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Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range
of locomotive abilities and complex behaviors. The locomotive behaviors can consist
of a variety of walking patterns along with adaptation that allow the animals to deal
with changes in environmental conditions, like uneven terrains, gaps, obstacles etc.
Biological study has revealed that such complex behaviors are a result of a combination
of biomechanics and neural mechanism thus representing the true nature of embodied
interactions. While the biomechanics helps maintain flexibility and sustain a variety of
movements, the neural mechanisms generate movements while making appropriate
predictions crucial for achieving adaptation. Such predictions or planning ahead can
be achieved by way of internal models that are grounded in the overall behavior
of the animal. Inspired by these findings, we present here, an artificial bio-inspired
walking system which effectively combines biomechanics (in terms of the body and leg
structures) with the underlying neural mechanisms. The neural mechanisms consist of
(1) central pattern generator based control for generating basic rhythmic patterns and
coordinated movements, (2) distributed (at each leg) recurrent neural network based
adaptive forward models with efference copies as internal models for sensory predictions
and instantaneous state estimations, and (3) searching and elevation control for adapting
the movement of an individual leg to deal with different environmental conditions. Using
simulations we show that this bio-inspired approach with adaptive internal models allows
the walking robot to perform complex locomotive behaviors as observed in insects,
including walking on undulated terrains, crossing large gaps, leg damage adaptations,
as well as climbing over high obstacles. Furthermore, we demonstrate that the newly
developed recurrent network based approach to online forward models outperforms the
adaptive neuron forward models, which have hitherto been the state of the art, to model
a subset of similar walking behaviors in walking robots.

Keywords: neural control, forward models, recurrent networks, locomotion, adaptive behavior, walking robots,
synaptic adaptation
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1. Introduction

Walking animals show diverse locomotor skills to deal with a
wide range of terrains and environments. These involve intricate
motor control mechanisms with internal prediction systems
and learning (Huston and Jayaraman, 2011), allowing them to
effectively cross gaps (Blaesing and Cruse, 2004), climb over
obstacles (Watson et al., 2002), and even walk on uneven terrain
(Cruse, 1976; Pearson and Franklin, 1984). These capabilities
are realized by a combination of biomechanics of their body
and neural mechanisms. The main components of these neural
mechanisms include central pattern generators (CPGs), internal
forward models, and limb-reflex control systems. The CPGs
generate basic rhythmic motor patterns for locomotion, while
the reflex control employs direct sensory feedback (Pearson and
Franklin, 1984). However, it is argued that biological systems
need to be able to predict the sensory consequences of their
actions in order to be capable of rapid, robust, and adaptive
behavior. As a result, similar to the observations in vertebrate
brains (Kawato, 1999), insects can also employ internal forward
models as a mechanism to predict their future state (predictive
feedbacks) given the current state or sensory context (sensory
feedback) and the control signals (efference copies), in order to
shape the motor patterns for adaptation (Webb, 2004; Mischiati
et al,, 2015). Essentially, such a forward model acts as an internal
feedback loop, that uses a copy of the motor command, in order
to predict the expected sensory input. Comparing this to the
actual input, appropriate modulations of this signal or adaptive
behaviors can be carried out.

In order to make such accurate predictions of future actions
to satisfy changing environmental demands, the internal forward
models require some degree of memory of the previous
sensory-motor information. However, given that, such motor
control happens on a very fast timescale, keeping track of
temporal information is integral to such very short-term
memory processes. Reservoir-based recurrent neural networks
(RNNs) (Maass et al., 2002; Jaeger and Haas, 2004; Sussillo
and Abbott, 2009), with their inherent ability to deal with
temporal information and fading memory of sensory stimuli,
thus provide a suitable platform to model such internal
predictive mechanisms. Taking this perspective, here, we utilize
a newly developed model of self-adaptive reservoir networks
(SARN) (Dasgupta et al., 2013; Dasgupta, 2015), to act as the
forward models for sensorimotor prediction. This works in
conjunction with other neural mechanisms for motor control and
generates complex adaptive locomotion in an artificial walking
robotic system. Specifically, by exploiting the adaptive recurrent
layer of our model it is possible to achieve complex motor
transformations at different walking gaits, which is significantly
difficult to achieve by currently existing adaptive forward models
employed with walking robots (Dearden and Demiris, 2005;
Schroder-Schetelig et al., 2010; Manoonpong et al., 2013).

We present for the first time a distributed forward model
architecture using six SARN-based forward models on a hexapod
robot, each of which is for sensory prediction and state estimation
of an individual robot leg. The outputs of the models are
compared with foot contact sensory signals (actual sensory

feedback) and the differences between them are used for motor
adaptation, in an online manner. This is integrated as part of
the neural mechanism framework consisting of (1) single central
pattern generator-based control for generating basic rhythmic
patterns and coordinated movements, (2) distributed reservoir
forward models and (3) searching and elevation action control
for adapting the movement of an individual leg based on the
forward model predictions, in order to deal with changing
environmental conditions. The distributed nature of the SARN-
based forward models allows each leg to act independently with
its own feedback and adapt to various environmental situations.
This has hitherto, been a difficult problem with centralized
motor prediction architectures (Dearden and Demiris, 2005;
Pfeifer et al., 2007). Although, there have been some influential
distributed architectures for locomotion control of insect
inspired robots (Beer et al., 1992; Cruse et al., 1998), they are
largely reactive without any prediction (forward model) ability
at each leg. In this work, our distributed approach to motor
prediction can not only significantly decrease computational
demands but also enable each leg with inherent memory in order
to make predictions based on its history of sensorimotor signals.
This naturally lends to flexibility and robustness of the overall
locomotive behavior. Furthermore, each SARN forward model
can learn to make predictions for multiple different walking gaits,
which was also hitherto not possible in the current state of the art
adaptive neuron forward model architecture (Manoonpong et al.,
2013). Additionally, the ability to deal with sensorimotor noise
or missing information (corrupt signals) of motor commands
can be crucial under real environmental conditions. In this
work, we will show that the long internal memory of recurrent
neural networks naturally allow our forward models to be noise
robust and deal with such abnormal conditions to produce truly
adaptive locomotion. Overall the neural mechanisms framework
presented in this paper makes primary contributions toward
making better controllers for insect inspired legged robots
(Ijspeert, 2014). While at the same time the developed adaptation
mechanism could also suggest a possible role in animal motor
control, given the biological plausibility of a distributed neural
architecture (Beer et al., 1992) and local leg control (Berg et al.,
2015).

