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One of the crucial problems found in the scientific community of assistive/rehabilita-
tion robotics nowadays is that of automatically detecting what a disabled subject (for 
instance, a hand amputee) wants to do, exactly when she wants to do it, and strictly for 
the time she wants to do it. This problem, commonly called “intent detection,” has tradi-
tionally been tackled using surface electromyography, a technique which suffers from a 
number of drawbacks, including the changes in the signal induced by sweat and muscle 
fatigue. With the advent of realistic, physically plausible augmented- and virtual-reality 
environments for rehabilitation, this approach does not suffice anymore. In this paper, 
we explore a novel method to solve the problem, which we call Optical Myography 
(OMG). The idea is to visually inspect the human forearm (or stump) to reconstruct what 
fingers are moving and to what extent. In a psychophysical experiment involving ten 
intact subjects, we used visual fiducial markers (AprilTags) and a standard web camera 
to visualize the deformations of the surface of the forearm, which then were mapped to 
the intended finger motions. As ground truth, a visual stimulus was used, avoiding the 
need for finger sensors (force/position sensors, datagloves, etc.). Two machine-learning 
approaches, a linear and a non-linear one, were comparatively tested in settings of 
increasing realism. The results indicate an average error in the range of 0.05–0.22 (root 
mean square error normalized over the signal range), in line with similar results obtained 
with more mature techniques such as electromyography. If further successfully tested in 
the large, this approach could lead to vision-based intent detection of amputees, with 
the main application of letting such disabled persons dexterously and reliably interact in 
an augmented-/virtual-reality setup.

Keywords: rehabilitation robotics, human–machine interface, hand prostheses, computer vision, myography

1. inTrODUcTiOn

Optical motion tracking and image processing are witnessing an astonishing progress. Cameras offer 
higher and higher resolutions at cheaper and cheaper prices; new kinds of optical sensors appear, 
including structured light and (near-)infrared depth sensors; and computer vision, i.e., advanced 
image processing, offers unheard-of possibilities. We have, nowadays, the concrete chance of build-
ing affordable, integrated systems providing complex virtual worlds, in which a human subject can 
interact essentially without wearing any constraining sensors. Such systems could, in principle, be 
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FigUre 1 | left: the experimental setup, consisting of an off-the-shelf webcam and a rig to which the forearm of a human subject can be fixed. The red arrows 
depict the camera reference frame, in which the marker transformations are calculated. right: data acquisition while the subject follows the stimulus on the monitor.
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bundled in a cheap application to be used at home, either as a 
gaming environment or as a rehabilitation device for the disabled.

In fact, in the field of assistive/rehabilitation robotics, this 
opens up an interesting possibility: that of using optical tracking 
and recognition to reconstruct the intended movements of an 
amputee, just by looking at her stump (intent detection); the idea 
is that of detecting the deformations induced by muscle activity in 
the stump and associate them with the movements the subject tries 
to enforce. This idea is not new; indeed, it has so far been enforced 
using pressure (Phillips and Craelius, 2005; Yungher et al., 2011; 
Castellini and Ravindra, 2014) and tactile sensors (Radmand 
et al., 2014); the advantages of this approach with respect to the 
more traditional methods of intent detection, such as surface 
electromyography (sEMG (Zecca et  al., 2002; Merletti et  al., 
2011)), are that this kind of sensors is usually much cheaper than 
sEMG electrodes and that they enforce a better resilience against 
the typical pitfalls of sEMG, such as muscle fatigue (Yungher 
et al., 2011; Ravindra and Castellini, 2014). Another approach is 
the usage of features extracted from ultrasound images (US) of 
the forearm (Zheng et al., 2006; Castellini et al., 2012; Castellini 
and Sierra González, 2013; Sierra González and Castellini, 2013). 
This approach has the benefit that structural changes of skeletal 
muscles at different depths can be detected. Furthermore, in Ho 
et  al. (2011), a combination of several features, such as depth 
maps and silhouettes, is fused to obtain a robust hand and finger 
tracking algorithm, solving the problem of self-occlusions of the 
fingers. Nevertheless, to the best of our knowledge, there is as yet 
no method to obtain information about the motion of the fingers 
by only using visual information extracted from the forearm. As 
a matter of fact, the human skin provides very little texture and 
is therefore very challenging for state-of-the-art image feature 
detectors/descriptors, such as SIFT (Lowe, 1999) or SURF (Bay 
et al., 2006), to mention two popular ones, which fail when con-
fronted with reliably identifying and tracking landmarks on the 

