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We demonstrate a hybrid neuromorphic learning paradigm that learns complex senso-
rimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot
is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is
provided via a spike-based silicon retina camera (eDVS), and all control is implemented
via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control
system, the robot is capable of simple obstacle avoidance and random exploration. To
train the robot to perform more complex tasks, we observe the robot and find instances
where the robot accidentally performs the desired action. Data recorded from the robot
during these times is then used to update the neural control system, increasing the
likelihood of the robot performing that task in the future, given a similar sensor state.
As an example application of this general-purpose method of training, we demonstrate
the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is
present at an intersection, and otherwise turning left. In general, this system can learn
arbitrary relations between sensory input and motor behavior.

Keywords: adaptive systems, mobile robotics, neurocontrollers, neuromorphics, robot control

1. INTRODUCTION

A long-standing dream for robotics is to provide the same sort of intelligent, adaptive, and flexible
behavior that is seen in living biological systems. Furthermore, by creating systems that emulate
biological adaptivity, we can investigate intelligence in a very broad sense, including capabilities that
are not yet seen in current machine learning methods (McFarland and Bösser, 1993). However, it is
still an open research question as to how to use biological inspiration to construct improvedmethods
of robotic control. There are few examples of neural networks being used for control (Janglová,
2005) in a robotic domain (Conradt et al., 2000). Typically, the hardware used is standard general-
purpose computing, and the algorithms are machine-learning based. This means that, while they
may take some high-level inspiration from biology, the algorithms themselves do not directly map
to biological details.

Over the last few years, a bridge has been forming between neuroscience and robotics (Krichmar
and Wagatsuma, 2011). Ongoing developments in neuromorphic hardware design now provide
novel computing resources that aremore suitable to directly implementing the types of computations
found in biological systems, thus facilitating the use of observations and data provided by the
neuroscience community. Practically speaking, we can now implement large numbers of neurons on
a very small power budget, making neural control a promising energy-efficient direction for mobile
robot applications. For example, IBM’s TrueNorth chip implements neural network algorithms at
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one 10,000th of the energy cost of traditional computers (Merolla
et al., 2014). Ideally, this sort of hardware could be used to provide
flexible adaptive control of systems while staying within a limited
power budget.

To exploit this hardware, we propose a hybrid method com-
bining a small set of simple explicit programed behaviors with
a training phase for shaping robot behavior as desired. That is,
we start with low-level hand-designed reflexive actions, such as
backing up when a collision sensor is triggered. While these can
be defined using any standard robot control methodology, here,
we implement these simple rule-based behaviors using neuromor-
phic hardware. Of course, these basic behaviors are extremely lim-
ited, and it is difficult to hand-designmore complex actions, espe-
cially if those actions depend on complex environment-dependent
stimuli. In the final example demonstrated in this paper, we want
the robot to turn left or right depending on whether or not it
is currently facing a mirror. Rather than attempting to hand-
design a complex reasoning algorithm about detectingmirrors, we
instead only hand-design the simple reflexive behavior of collision
avoidance. The goal of this research is to then use a separate
training phase where the robot can learn this more complex task.
Rather than programing this task, the idea is to simply manually
identify situations where the robot does what we wanted it to do
by accident and use those situations as the basis for training.

Our study looks to demonstrate this flexible control system
using neuromorphic hardware and neural-based adaptive con-
trol. The approach combines the SpiNNaker computing platform
(Furber and Temple, 2007; Furber et al., 2014), the Neural Engi-
neering Framework (NEF) (Eliasmith and Anderson, 2004) and a
series of robots developed at the TechnischeUniversitätMünchen.
We have previously compared SpiNNaker’s performance when
implementing the class of neural networks used by theNEF, show-
ing that it is capable of implementing them ten to twenty times
more efficiently than modern CPUs and GPUs (Stewart et al.,
2015), even though it was manufactured with what is now a rather
old process (130 nm as compared to modern 22 nm or smaller).

The goal of this work is to explore algorithms that can be
usefully implemented given hardware that efficiently implements
neural networks of this form. In particular, we note that living
creatures have both genetic, low-level hard-wired reflexes, and
they are also capable of developing novel associations between
stimuli and responses that are entirely context dependent. Behav-
ioral studies indicate that they can learn to perform certain actions
at certain times, through experience, overriding, and building
upon these low-level reflexes (Kim et al., 2007).