In the following section we describe the architectural setup
of the neural mechanisms used for the design of adaptive
locomotion control in a walking robot, along with a description
of the simulated hexapod robot AMOS II and the modular
robot control environment used as the development platform
for our proposed control system. In Section 3, we present
the materials and methods used in this study. Specifically,
we introduce the setup and implementation of the distributed
reservoir-based adaptive forward model, with details of the
learning procedure. Section 4 presents experimental results of
the learning mechanism and the resulting behaviors of the
simulated hexapod AMOS II on different complex locomotion
scenarios likes crossing a large gap, walking on uneven (rough)
terrains, overcoming obstacles and dealing with leg damage
scenarios. The results obtained from the reservoir based forward
models are juxtaposed with the previous state of the art
adaptive neuron forward models setup. Finally, in Section 5,
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we discuss our results and provide an outlook of further future
directions.

2. Neural Mechanisms for Complex
Locomotion

The neural mechanisms (Figure 1A) for locomotion control,
are designed based on a modular architecture, such that, they
comprise of, (i) central pattern generator (CPG)-based control,
(ii) reservoir-based adaptive forward models, and (iii) searching
and elevation action control. The CPG-based control and the
searching and elevation control have been previously discussed in
detail in Manoonpong et al. (2013), thus here we will only provide
a brief overview of these mechanisms, while the reservoir-based
adaptive forward models, which forms the main topic of this
work, will be presented in detail in the following section.

The CPG-based control primarily generates a variety of
rhythmic patterns and coordinates all leg joints of a simulated
hexapod robot AMOSII (Figure 1B), thereby, leading to a
multitude of different behavioral patterns and insect-like leg
movements. The patterns include omnidirectional walking and

insect-like gaits (Manoonpong et al.,, 2013). All these patterns
can be set manually, or autonomously driven by exteroceptive
sensors, like a camera (Zenker et al., 2013), a laser scanner
(Kesper et al., 2013), or range sensors. While the CPG-based
control provides versatile autonomous behaviors, the searching
and elevation control at each leg uses the accumulated error
signals provided by the reservoir-based adaptive forward models
in order to adapt the movement of an individual leg of the robot
and deal with changes in environmental conditions.

The CPG-based control (see Supplementary Figure 1 for
detailed description) itself is designed as a modular neural
network that consists mainly of the following four elements:

1. CPG mechanism with neuromodulation for generating
different rhythmic signals. Inspired by biological findings,
here the CPG circuit is designed as a two-neuron fully
connected recurrent network (Pasemann et al, 2003)
(Supplementary Figure 1, top left), such that using different
external neuromodulatory inputs different walking gaits can
be achieved.

2. CPG post-processing units (PCPG) for shaping CPG output
signals.
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FIGURE 1 | (A) The closed-loop architectural diagram of an artificial bio-inspired walking system consisting of the sensors (i.e., proprioceptive and exteroceptive

Leg-structure

sensors) that receive environmental inputs and feedback, the neural mechanisms (i, ii, iii) for adaptive locmotion control, and the biomechanical setup of the hexapod
robot AMOSII [i.e., six 3-jointed legs, a segmented body structure with one active backbone joint (BJ), actuators, and passive compliant components Manoonpong
et al., 2013]. (B) Modular Robot Control Environment embedded in the LPZRobots simulation toolkit (Der and Martius, 2012; Hesse et al., 2012). (Top left) The
simulation environment provides the main testbed for developing the controller, testing it on the simulated hexapod robot, and finally transferring it to the physical
agent. Here we evaluate our model and results primarily on the simulated robot (bottom left), which accurately embodies the characteristics of its physical equivalent,
AMOS I robot (bottom left). Here, FC1, FC», FC3, FC4, FCs, and FCg are foot contact sensors installed in the robot legs, which are used as the main sensory stimuli
compared against the predicted signal from the RNN-based (reservoir) forward models. Each leg (bottom right inset) consists of three joints: the innermost
thoraco-coxal (TC-) joint enables forward and backward movements, the middle coxa-trochanteral (CTr-) joint enables elevation and depression of the leg, and the
outermost femur-tibia (FTi-) joint enables extension and flexion of the tibia. The morphology of these muilti-jointed legs were designed based on a cockroach leg (Zill
et al., 2004). (Top right) The front and back parts of the body are connected with a backbone joint (BJ) which primarily allows upwards and downwards tilting of the
front body segment (along the horizontal axis). Thus, this is used for climbing and gap crossing purposes. This is also based on a similar joint structure found in the
cockroach morphology, allowing it to climb large obstacles. More details on BJ control for climbing can be found in Goldschmidt et al. (2014).
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3. Phase switching network (PSN) and velocity regulating
networks (VRNs) for walking directional control.

4. Motor neurons with embedded fixed delay lines for
transmitting motor commands to all leg joints of AMOS
II. These delay lines are utilized to realize the inter-limb
coordination, in which they introduce phase differences
between the transmitted signals to all leg joints. As a result,
the desired walking gait can be achieved.

All neurons of the control network are modeled as discrete-
time rate-coded neurons. They are updated with a frequency of
approximately 27 Hz (1 time step 237 ms). The activity ¢; of each
neuron in the control network develops according to:

G =Y Wit =D +ei=1,....n (1)
j=1

where, n denotes the number of units, €; is an internal bias signal
or stationary input to each unit i, Wj; are the synaptic strength
of the connections from neuron j to neuron i. The output 6; of
all neurons of the control network are calculated by using the
hyperbolic tangent (tanh) transfer function, i.e., 6; = tanh(¢;),
€ [—1,1], except for the CPG postprocessing neurons use a
step function, the motor output neurons use a piecewise linear
transfer function.

The discrete time dynamics of activity states ¢; of the two-
neuron (i € 1,2) fully connected CPG circuit, and its output
states 0; follows Equation (1) and a tanh transfer function,
respectively. The initial states of the CPG neurons are set to a
small positive value, e.g., 0.1. An external excitatory modulatory
input MI is introduced to the synaptic connections of the
neurons (Supplementary Figure 1, above), in order to modulate
the outputs of the CPG. Here different values of MI generates
different walking gait patterns (wave, tetrapod, catterpillar, tripod
etc.). Although this can be set automatically using sensory inputs
(Manoonpong et al., 2013), here we set their values by hand using
empirical evaluations. As such, the synaptic weights of the CPG
circuit follows:

Wii,22 = do, )
Wizm = Wa + M, (3)
Waim = —=(Wa + MI). (4)
where, W2, are fixed synapses with value dy = 1.4 and

Wi2m.21m are modulated or plastic synapses. Here, Wy, and W,
are default synaptic weights selected such that basic periodic
signals can be generated. They need to be selected in accordance
with the dynamics of the system that generates periodic or
quasi-periodic attractors (Pasemann et al., 2003).