human skin. On the other hand, artificial fiducial markers, such 
as AprilTags (Olson, 2011), are widely used in, e.g., Augmented 
Reality (Dong et  al., 2013), mobile robotics (Feng and Kamat, 
2012), or even camera calibration (Richardson et al., 2013), and 
proved to be robust and reliable features to track.

Even though attaching markers to the skin is unobtrusive, a 
system detecting the muscle motion directly by observing the 
arm would be attractive. In Liu et al. (2005) and Wu et al. (2012), 
a method to artificially amplify subtle motions in video streams 
is shown. These methods used to be computation intensive and 
therefore only available as offline methods, but recently, a real-time 
application is available (Wadhwa et al., 2014). This method ampli-
fies small motions by a definite factor, but the abovementioned 
problem of identifying and tracking precise features on the arm 
still exists. Using plain optical recognition to track the forearm 
and detect finger movements could, e.g., enforce interaction by an 
amputee in a virtual world, without using any device on the sub-
ject’s body. The usage of human–machine interfaces in virtual-/
augmented-reality scenarios is known to alleviate phantom-limb 
pain and change/improve the phantom feeling (Murray et  al., 
2007; Ortiz-Catalan et al., 2014; Trojan et al., 2014); mismatch 
between motor commands and sensory information in motor-
disabled patients is conjectured to be at the heart of detrimental 
phantom feelings and phantom-limb pain (Flor et al., 1995; Flor 
and Birbaumer, 2000; Diers et al., 2010).

In this paper, we present an initial experiment targeting this 
idea. A standard web camera was placed directly above the fore-
arm of an intact subject, on which 10 AprilTags had been fixed 
(see Figure 1, right). By tracking the positions of the tags and syn-
chronizing their motion to a visual stimulus that was presented to 
the subject, we were able to obtain a set of position measurements, 
some of which would highly correlate to the stimulus itself. We 
then used two standard machine-learning approaches, namely, 
a linear one (Ridge Regression, RR (Hoerl and Kennard, 1970)) 
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and a non-linear one (Ridge Regression plus Random Fourier 
Features, RR-RFF (Rahimi and Recht, 2008b)), to try and map 
the signals extracted from the tags to the stimulus itself. We also 
tested the system in conditions of increasing difficulty: using only 
minimal and maximal activations to predict the intermediate 
finger position values, artificially changing the contrast and lumi-
nosity of the images, blurring them, and limiting the tracking to 
the markers placed on the proximal part of the forearm. In all 
cases, the results are highly promising, showing an average error 
(root square mean error normalized over the signal range) in the 
reconstruction of the finger positions in the range of 0.05–0.22. 
Indeed, this approach also compares favorably with previous 
approaches already used to solve the problem  –  a detailed 
numerical comparative analysis can be found in this work.

This work can be considered the extension of a previous pre-
liminary result presented at ICORR 2015 (Nissler et al., 2015), 
in which a linear machine-learning method is applied. This 
work builds up on this, incorporating a non-linear method and 
comparing both methods with state-of-the-art human–machine 
interfaces as well as testing the robustness of the methods.

2. MaTerials anD MeThODs

2.1. experiment Description
2.1.1. Setup
For the experiments, an off-the-shelf computer (6-GB RAM, 
Intel Xeon 2.8-GHz CPU) and camera (diagonal angle of view 
of 68.5°, fixed focus, resolution of 1280 × 720 pixels, and a frame 
rate of 15  frames/s) are used. In this experiment, we assume a 
fixed relation of the camera to the forearm, which was achieved 
by developing a simple setup (Figure 1, left). It can be adjusted to 
individual subjects and stabilizes the forearm during the experi-
ments with the aid of velcro straps.