However, for applied robotics applications, we do not want an
approach where learning is entirely autonomous and undirected
[as in, e.g., the neural learning seen in Distributed Adaptive Con-
trol (Verschure, 2012)]. Instead, our approach is to inform neu-
ral learning by providing explicit indications as to the instances
where correct behavior was achieved. The approach described
here is somewhat akin to reinforcement learning, but relies only
on positive examples, and can be explicitly shaped as desired. This
guides the learning and provides explicit control over the eventual
behavior.

While the learning system presented here is related to rein-
forcement learning (Sutton and Barto, 1998), there are important

differences. First, the system only requires positive reinforcement
(rather than both positive and negative). This both simplifies
the model and is reflective of the fact that positive and negative
reinforcement are generally considered to be separate systems in
living creatures (Boureau and Dayan, 2010). Second, all training
is done offline (rather than gradual learning while the robot
behavior occurs). Third, the neural connection weights are found
by optimization, rather than through a gradient descent learn-
ing algorithm. This reduces the catastrophic forgetting problem
commonly seen in online learning algorithms.

Our main contribution is a novel method of configuring
neural-network-based hardware to perform tasks. This method is
a hybrid between explicit programing and autonomous learning,
allowing for reliable behavior without the difficulties involved in
developing explicit control programs.

2. INFRASTRUCTURE

2.1. Embedded Dynamic Vision Sensor:
eDVS
The sensor system used here is the eDVS embedded dynamic
vision sensor (Conradt et al., 2009), a silicon retina developed by
iniLabs in collaboration with the Institute of Neuroinformatics at
the University of Zurich and the ETH Zurich. This neuromorphic
sensor is a 128× 128-pixel camera. Instead of reporting frame-
based data, it emits individual events when the relative brightness
for any individual pixel increases or decreases. The eDVS provides
high temporal resolution (~1µs), low latency (~15µs), and high
dynamic range (~120 dB). The eDVS used here is an embedded
versionwith an onboardmicrocontroller (NXPLPC4337), inertial
measurement unit, multiple PWM control signals, and general-
purpose I/O lines. The silicon retina is well suited for integration
with other neuromorphic hardware since it produces output in the
formof spikes, which is the natural communication framework for
spike-based neural processors. Furthermore, certain image pro-
cessing algorithms can be implemented efficiently. For example,
previouswork (Müller andConradt, 2011) has implemented high-
speed tracking of flashing LEDs, and we use that algorithm here
as sensory pre-processing.

2.2. Small Mobile Robot: PushBot
At the Technische Universität München, the Neuroscientific Sys-
tem Theory group has developed a small tread-based robot built
around the eDVS sensor, as shown in Figure 1. The robot provides
twomotors, a frequency-controllable laser pointer, two LEDs, and
housing for power (four AA batteries). The setup comes with a
proprietary WLAN module, enabling streaming of sensor data
and motor command to and from the robot over standard WiFi
to a SpiNNaker hardware interface board (Denk et al., 2013).

2.3. Neuromorphic Computing System:
SpiNNaker
The SpiNNaker multicore processor is developed by the Univer-
sity of Manchester and consists of 18 200MHz ARM968 cores
on a single die (Furber and Temple, 2007; Furber et al., 2014).
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FIGURE 1 | The PushBot robot with LEDs on the front and back (1), a
control board (2) with an eDVS silicon retina (3) and NXP LPC4337
microcontroller (4), and a laser pointer (5). The robot communicates
through a wireless module on the back (not visible). The top-left insert shows
the laser pointer in red.

The processors and inter-chip communication infrastructure are
optimized for massively parallel operations, with a target of a one-
million-core machine. Its low power consumption means that a
48-chip SpiNNaker boardwith a total of 864 processors uses under
40W of power. This system can be programed directly in C or
using the standard neural modeling API PyNN. However, for this
work, we made use of the Nengo open-source neural compiler
(Bekolay et al., 2014) (described below), and the custom Nengo
backend that compiles high-level neural models into optimized
SpiNNaker code (Mundy et al., 2015).

