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There are multiple indications that the nervous system of animals tunes muscle output to

exploit natural dynamics of the elastic locomotor system and the environment. This is an

advantageous strategy especially in fast periodic movements, since the elastic elements

store energy and increase energy efficiency and movement speed. Experimental

evidence suggests that coordination among joints involves proprioceptive input and

neuromodulatory influence originating in the brain stem. However, the neural strategies

underlying the coordination of fast periodic movements remain poorly understood. Based

on robotics control theory, we suggest that the nervous system implements a mechanism

to accomplish coordination between joints by a linear coordinate transformation from

the multi-dimensional space representing proprioceptive input at the joint level into a

one-dimensional controller space. In this one-dimensional subspace, the movements

of a whole limb can be driven by a single oscillating unit as simple as a reflex

interneuron. The output of the oscillating unit is transformed back to joint space via the

same transformation. The transformation weights correspond to the dominant principal

component of the movement. In this study, we propose a biologically plausible neural

network to exemplify that the central nervous system (CNS) may encode our controller

design. Using theoretical considerations and computer simulations, we demonstrate

that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic

neuromodulation for the output mapping can extract the dominant principal component

of sensory signals. Our simulations show that our network can reliably control mechanical

systems of different complexity and increase the energy efficiency of ongoing cyclic

movements. The proposed network is simple and consistent with previous biologic

experiments. Thus, our controller could serve as a candidate to describe the neural

control of fast, energy-efficient, periodic movements involving multiple coupled joints.

Keywords: movement generation, compliant actuators, control theory, spike-timing-dependent plasticity,

neuromodulation, principal component analysis
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1. INTRODUCTION

During fast periodic motions, such as jumping or drumming,
animals exploit the natural dynamics of their elastic locomotor
systems to achieve high velocity in an energy-efficient manner
(Bar-Cohen, 2011, p. 514). Their central nervous systems (CNSs)
are able to quickly adjust the control of periodic movements
that involve several joints to face changes of their environment
or intrinsic body properties (Hatsopoulos and Warren, 1996;
Zondervan et al., 2014). The underlying control problem is highly
complex, as the locomotor systems have multiple joints that
have non-linear compliances and are dynamically coupled. For
a controller algorithm to replicate the CNS’s locomotion control,
it must be able to induce stable movement and quickly tune it
to high energy efficiency under varying mechanical conditions,
while being consistent with biological experiments.

Fast, or explosive, movements such as jumping are typically
compound movements that involve synchronous trajectories
of several joints in a single or several limbs (Freund and
Büdingen, 1978; Morasso, 1981). The synchronicity enables
high maximum force and thereby allows to take advantage of
elastic dynamics. This can increase the resulting energy efficiency
and thereby movement speed. Energy efficiency implies that
for constant energy input a controller increases the energy
within a mechanical system, as e.g., represented by an increased
jump height (cf. Section 4.7.3). In systems with one degree of
freedom, maximum energy efficiency implies correct timing of
the controller output. In natural explosive movements involving
several joints, it also requires the adjustment of the relative
amplitude of motor signals at different joints. For the remainder
of this article, the latter mechanism shall be denoted as intra-limb
coordination.

In neuroscience, both theoretical and experimental studies
have described neural mechanisms that can induce stable
movements in an elastic locomotor system via central pattern
generators (CPGs) or reflex arcs (cf. Buschmann et al., 2015
for a review). Theoretical research has extensively analyzed
the question on how compliant systems can be tuned to
yield energy-efficient movements on artificial models with a
single joint (Brambilla et al., 2006; Righetti et al., 2006; Pelc
et al., 2008; Barikhan et al., 2014; Huang et al., 2014). Studies
considering multiple joints showed that frequency adjustment
can be achieved by multiple coupled CPGs, one for each joint
involved, that are entrained to proprioceptive input. Multiple
CPGs are especially beneficial in non-synchronous movements
of the joints, where phase-tuning between different joints is
required and where different joints in a limb could execute
functionally different tasks, such as forward/backwardmovement
vs. elevation/depression in insect gaits (Nachstedt et al., 2012;
Xiong et al., 2015). Buchli and Ijspeert (2008) demonstrate that
multiple coupled CPGs, one for each actuated joint, can also be
used to find the resonance frequency of fast compound periodic
movements. However, the use of multiple CPGs neglects the
described synchronicity in joint trajectories. Furthermore, tuning
for higher energy efficiency also requires intra-limb tuning, i.e.,
to adjust the relative amplitude of motor signals at different
joints.

Previous experimental research has considered both
frequency and intra-limb tuning. Measurements on decerebrate
cats demonstrated that signals from individual group I nerves
converge in spinal pathways to entrain the frequency of all
muscles involved (Whelan et al., 1995a; Hiebert et al., 1996). The
efficacy of individual nerves to cause entrainment is dependent
on their activity. The influence of a silenced nerve decreases
with time, whereas an increased influence is found for nerves
originating from muscles that assist in the same movement as
the silenced one (Whelan et al., 1995b). Intra-limb coordination
of explosive movements was found to be controlled by circuits in
the brain stem and cerebellum (MacKay-Lyons, 2002; Shemmell
et al., 2009). Furthermore, Animal studies found a disruption
of intra-limb coordination after administration of a serotonin-
antagonist (Pearlstein et al., 2005; Harris-Warrick, 2011).
Serotonin (5-HT) metabotropically increases the excitability of
motoneurons (Heckmann et al., 2005; Heckman et al., 2008;
Perrier et al., 2013). It is released into the spinal cord by the raphe
nucleus obscurus, pallidus and medianus (Jacobs et al., 2002),
which reside in the brain stem. Since they receive proprioceptive
input (Springfield and Moolenaar, 1983), the raphe neurons may
be part of a motor feedback loop. The resulting absolute strength
of motor signals during ballistic periodic movements can largely
exceed the signal during maximum voluntary contractions
(Dietz et al., 1979). Despite these experimental findings, neural
pathways underlying the control of stable and energy-efficient
explosive movements are poorly understood (Taube et al.,
2012). In summary, current knowledge about the algorithm
that the CNS encodes to tune ballistic periodic movements
does not explain how the CNS maintains stable movement
while tuning the frequency and inter-joint coordination to high
energy efficiency. A physically motivated theoretical control
approach would allow to link the experimental knowledge into a
comprehensive framework.

Roboticists increasingly mimic the non-linear compliances of
muscles and tendons in joints of mechanical robotic systems
such as BigDog by Boston Dynamics (Raibert et al., 2008) or the
Hand Arm System from the German Aerospace Center (DLR;
Grebenstein et al., 2011). The control approaches developed
by robot designers for controlling these bio-inspired robots
can be a valuable source of hypotheses for neuroscientists.
Several control algorithms have been suggested to induce stable
and energy-efficient limit-cycle movements in compliant hybrid
systems. However, their characteristics disqualify most designs as
hypothesis for neural movement control. Van-der-Pol oscillators
(Stramigioli and van Dijk, 2008) artificially damp systems and
thereby reduce the energy efficiency of the movement. Poincaré-
map based algorithms (Sreenath et al., 2010) cannot adequately
adjust to different environments due to their dependence on
a prior model and a fixed set of considered initial conditions.
The same point argues against optimal-control algorithms,
which additionally require numerical approaches and thus
high computational power for multiple joints (Braun et al.,
2011).

In this study, we propose an algorithm that was purely derived
by engineering considerations on the control of biomechanically
inspired robotic systems, to describe how the CNS may
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tune ballistic periodic movements to energy efficiency. We
have previously shown that under specific intrinsic damping
properties of muscles, tendons, and joints, the control of
fast periodic movements can be reduced to exciting the local
linear approximation of the non-linear mode of the system
(Lakatos and Albu-Schäffer, 2014a; Lakatos et al., 2014). The
corresponding algorithm linearly transforms sensory input
from the multi-dimensional joint space into a one-dimensional
controller space. The input entrains a driving unit, and the
driving motor output is reversely transformed into the joint
space. Multiplicative transformation weights are recurrently
adapted and a driving unit as simple as a single reflex interneuron
can adjust movements to unknown oscillatory patterns within
few step cycles (Lakatos et al., 2013a,b).

Our algorithm does not share the adverse characteristics with
the previous robotic control approaches mentioned above. It
requires no prior model but needs only sensory information
about joint deflections or forces. Additionally, the algorithm
performs only linear calculations. This agrees with the recent
findings from calculations performed by spinal interneurons
(Spanne et al., 2014). In our previous work, we analytically
proved stability of controlled mechanical systems with a
single degree of freedom (Lakatos and Albu-Schäffer, 2014b).
We numerically demonstrated stability in simulations for a
controlled quadruped with 12 hinge joints (Lakatos and Albu-
Schäffer, 2014a) and in a real robotic platform with four joints
(Lakatos et al., 2013b).

For the remainder of this paper, we propose an exemplary
neural network implementation of this algorithm in Section 2.
By theoretical considerations and simulations of this network in
Sections 2.2 and 2.3, respectively, we justify that the algorithm
proposed by Lakatos et al. (2013b) may be implemented by the
CNS to control fast periodic movements that involve several
synchronously moving joints. At the input stage, we suggest
that proprioceptive input converges from all muscles involved
in a movement onto a single interneuron. Synaptic weights can
align with the appropriate linear transformation weights under
the influence of spike-timing-dependent plasticity (STDP). At
the output stage, we show that serotonergic amplification of
motoneuron output can produce the reverse transformation via
the described motor feedback of medullary raphe nuclei. Our
simulations substantiate that the proposed network can induce
highly energy-efficient, stable, periodicmovements inmechanical
systems of different complexity. While we demonstrate in
Section 3.2.2 that our neural sub-networks are consistent
with previous experiments, we emphasize that our general
controller design may be implemented by alternative circuits.
Therefore, we discuss general mathematical requirements set
by the controller and provide experimentalists with a checklist
of necessary characteristics of a neural implementation in
Section 3.3.