The software mainly consists of three components: a three-
dimensional hand model, which is used to display a visual 
stimulus on a computer monitor; a graphical user interface, 
which allows the examiner to set the appropriate parameters for 
the experiments (degrees of freedom, number of repetitions for 
each task, duration of each repetition, and stimulus signal); and 
which connects to the hand model by User Datagram Protocol 
(UDP). Furthermore, it is used to display and save the images 
from the camera and at the same time record the stimulus values 
using a unique identifier for each frame and a time stamp. The 
tag detection software is a C++ version of the original AprilTag 
detection algorithm, as shown in Olson (2011), which offers 
6D feature localization (position and orientation) relative to 
the camera from a single camera image. In Figure 1, right, the 
stimulus hand model is shown on the right, and the graphical 
user interface giving feedback is shown on the left of the com-
puter screen.

2.1.2. Participants
The goal of the experiments was to evaluate the performance of 
the approach achieved by human subjects. Ten healthy human 
subjects, two females and eight males (27.3 ± 5.66 years old, 
mean ± SD) (Table 1), two left-handed and eight right-handed, 

participated. The circumference of the forearm of the subjects 
was measured and averages 25.7 ± 1.7 cm (mean ± SD) (Table 1).  
All subjects were informed, both in writing and orally, about 
the procedure and possible risks. To the best of our knowledge, 
the only possible risk, because of the nature of our experiments, 
is an allergic reaction caused from the contact of the skin with 
the plastic velcro bands or the paper stickers, which were placed 
on the forearm. The experiments were performed according to 
the WMA Declaration of Helsinki, were preliminarily approved 
by the Ethical Committee of our Institution, and all subjects 
gave written informed consent before each experiment began.

2.1.3. Experimental Protocol
Before starting the experiments, the camera was calibrated using 
the Matlab Camera Calibration Toolbox (Bouguet, 2004), in order 
to obtain the intrinsic camera parameters needed for the AprilTag 
localization. This only needs to be done once because of the fixed 
focus of the camera. For the purpose of data acquisition, each 
subject sat on an adjustable office chair, maintaining an upright 
posture. The AprilTag stickers were placed on the ventral side of 
the forearm in a quasi-random alignment, 5 rows with 2 stickers 
per row, trying to cover the camera-visible area of the forearm. 
The forearm was affixed with straps.

Each subject was then asked to move her or his fingers 
according to the movements performed by the 3D hand model 
(Figure 1, right). The 3D hand model movements act as a visual 
stimulus which the subject has to follow as closely as possible. 
Each stimulated movement ranged from a relaxed position to 
a full flexion or rotation through a square–sinusoidal curve. 
The movements instructed were as follows: a complete flexion 
of the thumb around the first axis of the carpometacarpal joint 
(Hollister et al., 1992) and back; a complete flexion of the thumb 
around the second axis and back; a complete flexion of the index 
finger and back; and a complete flexion of the little, ring, and 
middle fingers together and back. These movements are hereafter 
denoted as, in turn, thumb rotation (thumb abduction), thumb 
flexion, index flexion, and combo flexion. Each flexion lasted 
5 s, with 3 s in between for rest. This sequence (a “session”) was 
repeated five times. The whole experiment lasted about 10 min, 
including preparation and briefing of the subject.

2.2. Data Processing and Prediction
2.2.1. Data Preprocessing
After the frames were captured and saved, the AprilTag locations 
in every frame were calculated. This is an offline step, relatively 
time consuming since the frequency of frames processing is 
around 3.5 fps. Taking into account that a dataset is roughly 3500 
frames, tag detection can last up to 20  min. For every dataset, 
the AprilTag detection algorithm produced a file with a frame ID 

TaBle 1 | age and arm circumference of subjects.