The searching and elevation control at each leg, consist
of single recurrent neurons that receive the difference
(instantaneous error) between the predicted forward model
signal and the actual sensory feedback. Due to the recurrent
self-connection, this error is accumulated over time. The
accumulated error can then be used to either extend specific leg
joints in order to get better foothold (searching action) during
the stance phase, or elevate further to overcome obstacles during

the swing phase (see Figure 6E in Section 4.1). Similar to the
CPG-based control, all neurons in the searching and elevation
control are modeled as discrete-time rate-coded neurons with
piece-wise linear activation functions (see Manoonpong et al,,
2013, for details), respectively.

3. Materials and Methods

3.1. Reservoir-based Distributed Adaptive
Forward Models

We design, six identical adaptive RNN-based forward models
(RF1,2.3,...6), one for each leg of the walking robot (Figure 2A).
These serve the purpose of online sensorimotor prediction as
well as state estimation. Specifically, each forward model learns to
correctly transform the efference copy of the actual motor signal
for each leg joint (i.e., here the CTr-joint motor signal)!, into an
expected or predicted sensory signal. This predicted signal is then
compared with the actual incoming sensory feedback signals (i.e.,
here the foot contact signal—Figure 2B, of each leg) and, based
on the error accumulated over time, it triggers the appropriate
action (searching or elevation) and modulate the locomotive
behavior of the robot. Each forward model is based on a random
RNN architecture of the self-adaptive reservoir network type
(Dasgupta et al., 2013; Dasgupta, 2015). Due to the presence
of rich recurrent feedback connections, the dynamic reservoir
and intrinsic homeostatic adaptations, the network exhibits a
wide repertoire of non-linear activity and long fading memory.
This can be primarily exploited for the purpose of specific leg
joint-motor signal transformation, act as motor memory and for
the prediction of sensorimotor patterns arising in the current
context.

3.2. Network Setup

The basic setup of each reservoir forward model can be divided
into three layers: input, hidden (or internal), and readout layers
(Figure 2B). The internal layer consists of a large recurrent
neural network driven by time-varying stimuli (CPG motor
signals). These driving signals are projected via the input layer.
The internal layer is constructed as a random RNN with fixed
randomly initialized synaptic connectivity (in this setup we
only modify the reservoir-to-readout neuron weights). Using a
discrete time version of SARN, with a step size of At, the discrete
time state dynamics of each reservoir neuron is given by the
following equations:

xi(t+1) =
i

N
At At .
<1 - 7) xi(t) + ? g E W,-rj-crj(t) + W:ﬁu(t) +B; |,
i )
j=1

i=1,...,N. (5)
ri(t) = tanh(aix;(t) + b;), (6)
a(t) = [Wo]" r(o). )

'We use the CTr-joint motor signal instead of the TC- and FTi-motor signals since
this shows clear swing (off the ground) and stance (on the ground) phases which
can be qualitatively matched to the actual foot contact signal.
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FIGURE 2 | (A) Neural mechanisms implemented on the bio-inspired hexapod robot AMOSII. The yellow circle (CPG) represents the neural locomotion control
mechanism (see Supplementary Figure 1). The gray circles (RFq 2 3 .. g) represent the reservoir-based adaptive forward models. The green circles (SEq 2 3 ... 6)
represent searching and elevation control modules. The orange circles represent leg joints where TR;, CR;, FR; are TC-, CTr- and FTi-joints of the right front leg (/ = 1),
right middle leg (i = 2), right hind leg (i = 3) and TL;, CL;, FL; are left front leg (i = 1), left middle leg (i = 2), left hind leg (/ = 3), respectively. BJ is a backbone joint. The
orange arrow lines indicate the motor signals which are converted to joint angles for controlling motor positions. The black arrow lines indicate error signals. The green
arrow lines indicate signals for adapting joint movements to deal with different circumstances. (B) An example of the reservoir-based adaptive forward model. The
dashed frame shows a zoomed in view of a single reservoir neuron. In this setup, the input to each of the reservoir network comes from the CTr-joint of the respective
leg. The reservoir learns to produce the expected foot contact signal for three different walking gaits (z1, zo, z3). The signals of the output neurons are combined and
compared to the actual foot contact sensory signal. The error from the comparison is transmitted to an integrator unit. The unit accumulates the error over time. The

accumulated error is finally used to adapt joint movements through searching and elevation control.

The RNN model consists of N neurons, such that the membrane
potential at the soma (at time f) of the reservoir neurons,
resulting from the incoming excitatory and inhibitory synaptic
inputs, is given by a N dimensional vector of neuron state
activations. x(t) = x1(t), x2(¢), ..., xny(t). The RNN here,
does not explicitly model action potentials, but describes
neuronal firing rates. Where in, the variable ri(t) describes
the instantaneous firing rate (N dimensional) of the reservoir
neurons and is calculated as a non-linear function of the
state activation x;(t) (Equation 5). Each reservoir neuron i,
receives inputs from other neurons in the network with firing
rates rj(f) via synaptic connections of strength Wi along
with incoming stimuli from the input layer via synapses of
strength Wf}‘. Each reservoir neuron is also provided with an
auxiliary bias B;. The parameter g (Sompolinsky et al., 1988;
van Vreeswijk and Sompolinsky, 1996) acts as the scaling factor
for the recurrent connection weights allowing different dynamic
regimes from stable (g < 1) to highly irregular chaotic
(g > 1) (Sussillo and Abbott, 2009), being present in the
network.

The input to the reservoir u(t), consists of a single CTr-
joint motor signal. This acts as an efference copy of the post-
processed CPG motor output. The readout layer consists of
three neurons, with their activity being represented by the three-
dimensional vector z(t). Although typically M < N readout
neurons can be connected to the reservoir, here we restricted
it to three neurons, as each readout here learns the predictive
signal for one of the following different walking gaits: wave
(z1), tetrapod (23), and caterpillar (z3) gaits. The wave, tetrapod,
and caterpillar gaits are used for climbing over an obstacle,

walking on uneven terrain, and crossing a large gap, respectively?.
Subsequent to the supervised training of the reservoir-to-readout
connections W%, each readout neuron basically learns to
predict the expected foot contact signal associated with each
of these gaits. The decay rate for each reservoir neuron is
given by % where 7; is the individual membrane time constant.
The input-to-reservoir connections weights W and internal
recurrent weights W' were drawn randomly from the uniform
distribution [—0.1,0.1] and a Gaussian distribution of zero

mean and variance

2
£ < respectively. Where, the parameter p.

c

controls the probability of connections inside the recurrent layer
and is set to be 20%. In order to select the appropriate reservoir
size, empirical evaluations were carried out (Figures3A,B),
such that we achieved a moderate network size of N = 30,
for which the minimum prediction error was obtained at the
readout layer, irrespective of the walking gait. The recurrent
weights were subsequently scaled by the factor of g = 0.95
(see Figure 3), such that the spontaneous network dynamics
is in a stable regime and achieves the best performance of
the chosen network size. In accordance with the SARN model,
unsupervised intrinsic plasticity (Triesch, 2005) and neuron
timescale adaptation (Dasgupta, 2015) were carried out in order
to learn the transfer function parameters (a; and b;) and the