For energy-efficient implementation given the hardware, the
neuron model employed here is the standard leaky integrate and
fire (LIF) model, where the weighted (ω) sum of input current I
causes the voltage V to build up until some threshold is reached,
at which time the neuron emits a discrete spike:

τm
dV
dt = −V+

∑
ωI (1)

The neural membrane time constant (controlling how quickly
current leaks out of the neuron) τm was fixed at 20ms. When a
spike occurs, this causes post-synaptic current to flow into the
neurons to which it is connected, with each connection having its
own weight ω and with the post-synaptic current h(t) exponen-
tially decaying over time with a time constant τ s (fixed at 30ms),
as shown in Figure 2:

h(t) = e−t/τs (2)

2.4. Nengo and the Neural Engineering
Framework
The Neural Engineering Framework (NEF) is a general-purpose
neural compiler that allows the user to define a high-level
algorithm that is then compiled down to a neural approxima-
tion of that algorithm (Eliasmith and Anderson, 2004). This

FIGURE 2 | Voltage V, spiking activity and output of a single LIF
neuron, given a constant input I. SpiNNaker uses a simulation time step of
dt= 0.001.

FIGURE 3 | A network implementing basic reactive control. Square
boxes are the values being represented by the neurons (circles). Random
connectivity ensures the neurons form a distributed representation of the
vector values that are their input. The optimized output connections are solved
for using least-squares minimization to approximate the functions listed in the
text. Learned connections are added afterward, as discussed in section 3.2.

approach was originally meant for constructing complex biologi-
cally realistic neural models. Demonstrations of the use of Nengo
for perception, cognition, and action encoding can be seen in
Spaun, the first large-scale (2.5 million neuron) functional brain
model capable of performing multiple tasks (Eliasmith et al.,
2012).

The basic concept of modeling using the NEF is the same as
most neural network approaches: groups of neurons form dis-
tributed representations of their input, and the weighted sum of
the output from neurons is used to approximate complex func-
tions. For example, in Figure 3, the six square sensor boxes are the
six values returned via the sensory preprocessing on the PushBot
robot, indicating the position (x, y) and certainty (c) information
of two flashing lights (the laser pointer dot and the LED on the top
of the robot). This information is encoded into the sensory neu-
rons using random connections, which ensures a diverse and rich
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“hidden layer” representation in the sensory neurons, allowing a
wide range of output functions to be represented.1

Therefore different patterns of activity within that group of
neurons correspond to different vector values being represented.
This vector is (normally) of much smaller dimensionality than
the number of neurons in the group, so the neural firing forms
a redundant code for that vector. Each neuron in the group
responds differently to the same input, due to the random input
connectivity. Therefore, the redundant code can be thought of
as a random projection from a low-dimensional space (the vec-
tor being represented) to a high-dimensional space (the neural
activity).

Connections out of a group of neurons implement functions on
those represented vectors. That is, given some arbitrary function
of the input vector, we can find output connections from the
neurons that will approximate that desired function. Importantly,
due to the redundant code, these functions do not have to be
linear functions; rather, any function can be specified, and the
system will find the optimal connections between neurons to
approximate that function. The Neural Engineering Framework
treats this as a least-squares minimization problem and finds
the feed-forward linear synaptic connection weights between the
individual neurons that will most closely approximate the desired
non-linear function. Furthermore, the NEF also indicates how
recurrent connections can be found that will approximate any
desired differential equation. For both feed-forward and recur-
rent connections, the accuracy of the approximation will be
dependent on the number of neurons and the function being
approximated.

As an example, consider a group of neurons storing three
values: the x, y position of an object and a certainty measure c
that the object is at that location. This example comes from the
output of the tracking algorithm for flashing LEDs (Müller and
Conradt, 2011). In the NEF, we might use 100 neurons to form
a distributed representation of these three values (using more
neurons would improve the accuracy of the representation). Each
neuron would be given a random combination of inputs from
the three dimensions, resulting in a different pattern of firing for
different vectors (x, y, c).

Given this activity, we can then define connections to other
groups of neurons that compute functions of these values. For
example, if we want a group of neurons R to store the distance
from the center of the visual field to the location of the LED, we
could optimize the connections so as to approximate:

R←
√

x2LED + y2LED (3)

This would find synaptic connection weights between the
group of neurons representing the LED data and the group of
neurons representing the radius R such that R is driven to fire with
whatever pattern represents the correct radius, given the current
activity of the LED population.