average sD Min Max

Age (years) 27.3 5.66 21 42
Arm circumference (cm) 25.7 1.7 23.5 28.5
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FigUre 2 | raw (upper) and filtered (lower) data of the x component (in meters) in the camera reference frame of ten tags for a typical subject.  
The x axis shows the frame number of the video sequence.
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and the corresponding translation of each marker in the camera 
reference frame, expressed in meters or radians (x, y, and z: yaw, 
pitch, and roll). The DC and high-frequency component of each 
signal were removed, and all signals were centered around zero by 
applying a second-order Butterworth bandpass filter (lower cut-
off frequency of 0.01 Hz and higher cutoff frequency of 0.5 Hz). 
Typical data used as input to the regression model before and after 
filtering are shown in Figure 2, each color corresponding to one 
specific tag and coordinate.

NB: Only typical data for one degree of freedom (translation in 
x direction in the camera reference frame) are shown in Figure 2, 
but full six-dimensional data are used as input to the machine-
learning algorithms. Undetected markers were conservatively 
replaced by their last known position. The ground truth was the 
time profile of the visual stimulus that the subject had to follow, 
ranging from 0 (relaxed position) to 1 (full flexion or rotation). 
We intentionally avoided the usage of any ground-truth sensors, 
such as an instrumented glove, in order to keep the setup as light 
as possible. This technique has already successfully been used in 
our previous work (Castellini and Sierra González, 2013).

2.2.2. Regression Model
A map from the AprilTags positions and orientations to the 
visual stimulus (one when activated and zero otherwise) was 
built using a regression model developed in Matlab. We applied 
Ridge Regression (RR) and Ridge Regression with Random Fourier 
Features (RR-RFF) to build the regression models; grid search 
for the optimal values of the hyperparameters (λ in RR, λ and σ 
in RR-RFF) was performed by computing the normalized root 
mean squared error (NRMSE). The mathematical details of the 
two methods are out of scope here; the interested reader should 
refer to Gijsberts et  al. (2014), where both methods were used 
and demonstrated using surface electromyography. Briefly, RR 

(Hoerl and Kennard, 1970) builds a linear map from an input 
space to an output space by evaluating an optimal weight vector 
w minimizing the sum of the Mean Squared Error between the 
predicted and real data and a regularization term: w = arg minw 
(y − Xw)2 + λ||w||2. The optimal weight vector turns out to be 
w = (XTX + λI)−1 XTy, where I is the identical matrix and λ > 0 is 
a regularization coefficient. As opposed to RR, RR-RFF (Rahimi 
and Recht, 2008a,b) is essentially a Least-Squares Support-Vector 
Machine (Boser et al., 1992; Rifkin et al., 2003) in which, instead 
of the classical Gaussian kernel, a finite-dimensional approxima-
tion of it, based upon Fourier coefficients, is used; from another 
point of view, it can be seen as a non-linear, finite-dimensional 
extension to RR. In general, kernelized RR is a regularized least-
squares method, in which the input space is projected onto a 
higher order feature space where linear regression is supposedly 
possible; in the case of RR-RFF, a direct non-linear mapping ϕ can 
be built, such that each input sample can be simply replaced with 
its projection onto the feature space, ϕ(x). The previous equa-
tion can then be rewritten as w = arg minw (y − Φw)2 + λ||w||2, 
and the optimal weights are evaluated as w =  (ΦTΦ + λI)−1ΦTy 
where Φ = ϕ(X). In RR-RFF, we consider a Fourier space with  
frequencies ω  ~  N(0, σ2I) and phases β  ~  U(−π, π), such that 
φ β( ) cos( )x XD= +2 Ω , where D is the dimensionality of feature 
space (set at 500 in our experiments).