Our proposed transformation provides a functional unit that
drives several joints with a sensory entrainment signal. The
reverse transformation applied to the driving signal leads to
correct intra-limb coordination. We argue in the discussion that
the driving unit itself can be a pool of reflex interneurons, a CPG
or a combination of both.

2. RESULTS

Following an overview on the controller introduced by Lakatos
et al. (2013b) and illustrated in Figure 1A (cf. Section 2.1.1),
we present models of two neural sub-networks that we propose
based on previous animal experiments (cf. Sections 2.2.1 and
2.2.2, Figure 1B). We theoretically demonstrate that the network
performs the proposed coordinate transformations.

In Section 2.3, we simulate our sub-networks in closed-
loop simulations to verify that they can reliably excite stable,
energy-efficient periodic movement. Detailed methodological
descriptions of the simulations can be found in Section 4.

2.1. Controller Theory
2.1.1. Basic Controller Concept
We consider fast periodic movements with high synchronicity
in the joint trajectories. The mathematical controller receives
sensory information describing the observed movement,
represented by the deflections ϕi(t) of joints i from their
respective zero position. Using the joint-specific weight vector
with entries wi, sensory signals are linearly combined to obtain a
single controller coordinate

ϕz(t) = wT(t)ϕ(t). (1)

All motor units receive the same timing signal fz(t) that initiates
force production when ϕz crosses a threshold,

fz(t) =

{

ĉf if ϕz(t) > cǫ

0 otherwise,
(2)

where ĉf and cǫ are positive constants. Equation (2) functionally
describes both the timing and driving unit as illustrated in
Figure 1B. It is transformed back into a change of force, fi(t),
in the individual joints i by multiplication with the same weight
vector w,

f(t) = w(t)fz(t). (3)

Exerting these forces on the joints induces stable energy-efficient
movements due to correct timing and relative force amplitude
(Lakatos et al., 2013b,a).

2.1.2. Transformation Weights
In this study, we focus on the adaptation of the weight vector w.
It is recursively updated and supposed to converge toward the
dominant principal component of the data covariance matrix of
the movement, which we denote the principal oscillation mode
of the system. This can be achieved using

d

dt
w(t) = γ[wT(t)ϕ(t)]

(

ϕ(t)− [wT(t)ϕ(t)]w(t)
)

, (4)

where γ≪1 (Oja, 1992). The formula keeps weights bounded and
generally increases the relative magnitude of weights for joints
that are heavily involved in a movement.

It is assume that neuroscientific quantities representing
weights wi and sensory input ϕi are positive. We prove in
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A B

FIGURE 1 | (A) In the mathematical controller design as proposed by Lakatos et al. (2013b), sensory input from each joint i is transformed into a one-dimensional

coordinate space. For this purpose, the sensory inputs are multiplied by weights wi . The input entrains a thresholding bang-bang unit, which produces a motor signal.

The driving signal is transformed back into the original joint space via the same respective weights. The output transformation accomplishes correct relative force

weighting of the individual joints (Figure based on Lakatos and Albu-Schäffer, 2014a). (B) In our hypothetical neural controller implementation, sensory input from the

joints also converges. The synaptic weights wSTDP,i change according to spike-timing-dependent plasticity. We emphasize that the bang-bang controller can be

separated into two functionally distinct unit: A timing unit entrains a driving unit, which sends motor signals to muscles innervating all joints involved in a given periodic

movement. While functionally distinct, these units do not have to be spatially separated in general. In our model, a single pool of reflex interneurons represents both

units and outputs correctly timed motor signals. A parallel, joint-specific, sensory feedback pathway via raphe nuclei releases serotonin into motorpools. This amplifies

the common motor output by wNM,i and increases the relative strength of muscles that are more involved in the movement.

the Presentation 1 that under this assumption the simplified
formula

d

dt
w(t) = cwϕ(t)−

1

τeff
w(t), (5)

where cw and τeff denote arbitrary positive constants, aligns
weights w with the result of Equation (4). Using either learning
rule, the system will be excited along the principal oscillation
mode of the observed movement.

2.2. Neural Implementation of Coordinate
Transformations
2.2.1. Input Transformation: Plasticity
For the input transformation, we suggest a simple neural timing
network, where proprioceptive input νϕ,i from all synchronously
acting muscles converges on a single postsynaptic timing neuron
via synapses with weight wSTDP,i (cf. timing unit in Figure 1B).
This single neuron could in nature correspond to a pool of
postsynaptic neurons. Our network is based on the findings from
previous experiments, which have shown that proprioceptors
innervating single muscles involved in a periodic movement can
adjust the timing of the motor signal that drives all muscles
(Whelan et al., 1995a). Under the approximation of linear input
summation, the firing rate νpost of the postsynaptic neuron
amounts to

νpost(t) = wT
STDP(t)νϕ(t). (6)

The efficacy of individual muscles to change the timing was
found to be subject to plasticity (Whelan et al., 1995b). Assuming

that the weights are subject to Hebbian plasticity combined with
synaptic scaling, Oja (1982) demonstrated that the weight change
of our network can be described by

d

dt
wSTDP(t) = γ[wT

STDP(t)νϕ(t)]

×
(

νϕ(t)− [wT
STDP(t)νϕ(t)]wSTDP(t)

)

. (7)

In case that νϕ,i ∝ ϕi, Oja’s rule equals Equation (4), and
our neural network would transform the input signals from
the multi-dimensional joint space into the controller space, i.e.,
would implement Equation (1).

STDP extends the idea of Hebbian plasticity. It considers both
the case of a causally related and unrelated firing of the pre-
and postsynaptic neurons. In later simulations, we numerically
address the question if also biologically more realistic STDP rules
extract the dominant principal component of the motion.

2.2.2. Output Transformation: Neuromodulation
For the output transformation, we model a motor feedback loop
via the raphe nucleus medianus, obscurus and pallidus, which
release serotonin (5-HT) into the spinal cord. The released 5-
HT leads to metabotropic enhancement of motoneuron output
(Heckman et al., 2008; Perrier et al., 2013). The feedback loop
is based on the fact that the same nuclei receive proprioceptive
information and quickly increase their firing rates with sensory
input (Springfield and Moolenaar, 1983; Jacobs et al., 2002).

We assume that for each joint i involved in the periodic
movement there is a group of serotonergic medullary neurons
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that receives proprioceptive input νϕ,i via proprioceptors from a
joint and project back to the motoneurons innervating this joint
exclusively. Their firing rate is thus νser,i = νϕ,i (cf. raphe neurons
in Figure 1B).

The concentration of 5-HT in the extracellular space, denoted
[5-HT], increases proportionally to the firing rate of the releasing
raphe neurons, νser (Hentall et al., 2006; Best et al., 2010).
Depletion of 5-HT can occur by reuptake into the cytosol of
the cell by the serotonin transporter (SERT; denoted by VSERT),
due to catabolism mainly by monoamine oxidase and aldehyde
dehydrogenase (denoted by Vcat), or by removal due to glia or
diffusion (denoted by Vrem) (Best et al., 2010). The rate of change
thus amounts to

d[5-HT]

dt
= cserνser − VSERT − Vcat − Vrem, (8)

where cser is a constant.
Diffusion of 5-HT can be neglected in the spinal cord

(Brumley et al., 2007). The remaining mechanisms of
disappearance of 5-HT follow Michaelis-Menten kinetics,

Vx =
vxmax

kxm
[5-HT] + 1

(9)

≈
vxmax

kxm
[5-HT] if [5-HT]≪ kxm (10)

where vxmax denotes themaximal rate of disappearance and kxm the
respective Michaelis-constant of mechanism x (Best et al., 2010).
The Michaelis constant for depletion due to reuptake by SERTs
ranges between 170 and 410nM (Verleysdonk et al., 2004; Best
et al., 2010), is larger than 94,000nM for catabolism (Molodtsova,
1983; Best et al., 2010), and around 400nM for glia cells (Katz and
Kimelberg, 1985).

After high-frequency stimulation of raphe nuclei in vivo,
[5-HT]≪ kxm in the spinal cord (Hentall et al., 2006). Therefore,
the approximation in Equation (10) is valid and Equation (8)
reduces to

d[5-HT]

dt
≈ cserνser − (

vSERTmax

kSERTm

+
vcatmax

kcatm

+
vremmax

kremm

)[5-HT] (11)

= cserνser −
1

τeff
[5-HT]. (12)

Extracellular serotonin concentration in a motorpool
monotonically and linearly increases the slope of the input-
output function of the motoneurons (Heckman et al., 2003).
Therefore, we can define multiplicative neuromodulatory
weights that describe the amplification of ionotropic input as

wNM,i = cNM[5-HT]i. (13)

Equation (12) can thus be reformulated to

dwNM,i

dt
= ĉserνϕ,i −

1

τ̂eff
wNM,i. (14)

Since this is equivalent to Equation (5), our network will lead to
an output transformation equivalent to Equation (3).

We suggest that both neural sub-systems finally converge
on motorpools. The ionotropic input represented by νpost is
proportionally transformed into a motor signal by multiplication
with a constantmf ,

fz(t) = mf νpost(t) (15)

and the motoneurons exert a force (sliding joint) or torque
(rotatory joint) on the joints i they innervate of

fi(t) = wNM,i(t)fz(t). (16)

2.3. Simulations
We test the neural implementation of our algorithm using three
different simulations. The first one is a simple feed-forward
implementation to show that the sub-networks are able to extract
the dominant mode from a large variety of sensory input. In
the second closed-loop implementation, the neural network
receives sensory input from and control the motor output to a
linear mechanical system with known resonance behavior. This
mechanical system is finally replaced by a more realistic system
approximating a hopping leg. The feedback systems show that the
neural network is able to induce energy-efficient movements in
biomechanical systems with multiple joints and realistic ground
contact situations.