All of the neural systems described below are defined in this
manner, using the software package Nengo (Bekolay et al., 2014)
developed specifically for suchneural network construction, along

1One can use a learning rule such as backpropagation of error to optimize these
weights, but we generally find this to be unnecessary

with its interface for efficiently simulating such networks on
SpiNNaker (Mundy et al., 2015).

3. METHOD

Themethodology used here is to start by building a neural system
that implements a base set of automatic “reflex-like” behaviors for
the robot. This is meant to correspond to the hardwired automatic
responses found in living creatures. In addition to this, we will
then add a learned system where the robot must map its sensory
state to the particular desired actions for this condition. This
corresponds to learned associative responses in animals.

3.1. Initial Reflexive Control
The first stage of this study requires a definition of the base set
of simple behaviors and their triggering conditions, for a small
mobile robot. These behaviors should be as simple as possible,
since they must be hand designed, but should provide a fairly
rich repertoire of resulting actions. These can be thought of as
the basic, instinctive reflexes seen in living creatures. In general,
the first step in using this methodology is to define a collection of
these reflexes.

The first reflexive behavior is simply to go forward if there is no
obstruction. To define this, we specify a function that uses sensor
data to compute the current strength S of an action (i.e., 0–1). In
this case, the visual position of the dot caused by the laser pointer
mounted on the robot can be used as a simple range detector: if it
is lower than some threshold, the robot is near a wall and should
not go forward. If it is higher than that threshold, it is safe to go
forward:

S[0]←
{
1 if yLASER > −0.6
0 otherwise

(4)

Importantly, the precise threshold of −0.6 is not vital for this
model. If the value is slightly higher, then the robot will stop mov-
ing forward slightly earlier, but it will still perform qualitatively
the same action.

To complete this basic behavior, we define the motor outputM
as a function of S. In this case, we want to drive both wheel motors
forward when the action has a high strength.

M← [1, 1] · S[0] (5)

This first reflexive action is depicted in Figure 3 as the left-most
square (S [0]) and the connections into and out of that square. This
action strength will be a scalar value. The connections into that
square are optimized using the NEF to best approximate equation
(4), given the neural representation of the sensory neurons. To
connect this result to the motors (M[0] and M[1]), it would
be possible to directly connect S[0] to M[0] and M[1] with a
connection strength of 1. However, this would limit us to only
being able to perform linear functions. In general, we may want
some more complex function to perform the effect of an action,
so we perform another random mapping to the action neurons
and do another NEF optimization to produce the connections to
the motors.
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The next basic reflexive action is to back up when we are too
close to an obstacle. This is again detected by using the visual
location of the dot shown by the laser pointer. If this is very low in
the visual field, or if it is not visible at all (i.e., the dot is below the
field of view of the camera) then the robot should back up. This
gives the following rule:

S[1]←
{
1 if yLASER < −0.8 or cLASER < 0
0 otherwise

M← [−1,−1] · S[1]

(6)

The final basic actions are: turn left or right when close to an
obstacle.

S[2]←
{
1 if yLASER < −0.8
0 otherwise

M← [−1, 1] · S[2]

S[3]←
{
1 if yLASER < −0.8
0 otherwise

M← [1,−1] · S[3]

(7)

However, these last two actions should not both be performed
at the same time, since this would cause the robot to stay in place,
rather than turning one direction or the other. To specify this, we
can define connections that relate the strengths of different actions
to each other.

S[2]← −S[3]
S[3]← −S[2]

(8)

This means that whenever S[2] is positive, it will force S[3]
toward 0, and similarly S[3] will drive S[2] toward 0. This imple-
ments a classic neural competition, meaning that only one of the
two actions will have a large value at a particular time.

Now that these reflex actions have been defined in these simple
terms, we use Nengo to build neural networks that approximate
each of these rules. Groups of neurons are defined to store the sen-
sory state, the motor output, and the strengths of each action. The
connections between the groups of neurons are set to approximate
each of the above functions, resulting in the neural system shown
in Figure 3.