2.2.3. Validation
Data obtained from each subject were treated independently. Five 
different ways of testing the approach were considered:

• The 10-fold cross-validation with shuffling using all values. We 
split the whole dataset (using the intermediate values as well) 
in ten equal folds randomly, and we use nine for training and 
one for testing. For each degree of freedom, optimal values of 
the hyperparameters are calculated.
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TaBle 2 | Time for grid search in seconds for all training methods with 
either ridge regression (rr) or ridge regression with random Fourier 
Features (rr-rFF).

rr rr-rFF

10-fold all values 1.76 712

10-fold on/off values 0.80 396

Train on/off, predict intermediate 0.13 49

5-fold all values 0.76 332

5-fold train on/off, predict all 0.48 183
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• The 10-fold cross-validation with shuffling using only on–off 
values. We keep only the frames where the stimulus is acti-
vated, and we split into ten equal folds randomly. We use nine 
for training and one for testing. For each degree of freedom, 
optimal values of the hyperparameters are calculated.

• On–off values for training and then predict the intermediate 
values. We train the system using all the on–off values and we 
test by predicting all the intermediate values, while applying 
a grid search for λ and σ without cross-validation, due to the 
limited size of our dataset.

• The 5-fold cross-validation without shuffling using all values. We 
split the whole dataset (using the intermediate values as well) 
in five equal consecutive folds without shuffling, so as to have 
one repetition in each fold. We then train with 4 repetitions 
and test with one. For each degree of freedom, optimal values 
of the hyperparameters are calculated.

• The 5-fold cross-validation without shuffling training with 
on–off and predict all values. We split the whole dataset (using 
the intermediate values as well) in 5 equal consecutive folds 
without shuffling. We train with the on–off values of 4 repe-
titions and test with all values of the 5th repetition. For each 
degree of freedom, optimal values of the hyperparameters are 
calculated.

In order to estimate the performance, the results are post-
processed by evaluating certain metrics, i.e., the mean values over 
the subjects and the SDs.

A grid search is then conducted to determine the optimal 
values for the hyperparameters of each method. In RR, we just 
need to optimize the regularization term λ, and for that purpose, 
we create a logarithmic space of ten equally spaced exponents 
which range between [−6, 0]. In RR-RFF, a grid search in order 
to optimize both SD σ and the regularization term λ is performed. 
The space for the grid search is a combination of the ten exponents 
of the logarithmic space of λ, as calculated in Ridge Regression, 
with ten equally spaced exponents for σ in the interval [–3, 3]. 
This makes a grid of one hundred different pair combinations. 
The spaces were chosen after several trials with bigger intervals. 
The metric used for the optimization is the minimization of the 
normalized root mean squared error, which in our case is the 
same as the root mean squared error since the output varies 
between [0, 1]. The search is performed in combination with the 
cross-validation methods presented above. The result is one opti-
mal value per degree of freedom for each subject in each method. 
The time needed to complete the grid search for all degrees of 
freedom per subject in each method is presented in Table 2. RR, 
as expected, is much faster than RR-RFF since the evaluation is 

performed for ten different values instead of one hundred of the 
latter. Another remark one can make for the time performance of 
the five different learning methods is that the train on/off, predict 
intermediate is more efficient, which is also anticipated taking 
into consideration that it is the only method that does not use 
cross-validation. Thus, the optimal values are calculated after ten 
(in RR) or one hundred (in RR-RFF) evaluations in contrast to the 
others, where fifty and five hundred (5-fold cross-validation) or 
one hundred and one thousand (10-fold cross-validation) evalu-
ations are needed, respectively.

3. resUlTs

3.1. Parameter Optimization
As described in the previous section, optimal values for each 
degree of freedom and each subject individually were determined. 
In RR, little or no difference in the hyperparameter λ can be found 
when using 10-fold cross-validation either with all or only the 
on–off values. In these two methods, λ can be set at 10−6 for all 
degrees of freedom and all subjects. Unfortunately, this is not the 
case for the other methods, for which values vary for each degree 
of freedom. Mean values can deviate up to ±102 (index flexion in 
train on–off, predict intermediate) in those cases. In RR-RFF, all 
optimal mean values for λ fluctuate around 10−2.5. However, this 
does not allow us to set λ at a specific value, as the SD is much 
higher. On the other hand, most optimal values for σ are centered 
around 100.5, with a small SD of about ±100.5.