2.3.1. Open-Loop Implementation
The open-loop feed-forward implementation is comprised of
two sensory neurons which are connected to a postysnaptic
timing neuron and to the parallel serotonergic feedback system
(cf. Figure 2). Each sensory neuron represents the pool of
proprioceptive neurons responsible for one joint i. The individual
neurons fire according to Poisson statistics with mean firing rates
νϕ,i which oscillate in phase with different amplitudes ai (cf.
Figure 3A). To test if the system is robust against disturbances,
we add Gaussian white noise n(σ ) with standard deviation σ =

0.1 to the sensory input. An additional sinusoidal contribution b

of Euclidean vector norm smaller than a simulates a secondary
eigenmode of the biomechanical system. The firing rates thus
amount to
(

νϕ,1(t)
νϕ,2(t)

)

= 40Hz[

(

a1
a2

)

sin(2π t)+ b sin(8π t)+ n(σ )]. (17)

In the timing sub-network, the sensory neurons are directly
connected to a third Poisson-neuron that represents the timing
unit. This postsynaptic neuron fires with a rate of

νpost(t) = wT
STDP(t)νϕ(t). (18)

The synaptic weights are subject to an STDP rule that is based
on previous experiments (Pfister and Gerstner, 2006) which
considered the effect of spike triplets (e.g., two pre- and one
postsynaptic spike). We stabilize the weights using synaptic
scaling as homeostatic mechanism (cf. Section 4.2).

Each sensory neuron is connected to a corresponding raphe
neuron. Spikes of each raphe neuron increase the serotonin
concentration in a respective pool. The concentrations [5-HT]i
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FIGURE 2 | In the first experiment, we verify the possibility to use STDP

and serotonin dynamics to obtain the dominant principle component

of input signals, by simulating two sensory Poisson neurons. Shown

here are their firing rates that evolve according to sinus functions νϕ,1 and νϕ,2

with different amplitude and underlying white noise (noise not illustrated in the

picture). The neurons drive a third Poisson neuron (center left). Synaptic

weights wSTDP,i are subject to STDP and their ratio is expected to converge

toward the amplitude ratio of the input sinus functions. Additionally, the input

neurons drive two raphe neurons (center right), which release serotonin into

separate pools. The serotonin concentration decreases according to

Michaelis-Menten dynamics. The ratio of serotonin concentrations is

proportional to the ratio of the neuromodulatory weights, wNM,1/wNM,2, and

is also expected to converge toward the amplitude ratio of the input signals.

in the two pools i decrease according to Michaelis-Menten
kinetics. Our derivation, which shows that serotonergic dynamics
can extract the dominant principle component, assumes
that [5-HT] ≪ kxm (cf. Equation 10). Therefore, simulations
implementing a small value for the Michaelis constant represent
the strongest validation of our derivation.We choose the smallest
Michaelis constant suggested by the literature mentioned in
Section 2.2.2: km = 170nM.

The vector of input weights wSTDP and output weights
wNM should converge toward (a1, a2)T . We simulate the neural
network with 19 different ratios a1

a2
ranging between 0.05 and 0.95

and set ‖a‖ = 1. Both wNM = cNM([5-HT]1, [5-HT]2)T and
wSTDP are supposed to align with the eigenmode. This implies
wNM,1
wNM,2

=
wSTDP,1
wSTDP,2

= a1
a2
. We hence fit the converged ratio wNM,1

wNM,2

and
wSTDP,1
wSTDP,2

vs. a1a2 .

Figures 3B–E illustrate the convergence of weights. The ratio
of input weights are best fit by a line described by

wSTDP,1

wSTDP,2
=m

a1

a2
+ b, (19)

m = 0.952± 0.005 (20)

b = 0.040± 0.003 (21)

R2adj = 0.999. (22)

R2adj denotes the adjusted R
2-value.We obtain similar findings for

the neuromodulatory weights,

wNM,1

wNM,2
=m

a1

a2
+ b, (23)

m = 0.945± 0.033 (24)

b = 0.015± 0.019 (25)

R2adj = 0.979. (26)

To test the influence of the initial conditions, we run nine
additional trials with random initial synaptic weights and
serotonin concentrations. Averaging the parameters over all ten
trials yields

m = 0.979± 0.010 (27)

b = 0.016± 0.002 (28)

for synaptic weights while we obtain for neuromodulatory
weights

m = 0.957± 0.031 (29)

b = 0.005± 0.023. (30)

Our theoretical considerations predict a slope of m = 1 and
an intercept of b = 0. The slope representing both synaptic
and neuromodulatory weights and the intercept of synaptic
weights deviate from the expectation values by several standard
deviations. The deviations are thus small, but significant. Under
the influence of white noise, Oja’s rule, Equation (4), converges
toward the dominant principal component of input data (Oja,
1982), which is equivalent to the dominant eigenmode in a linear
system (Feeny and Kappagantu, 1998). Hence, the deviations
of the slope and intercept from their expectation values derive
on the one hand from the minor eigenmode and the Poisson
noise underlying the neural firing statistics, and on the other
hand from the deviations between calculations performed by the
implementation of STDP and Michaelis-Menten kinetics from
Oja’s rule.

To show robustness against sensory noise, we vary the
standard deviation of the Gaussian white noise in the sensory
input. We sweep through a range of σ between 0.01 and 1.0.
Figures 3F–H illustrate the slope, y-intercept and adjusted R2

value for each noise level. We see that the linear approximation
remains valid for high noise levels, as represented by a R2adj
close to unity at σ = 1. The slope and y-intercept increasingly
deviate from the expectation for higher noise levels. However, the
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A

B C

D E

HGF

FIGURE 3 | Illustrated here are the results of the feed-forward neural network. (A) The firing rate of the sensory input neurons from joint 1 and 2 for one

example run with an underlying eigenmode described by the ratio a1/a2 = 0.3. Both input and output weights are supposed to align with the dominant principal

component, i.e., eigenmode. (B) The evolution of the synaptic input weights under the influence of STDP for the two neuron pools. The expected ratio

wSTDP,1/wSTDP,2 = 0.3 and the converged synaptic strength corresponding to joint 2, wSTDP,2, determine the expectation value for wSTDP,1. The expectation value

is indicated as dashed line. (C) Same illustration for the serotonin concentration, which corresponds to output weighting. (D) The ratio of plastic input weights linearly

increases with the expected ratio, i.e., a1/a2. (E) demonstrates the same behavior for the neuromodulatory output weights. Theoretically predicted is a line of unit

slope and zero y-intercept. (F,G) When the noise in the sensory input increases, the slope and intercept of the linear fit increasingly deviate from the expectation. (H)

Even for large noise levels, we find an adjusted R2 value close to 1. This indicates that our linear fits, and hence the obtained values for the slope and y-intercept,

remain reasonable.

slope and intercept representing synaptic and neuromodulatory
weights deviate by less than 10% from the expected value for
noise levels σ < 0.2 and σ < 0.13, respectively. Since the
dominant eigenmode a is normalized, a value of σ = 0.1 implies
that the firing frequency of any sensory or the postsynaptic
neuron is influenced by noise by more than 10% on average.
Thus, within a given time step, the probability that either an
occurring neural spike is due to noise or that a neural spike
is inhibited because of noise is higher than 10%. These results
suggest a strong robustness of neural calculations performed by
our network against noise.

2.3.2. Closed-Loop Implementation
In order to test the ability of our neural controller to drive a
mechanical systemwithmultiple degrees of freedom, we simulate
the complete neural network in a closed-loop feedback system (cf.
Figure 4) .

We implement the two neural sub-systems in parallel, each
receiving proprioceptive input. The deflection of each joint is
signaled by a pool of Poisson neurons firing with an average
rate proportional to the deflection. The sensory neurons are
connected to a pool of leaky integrate-and-fire (LIF) neurons.
Synaptic weights are subject to the same STDP rule as described
above. Since the instantaneous pool-averaged firing rate of
the LIF neurons, ν̄post, serves as ionotropic input to the
motoneurons, the neuron pool functionally represents the timing
and the driving unit (cf. Figure 1B).

The sensory neurons of each individual joint are additionally
connected to a respective pool of serotonergic raphe nuclei.
The raphe nuclei are also composed of Poisson neurons. Every
spike of a raphe neuron releases 5-HT into the corresponding
motorpool. Within an individual motorpool, the release is
spatially uniform. Depletion takes place according to Michaelis-
Menten kinetics. Once again, we choose the smallest suggested
Michaelis constant. The resulting [5-HT] is here given in
units of mol/l= M. The motoneuron firing rate is amplified
proportionally to [5-HT] (Heckman et al., 2003).

We consider two mechanical systems; one is simple and
analytically solvable (cf. Figure 5A), the other more complex and
biologically realistic (cf. Figure 6A).

The first system consists of two masses, each representing one
joint, that are serially coupled by a spring. Eachmass is connected
to muscles by further springs of equal stiffness. The system is
driven by forces fi of the muscles, which stretch and squeeze
the springs. As illustrated in Figure 5B, the system is analytically
known to follow the eigenmodes (1, 1)T (phasic oscillation) and
(1,−1)T (anti-phasic oscillation).

Figures 5D,E shows that the weights of both joints converge
toward the same values. This corresponds to phasic resonance
movements of the two joints. Fitting exponential functions to
the ratio of

wSTDP,1
wSTDP,2

(t) and wNM,1
wNM,2

(t) shows that the input and

output weights converge toward unity with exponential time
constants of τSTDP = 2.65× 103 s and τNM = 2.93 s (cf.
Figures 5G,H). These time constants differ by three orders of
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FIGURE 4 | The neural feedback network is an extended version of the feed-forward network as described in Figure 2. In contrast, the spinal interneurons

are implemented as leaky integrate-and-fire (LIF) neurons. Their pool averaged firing rate is proportionally transformed into a motor signal fz . The motor signal is

amplified by a factor wNM,i due to serotonergic neuromodulation and is projected back to the muscles.