To understand the resulting basic reflexive behavior, two
important aspects of NEF must be considered. First, due to the
neural representation scheme, when there are multiple inputs to
a neural population, the value represented will be the sum of the
input values. In other words, the motor output will be the sum of
all the connections: S[0], S[1], S[2], and S[3] to M. Second, the
NEF approximations of the desired functions will be smooth. That
is, instead of implementing the exact functions specified above,
the actual behavior will be much more gradual.

For example, the input function to the S[0] population is sup-
posed to be 1 if yLASER is greater than−0.6, and otherwise it should
be 0. Instead of implementing this exact function, the neurons
will instead implement a smoothed approximation of this step
function, as shown in Figure 4.

FIGURE 4 | Neural approximation with the NEF. When connections
between neural groups are optimized to approximate a function, the result is a
smooth version of that function. As the number of neurons is increased, this
neural approximation will approach the ideal function.

The result is a small spiking neural network control system that
performs very simple obstacle avoidance. Due to the smoothing
inherent in the NEF neural approximation of the above functions,
the robot gradually transitions between behaviors. This means
that it automatically slows when approaching a wall, even though
we have not explicitly built reflexes to do so.

When it reaches a wall, it turns in a random direction. This
randomness is due to sensory noise as there is no stochasticity in
the neuralmodel itself. Once it has chosen a particular direction to
turn, i.e., once either S[2] or S[3] has a high value, it will continue
to turn in that direction until there is no longer an obstacle in front
of it. All actions transpire without human interference. The only
hardcoded input are the initial thresholds that provide informa-
tion as to whether an action is, in fact, correct given the current
sensory state. These actions demonstrate obstacle avoidance and
simple decisionmaking, inmuch the sameway as animal behavior
studies (Kim et al., 2007).

The core idea is that this set of behaviors is a bare minimum,
sufficient to allow the robot to move throughout its environment
without human intervention. As with animal behavior, this allows
the robot to have a basic set of automatic decision-making rules
that apply in novel situations where there is not yet any learned
response. Using these reflexive rules, the robot makes “accidental”
decisions (turning left in some situations and turning right in
others, for example), which we will then use to further train the
robot’s behavior, as discussed in section 3.2.

3.2. Serendipitous Offline Learning
While the above approach is sufficient for implementing sim-
ple behaviors, it requires the developer to define explicit rules
mapping sensory states to actions. In this section, we build upon
these rules in a less explicit manner, allowing us to create more
complex behavior without hard-coding any additional rules. In
complex situations, it may not be feasible for action rules, such
as the ones defined above, to be hard coded. Instead, we can
also define implicit action rules. The basic idea is to allow the
robot to explore its environment, but whenever it happens to
accidentally do whatever action we want it to do, we record
the sensory and motor values and use those values to define a
new rule.
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For example, consider the simple case where we want the robot
to always turn left at the intersection, rather than randomly turn-
ing either left or right. Recording the sensory data and the strength
of each action S while the robot is performing its initial basic
behavior, we find instances where the robot performs the desired
action (turning left). We call these the positive examples. In this
case, we consider the individual runs where the robot’s rotation
happened to remain positive. The data from runs where it turned
right are removed. The data from these positive examples can
be thought of as long sequences of state-action pairs, indicating
what action to perform in what state. Given this, we add new con-
nections from sensors to the action strength populations. Instead
of explicitly indicating what functions to approximate on these
connections, we instead use the data gathered from the robot itself
to be the target function that the neurons must approximate. This
adjusts the neural control system, biasing the robot to performing
similar actions in similar sensory states.

In order for this to work, there must be some underlying
signal in the sensory data that indicates whether or not the action
is appropriate. The goal of this learning system is to identify
and make use of that signal without requiring explicit program-
ing. To understand what sort of signals this learning mecha-
nism is capable of uncovering, we can evaluate it in an idealized
scenario.

For example, in Figure 5 we consider sensory data that is a
ramp from −1 to 1 over time, and a desired action that peaks at a
particular point on that ramp.When trained from this one positive
example, the model is able to successfully trigger that output

given the sensory data. We measure the accuracy of this output
by computing the similarity between the positive example that it
was trained on and the actual neural output, using the normalized
dot product. For this simple situation, the model gives a similarity
of 0.99. However, the real test is how well such a system will
generalize to new conditions, and where there is a more complex
relationship between the sensor data and the conditions where the
action should be triggered.