3.2. accuracy
Figures  3A,B depict the errors of each method in both linear 
and non-linear regression. Starting with Ridge Regression 
errors (Figure 3A), 10-fold cross-validation shows the best per-
formance. In the worst-case scenario when training with on–off 
and predicting the intermediate values, the mean errors range 
from 0.15 to 0.2, showing the worst performance. Side by side, 
5-fold cross-validation seems to have lower accuracy than 10-fold 
cross-validation, with mean errors varying from 0.11 to 0.2. In 
methods where the system is asked to predict the output of a 
“black box,” such as the repetition-wise cross-validations or the 
training with on–off and predicting the intermediate values, the 
errors get almost doubled. Overall, the non-linear method does 
not particularly improve over the linear one. Student’s two-tailed 
t-test was applied to analyze the significance of the results; the 
corresponding p-values are always larger than 0.05, showing that 
no statistically significant difference exists between the perfor-
mance of Ridge Regression and Ridge Regression with Random 
Fourier Features. Furthermore, the adequate accuracy of the 
linear method favors the assumption that there is a quasi-linear 
relationship of the tags movement to the finger movements.

3.3. comparison with Previous Methods
The accuracy obtained by OMG can be directly compared 
with previous results obtained in a recent paper (Ravindra 
and Castellini, 2014), in which three further human–machine 
interfaces, namely, electromyography (EMG), ultrasound (US), 
and force myography (FSR), were compared in an experiment 
very similar to the one described here. Single-finger flexions 
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following a visual stimulus were stimulated from ten intact 
subjects, while gathering fingertip forces. Five repetitions at 80% 
of the maximal force and five repetitions at 15% of the maximal 
force were performed. The method followed for data handling 
and splitting is the same as our 5-fold training with on/off values, 
predict all method, while for the target output, either the data 
from a ground-truth force sensor or the visual stimulus (as is 
the case here) were used. Performance was evaluated using 
the Normalized Root Mean Square Error as well. In order to 
compare the accuracy of OMG to those obtained in that paper, 
we compare the 5-fold training with on/off values, predicting all 
in both linear and non-linear regression to the results obtained 
in the published work from the five repetitions at 80% of the 
maximal force when stimulus values are used. Additionally, the 
errors from little, ring, and middle fingers are averaged to imitate 
the combination flexion followed in our work. For the sake of 
completeness, the errors of both FSR iterations, attached with the 
EMG as well as with the US are presented (called FSR 1 and FSR 
2), although no statistically significant difference was observed (a 
Student two-tailed t-test obtains p-values always larger than 0.05 
except for one single case).

Figure 4 illustrates the NRMSE for every degree of freedom 
averaged over ten subjects. Please note that the error bars in 
Figure 4 show the SEM instead of the SD used before. This was 
done to be congruent with the results presented in Ravindra and 
Castellini (2014).

3.3.1. Significance Analysis
A standard Student’s two-tailed t-test was evaluated comparing 
our methods to previously examined methods. The significance 
analysis for the Ridge Regression method (OMG with RR) shows 
a very significant difference compared to Ultrasound methods 
(p-value almost 0 for all degrees of freedom). For OMG thumb 
flexion, a strong significant difference is found as well compared 
to FSR methods. A less strong, but still significant, difference is 
observed when index flexion with OMG is compared to EMG 
methods and when combo flexion with OMG is compared to both 
EMG and FSR methods. All other methods show no significant 
difference (p-value is always >0.05).

Analyzing OMG with RR-RFF, again, the difference to the 
US method is very strong for all degrees of freedom. The index 
flexion in OMG compared to EMG method shows as well a very 
high difference, OMG thumb flexion compared to EMG and FSR 
2 methods a still significant difference. In all other cases, there is 
no significant difference.

