provides feedback loops in addition to a suitable
observation function. However, whether an actual trainable neu-
ral network has added value on top of these functionalities is not
clear from the current experimental results. A more detailed anal-
ysis of the learning outcomes in assemblies of fixed and trainable
substrates, as a model for partially embodied computation, is the
subject of ongoing work.

Given the promising results we obtained in our simulations
and the limited number of assumptions we had to make to obtain
successful results, this work paves the way toward more complex
control hierarchies for robot motor control, in which each level
refines the output of the previous one. In this context too, our
results raise some interesting questions, for instance, about the
exact role of the very poorly performing kinematic controller in
our experiments. In fact, the main goal of the kinematic controller
is not to have the optimal performance, but rather to inject energy
into the structure. In our previous work, we showed an example
with an instantaneous reward function in which we first trained
a feedback controller with known target signals using recursive
least squares, and then proceeded to learn additional feedback

signals using a reward-modulated Hebbian rule (Caluwaerts et al.,
2012, section 5.1.3). The reasonwhy an additional energy source is
employed in both cases, is that it is hard to consistently learn pure
feedback controllers with simple Hebbian-like learning rules. A
small change in a feedback weight can cause the system dynamics
to fade out, which often results in instability. Therefore, an easy
and efficient solution is to use an additional input that consistently
pumps energy into the system. In principle, this can be accom-
plished using a feedback controller as in our previous work, a sim-
ple feed forward controller as we use here, or another controller,
such as a central pattern generator. More extensive research is
needed to determine how much of the workload can be offloaded
to the lowest level, partially embodied feedback controller and
how this scales tomore complex control tasks, e.g., involvingmore
complex robot bodies.

In summary, our main conclusion is that reward-modulated
Hebbian plasticity provides a simple, yet effective tool for bridg-
ing learning in recurrent neural networks and the exploitation
of the own dynamics of compliant robots. This strengthens our
belief that both the body and the neural network can be used as
computational tools and that they should be combined in a self-
organizing way into partially embodied hierarchical controllers.
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Appendix

A stabilized Reward-Modulated Hebbian Rule
Oja’s rule (Oja, 1982) and its extension, the generalized Hebbian
algorithm or Sanger’s rule (Sanger, 1989), provide a single layer
neural network implementation to compute principal compo-
nents. Contrary to pure Hebbian plasticity, the learning rules are
stable, because they force the norm of the weight vectors to unity.
Unlike in the unsupervised learning case, reward-modulated rules
tend to be stable in practice (i.e., the trained weights remain
bounded). However, it can still be useful to control the norm of
the weights as this can have practical implications. For example, in
a robotics application, this would allow for limiting the required
feedback gain and thus the required motor power. From a theo-
retical point of view, it is also instructive to see how the learning
rules employed throughout this paper resemble the now classic
rule discovered by Sanger over 20 years ago. In this section, we
provide a similar derivation for the RMH learning rule that we
studied in this work.

To simplify the notation, we start by defining a number of
variables:

E = ZTX (A1)
r′ = r − r̄. (A2)

The basic learning rule we studied can now be written in
element-wise form as:

wij[n + 1] = wij[n] + αr′eij (A3)

Oja’s rule is a first order approximation to the normalization of
the weights at every update step:

wij[n + 1] = bi
wij[n] + αr′eij

∥wi[n] + αr′ei ∥
, (A4)

where b contains the desired L2 norms of the weight vectors.

We now consider the linearization of this rule for small learning
rates α. To further simplify the notation, we drop the time index
and consider a single output dimension:

wj ≈ b
wj + αrej

∥w + αre∥

∣∣∣∣
α=0

+ αb
(

∂

∂α

wj + αrej
∥w + αre∥

)∣∣∣∣
α=0

(A5)

A straightforward calculation shows that the part inside the
parentheses of the second term can be written as:

∂

∂α

wj + αrej
∥ w + αre ∥

∣∣∣∣
α=0,∥w∥=b

=
rejw + αre ∥−(wj + αrej)(w + αre) · (re)

∥w + αre∥2

∣∣∣∣
α=0,∥w∥=b

(A6)

=
1
brej −

( rw · e
b3

)
wj, (A7)

assuming ∥w∥ = b and α = 0.
The complete learning rule can therefore be written as:

wj = b
wj

b + αb
(
1
brej −

( rw · e
b3

)
wj

)
(A8)

= wj + αr
(
ei −

wj

b2w · e
)
. (A9)

The matrix form of the rule for multiple outputs is given by:

∆W = αr′(E − diagv(b)
−2diagv(diagm(EWT))W), (A10)

where the diagv operator transforms a vector into a diagonal
matrix, and the diagm operator transforms a matrix into a vector,
containing its diagonal elements. The time complexity to this
rule is of the order O(mn), with m the number of outputs and n
the number of inputs. The resulting stabilized learning rule very
closely resembles Sanger’s rule.
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