2These three gaits were empirically selected among 19 other possibilities. Previous
studies have demonstrated that the wave and tetrapod gaits are the most effective
for climbing and walking on uneven terrains, respectively. While in this particular
study we observed that the caterpillar gait was the most effective for crossing a gap.
However, without any loss of performance, additional walking gaits can be applied
easily by adding further readout neurons.
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with an output distribution of Gaussian shape matching that of the input distribution. However, after adjustment using intrinsic plasticity mechanism (Dasgupta et al.,
2013) the reservoir neuron adapts the parameters a and b, such that, now for the same Gaussian input distribution the output distribution follow a maximal entropy
Exponential-like distribution. (D) Distribution of the reservoir forward model individual neuron time constants before and after adaptation.
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reservoir time constant parameters t; for each individual neuron
(Figures 3C,D).

3.3. Readout Weight Adaptation

Here we used a modified version of the original recursive least
squares (RLS) algorithm (Simon, 2002; Jaeger and Haas, 2004)
based on the FORCE learning formulation (Sussillo and Abbott,
2009), in order to learn the reservoir-to-readout connection
weights W at each time step, while the CPG input u(%) is being
fed into the reservoir. The readout weights W% are calculated
such that the overall error at the readout neurons is minimized;
thereby the network can learn to accurately transform the
CTr-motor signal to the expected foot contact signal, for each
walking gait. The instantaneous error signal (e(t)) at the readout
layer, can be calculated as the difference between the reservoir
predicted output (z(t)) and the desired output, d(¢) (i.e., here the
expected foot contact signal). Based on Equation (7), this can be
formulated as:

3

e(t) =y Wt — Dri(t) — d(). (8)

j=1

Using the RLS algorithm, and minimizing this error, the readout
weights ij’”’ update can be defined by,

W = W (e — 1) — e(t) ) Py(t)ry(t). ©)
j

Where, P is a N x N square matrix proportional to the inverse of
the correlation matrix of the reservoir neuron firing rate vector
r. P is initialized using the identity matrix I and a small constant
parameter §. as, P(0) = é. P, here, acts as the adaptive learning
rate for updating the readout weights with weight modifications
automatically slowing down as P decreases with time. This allows
the learning to occur stably and eventually converge to a solution.
P is updated as each time point as,
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The reservoir-to-readout neuron weights were initialized to zero
at start. Details of all the fixed parameters and initial settings for
the reservoir based forward model networks are summarized in
Supplementary Table 1.

4. Results

4.1. Learning the Reservoir Forward Model
(Motor Prediction)

The entire learning and testing procedure of the SARN-based
forward models can be divided into three stages, namely:

1. Pre-training: This stage is used primarily for gathering
preliminary sensorimotor data in order to adapt the SARN
individual neuron parameters. Here, no reservoir-to-readout
weight adaptations occur. This stage can be further divided
into,

e Sequential learning: The robot walks under normal
conditions, while sequentially transitioning from one
walking gait to another (fixed duration of time). The
process is stopped after all the gaits are completed.

e Offline SARN adaptation: The sensorimotor data collected
from the above process is used to adapt the reservoir neuron
non-linearity and time constant parameters (Dasgupta
et al., 2013).

2. Online training: The same procedure of sequential learning
is carried out, however now with ongoing adaptations of the
reservoir-readout neuron connection weights based on the
RLS algorithm (Equation 9).

3. Testing: After only a single online training cycle the learned
forward models are tested on the different experimental
conditions.

We now provide a more in depth explanation of these different
learning stages.

4.1.1. Pre-training (Without Weight Adaptation)

In order to train the six forward models (RF;toRFg) in an online
manner, one for each leg, we let the simulated robot AMOSII
walk under normal conditions (i.e., walking on a flat terrain with
the three different gaits). Initially, we let the robot walk with a
certain walking pattern, and then every 2500 time steps (here one
time step is equivalent to 37 ms, therefore 2500 time steps is equal
to 92.5 s), the gait pattern was sequentially altered (this occurs by
changing the modulatory input to the CPG—see Supplementary
Figure 1). As a result, the robot sequentially transitions from wave
gait, to tetrapod gait, to caterpillar gait repeatedly (here these gaits
were empirically selected as the most efficient for the different
tasks, however multiple different such gaits can be learned by
a single forward model. For an example with commonly used
tripod gait, see Supplementary Figure 2). Using this procedure,
we let the robot walk for three complete cycles (22,500 time
steps) and collected the corresponding CTr-motor signal and foot

contact sensor readings for all legs. Intrinsic plasticity and neuron
time constant adaptations (Dasgupta et al., 2013; Dasgupta,
2015), were then carried out using 20 epochs of 1000 time steps
overlapping time windows. After this pre-training phase, all the
reservoir neuron non-linearity parameters and individual time
constants (t;) were fixed (see Figure 3D for the distribution of
neuronal time constants before and after training).

4.1.2. Online Training (With Weight Adaptation)
Subsequent to the pre-training phase, normal training of the
reservoir-to-readout weights W was carried out using the
online RLS learning algorithm with the same process of making
the robot walk on a flat, regular terrain and sequential switching
between the three gait patterns every 2500 time steps. As such,
at any given point in time only one of the readout neurons
(specific to the walking gait) are active. In this manner, synaptic
weights projecting from reservoir to the first readout neuron
(z1) corresponding to the foot contact signal prediction for the
wave gait, and synaptic weights projecting to the second (z7)
and third (z3) readout neurons corresponding to the foot contact
signal prediction of the tetrapod and caterpillar gaits, are learned,
respectively. Within this experimental setup, as observed from
Figures 4A-C the readout weights corresponding to each gait
converges very quickly, in less than the trial period of 2500 time
steps®. As a result, every time the CTr-motor signal changes due
to walking gait transformations, the RF associated with each leg
learns to predict the expected foot contact signal robustly. The
training process was carried out only once under normal walking
conditions. This was subsequently used as the baseline in order to
compare with the actual foot contact signals (sensory feedback)
while walking under the situations of crossing a gap, climbing,
and negotiating uneven terrains.