For a more complex situation (but still simpler than the actual
robot case), consider a scenario where the input stimulus reflects
many different things going on in the environment, but only
one of those things is of importance when deciding to perform
a particular action. If all of these aspects of the environment
add together to create the sensory stimulus, we can model all
of the other stimuli to be ignored as a randomly varying sig-
nal, plus an additive term that occurs when the action should
be performed. That is, the sensory stimulus is r(t)+α s(t),
where r(t) is a random N-dimensional band-limited gaussian
white noise, α is the randomly chosen N-dimensional sensory
signal that indicates the situation where the action should be
performed, and s(t) is a scalar that changes over time, adjusting
how strong the indication is for this action at different points
in time. This situation is shown in Figure 6, and it is clear the
learning model performs worse in this condition than in the
simpler condition given in Figure 5. In order to understand
how our learning model may perform on the physical robot,
we can first analyze its behavior in this complex, but abstract
scenario.

FIGURE 5 | The learning algorithm applied to a simple synthetic data set. Sensor data is a ramp (top), and a single positive example is given where the action
is performed in the middle of the ramp (bottom “ideal” line). Resulting performance after one training example is 0.997, measured as the normalized dot product
between the ideal and the trained result.
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FIGURE 6 | The learning algorithm applied to a more complex data set. Sensor data (top) is six-dimensional random gaussian white noise with an added
random signal when the action should be performed (see text for details). After a single training example, the result is somewhat correct, but it also performs the
action many times when it should not (middle). After 50 training examples, the network is more reliable at performing the action only when it should.

4. RESULTS

4.1. Simulated Scenario
Two major parameters which affect the performance of this
serendipitous learning algorithm are the strength of the under-
lying signal and the number of positive examples. The strength
of the signal influences how reliable the sensor data is. For a
strong signal, the sensor data is a good predictor of whether or
not performing the action is the correct thing to do, whereas
with a weak signal it is less clear whether the action is correct.
As discussed above, we simulate this by generating an artificial
sensory stimulus as r(t)+α s(t), where |α| is the signal strength.
The larger |α| is the easier it is to predict s(t) given the sensory
stimulus. However, to do this prediction, the learning system also
needs to learn to separateα from the background r(t) sensory data
that it should ignore. This capability should improve with more
positive examples.

These parameters are investigated in Figure 7. In each case, r(t)
and α are randomly chosen, and s(t) is fixed at the pattern shown

in Figures 5 and 6. To be consistent with the robot examples
below, all values are six dimensional. The training examples had
randomly generated r(t), but with the same α.

Performance was evaluated by computing the similarity
between the output result of the neural network with the ideal
output s(t). For this, we used the normalized dot product. The
result shows that, for cases where there is a clear relationship
between sensor data and the action (i.e., for strong signals), this
learning system quickly learns to perform the task well, given
very few examples (and having more positive examples provides
diminishing returns). Error bars are the 95% bootstrap confidence
intervals after 150 trials.

The performance given a weak signal is somewhat counter-
intuitive. Importantly, note that the system improves its perfor-
mance with more examples even if |α| is zero! That is, even when
the sensory stimulus contains no information at all as to whether
the action is appropriate, having more examples still improves
the model’s performance. This is because the learning system
will attempt to predict s(t) given the sensor data, which in this
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FIGURE 7 | Model performance as the signal strength |α| and the number of positive training examples is varied. The synthetic data set used here is the
same as in Figure 6. Performance is the similarity between the network’s output and the desired ideal output, as measured with the normalized dot product.

case is just the randomly chosen r(t). Given just a few examples,
the learning system will make its decision based on spurious
correlations between r(t) and s(t). In a sense, the model will
be superstitious. With more examples, this reliance on spurious
correlationwill be reduced. In the case whereα is zero, the optimal
result is to just output a fixed constant value for s(t), which can
be thought of as the “chance” level performance, indicated with a
dashed line in Figure 7.

While this result shows that this learning system should be
capable of learning given only a few examples, it also shows that its
performance is very dependent on the quality of the sensory data.
Determining how this will work in practice requires the use of a
physical robot.