A

D E F G

H

B C

FIGURE 5 | The neural network as described in Figure 4 is initially supposed to control a simple mechanical system. (A) Two masses m are connected by

springs of stiffness k0 and k1 and driven by muscles that can stretch the springs. Zero positions are given by the equilibrium positions when no force is applied. The

deviations of the masses from their zero positions are used as joint deflections ϕi . The neural network as described in Figure 4 controls the muscles’ forces. (B) The

system has analytically known resonance modes of (1, 1)T and (−1, 1)T , i.e., the masses either oscillate in phase or anti-phasic. The task of our controller is to excite

the system along any of the two eigenmodes with corresponding respective eigenfrequency. The other eigenmode decays due to friction. The final movement is thus

resonant. (C) The deflection trajectories of both joints align and show phasic resonant movement after few seconds. (D) shows that the input weights, which are

subject to STDP, converge toward the same value within hours. They therefore also align with the phasic resonance mode (1,1)T of the mechanical system. (E) shows

that the 5-HT concentration within both motoneuron pools, and hence the output weights, converge toward the same value within seconds. (F) The alignment of the

trajectories is illustrated by the deflection ratio ϕ2/ϕ1 at peak positions of mass m1. Shown here is the time evolution of this ratio and an exponential fit. (G,H) The ratio

of the synaptic and neuromodulatory weights converge to unity with different time scales, as illustrated by respective exponential fits. (All results illustrate the

simulation with non-random initial weights).

magnitude and we refer to Section 3.1.1 for a discussion of the
different time scales. As shown in Figure 5C, the resultingmotion
trajectory of the mechanical system starts as a superposition of

its eigenmodes, showing no obvious relationship in phase or
amplitude between the two masses. The trajectories of the two
masses converge to synchronous resonant movements over time.
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FIGURE 6 | (A) In the final simulation, the neural network as described in Figure 4 is designed to control a more biologically realistic trunk model that has a jumping

leg with two joints influenced by gravity. The neural network gets sensory input about joint deflections and controls the torque within these joints. The jump height is

taken as indicator for energy efficiency. It is measured as height of the trunk relative to its position when both joints are fully extended. (B) The jump height of the leg

increases as a result of the weight adjustment by the neural network. (C) The joint deflections are linearly converted to firing rates of the sensory neurons and therefore

also represent the sensory input to the neural network. (D) The synaptic weights from proprioceptors innervating muscles of joint 1 and 2 to the pool of postsynaptic

LIF neuron converge on a time scale of hours. (E) Neuromodulatory weights are proportional to the serotonin concentration. They converge faster than the synaptic

weights, and the serotonergic concentration within the two motoneuron pools starts to fluctuate around its final value after seconds. (F) To find conditions for energy

efficiency of the controller numerically, we fix the Euclidean norm of the weight vectors describing the synaptic input and neuromodulatory output weights. We vary the

ratio w1/w2 both for input and output weights, run a separate simulation for each ratio and record the respective jump height. As illustrated, the jump height has a

maximum plateau for ratios between 0.4 and 0.75. This ratio is in agreement with the weight ratios obtained by STDP and serotonin dynamics. (G) Even after

convergence, the jump height, illustrated as maximum height above the ground here, shows fluctuations with time. We suggest that this is due to noise and the small

number of leaky integrate-and-fire neurons that is intrinsic to the controller network. Accordingly, increasing the network size from small to large significantly decreases

the fluctuations. (All results illustrate the simulation with non-random initial weights).

Fitting an exponential function to the ratio of joint deflections
ϕ2
ϕ1
(t) at peaks of the first joint deflection, we find that this

synchronization takes place with a time constant τtraj = 6.24 s
(cf. Figure 5F).

To test the dependence of our results on the initial conditions,
we randomly vary the initial synaptic weights and serotonin
concentrations in nine additional trials. As an average over all ten
trials, we find

wSTDP,1

wSTDP,2
= 1.005± 0.011 (31)

wNM,1

wNM,2
= 1.004± 0.032. (32)

These values agree with our expectation of unit weight ratios.
The secondmechanical system represents a vertically jumping

leg consisting of a trunk, a thigh, and a shank, which are
connected by rotatory hip and knee joints. When the leg touches
down, the joints are deflected, which leads to a stretching of the
elastic elements. This stretching triggers the firing of the sensory
neurons and activates the reflex arc. The respective torque fi is

exerted on the joint i according to Equation (16) and the leg
pushes off the ground.

Figures 6D,E demonstrate for one run that the input and
output weights converge on a time scale of seconds and hours,
respectively. A video illustrating this simulation can be found
in Video 1. Again, we perform nine additional runs to test for
stability against changes of the initial conditions. As an average
over all 10 simulations, we obtain

wSTDP,1

wSTDP,2
= 0.724± 0.021 (33)

wNM,1

wNM,2
= 0.703± 0.062. (34)

The jump height increases with time and reaches its maximum
within seconds (cf. Figures 6B,C). The increasing jump height
indicates that the movement is tuned to yield higher energy
efficiency. To validate that the network increases the energy
efficiency of the movement, we run the simulation with different
fixed input and output weights. In each trial, we set the norm of
the weight vectors equal to the converged norm as obtained in

Frontiers in Neurorobotics | www.frontiersin.org 9 March 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Stratmann et al. Multi-Joint Movement Control by PCA

the trial illustrated in Figures 6B–E. We only vary the ratio of
the weights, i.e., the orientation of the weight vector. Figure 6F
illustrates that the final jump height has a maximum plateau for
weight ratios w1

w2
between 0.4 and 0.75.

We analyze the alignment of our weights with the dominant
principal component of the movement. For this analysis, we
extract the dominant principal component a of the joint
trajectoryϕ(t) for each of the ten runs. The average ratio amounts
to a1

a2
= 0.767 ± 0.027. In comparison to the initial synaptic

weights, the converged synaptic weights are closer to the ratio of
the principal dominant component in 9 out of 10 trials. Assuming
that this alignment happens by chance, we would expect to
see alignment on average in 50% of the runs. This hypothesis
can be rejected by a probability p < 0.05. For the serotonin
concentration in the two motorpools, we find alignment in 10
out of 10 runs, indicating p < 0.001.

As shown in Figure 6B, the peak jump height does not
converge but shows fluctuations. Considering the average in
the window of 30–50 s of simulated time, the jump height
shows a standard deviation of 5.8mm. A possible reason for the
fluctuations is the intrinsic (Poisson) noise in the system and a
relatively small number of only six LIF controller neurons which
is chosen due to computational restrictions. To test the influence
of noise and the network size, we increase the number of sensory
input neurons by a factor of 3 and the number of LIF neurons by
a factor of 2. For reasons of comparison, we keep the strength
of the input to the LIF neurons as well as the motor signal
approximately equal. As a result, we decrease the initial synaptic
weights and the neuromodulatory amplification factor cNM by
the same respective factors. The standard deviation of the jump
height decreases to 2.7mm (cf. Figure 6G). The 76 measurement
points of jump height recorded for either network do not show
any outliers, are not significantly correlated with time, and do not
significantly deviate from a normal distribution. They therefore
fulfill the requirements to test for different standard deviations
using an F-test. The test shows that the standard deviation in the
jump height controlled by the large and small network deviate by
p < 0.001. Therefore, a larger network size and reduced sensory
noise decreases fluctuations in the joint trajectories.

3. DISCUSSION

In this study, we consider how the CNS may coordinate
fast periodic movements involving several joints. We propose
a simple algorithm for this task and confirm that a neural
implementation, which is consistent with previous experiments,
may explain the correct inter-joint coordination between joints
that act with high phase synchronicity as observed for explosive
movements. The controller excites the mechanical system along
the dominant local eigenmode by a coordinate transformation
of proprioceptive inputs from the joint space into a one-
dimensional controller space and an inverse transformation of
driving controller output. The eigenmode is recursively extracted
from the proprioceptive input describing the movement.

We demonstrate that this weighting can be performed by a
small network of sensory afferents that converge onto a common

pool of spinal interneurons via plastic synapses. Similarly,
we reason that a motor feedback loop from proprioceptors
via medullary serotonergic neurons may approximate the
appropriate output weighting.

3.1. Advantages of the Controller Design
3.1.1. Stability and Energy Efficiency
Our controller design generates stable and energy-efficient
periodic movement. In previous research, we have demonstrated
that the basic controller design can induce stable movements
in robotic platforms (Lakatos et al., 2013b; Lakatos and Albu-
Schäffer, 2014a,b). In our simulations, the neural implementation
can also induce stable movements in two mechanical systems
of different complexity. The induced movement is stable over
hours for both the linear and the non-linear mechanical system,
as tested for a large range of initial conditions. Our results
emphasize that the two neural sub-networks reliably extract
the dominant principle component of sensory input signals
even in the presence of different disturbances. In particular,
we tested stability against noise and perturbations resulting
from excitation of a second eigenmode. The converged weights
did not fully align with the dominant principle components
since their calculations deviate from the mathematical controller
design due to different biological features. These firstly include
signal transduction durations as included by delays of sensory
signals in the network driving the mechanical leg (cf. Section
4.4.2). Second, the mathematical descriptions of STDP and
neuromdoulation are based on experimental measurements and
deviate strongly from Oja’s rule, which underlies the robotic
controller design. This deviation is increased by the fact that
the spiking of sensory and the postsynaptic neurons in the feed-
forward simulation bear Poisson noise. Third, the input-output
function of spiking LIF neurons deviate from the basic bang-
bang controller (defined by Equation 2) as described in the
discussion in Section 4.4.2. Another reason for the deviation in
the feed-forward simulation comes from the fact that we added a
secondary minor eigenmode to the sensory firing rates to test for
stability against disturbances. Despite these constraints, the feed-
forward simulations show that a strong alignment of weights with
the dominant principal component does take place. Extending
the sample size of simulations with different initial conditions,
levels of noise and disturbances would quantify more precisely
the level of alignment. But a value quantifying the alignment
of weights in a feed-forward simulation under a limited variety
of disturbances results only indirectly in a statement about the
ability of the neural network to control biomechanical systems,
which may show an arbitrary variation of disturbances, in
a feedback loop. Thus, a more precise quantification of the
alignment, i.e., more trials, would only yield little advantage.
In the feedback system where the neural network controls the
simple mechanical system, the weights seem to align even more
reliably with the theoretical expectation. Here, an increased
number of neurons decreases the relative influence of Poisson
noise in the sensory input. Additionally, the final movement can
be fully described by a single eigenmode of the system. Therefore,
the sensory signals are not disturbed by a secondary eigenmode
in the end of the simulation. With the biological constraints
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still in place, these factors lead to a better agreement between
expectation and theory in the simple feedback simulation.