Figure 5 shows an example of the forward model prediction
(training) during the three different walking gaits, for the right
front leg of AMOSII (R;). Visual inspection clearly demonstrates
that according to the corresponding efference copy of CTr-motor
signal at a particular gait, the expected foot contact (FC) signal is
precisely predicted at each time point. Similarly, the foot contact
signals for the other legs are also predicted online, given the
current context of CTr-signal (not shown). Note that the FC
signals of the other legs normally show slightly different periodic
patterns. Furthermore, there exists considerable lag between
the expected stance phase according to the motor signal and
that observed from the FC signal (difference between dotted
green lines in Figure5). Due to the internal memory of the
incoming motor signal in the reservoir, we see that the output
neurons can adapt to these time lags efficiently, even when
the frequency of the signal increases with a change in walking
gaits. Furthermore, the reservoir-based forward models enable
the robust generation of the predicted FC signal, even in the
presence of high noise corruption or missing information in
the incoming CTr-joint motor signal (Figures 5J,K). Due to the
fact that the CTr-motor signals are obtained after appropriate

3Due to intrinsic noise and nature of the reservoir-to-readout synaptic adaptation,
the weights still show minute fluctuations after successful learning; therefore here
convergence applies that the norm of the readout weights | W*| remains constant
with a small finite value (Sussillo and Abbott, 2009).

Frontiers in Neurorobotics | www.frontiersin.org

September 2015 | Volume 9 | Article 10


http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dasgupta et al.

Distributed recurrent neural forward models

A Learning Convergence Wave gait
T T T T T T

- R3
N 300
S 2 R2
2 0 DRI
g L3
@ -300 = L2
= ]

1000 1100 1200 1300 1400 1500 1600 1700 1800 1200 1300 1400
Time [steps] Time [steps]

B Learning Convergence Tetrapod gait

N
N
e
2
<
2
(3]
= L

2500 2600 2700 2800 2900 3000 2700 2800 2900
Time [steps] Time [steps]
c Learning Convergence Caterpillar gait
4000 P

™
N
=)
i)
<
R
Q
=

o LY
5500 5600 5700 5800 5900

3.72 sec Time [steps]

FIGURE 4 | Reservoir-to-readout weight adaptation during online learning. (A) Changes of 30 weights projecting to the first readout neuron (z4) of the forward
model of the right front leg (R1) while walking with a wave gait. During this period, weights projecting to the second (z») and third (z3) output neurons remain
unchanged (i.e., they are zero). (B) Changes of the weights to z, while walking with a tetrapod gait. During this period, the weights to z3 still remain unchanged and
the weights to zq converge to around zero. (C) Changes of the weights to z3 while walking with a caterpillar gait. During this period, the weights to z4 and zo converge
to around zero. At the end of each gait, all weights are stored such that they will be used for locomotion in different environments. The gray areas represent transition
phases from one gait to another gait and the yellow areas represent convergence. The gait diagrams are shown on the right. They are observed from the motor
signals of the CTr-joints (Figure 5). White areas indicate ground contact or stance phase and blue areas refer to no ground contact during swing phase. As frequency
increases, some legs step in pairs (dashed enclosures). Here convergence implies no significant change in the vector norm of the readout weights.
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post-processing of original CPG signals and passage through the
motor neurons coupled with different time delays. Such signal
corruption can occur at various levels. Therefore, the ability of
the forward model to deal with such abrupt noise in the motor
signals in a robust manner is crucial to the adaptive mechanisms.
Furthermore, such signal corruptions can also occur, due to
entrainment mechanisms applied for the automatic tuning or
adaptation of CPG outputs (Nachstedt et al., 2013). Such online
adaptation for sudden motor signal variations, was not possible
in the previous state of the art adaptive neuron forward models
(Manoonpong et al., 2013). This model inherently lacked the
ability to deal with variations in the temporal properties of the
signal. As such, a simple square wave matching the timing of
the motor signal efference copy was used, providing a limited
range of behavior, as well as being biologically implausible.
However, here our reservoir-based model can accurately estimate
the spatiotemporal properties of the signal and robustly learn the
exact shape, as well as the timing of the actual FC signals.

4.2. Simulated Complex Environments

In order to assess the ability of the reservoir-based forward
models to generate adaptive complex locomotive behaviors in a
neural closed-loop control system (see Figure 1), we conducted
simulation experiments under different situations including
crossing a gap, walking on uneven terrain and climbing over high

obstacles (similar to the behaviors observed in real insects). In
all cases, we used the same training procedure for the forward
models by allowing the robot to walk under normal conditions
on a flat even terrain.

During testing of the learned behavior, while AMOSII walks
under different environmental conditions and a specific gait, the
output of each trained forward model (i.e., the predicted FC
signal, Figure 6A) is used to compare it to the actual incoming
FC signal of the leg (Figure 6B). The difference (instantaneous
error signal A) between them determines the walking state where
a positive value (+A) indicates losing ground contact during the
stance phase and a negative value (—A) indicates stepping on or
hitting obstacles during the swing phase.

Ai(t) = RFj(t) — FCi(1). (11)
where i € {1, 2, ..., 6} represents each leg of the robot.

Thus, we use the positive value for searching control
(Figure 6D, above). This is then accumulated through a single
recurrent neuron S with a linear transfer function and is always
reset to 0.0 at the beginning of swing phase. Similarly, the
negative value is used for elevation control (Figure 6D, below).
The value is also accumulated through a recurrent neuron E with
a linear transfer function. These accumulated errors (Figure 6C)
thus allow the robot leg to be either elevated (on hitting an
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FIGURE 5 | (A-C) The CTr-joint motor signal of the right front leg (R+) for wave, tetrapod, and caterpillar gaits, respectively. This motor signal provides the efference
copy or the input to the reservoir forward models. (D-F) The actual foot contact signal (force sensor signal under normal walking conditions) used as the target signal
of the reservoir models. (G-1) The predicted foot contact signal or the final learned output of the forward model for each walking gait (RF output signal). The green
shaded region indicates the time interval between swing and stance phase for the CTr motor signal at the three walking gaits. As observed the actual foot contact
signal is considerably lagged in time compared to the motor signal. Effectively, this lag decreases with an increase in the gait frequency. The single RF adaptively
accounts for these different delay times in order to accurately predict the expected foot contact signal. (J) above —CTr-joint motor signal demonstrated for a single
leg, with 2% Gaussian noise injected between 300 and 350 time steps (yellow shaded region), below—Despite the noise corruption of the motor signal, the reservoir
forward model is able to generate the correct predicted FC signal (blue dotted—target FC signal, red solid—predicted signal). (K) above—The CTr-joint motor signal
corrupted with missing information between 280 and 320 time steps. As a result, the motor signal shows a narrow spike between 310 and 330 time steps (yellow
shaded region), below—Reservoir forward model predicted signal (red) as compared to the desired FC signal (dotted blue). Although the CTr motor signal was
transiently missing, the reservoir is able to generate the desired FC signal considerably well, while at the same time maintaining the correct temporal sequence of the
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obstacle) or searching for a foothold during the swing and
stance phases, respectively (see Manoonpong et al., 2013, for
more details of the searching and elevation control). As depicted
in Figures 6A,B, while walking on a rough terrain (in this
case with tetrapod walking gait), the currently recorded sensory