3.4. robustness evaluation
3.4.1. Robustness to Optical Disturbances
In order to evaluate the robustness of the marker detection to 
changing light conditions, the images of one example subject were 
artificially blurred, the contrast was decreased, and the bright-
ness was changed (to overexposed and underexposed images). 
Figure 5 shows the resulting errors for the Ridge Regression case, 
namely, in Figure  5A, the effect of a Gaussian blurring with a 
kernel of size up to 29 pixels, in Figure 5B, the effect of a contrast 
change, and in Figure 5C, the effects of a change in overall bright-
ness. The change in contrast α and brightness β is defined by

 
f x y f x y( ) ( ), = × , +α β  (1)

where f x y( , )  stands for the changed brightness or contrast value 
of the original value and f(x, y) for the pixel at position (x, y).

FigUre 4 | comparison of OMg with ridge regression (OMG_RR) 
and OMg with ridge regression and random Fourier Features 
(OMG_RFF) with previous methods, electromyography (EMG), force 
myography (FSR), and ultrasound (US), showing the mean errors and 
the seM of every method.

A B

FigUre 3 | Mean values of normalized root mean squared errors and sD for ridge regression (a) and ridge regression with random Fourier 
features (B). Numbers 1–5 on the x-axes are in turn 10-fold cross-validation with shuffling using all values, 10-fold cross-validation with shuffling using only on–off 
values, On–off values for training and then predict the intermediate values, 5-fold cross-validation without shuffling using all values, and 5-fold cross-validation 
without shuffling training with on–off and predict all values.
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As one can see, an increasing blur negatively affects the quality 
of the tag detection, thereby increasing the overall error of the 
regression. On the other hand, the accuracy is not significantly 
affected by changing brightness or contrast; in some cases, a lower 
brightness even decreases the error, which means that the original 
captured images were probably slightly overexposed.

3.4.2. Robustness to Reduced Number of Markers
We further analyzed the performance of the system in a closer-
to-application scenario, namely, by considering as input data 
only the six most proximal markers. Here as well, we use 5-fold 
cross-validation without shuffling and training with only on–off 
values, which is the most realistic validation method with respect 
to the case of amputees. Figure 6 shows that the error does not 
significantly increase, even in this setting.

4. DiscUssiOn

In this paper, we have the feasibility in principle of a novel human–
machine interface for the disabled, aimed at non-invasively and 
cheaply detecting the intent of an upper limb injured patient. We 
call the technique optical myography (OMG). We have focused 

on the case of hand amputees, showing that finger movements can 
effectively be reconstructed by looking at the human forearm. As 
ground truth, we used goal-directed stimuli, potentially enforc-
ing the feeling of agency (Limerick et al., 2014) and embodiment 
(Marasco et al., 2011) enjoyed by the subject, making the experi-
ence smoother, easier, and more exciting, and probably leading 
to better results especially as the training goes on along time. It is 
a well-known fact that human subjects can adapt to an environ-
ment or task that is novel from the sensorimotor point of view 
(Botvinick and Cohen, 1998; Marini et al., 2014), and this is an 
effect which should definitely be exploited when it comes to this 
kind of interfaces.

As far as the accuracy of OMG is concerned, the 10-fold cross-
validation method shows the best performance as expected, since 
random shuffling of data ensures that each machine-learning 
method is trained on a uniformly sampled probability distribu-
tion; in practical terms, in this scenario, the system always has 
information about the behavior of the tag movements throughout 
the whole experiment, and hyperparameters can be optimized 
more efficiently using data samples from all sessions. In the 
worst-case scenario when training with on–off and predicting 
the intermediate values, the mean errors range from 0.15 to 0.2, 

FigUre 6 | comparison of OMg with ridge regression and OMg with ridge regression and random Fourier Features for intact subjects (rr_full, 
rr-rFF_full) to simulated amputees by trimming the dataset (rr_amp, rr-rFF_amp).