Tuning of the movements to increase energy efficiency by
our controller design is strongly linked to linearization of the
mechanical system. The dominant principle component of a
movement is equivalent to the eigenmode of a linear mechanical
system associated with the largest eigenvalue of the covariance
matrix (Feeny and Kappagantu, 1998), i.e., the eigenmode
that best describes the observed movement trajectories. An
eigenmode that is e.g., only lightly damped and close to the
initial weights is likely to dominate the overall movement and
the controller will favor to excite this eigenmode over others. Our
controller hence aligns the transformation weights with one of
the eigenmodes, (1, 1)T in our simulations, and thereby obtains
resonance tuning for systems such as our simple mechanical
model.

For non-linear systems such as our leg, this is not necessarily
the case. However, our controller design assumes that energy is
only inserted into the system by the bang-bang controller during
a relatively short period of the movement cycle. It is therefore
reasonable in practice to compute the control action based on
the linearization of the non-linear system at the current state.
Our simulation of the mechanical leg emphasizes this point.
The synaptic input and neuromodulatory output weights start
from random initial values in the range of 0.67–1.5 for relative
weights

wSTDP,1
wSTDP,2

and 0.1–10 for wNM,1
wNM,2

, respectively. The weight

ratio reliably converges toward a value of about 0.7. Figure 6F
illustrates the jump height as a function of the ratio

wSTDP,1
wSTDP,2

=
wNM,1
wNM,2

. It shows that the value of 0.7 is clearly in the range

of ratios that maximize the jump height. In Section 4.7.3, we
explain that this finding implies tuning to energy efficiency. These
results suggest our controller design and our neural models in
particular as a candidate to explain how the CNSmay excite stable
and energy-efficient fast periodic movements. We are currently
conducting further testing to analyze in detail the conditions that
allow our controller to increase energy efficiency.

Our neural sub-networks show that the control algorithm
may be implemented by two spatially separated units. One
unit consists of the ionotropic sensory neurons and spinal
interneurons and acts at the sensory input level of the spinal
cord. A second unit performs individual amplification of the
motor signal for each joint. We consider the role of each unit
individually.

The output amplification, i.e., the second unit, is necessary
for energy-efficient control. If the two masses of our linear
mechanical system were excited with forces of different
amplitude, the mass trajectories would never converge to
resonant movement. This agrees with the fact that the output
weights and joint trajectories in our feedback simulations
converge on a similar time scale.

The weights in the input network in contrast converge on
a slower time scale of hours. They can therefore not react to
quick changes of the environment, but to slow biomechanical
changes. We intentionally set this slow time scale in agreement
with experiments on STDP in vivo (e.g., Nishimura et al., 2013;
cf. Section 4.2). The discrepancy between this time scale and the

fast convergence of joint trajectories as found in our simulations
can be explained by the mentioned high synchronicity of joint
motions in the considered fast periodic movements. The input
weighting determines how strongly sensory input from each joint
participates in the entrainment of motor output. If all joints
would move in phase, the motor output could be entrained to
an arbitrary linear combination of the sensory input. Therefore,
the input weighting is not strictly necessary for energy-optimal
tuning. In contrast to an approach where motor output is
entrained to the signal of only a single nerve, our input network
would have three features better suited for animals. First, the
motion of joints in biomechanical systems will not be exactly
in phase. In this case, our controller gives higher priority to the
timing of muscles that are more important. Second, our network
gives higher efficacy to nerve fibers that fire more strongly. Under
the influence of additive noise, higher activity is connected to a
better signal to noise ratio. Thus, entrainment is mainly affected
by nerves that show the highest signal to noise ratio. Third,
considering all sensory inputs reduces the risk to failure, e.g.,
when individual nerve fibers are damaged.

To summarize, output weighting by the CNS is required
for energy-optimized movement. The fast time scale of
neuromodulation may thus allow animals to quickly adjust their
movements to changes in the environment. In contrast, the CNS
must not necessarily implement the input stage of our controller.
However, since the input transformation is advantageous, it is
plausible that the neural timing network that we propose may
adjust weighting on a longer time scale to compensate for slow
mechanical changes.

3.1.2. Dimensionality Reduction
The design of our proposed neural network implies characteristic
features of the functional driving unit of considered movements
(cf. Figure 1B). In our simulations, the pool of timing neurons
functionally represents also the driving unit and form a reflex arc.

The driving unit is effectively one dimensional. It receives
input from all joints and sends the same motor signal
to all motorpools. This single signal is weighted by the
neuromodulatory weights to project the one dimensional
controller signal back into joint space. At the stage of the timing
unit, the input and output weights have thus transformed the
control of the mechanical systems to a one-dimensional problem.

This is obvious for the control of the simple mechanical
system, which only comprises a single reflex interneuron to create
the motor signal to all joints. However, the neural controller of
the mechanical leg has six timing neurons. Nonetheless, they act
as a single functional unit. The reason is that each timing neuron
receives input from a large pool of sensory neurons from each
joint. Each sensory neuron has the same probability to connect to
any of the six timing neurons, and the pools of sensory neurons
projecting to the individual timing neurons largely overlap. The
motor signal is furthermore averaged over all six timing neurons,
and the same signal is transferred to both motorpools, where it
is amplified by neuromodulation. Therefore, the control is still
transformed to a functionally one-dimensional problem despite
the existence of the six timing neurons. There are three reasons
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why we decided for a neuron pool instead of a single timing
neuron: First, it makes the model more realistic. Second, it
reduces the influence that Poisson noise in the sensory neurons
has on synaptic weights. Third, it smooths the output signal of
the pool of LIF neurons.

3.1.3. Interplay of Reflexes and CPGs
Although not considered in our simulations, the timing and
driving unit may be spatially separated. The driving unit must
produce rhythmic output that is phase-coupled to the output
of the timing unit. For example, Xiong et al. (2015) and Buchli
and Ijspeert (2008) proposed CPG models that fulfill a task
similar to our driving unit. It is alternatively possible that the
one-dimensional task is achieved by a parallel combination of a
CPG and reflex arcs that are both entrained by the timing signal
and converge onto or prior to the motoneurons. The CNS may
tune the relative contribution of our proposed reflex arc and a
parallel CPG according to a secondary task. For example, in the
beginning of a periodic movement, the reflex arc may be more
active in order to react to unforeseen perturbations. When the
periodic movement remains unperturbed for a longer period of
time, the contribution of the CPGmay increase. The serotonergic
feedback network acts on the motorneurons and could thus
adjust the relative strength of the motor signal without affecting
the driving unit itself.

3.2. Biological Considerations
3.2.1. From Joint to Muscular Level
Our neural controller design acts on a joint level due to its
origin in robotics control theory. In animals, proprioceptive
input originates from individual muscles, and the motor signal
also exerts force on a muscular level. We assume that in the
CNS the neural implementation of our controller would adjust
weights of individual muscles and not joints. If two muscles of
the control loop need to equally assist in a given movement to
tune it to yield high energy efficiency, e.g., because the joints
that they actuate are equally important for a given movement,
they would be assigned similar weights. Antagonistic muscles
would be assigned weights of opposite sign. In our simulations,
weights are adjusted according to sensory signals representing
joint deflections. Corresponding signals on a muscular level,
which would represent muscle length, may originate in type II
nerve fibers.

3.2.2. Model Validity
Although the CNS may use different mechanisms for the
implementation of our proposed control algorithm, our neural
models are based on substantiated experimental observations.

Our sub-network for input weighting is based on the finding
that proprioceptive nerve fibers from leg muscles converge in
the spinal cord (Jankowska, 1992), and that the stimulation of
individual fibers in decerebrate cats can change the timing of all
muscles involved in a movement (Whelan et al., 1995a; Hiebert
et al., 1996; Rossignol et al., 2006). Circuits underlying this
behavior seem to reside fully in the spinal cord (Conway et al.,
1987; Hiebert et al., 1996). The efficacy of fibers from individual
muscles to cause entrainment undergoes use-dependent plastic

changes. The efficacy of the fibers positively corresponds to the
level of their participation in the entrainment (Whelan et al.,
1995b). This agrees with Oja’s rule, which underlies our controller
design. We suggest to link these findings with STDP, which
has been reported in the spinal cord of animals at various
ages (Kim et al., 2003; Schouenborg, 2004; Nishimura et al.,
2013).