4.2. Initial Behavior
To examine the model’s behavior when run in a physical robot, we
used a standard T-maze environment (Figure 8). When placed at
the bottom of the T-maze, the robot navigates forward, avoids the
walls, reaches the choice point, and turns left or right. Typical tra-
jectories are shown in Figure 9, which indicates themotor outputs
over time. Since the robot uses tank-style treads, the two motor
output values are the left and right motor speeds, respectively.
For clarity, here we plot the overall speed as the sum of M[0]
(left motor) and M[1] (right motor) in the upper graph, while the
rotation rate is the difference between the two, shown in the lower
graph. Motor output values of typical individual runs are plotted
along with an overall mean value (with 95% bootstrap confidence
interval). All values are Gaussian filtered with σ= 0.15 s for visual
clarity.

FIGURE 8 | The T-Maze environment, top-down view. The robot starts at
the bottom of the T shape. A mirror is sometimes placed at the intersection
(see section 4.4).

4.3. Learning Example 1: Basic Responses
For the first and simplest learning task, we chose positive
examples where the robot turned left at the intersection. The
result of this training after ten positive examples is shown in
Figure 10. Unlike Figure 9, this shows the robot consistently
turning to the left about 2 s into the task (the average time
for the robot to reach the end of the corridor). This indi-
cates we can take a robot with one underlying reflexive control
scheme and retrain it to change its behavior without any explicit
programing.
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FIGURE 9 | Behavior of reactive control model over multiple runs. The
speed (top graph) is high at the beginning, then slows as it turns either left or
right (bottom graph). While on any individual run the robot tends to turn
consistently either left or right, the overall average is zero turning (black area in
bottom graph; area is 95% bootstrap confidence interval).

FIGURE 10 | Behavior after learning to turn left. By adding connections
optimized to approximate situations where the robot behaved appropriately,
we implicitly program the robot to map its sensory states to its actions as
desired.

FIGURE 11 | Behavior after learning to turn right if there is a mirror,
and otherwise turn left. The robot successfully identifies the correct
situation and turns appropriately. Robot speed is not shown, but is similar to
that depicted at the top of Figure 9.

4.4. Learning Example 2: Sensory
Conditions
The initial example of learning to turn left is not particularly
complex.However, we can use exactly the same process to produce
more complex behavior. To demonstrate this, we now sometimes
place amirror at the intersection. Initially, the robot will ignore the
mirror and just use its standard random reflexive navigation. We
now choose as our positive examples situations where the robot
turned right when there was a mirror, and situations where it
turned left when there was no mirror.

Adding a learned connection that attempts to approximate
those positive examples means that the neural connections now
need to change their outputs depending on whether the mirror
is present or not. Figure 11 shows that the robot can successfully
learn to recognize and respond to mirrors, given only this simple
learning rule on top of its basic reflexive rules and ten positive
examples.

5. DISCUSSION

The algorithm described in this paper is a general-purpose
approach to implementing mobile robot behaviors, making use of
massively parallel low-power neuromorphic computing hardware.
The basic algorithm is as follows:

1. define a set of basic actions (e.g., driving forward, turning left);
2. define functions for the strength of each action, given the

current sensory state (e.g., drive forward if there is no obstacle
ahead);
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3. generate a neural network that approximates these functions;
4. use the neural network to drive the robot and record the

neural activity;
5. identify a set of positive examples where the robot has

accidentally performed whatever other task is desired (e.g.,
turning toward a target object);

6. retrain the neural connections between the sensory neurons
and the action strengths so as to approximate the data gathered
during the positive examples.

Using this approach, we have shown that we can take a net-
work that implements extremely simple manually specified reac-
tive rules, and have it learn by example to perform more com-
plex functions. This method makes use of the power-efficiency
of neuromorphic hardware, where large numbers of neurons
and connections can be used to efficiently approximate com-
plex functions. Importantly, the functions that the neurons are
learning to approximate do not have to be explicitly defined.
Instead, we only explicitly define the initial functions for the
basic actions. The functions for the more complex actions are
implicitly defined by example. This means that rather than trying
to develop an explicit set of rules the robot should follow, we can
instead simply give the robot examples of its own desired behav-
ior. This gives a novel, alternate method for developing robot
control.