feedback or foot contact sensor reading differs considerably
from the reservoir predicted signal. As a result, there is a high
accumulation of error between each swing or stance phase
(Figure 6C). It should be noted that the initial (~50 time steps)
abruptly high amplitude signal observed in the reservoir forward
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FIGURE 6 | Successfully navigating rough terrain with reservoir forward model. (A) The reservoir forward model predicted, expected foot contact signal. After
a small initial transient the reservoir output quickly converges to the expect signal for normal walking condition. (B) The actual sensory feedback (foot contact signal)
while walking on the rough surface (C) Accumulated error calculated from the instantaneous error (A(t)) after passing through the recurrent neuron in the searching
and elevation control. (D) The searching and elevation action control system consisting of individual recurrent neurons as signal accumulators. After 4000 time steps,
the robot successfully overcomes the rough terrain and continuous walking on a flat surface. As a result, there is zero accumulated error since the predicted foot
contact signal aimost exactly matches the actual signal. See the experiment Supplementary Video 3.

model prediction, is caused due to the transient recovery time  elevation control mechanisms, can continue. In essence based on
needed by reservoir readout neurons to settle to the exact  the reservoir forward models, while traversing from the uneven
learned patterns. This is overcome within the next few time  terrain (Figure 6, inset 1-4) to the flat terrain (Figure 6, inset
steps and RF predicted FC signal continues to occur in a robust ~ 5), the robot can adapt its legs individually to deal with the
manner. The accumulated error causes the corresponding leg  change of terrain. That is, it depressed its leg and extended its
action control mechanism to kick in and the robot successfully tibia to search for a foothold when loosing ground contact during
navigates out of the rough terrain (after ~4000 time steps). Once  the stance phase. Losing ground contact information is detected
the robot moves into the flat terrain, the reservoir predicted by a significant change of the accumulated errors (Figure 6C).
foot contact signal matches almost perfectly with the actual In case of both walking on uneven terrain and climbing, this
sensory feedback. As a result, the accumulated error becomes  accumulated error causes shifting of the CTr- and FTi-joints
zero and normal walking without any additional searching or  causing the respective leg to search for a foothold. However, in the
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specific case of crossing a gap (Figure 7), we use the accumulated
error in order to control tilting of the backbone joint (BJ) and
shifting of the TC- and FTi-joints such that the front legs can be
extended forward continuously till the robot can find a foothold.
In addition to this leg joint control, reactive backbone joint
control using the additional ultrasonic sensors in front of the
robot can also be used to learn to lean up the BJ for climbing
over obstacles (this has been previously successfully applied using
classical conditioning based learning in Goldschmidt et al. (2014)
and as such not discussed here).

We now take the example of the more complex, multiple gap
crossing experiment in order to look in detail at the learning
outcome of the forward models. This experiment was divided
into two components, consisting of one larger gap (15cm length)
and another relatively shorter gap of 11 cm length. The two
gaps were separated by considerable distance where the robot
was allowed to walk on a regular flat terrain. In order to learn
to cross a gap, we let AMOS II walk with a caterpillar gait

(see Figure 4C, right), such that each left and right pair of legs
moves simultaneously. Empirically this is observed to be the most
suited gait for overcoming large gaps, as well as supported by
experimental observations in stick insects (Blaesing and Cruse,
2004). As shown in Figure 7(1), at the beginning AMOS II
walked forward straight toward the initial gap. In this period,
as it walks on the flat surface of the platform, it performed
regular movements similar to the training period under normal
walking conditions (training on a flat regular surface). Eventually,
it encounters a 15 cm wide gap (=44% of body length—the
maximum cross-able distance). In this situation, during the
subsequent stance phase the front legs of the robot loose ground
contact (Figures 7D,E). As a result, the foot contact sensors from
the front legs do not record any value. However, the reservoir
forward model still predicts the expected foot contact signal,
causing a positive instantaneous error (Equation 11). This leads
to a gradual ramping of the accumulated error signal between
each stance phase and swing phase, for the front legs (Figure 7A).
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FIGURE 7 | Real-time data of walking and crossing multiple gaps using the forward model predictions. (A) The accumulated error (black line) and the
maximum accumulated error value at the end of each stance phase (red line) of the right front leg (R1). The accumulated error is reset to zero every swing phase. (B)
The backbone joint (BJ) angle during walking and gap crossing. The BJ stays at the normal position (—2°) during normal walking. On encountering a gap (15cm), it
leans upwards in a step like fashion and then finally bent downwards in order to cross the gap. This procedure is repeated for the second gap (11cm), however with
different degree of elevations. (C-E) The TC-, CTr-, and FTi-joint angles of right front leg R4 during normal walking and gap crossing. The joint adaptation was
controlled by the maximum accumulated error value of the previous step (red line). Below pictures show snap shots of the locomotion of AMOS Il during the
experiment. Note that one time step is ~0.037 s. For further details interested readers are recommended to see the experiment Supplementary Videos 1, 2.
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Please note that here the slope of the accumulated error signal was ~ smaller, the elevation in the BJ occurs with an initial increment
empirically adjusted. Too small or too large values for the slope  of smaller amplitude [Figure 7(2)] as compared to the previous
of the ramp may cause inadequate or large extensions of the leg. case. Thereafter, a similar process is followed and AMOSII can
In order to activate the BJ and adapt the leg movements due  once again successfully overcome this gap and continue walking
to the difference between the reservoir predicted FC signal and ~ on the other end of the platform [Figure 7(9)]. This clearly
the actual sensory feedback of the FC sensors (error signals), we  demonstrates the adaptive yet robust performance of the forward
used the maximum accumulated error value of the previous step  model based predictions in order to successively cross gaps of
(Figure 7A, red line) and control the B] and leg movementsin the  different length.
subsequent step. In this manner, the BJ started to lean upwards Figure 8 shows that the reservoir forward model in
incrementally (step like manner) at around 680-850 time steps ~ combination with the neural locomotion control mechanisms,
[Figure 7(2)]. Simultaneously, the TC- and FTi-joint movements  not only successfully generates gap crossing behavior of AMOS
of the left and right front legs were also adapted accordingly  II and learns to walk on uneven terrain, but also allows it to
in order to carry out elevation action (this is reflected in the  climb over single and multiple obstacles (e.g., up a fleet of stairs).
higher amplitude of these two signals in this time period). Due  In all these cases, we directly used the accumulated errors for
to a predefined time-out period for tilting upwards, at around  movement adaptation via the searching and elevation control
850 time steps [Figure 7(3)], the backbone joint automatically = mechanisms. For climbing, the reactive backbone joint control
moved downwards recording a negative value. Consequently,  was also applied to the system (see Goldschmidt et al., 2014,
the front legs touch the ground of the second platform at the  for more details) and a slow wave gait walking pattern (see
middle of the stance phase; thereby, causing the accumulated  Figure 4A, right) was used.
error signals to decrease. Due to another time-out period for Experimentally the wave gait was found to be the most
tilting downwards at around 900 time steps [Figure 7(4)], the B]  effective for climbing, which allows AMOSII to overcome the
automatically moved to the normal position (—2°). Since now the ~ highest climbable obstacle (i.e., 15 cm height which equals ~86%
situation is similar to walking on flat terrain, the RF predicted  of its leg length) and to surmount a fleet of stairs. For
foot contact signal matches the one recorded by the foot sensors, ~ walking on uneven terrain, a tetrapod gait (see Figure 4B,
with accumulated error dropping to zero. Thereafter, the TC-and  right) was used without the backbone joint control. This is
FTi-joints perform regular movements. Subsequently left and  the most effective gait for walking on uneven terrain (see also
right hind legs loose the ground contact, and AMOSII continues =~ Manoonpong et al., 2013). Recall that in all experiments the
to walk forward. Here the movements of the TC- and FTi-joints =~ forward models basically generate the expected foot contact
were slightly adapted allowing AMOS II to successfully cross the  signals (i.e., sensory prediction), which are compared to the
gap and continue walking on the second platform [Figure 7(5)].  actual incoming ones. Errors between the expected and actual
As the terrain now resembles a regular flat surface (similar to  signals during locomotion serve as state estimation and are
the original training terrain) AMOSII two continues to walk  used to adapt the joint movements accordingly. It is important
forward in normal manner with no accumulated errors being  to note that, the best gait for each specific scenario was
present. However, the same procedure is repeated once again,  experimentally determined and fixed. However, this could be
when AMOSII re-encounters the second gap at around 2100  easily extended with learning mechanisms (see Steingrube et al,,
time steps. However, in this case, since the gap length is much ~ 2010) to switch to the desired gait when the respective behavioral