Our hypothesis about the serotonergic sub-network
performing output weighting is comprised of a motor feedback
loop via the raphe obscurus, pallidus and potentially medianus.
We propose this feedback loop in Section 1 based on a large
range of experimental evidence (Veasey et al., 1995; Bennett
et al., 1998; Hultborn, 1999; Jacobs et al., 2002; Heckman et al.,
2008; p. 46f). Using theoretical considerations, we demonstrate
that serotonin dynamics can be approximated by Equation
(5) and show that this equation is equivalent to Oja’s rule
under physiologically reasonable conditions. Therefore, it is
plausible that 5-HT dynamics extract the dominant principle
component of sensory input onto serotonergic neurons. Our
simulations emphasize that 5-HT produces enhancement of the
motoneuron output along the dominant principal component
of the movement. In agreement with our simulation results,
the time scale of motoneuron excitability following raphe
stimulation is of the order of several seconds (Perrier and
Delgado-Lezama, 2005).

The precision of sensory input to the raphe nuclei and
serotonergic output onto motoneurons is a matter of current
debates (Hyngstrom et al., 2007; Heckman et al., 2008; Johnson
and Heckman, 2014). Our proposed serotonergic network would
require the topography of the feedback arc to be at least joint-
specific. This is reasonable for somatosensory input to the
raphe nuclei obscurus, pallidus and medianus, since it has a
delay of about 20ms (Springfield and Moolenaar, 1983). Such a
short delay favors a neural pathway with few synapses, maybe
bypassing the cerebellum as has previously been described for
somatosensory input to other brain stem nuclei (Landgren and
Silfvenius, 1971; Johansson and Silfvenius, 1977). There are
different indications for topography in spinal projections of the
raphe nucleus (Skagerberg and Bjorklund, 1985; Bacon et al.,
1990; Cope, 2001; Brumley et al., 2007; Perrier et al., 2013;
p. 53). Sufficient topographic precision is plausible; whereas other
raphe nuclei project to areas throughout the whole brain and
release serotonin in a paracrine manner, projections from the
considered raphe nuclei project primarily to the spinal cord
(Jacobs et al., 2002; Nieuwenhuys et al., 2007, p. 896) and form
well-defined synaptic connections onmotoneurons (Perrier et al.,
2013).

Furthermore, experiments on the level of neural networks
agree with our hypothesis for the functional consequence of
serotonergic modulation of motoneuron excitability. Cats show
walking patterns which lack refinement after their spinal cord
is transected, but not if only influence from the cerebral cortex
is cut off (MacKay-Lyons, 2002). The lack of cortical influence
in humans was shown for reflex modulation during explosive
movements, i.e., those that benefit from the elastic dynamics,
in contrast to precision tasks (Shemmell et al., 2009). Our
proposed algorithm observes arbitrary movements and tunes
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inter-muscular coordination accordingly. In Section 3.2.1, we
suggest that the PCA algorithm of our basic controller principle
would assign weights of opposite sign to antagonistic muscles.
The antagonistic muscles would be excited with a phase shift
of 180◦. In biological terms, this means that the motor signal
of these two muscles (measured by EMG) would become anti-
correlated over time. Our hypothesis suggests that blockade
of 5-HT2 receptors, which are assumed to be responsible
for enhanced motoneuron excitability upon 5-HT application
(Sławińska et al., 2014), will disrupt this tuning. Pearlstein et al.
(2005) observed exactly this behavior in rats when measuring
the ventral root activity of antagonistic muscles acting on the
same limb. Upon addition of a 5-HT2 antagonist, the cyclic
movement continued while the correlation coefficient of motor
signals in the ventral roots of antagonistic muscles changed
highly significantly from a negative to a positive value (Pearlstein
et al., 2005, Figure 5).

3.2.3. Movement Initiation
Since our controller design represents a reflex arc, it can only
shape an ongoing but not initiate a new periodic movement.
In our simulations, the mechanical systems move because they
start from an imbalanced initial position. In nature, the CNS
must initiate the movement with an intrinsically produced motor
signal that is sent to all motor neurons. In our simulations, the
relative strength of the first motor signals produced by the reflex
arc are randomly chosen. Therefore, a motor signal that initiates
the periodic movement does not need to be specifically tuned,
either. It is sufficient to send an appropriately strongmotor signal
to all joints involved in the movement. This motor signal may
originate in cortical areas. A CPG that may functionally replace
or support the reflex interneurons at intermediate spinal levels,
as proposed in Section 3.1.3, is an alternative explanation for
movement initiation.

3.3. Implications for Research
Our proposed neural sub-networks link different experimental
findings into a coherent framework. Their validation would
require to show that the repeated passive movement of a single
joint increases the motoneuron excitability of corresponding
muscles exclusively. The change in excitability must be due to
5-HT.

Our simulation results show that the presented concept of an
adaptive coordinate transformation between joint and controller
space is a promising hypothesis for neural calculations.While our
sub-networks are plausible, we must emphasize that alternative
neural implementations of our algorithm may exist and we
encourage other ideas for neural interpretations. The controller
design provides experimenters with guidelines for a neural circuit
to search for. In the following, we provide a check list of
characteristics that circuits must provide in order to tune periodic
movements according to our algorithm. The circuits must

• adjust motor output for the whole limb during fast periodic
movements based on proprioceptive signals.

• scale the output of motor signals to individual motoneuron
pools. The relative strength of muscles must be amplified

when the joint they act on shows larger deflections during the
movement.

• average sensory input representing joint deflections on a time
scale of seconds. This time scale must be sufficiently fast to
react to environmental changes, but significantly longer than
the cycle duration of the movement to prevent substantial
variations during the cycle.

• include a function that keeps the strength amplification
bounded. In addition, the mechanism itself must not alter
relative amplifications between the muscles.

• not alter the frequency of the motor signal.

As discussed in Section 3.1.1, adjustment of the input
transformation is not strictly necessary, but advantageous
from viewpoint of convergence to energy-efficient fast periodic
movements. A circuit that implements the input transformation
must

• receive sensory information from several joints that converge
onto a single functional unit. This unit must influence muscles
in the whole limb.

• entrain the output frequency of this driving unit to
proprioceptive signals. Hereby, the relative entrainment
efficacy of a signal must be amplified when the corresponding
joint shows larger deflections during the movement.

• change the relative efficacy of a signal based on the sensory
information about the joint deflections as averaged on a time
scale of at least seconds. This lower boundary on the time scale
is in contrast e.g., to the typically short time scale of influences
by a single ionotropic input. It prevents substantial variations
of the weights during the movement cycle. As discussed in
Section 3.1.1, there is no strict upper boundary for this time
scale.

• include a mechanism that keeps the efficacy bounded, i.e.,
prevent runaway behavior. The mechanism must not alter the
relative efficacy between the muscles.

In contrast to these requirements on the sensory input and
motor output stage of the spinal cord, our algorithm and
the proposed neural implementations place minimal restriction
on circuits generating the ionotropic motor signal of a whole
limb. Our controller design provides a driving circuit with
an entrainment signal that is continuously optimized for local
eigenmodes of the controlled mechanical system under changing
environmental and biomechanical conditions. Similarly, it
achieves correct inter-joint coordination of the motor output.
Since the eigenmode is determined by the mechanical system,
our controller effectively adjusts movements to biomechanical
and environmental properties. As discussed in Section 3.1.3, our
proposed controller and network may thus effectively simplify
the dynamical interplay of CPGs and reflexes in explosive
periodic movements to a one-dimensional problem.

Our results emphasize the benefits of control strategies
for bio-mimicking robotic systems derived by engineering
considerations, which can be well verified experimentally.
We suggest that neuroscientific research can use these
strategies as source for promising hypothesis about neural
calculations.
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4. MATERIAL AND METHODS

We test our proposed neural implementation of the discussed
controller using three different systems of increasing complexity.
In the beginning, we model the neural network in a simple feed-
forward simulation to test its ability to extract the dominant
principal component of the movement. Using the feedback of
a simple, analytically solvable, mechanical system, we test the
network’s ability to induce stable energy-efficient movement.
Finally, we demonstrate that the neural network is able to control
a more realistic mechanical model of a leg with two joints that
provides sensory feedback.

4.1. Neuron Models
Wemodel spiking neural networks, in which cells are represented
either by Poisson or leaky integrate-and-fire (LIF) neurons. In
every time step dt, the probability for a Poisson neuron to fire
is given by a Poisson distribution with mean ν(t)dt, where ν(t)
represents the instantaneous firing rate. The spike train of neuron
n is described by Sn(t) =

∑

k

δ(t − tkn), where t
k
n are the spiking

times and δ denotes the delta distribution.
Where not otherwise stated, differential equations describing

LIF neurons are taken from Zenke et al. (2013). Constants that
have been changed in comparison to their paper are given in
Table 1. Each LIF neuron has an associated membrane voltage
Un which changes as

τm
dUn

dt
= (Urest − Un) + gexcn (t)(Uexc − Un)

+ ginhn (t)(U inh − Un), (35)

with membrane time scale τm and membrane conductances gx.
As soon as the voltage crosses the threshold ϑ rest, a spike is
triggered and Un is reset to Urest. Our model deviates in the
form of the subsequent refractory period. Zenke et al. (2013)
implemented the refractory period by a time-dependent spiking

TABLE 1 | Parameters of the neuron models and the structure of the

neural network.

Feed-Forward Feedback

Simple Complex

τthr 5 ms 5 ms 5 ms

nsens 1 290 130

ninh 0 0 100

ntim 0 1 6

msens / 10 Hz m−1 9 Hz rad−1

pcon 1 1 0.7

wext / 0.1 0.1

νext / 3 Hz 3 Hz

τdel,STDP 0 ms 0 ms 30 ms

τdel,NM 0 ms 0 ms 200 ms

The feedback model is subdivided according to the simple and complex mechanical

system that it controls. We state only those parameters that deviate from the original

implementation as described by Zenke et al. (2013).

threshold following a neural spike. This implementation does not
consider the effect of channel inactivation on the time course
of the membrane voltage, and hence its primary function is to
delay the next spike. We implement a refractory period by fixing
the membrane voltage of the neuron to its resting level for a
time period τthr. Our approach more closely models the absolute
refractory time. It introduces a delay of same time scale between
two spikes and therefore has the same functional consequence.
However, it saves computational power, since the membrane
and synaptic dynamics do not need to be updated during the
refractory period.