With any learning method, there is the important question of
how well it generalizes and avoids the problem of overfitting.
While the fact that the model does perform correctly (Figures 10
and 11) indicates that it has successfully generalized in this case,
the simulation results in Figure 7 provide a clearer picture of
its performance. In particular, if there is a clear indication in
the sensor data as to when the task should be performed (i.e.,
if the sensor data is unambiguous), then correct generalization
performance can be achieved after just a few positive examples.
However, if the sensor data is less clear, the learning system will
have difficulties. That is, if multiple different conditions in the
environment can trigger similar sensory states, the model will
have difficulty picking out a sensory pattern that reliably indicates
the action should be performed. If this occurs when there are
only a few positive examples, then the network will be prone to
responding to the wrong features of the environment. This can be
thought of as themodel overfitting to those few positive examples.
Fortunately, by increasing the number of positive examples, this
overfitting problem is reduced.

While the simulation results indicate good performance for
strong signals, it is not yet clear what sorts of tasks provide strong
signals. This is a function of the particular sensory data available
to the robot, the body morphology, the dynamics of movement,
and what the user decides is a positive example. This is a large
task space to explore, and this is only a first step. Now that we
have demonstrated that this approach is at least possible, we need
to rigorously explore these options.

Considering the neural implementation of this algorithm, at
first glance, it seems as if the new connections added during the
training process (step 6) would just end up being exactly the same
as the original reflexive control connections. However, the key
difference here is that these new connections will also take into

account other sensory states, not considered in the original hand-
designed reflexive rules. In other words, these new connections
will cause the robot to be more likely to perform the actions we
desire whenever it is in a sensory state similar to those seen in
the positive examples. Importantly, this will happen without any
explicit indication of exactly what sensory states should trigger
what actions. This allows the system to discover more complex
rules than could be reasonably manually hand designed.

In the case of the system learning to change its behavior based
on the presence of a reflective mirror surface, the system was
able to map the complex sensory stimuli to a particular motor
action. In particular, it was able to make use of whatever sensory
discrimination is available via the mirror (or lack of a mirror). It
is important to note that this sensory stimulus did not initially
impact the robot’s behavior in any way. It was only through
the process of learning, i.e., using hindsight examples of desired
behavior and building a new set of connections that approximate
required behavior that triggered changes in movement. This was
done by building neural connections that replicate behavior that
the robot previously did accidentally.

A vital topic of future work is to characterize the variety of dif-
ferent learned tasks that are amenable to this method. In general,
the NEF shows that the accuracy of the learned connections are
dependent on the complexity of the function to be learned (in
this case the mapping from sensor states to action choices) and
the number of neurons (Eliasmith and Anderson, 2004). As we
explore different tasks, we will also need to explore different com-
binations of sensor systems and the pre-processing on this data.

This approach of using sensory experience to learn neural
connections that attempt to cause the same actions to occur in
response to similar sensory stimuli is novel, but we have per-
formed previous work (Conradt et al., 2014) with a somewhat
similar learning method. In that case, we did not have an initial
reflexive control system, and we did not find particular examples
of desired behavior. Instead, we put the robot temporarily under
manual control and used the behavior generated by the person
performing the manual control to train the connections between
sensory neurons and motor neurons. In other words, rather than
allowing the robot to randomly explore its environment and
choose actions based on a manually created reflexive control
system, we had a user manually set the motor outputs using a
remote control. As in this work presented here, we then trained
neural connections that would approximate that manual control.

In that earlier work, learning required direct training examples,
rather than simply labeling particular actions as positive example
of desired behavior after they occur. Indeed, this means that the
work presented here could be thought of as reinforcement learn-
ing, but the previous work would be purely supervised learning.
Of course, a hybrid approach could be pursued.

Finally, it should be noted that we are only training based
on positive examples (i.e., situations where the robot behaved as
desired). In future work, we plan to augment this approach with
explicit punishment for situations where the robot performs a
non-desired behavior. Interestingly, adding this capability is not
straight-forward in this case. Indeed, there is significant biolog-
ical evidence that positive (reward) and negative (punishment)
systems are separate in the brain (Boureau and Dayan, 2010).
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That is, they are not simply the opposite of each other – rather they
are significantly different processes that interact. This interaction
is still to be explored. One step toward, this is a model of fear
conditioning (Kolbeck et al., 2013), which would fit well with this
framework.
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