Climbing over a large obstacle (15 cm height )

Range sensors

FIGURE 8 | Snapshots showing the learned behavior during climbing over a high obstacle and climbing up a fleet of stairs. (A) AMOSII walked with the
wave gait and approached a 15 cm high obstacle (1). It detected the obstacle using its range sensors installed at its front part. The low-pass filtered range sensory
signals control the BJ to tilt upwards (2) and then back to its normal position (3). Due to the missing foot contact of the front legs, the BJ moved downwards to ensure
stability (4). During climbing, middle and hind legs lowered downwards due to the occurrence of the accumulated errors, showing leg extension, to support the body.
Finally, it successfully surmounted the high obstacle (5). For further details see the Supplementary Video 4 (B) AMOSII climbed up a fleet of stairs (1-5) using the wave
gait as well as the reactive BJ control. The climbing behavior is also similar to the one described in the case (A). For further details see Supplementary Video 5.
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FIGURE 9 | Real-time data for adaptive locomotion to overcome leg damage. (A) The FT-i joint angles of the right middle leg Ro. (B) The CT-i joint angles of the
right middle leg R». (C) The TC-i joint angles of the right middle leg. (D) Accumulated error signal at the end of each stand phase. It is reset to zero at every swing
phase. Below pictures show the locomotion of AMOSII during the experiment (temporal spacing of the panels are not exact). Please see the Supplementary Video 6

scenarios are encountered, without any additional influence on
the performance of the reservoir forward models.

Adaptations in both biological and robotic systems, not
only requires the ability to deal with different environmental
conditions for complex locomotion (as demonstrated with the
gap crossing, climbing and uneven terrain navigation examples)
but can also require the ability to adapt to sudden or abrupt
changes in body properties, like growth or lesions (e.g., damage
to robot joint motors or connections being disengaged) (Cully
et al., 2015). Therefore, here, we demonstrate that the distributed
reservoir-based forward models allows the robot to adapt the
movements of a damaged leg and its walking gait, in order to deal
with sudden leg damage situations. In this scenario, post learning
of the forward models under the three different walking gaits, we
initially let the robot walk with a tetrapod gait (Figure 4B, right).
After 1000 steps (*37 s) we constrained (deactivated) the FT-i
joint (outermost) of the right middle leg such that the leg remains
suspended in air and cannot achieve ground contact in this
configuration. Thus, simulating leg damage scenario. AMOSII
was then allowed to continue walking on the flat terrain under
this damaged condition.

As observed in Figure 9, initially AMOSII walks under normal
conditions (photo panel 1) with the right middle leg FT-i joint

functioning normally. The FT-i joint was then constrained to 0°
maximum and minimum angle of clearance (Figure 9A) thereby
causing the right middle leg to be suspended in the air (photo
panel 2). As a result the reservoir forward model prediction
mismatches the current footcontact signal on the damaged leg,
causing the accumulated error to gradually ramp up (Figure 9D).
After a short transient period of AMOSII trying to walk in
this configuration (dark green section in Figure 9), this results
in adaptations in the FT-i and CT-i joints (yellow highlighted
section in Figures 9A,B) thereby, allowing the robot to extend
the damaged leg further down and support the locomotion
(photo panels 3, 4, and 5). As a result, AMOSII was able
to successfully keep walking straight with a slightly modified
tetrapod gait despite the damaged right middle leg. Finally,
after 2000 time steps (*74 s), the FT-i joint was once again
allowed to function normally, causing the accumulated error
to become zero (the forward model prediction matches the
actual footcontact signal). The robot then continues to walk as
in the undamaged condition with a tetrapod gait. For further
details, we encourage the readers to see the Supplementary
Video 6 of the entire experiment. These results, thus clearly
demonstrate that the distributed reservoir forward models not
only allow complex locomotive behaviors, but also enable the
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FIGURE 10 | Average time to successfully overcome uneven terrains of
different elasticity (hard, moderate, highly elastic). (A) Average success
time for reservoir-based forward model. (B) Average success time for adaptive
neuron forward model from Manoonpong et al. (2013). Here the whiskers
indicate one standard deviation above and below the mean value. Note the
difference in scale of the y-axis in both plots. The experimental surface here
consisted of the rough terrain as presented in Figure 6 consisting of irregular
undulations, however with varying degree of elasticity for the three cases.

robot to deal with unwanted changes in body properties in a
robust manner.