The synaptic conductances of neuron n are updated following
a spike of the upstream neuronsm according to

gn(t) =
1

2

(

g
ampa
n (t)+ gnmda

n (t)
)

, (36)

where

dg
ampa
n

dt
= −

gampa

τ ampa
+
∑

m

wSTDP,mnSm (37)

dgnmda
n

dt
= −

gnmda
n

τnmda
+

g
ampa
n

τnmda
. (38)

The weight of the synapse connecting neuron m to n is given
by wSTDP,mn. The time evolution of conductances differentiates
between a component due to AMPA and NMDA to account
for different time constants of the corresponding channels. We
modified Equation (37) to align units.

4.2. Plasticity
We also adapt our plasticity model from Zenke et al. (2013), who
described a triplet-based STDP model based on experimental
observations performed by Pfister and Gerstner (2006) and
Sjöström et al. (2001). Zenke et al. defined synaptic traces zslown ,
z−n , and z+n of neuron n by

dzxn
dt

= −
zxn
τ x

+ Sn(t). (39)

with time constants τ slow, τ−, and τ−, respectively. Synaptic
weights change according to

dwSTDP,nm

dt
= η

(

A+z+n (t)z
slow
m (t − ǫ)Sm(t)− A−z−(t)Sn(t)

)

+1wscal,nm(t), (40)

where ǫ is a small time constant and 1wscal,nm a homeostatic
weight change as described below. Zenke et al. introduced the
learning rate η as conversion factor between their plasticitymodel
and the true biological scale, which we set to unity to match
model and biological scale. They additionally scaled the rate of
weight change by the initial synaptic weights. Since we consider
this to be an arbitrary choice, we omit the factor. Additionally,
we decrease the amplitude of long term potentiation (LTP), A+,
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and long term depression (LTD),A−, by two orders of magnitude
(cf. Table 2). Due to the high firing rates of our neural network,
we found a fast convergence of weights to their final values
within tens of seconds up to minutes. Such a fast convergence
would be advantageous for our consideration (cf. Section 3.1.1).
However, measurements by Nishimura et al. (2013) in behaving
monkeys suggest that STDP in vivo is more likely to act on a
time scale of hours, which we account for by the decrease in
amplitude. Weights in our model are altered following both pre-
and postsynaptic spikes and weights of sensory neurons from
joint i are initialized to wSTDP,in,0.

To introduce stability, we use synaptic scaling as homeostatic
mechanism as described by Zenke et al. (2013), who adapted it
from van Rossum et al. (2000). Scaling adjusts Equation (40) by

1wscal,nm(t) =
1

τsνtar

(

νtar −

(

ν̄n

ν2tar

))

, (41)

where τs is a time constant, νtar the target firing rate, and ν̄n the
average firing rate of the postsynaptic neuron n as represented by
the low-pass-filtered spike train to arrive at

τrs
dν̄n
dt

= −ν̄n + Sn(t). (42)

4.3. Neuromodulation
The motoneuron pool innvervating joint i starts with a
serotonergic concentration of [5-HT]i,0. Upon spiking of
a raphe neuron, a fixed amount of 5-HT is released into
the corresponding motoneuron pool, which subsequently
diminishes according to Michaelis-Menten kinetics. The
resulting concentration in motoneuron pool i due to the
corresponding neurons n is described by

d[5-HT]i
dt

= cser
∑

n

Sn(t)−
vmax

km
[5-HT]i

+ 1
, (43)

as derived in Section 2.2.2. Since we use spike-based neural
networks, the firing rate in Equation (8) is replaced with the
spike train. The serotonin concentration increases proportionally

TABLE 2 | Parameters of the synaptic plasticity model.

Feed-Forward Feedback

Simple Complex

wSTDP,1,0 0.5 0.7 1

wSTDP,2,0 0.5 0.4 1

A+ 6.5d-5 6.5d-5 6.5d-5

A− 1.1d-5 1.1d-5 1.1d-5

τs 50 s 50 s 15,000 s

τrs 5 s 5 s 300 s

νtar 8 Hz 30 Hz 15 Hz

The feedback model is subdivided according to the simple and complex mechanical

system that it controls. We state only those parameters that deviate from the original

implementation as described by Zenke et al. (2013).

to the firing rate. Hence, it can be approximated that each
spike releases the same quantity of serotonin. We choose vmax

according to Hentall et al. (2006) and km as the smallest
value suggested by the literature (Molodtsova, 1983; Katz and
Kimelberg, 1985; Verleysdonk et al., 2004; Best et al., 2010). We
set cser appropriately to yield [5-HT] between 0.01 and 0.1µM
(Hentall et al., 2006) (cf. Table 3).

4.4. Neural Network
As mentioned, we test our neural network in three simulations.
The computational implementation of the neural network differs
for each. We use a simple computational neural model for the
feed-forward simulation. A more detailed second model is used
as controller for the two mechanical systems in the second and
third (feedback) simulations.

4.4.1. Simulation 1: Feed-Forward
The feed-forward network receives sensory input from two
sensory Poisson neurons. They fire with mean firing rates that
show a sinusoidal oscillation along a dominant eigenmode a plus
a small sinusoidal component from a minor eigenmode,

(

νϕ,1(t)
νϕ,2(t)

)

= 40Hz[

(

a1
a2

)

sin(2π t)+

(

0.05
0.05

)

sin(8π t)

+

(

n(σ = 0.1)
n(σ = 0.1)

)

]. (44)

The last term represents Gaussian noise with zero mean and
standard deviation σ . Negative firing rates are considered as zero.
These presynaptic neurons are connected via plastic synapses to
a third postsynaptic Poisson neuron that fires with a rate of

νpost =
∑

i

wSTDP,iνϕ,i. (45)

The neuromodulator system consists of two serotonergic Poisson
neurons that fire according to Equation (44) and release 5-HT
into two separate motoneuron pools i.

4.4.2. Simulation 2 and 3: Feedback
The feedback neural network controlling the two mechanical
systems is illustrated in Figure 4. It receives input from nsens

TABLE 3 | Parameters of the serotonergic dynamics model.

Feed-Forward Feedback

Simple Complex

[5-HT]1,0 17 nM 50 nM 18 nM

[5-HT]2,0 17 nM 20 nM 6 nM

cser 300 pM 40 pM 5 pM

vmax 0.1 1
s 0.1 1

s 0.1 1
s

km 170 nM 170 nM 170 nM

The feedback model is subdivided according to the simple and complex mechanical

system that it controls.
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Poisson neurons per joint that fire with rates proportionally
related to the respective joint deflection ϕi,

νϕ,i(t) =

{

msensϕi(t) if ϕi(t) > 0

0 otherwise
(46)

Sensory neurons from joint i are randomly connected with a
probability pcon to each of ntim LIF neurons via plastic synapses.
In the network controlling the complex mechanical system, the
information about spikes from the sensory neurons reaches the
LIF neurons with a delay of τdel,STDP. We choose the delay in
agreement with experiments on reflex arcs in the human leg
(Friemert et al., 2005). Additionally, the LIF neurons receive
input from ninh external inhibitory Poisson neurons firing with
a constant rate of νext. The external neurons allowed us to
quickly scale the resting excitability of LIF neurons. This scaling
was required due to the small number of neurons in the
network. The LIF neurons accumulate synaptic input and fire as
described in Section 4.1, which results in adaptation of the plastic
synapses as described in Section 4.2. The spike trains of the LIF
neurons are low-pass-filtered according to Equation (42) with
time constant τf and averaged over the LIF neuron pool. This
instantaneous average firing rate ν̄post is proportionally converted
to a generalized muscle force,

fz(t) = mf ν̄post. (47)

In the mathematical controller algorithm, converged synaptic
input is transformed into an output motor signal by a step
function, Equation (2). The input-output function of the LIF
neurons is a smoothed approximation of this signal. The
neurons are silent for small synaptic input due to the firing
threshold and their firing rates saturate at high input due to
the refractory period. The saturation, together with velocity
dependent damping of themechanical system as described below,
ensures mechanical stability since it prevents possible positive
feedback loops. For intermediate input strengths, the firing rates
increase with synaptic input. The low-pass-filter, Equation (42),
furthermore smooths the firing rate over time.

A number of nser serotonergic Poisson neurons fire with a rate
that is linearly related to the joint coordinates,

νser,i(t) =

{

bser +mserϕi(t) if ϕi(t) > −
bser,1
mser,1

0 otherwise
(48)

Resulting spikes are delayed by τdel,NM in the complex model.
Our proposed serotonergic motor feedback loop has not
been described previously and the signal delay is hence not
experimentally determined. It can be assumed that the function
of the network improves with shorter delays. As a safe estimation,
we choose a relatively long delay which is larger than the
measured delay between proprioceptive input and activity of
serotonergic neurons (Springfield and Moolenaar, 1983) by one
order of magnitude. Each spike increases [5-HT]i according to
Equation (43). The serotonin concentration in the motoneuron

pool of the individual joints amplify the force/torque exerted on
this joint proportionally, i.e., increase it by weights

(

wNM,1(t)
wNM,2(t)

)

= cNM

(

[5-HT]1(t)
[5-HT]2(t)

)

. (49)

The chosen value for cNM guarantees an amplification ranging
between 1 and 3 (Heckman et al., 2008).