In order to evaluate the performance of our adaptive
reservoir forward model in comparison to the state of the
art model recently presented in Manoonpong et al. (2013)
(single recurrent neural with low-pass filter), we carried out
simulation experiments with AMOSII walking on different types
of surfaces. Specifically, after training on a flat surface (under
normal conditions) we carried out 10 trials each with the robot
walking on uneven terrains (laid with multiple obstacles of height
8 cm), having three different elastic properties*. The surfaces
were divided into hard (1.0), moderately elastic (5.0) and highly
elastic (10.0). A tetrapod walking gait was used in all three cases.
Starting from a fixed position, we noted the total time taken
by the robot to successfully cross the uneven terrain region and
move into a flat surface region. As observed in Figures 10A,B, the
reservoir forward model enables the robot to traverse the uneven
region considerably faster as compared to the adaptive neuron
forward model, in all three scenarios. Both the models can be
seen to overcome the hard surface much better as compared to
the elastic ones. This was expected due to the changes in surface
stiffness resulting in additional forces on the robot legs. However,
the reservoir model performance was considerably more robust
with a mean difference in success time of 1.86 min for the hardest
surface and approximately 2 min for the most elastic surface,
cases. Given that the walking gait was fixed, here the success time
can be thought as an indicator of the robot’s energy efficiency. In
the absence of additional body mechanisms to deal with changing
surface stiffness, the reservoir based model outperforms the
previous implementations of adaptive forward models by ~25%
on average. In the climbing and gap crossing scenarios, the
performance of the two forward models are comparable (not
shown here explicitly) unless there are significant changes in
the ground reaction forces (e.g., climbing or crossing gaps on

“4Here the elasticity coefficients do not strictly represent Young’s modulus values.
These were local parameter setting defined in the simulation, with increasing
values causing greater elasticity.

different types of terrain). As such the reservoir forward model
offers a more generalized architecture for adaptive locomotion.
Furthermore, as demonstrated previously, this model is also
capable of robustly coping with missing motor information
and a high degree of sensory noise; making use of the SARN
internal memory and multiple timescales (Dasgupta, 2015). This
was very difficult to achieve with the previous simple single
recurrent neuron forward models. Moreover, the previous study
also required that a separate forward model be learned for every
different walking gait. Thus, creating a scalability issue for real
robot implementations. Here, however, a single SARN can be
trained online to predict the foot contact signals for multiple
different walking gaits (here we show three gaits, but it can
be easily extended to many more patterns—see Supplementary
Figure 2, for tripod gait example).

5. Discussion

In this study, we presented adaptive forward models using
the self-adaptive reservoir network for locomotion control. The
model is implemented on each leg of a simulated bio-inspired
hexapod robot. It is trained online during walking on a flat
terrain in order to transform an efference copy (motor signal)
into an expected foot contact signal (i.e., sensory prediction).
Afterwards, the learned model of each leg is used to estimate
walking states by comparing the expected foot contact signal with
the actual incoming one. The difference between the expected
and actual foot contact signals is used to adapt the robot’s leg
through elevation and searching control. Each leg is adapted
independently. This enables the robot to successfully walk on
uneven terrains. Moreover, using a backbone joint, the robot can
also successfully cross a large gap and climb over a high obstacle
as well as up a fleet of stairs. In this approach, basic walking
patterns are generated by CPG-based control along with local leg
control mechanisms that make use of the reservoir prediction
to adapt the robot’s behavior. The key neural mechanisms
presented in this work, namely, CPG -based neural control,
internal forward models and local leg control, are essential for
robust, adaptive locomotion control. However, only individual
instances of them has been successfully realized on artificial
and bio-mimetic robotic systems (Blasing, 2004; Pfeifer et al.,
2007; Lewinger and Quinn, 2011; Ren et al., 2012; Schilling
et al., 2012; Christensen et al., 2014; Cully et al., 2015); thereby
achieving partial solutions. Furthermore, although a few studies
have focused on a combination of these neural mechanisms, they
have largely been tailored for adaptive locomotion in quadruped
robots (Lewis and Bekey, 2002; Silva et al., 2012), without the
ability to climb obstacles or cross large gaps, as observed in
real animals and insects. Thus, this work demonstrates how
the combination of these essential components, coupled with
the power of the adaptive recurrent neural forward models can
achieve very rich behavioral repertoire in bio-inspired hexapod
robots. Thus, supporting the idea that such embodied neural
control (Floreano et al., 2014) is indeed a potential powerful
future alternative of more conventional control methods.

It is important to note that the usage of reservoir networks,
as forward models here, provides the crucial benefit of an
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inherent representation of time and fading memory (due to
the internal feedback loops and input dependent adaptations).
Such memory of the time-varying motor or sensory stimuli
is required to overcome intrinsic time lags between expected
sensory signals and motor outputs (Wolpert et al., 1998), as
well as in behavioral scenarios with considerable dependence on
the history of motor output (Lonini et al., 2009). This is very
difficult in most of the previous implementations of forward
internal models using either simple single recurrent neuron
implementations (Manoonpong et al., 2013), feed-forward multi-
layered neural networks (Schroder-Schetelig et al., 2010), or
Bayesian network models (Dearden and Demiris, 2005; Sturm
et al,, 2008). Furthermore, in this case, online adaptation of only
the reservoir-to-readout weights (readout) makes such networks
beneficial for simple and online learning. The pre-training phase
of the current setup was carried out only to gather sufficient
statistics of the CTr-motor signals and foot-contact signals while
walking under the different gaits, in order to learn the optimal
reservoir neuron non-linearity and time constant parameters
(Dasgupta et al., 2013). Subsequent to this, reservoir-to-readout
weight learning occurs continuously without the need of any
offline batch mode phase. Moreover, only a single learning
trial under normal walking conditions was enough to learn the
forward model for leg adaptations under different environmental
situations. As a result making the reservoir based forward models
very suitable for fast learning under real robot implementations.

The concept of forward models with efference copies in
conjunction with neural control has been suggested since the
mid-twentieth century (Holst and Mittelstaedt, 1950; Held, 1961)
and increasingly employed for biological investigations (Webb,
2004). This is because it can explain mechanisms which biological
systems use to predict the consequence of their action based on
sensory information, resulting in adaptive and robust behaviors
in a closed-loop scenario. This concept also forms a major
motivation for robots inspired by biological systems. Within this
context, the work presented here, verifies that a combination of
CPG-based neural control, adaptive reservoir forward models
with efference copies, and searching and elevation control can be
used for robustly generating complex locomotion and adaptive
behaviors in an artificial walking system. Additionally, although
in this study we specifically focused on locomotive behaviors for
walking robots, (such) SARN based motor prediction systems
can be easily generalized to a number of other applications.
Specifically for neuro-prosthetics (Ganguly and Carmena, 2009),
sensor-driven orthotic control (Lee and Lee, 2005; Braun et al.,
2014) or brain-machine interface devices (Golub et al., 2012), that
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