4.5. Mechanical Models
We test our neural feedback controller on two mechanical
systems. The first consists of two masses m that represent the
joints and are connected by a spring of stiffness k1 (cf. Figure 5A).
Both masses are connected to muscles via a spring k0. The
muscles exert forces on the masses according to

f (t) = wNM(t)fz(t). (50)

The deflections ϕ ∈ R
2 of the masses represent the joint

coordinates and are measured relative to their resting positions
in the absence of any force. They follow

d2

dt2
ϕ(t) = −

d0

m

d

dt
ϕ(t)−

(

k0+k1
m − k1

m

− k1
m

k0+k1
m

)

ϕ(t)+
1

m
f(t), (51)

where d0 is a damping constant. The solution for constant muscle
force is the sum of two sinusoidal oscillations with eigenvectors
(1, 1) and (−1, 1). Additionally, a small damping term causes
decay of minor eigenmodes. The mechanical parameters have
not been specifically tuned and can be found in Table 4. Zero
positions ϕ = 0 are defined as equilibrium positions. We excite
oscillations by initially deviating the system to ϕ(t = 0s) =

(0m, 0.1m)T . This is a linear combination of the eigenmodes.
Hence, we initially excite both eigenmodes simultaneously.

The second mechanical system consists of a trunk of mass m0

connected to one rod-like thigh of mass m1 and length l via a
rotatory hip joint (cf. Figure 6A). The shank of same mass and
length is connected to the thigh via a rotatory knee joint. The
joint angles define the coordinates ϕ ∈ R

2 and are measured

TABLE 4 | Parameters of the mechanical models.

Simple Complex

τf 100 ms 5 ms

mf 10 mN Hz−1 525 µN m Hz−1

cNM 15/µM 65/µM

mser 9 Hz m−1 1 kHz rad−1

bser 900 mHz 0 Hz

k0 8 N m−1 0.75 N m rad−1

k1 15 N m−1 0.75 N m rad−1

m 500 g m0 500 g

d0 300 mN s m−1 m1 100 g

d0 11,250 µN m s rad−1

d1 11,250 µN m s rad−1

Subdivided into the simple and complex model.
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relative to a fully extended leg. The trunk is constrained to a
one-dimensional vertical jumping movement. We set its zero-
position h = 0 to its height when both hip and knee are fully
extended, i.e., ϕ = 0. Gravity pulls the system down. The joints
are each driven by one motor, which exerts force via a torsional
spring. These springs have a torsion coefficient of k0 and k1 and
an angular damping coefficient of d0 and d1 for the hip and knee
joint, respectively. The equilibrium positions of the springs are
defined by joint angles of ϕ0 = ( 16π, 2

6π)
T . The values of these

parameters, as given in Table 4, are adjusted according to an
existing prototype of a legged robot at our institute. The muscles
exert forces on the joints by stretching the springs. The resulting
torque amounts to

f(t) =

(

k0
k1

)

(

wNM(t)fz(t)− ϕ(t)+ ϕ0

)

−

(

d0
d1

)

d

dt
ϕ(t). (52)

After touch down, contact with the ground is modeled by
forces acting on the contact point of the foot via a compliant
ground model as described by Azad and Featherstone (2010) and
implemented in Spatial_v2 (Featherstone, 2012).

We define the generalized velocity v = ( d
dth,

d
dtϕ)

T . Then, the
movement can be described by

M(ϕ)
d

dt
v+ p(ϕ, v) = f+

∑

k

Jk(h,ϕ)
TFk. (53)

The inertia matrix is denoted by M ∈ R
3×3 and the Coriolis,

centrifugal and gravity forces are summarized by p. The ground
contact wrench Fk is mapped to the generalized forces by the
transposed Jacobianmatrix Jk. To initiate themovement, we drop
the leg from h = 0m, while the joints are at ϕ0.

4.6. Parameters of the Numerical
Simulations
We simulate our network usingMatlab and Simulink. Differential
equations are integrated using simple Euler integration with time
steps of dt = 10−3 s in the feed-forward simulation and 10−4 s
in the simulation comprising the simple mechanical model. To
speed up the complex model, we use dt = 10−4 s only for the
plasticity model and the LIF neurons, 10−3 s for the serotonergic
dynamics, and variable time steps for the mechanical model.

4.7. Analysis of Simulations
4.7.1. Simulation 1: Feed-Forward
We run the feed-forward model for ten different ratios a1

a2
∈

[0.05, 0.95]. Each run takes 60,000 s of simulated time. Synaptic
weights are initiated as described in Table 2 and recorded each
1s during the whole simulation, serotonin concentrations are
initiated as described in Table 3 and monitored in each time step
during the first 500 s. During the last 50 s of the recordings,
we average the ratio both of serotonergic amplification weights,
wNM,1
wNM,2

, and of the synaptic weights,
wSTDP,1
wSTDP,2

, for each ratio
a1
a2

separately. Standard deviations of these values represent
the fluctuation of weight ratios during the 50 s. We fit the
converged ratios wNM,1

wNM,2
and

wSTDP,1
wSTDP,2

vs. a1a2 using a weighted linear

least-square fit.

To verify robustness of our network against noise as stated
in Equation (44), we vary the standard deviation, σ , in 10
logarithmically spaced steps between 10−2 and 100. The trial for
each noise level is analyzed as described in the last paragraph.We
plot the slope and intercept of the linear fit as a function of σ .

In nine additional simulations with random initial weights,
we test the robustness against changes in the initial conditions.
Therefore, we allocate a random weight in the interval [0.1, 1.0]
towSTDP,1 andwNM,1 and another randomweight towSTDP,2 and
wNM,2 in each trial. We run the simulations as described above
and calculate a linear fit for each of these runs. The average and
standard deviation of the slope and intercept are derived over all
of these nine trials plus the initial simulation.

4.7.2. Simulation 2: Feedback, Simple Mechanical

Model
The simulation including the simple mechanical model runs
for 10,000 s of simulated time. Synaptic and neuromodulatory
weights are recorded each 0.1 s only, which is due to
computational restrictions. We average the weight ratios over
the last 50 s of simulated time. Their respective initial values are
stated in Tables 2, 3.

In nine additional trials, we verify the reliability of the results
against changing initial conditions. For this test, we choose
random initial concentrations [5-HT]i,0 ∈ [6nM, 60nM] and
random initial synaptic weights wSTDP,i,0 ∈ [0.8, 1.2] for each
run. We average the ratios of synaptic and neuromodulatory
weights over the last 50s of all ten trials.

4.7.3. Simulation 3: Feedback, Complex Mechanical

Model
We run the simulation of the neural feedback network that
controls the mechanical leg for 10,000s of simulated time.
Synaptic and neuromodulatory weights are recorded each 0.25 s.
Their respective initial values are given in Tables 2, 3. Joint
coordinates and the height of the leg are recorded for the
last 70,000 time steps and for all numerical time steps during
the first 50 s. Sampling of more data was not possible due to
memory restrictions. We average the weight ratios during the
last 50 s.

We would like to verify that the converged weight ratios
maximize the energy efficiency of the movement. Therefore, we
record the Euclidean vector norm of the converged synaptic and
neuromodulatory weight vector of the first trial.We subsequently
implement the other simulations with weight vectors that are
constant over time and share the vector norm with the converged
network. We vary the ratio

wSTDP,1
wSTDP,2

=
wNM,1
wNM,2

between 0.05 and

1.5 in steps of 0.03 and run each simulation for 20 s of simulated
time. In each trial, we average the jump height over the last 20
jumps.

The jump height as function of the weight ratio is taken
as a measure for the energy efficiency of the neural control.
At the peak of the jumping movement, the energy within the
system is given by the potential energy. Since most of the mass
of the system is confined to the trunk, the potential energy is
approximately linearly related to the jump height. In the original
bang-bang controller, switching of the bang-bang controller leads
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to a force fi = wiĉf in joint i (Equation 3). The energy inserted
into the system in each jump is thus given by

E =
1

2
ĉ2f

(

w2
1

k0
+

w2
2

k1

)

. (54)

We choose equal spring constants k0 = k1 for the joints. Hence,
the Euclidean vector norm of the weight vector determines the
energy inserted into the system. Since we fix the vector norm for
each trial, the energy inserted into the system is constant. We
define energy efficiency as energy within the system divided by
the energy that we insert. According to our argumentation, jump
height can thus be assumed to represent this quantity.

In addition, we once again perform nine trials with randomly
initialized weights. The range of initial weights is the same as for
the simple mechanical system described in the last section. We
average the weight ratio over the last 50 s of these nine trials plus
the trial described in the beginning of the present section.

To show if our neural network extracts the dominant principle
component of their sensory input, we use the same ten trials with
different initial conditions. As described above, we record the
joint coordinates for each time step during the first 50 s of the
runs. Using the Matlab-function pca, we extract the dominant
principle component of the joint coordinates for each trial.

In a final simulation, we elucidate how the network size
influences fluctuations in the jump height of the leg.We therefore
increase the number of sensory input neurons to the LIF neurons
by a factor of 3 and the number of LIF neurons by 2. We
decrease the initial synaptic weights and the amplification factor
of neuromodulation, cNM, by the same respective factors and
run the simulation for 50 s. During the last 20 s, we calculate
the standard deviation of the jump height over all jumps as a
measure for the fluctuation level. Using a one-sided F-test, we
compare this value to the standard deviation obtained for the
initial simulation. The p-value indicates whether increasing the
network size decreases fluctuations in the jumping trajectories.
We use three approaches to test the assumptions underlying an
F-test: First, we visually inspect a plot of jump height vs. time
for obvious outliers for the small and large network individually.

Second, we test for a significant correlation between jump height
and time. Finally, we test either sample for normality using a Lillie
test.
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Video 1 | An illustration of the controller behavior. We show here the

controlled movement of our complex mechanical system, i.e., a trunk with an

attached leg. An included graph shows how the serotonin concentration within the

motoneuron pools of muscles innervating joint 1 (hip) and 2 (knee) converge with

time. We created the animation using Showmotion, which is a part of Spatial_v2

Featherstone (2012).

Presentation 1 | Proof of the convergence of our simplified version of

Oja’s rule, Equation (5).
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