A B C

FigUre 5 | error (nrMse) for one example subject using ridge regression with 5-fold cross-validation, training with on/off values and testing with 
all values, for (a) increasing blur, where the number on the x-axis corresponds to the kernel size of the gaussian blurring; (B) decreasing contrast 
(α), where 1 is full contrast and 0.2 corresponds to 20% of the original contrast value; and (c) changing brightness (β), where 0 corresponds to the 
original brightness value, negative values correspond to underexposure of the image and positive values to overexposure.
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showing the worst performance. The 5-fold cross-validation seems 
to have lower accuracy than 10-fold cross-validation with mean 
errors varying from 0.11 to 0.2 –  this is probably due to slight 
movements of the forearms and to the different behavior among 
repetitions. Thumb rotation seems to have the worst performance, 
which can be explained by the fact that the muscles responsible 
for this movement are either deep in the forearm or intrinsic in 
the hand. On the other hand, index and combo flexion, activated 
by the M. Flexor Digitorum Superficialis and Profundus, can be 
easily detected. The 10-fold cross-validation method shows the 
best performance as expected, since random shuffling of data 
ensures that each machine-learning method is trained on a 
uniformly sampled probability distribution; in practical terms, 
in this scenario, the system always has information about the 
 behavior of the tag movements throughout the whole experi-
ment, and hyperparameters can be optimized more efficiently 
using data samples from all sessions. In the worst-case scenario 
when training with on–off and predicting the intermediate values, 
the mean errors range from 0.15 to 0.2, showing the worst perfor-
mance. The 5-fold cross-validation seems to have lower accuracy 
than 10-fold cross-validation, with mean errors varying from 0.11 
to 0.2 – this is probably due to slight movements of the forearms 
or to the different behavior among repetitions. Thumb rotation 
seems to have the worst performance, which can be explained by 
the fact that the muscles responsible for this movement are either 
deep in the forearm or intrinsic in the hand. On the other hand, 
index and combo flexion, activated by the M. Flexor Digitorum 
Superficialis and Profundus, can be easily detected. Overall, even 
in the worst-case scenario (recall Figure  3), OMG is able to 
predict the finger positions with an average error in the range 
of 0.05–0.25. Comparison with accuracy results obtained in a 
similar experiment (Ravindra and Castellini, 2014) reveals that 
the performance obtained by our visual tracking system is in the 
same range of sEMG and Force-Sensing Resistors, that is, the two 
interfaces tested in that work. Other similar works, in which EMG 
is used for regression on finger position (for example, Ameri et al. 
(2014)), show similar values of accuracy. We further tested our 
method for robustness against optical disturbances (changes in 
focus, luminosity, and contrast), showing that the system is robust 
to such problems. A final test for robustness was conducted by 
considering only the AprilTags fixed on the proximal section of 
the forearm, a situation which “simulates an amputee,” since such 
patients would be able to only wear some of the markers depend-
ing on the length of the stump. In this case, too, our system 
provides a reasonable accuracy.

With respect to competitor techniques (pressure, EMG, and 
so on), OMG has the advantage of needing almost no subject 
preparation, i.e., no sensors need to be placed and kept fixed on 
the subject’s forearm – it is only necessary to place markers on it. 
Moreover, the hardware used to gather the images is very cheap, 
consisting of only a consumer-grade webcam and an off-the-shelf 
computer running the software obtaining the camera in out and 
parallel giving feedback to the user. The fact that we used the 
AprilTags ensures a certain stability with respect to illumination 
changes and motion blur. Notice that here too, as is customary 
in similar literature, we explicitly did not target any anatomical 
features of the forearm but rather placed the AprilTags uniformly 

on the forearm skin. This is motivated by the fact that it consider-
ably simplifies the preparation of the subject, and at the same time 
makes the approach more realistic, since the anatomy of stumps 
varies across subjects due to the kind of amputation.

Among the main disadvantages of OMG in the present setting: 
first and foremost, the fact that (in our experiment) the subject’s 
forearm was fixed in a determined position, in order to avoid fore-
arm movement which was not correlated to the muscle bulgings. 
Second, the algorithm detecting the positions of the AprilTags 
cannot yet run online, because the camera frequency is higher 
than the frequency of the detection. This could be solved in future 
trials by parallelization. Third, in the current setup, the tags were 
placed only on the ventral side of the forearm due to the simplic-
ity of the setup; this is probably the reason why the hardest degree 
of motion was the thumb rotation, whereby the corresponding 
muscles are at the posterior side, like mentioned before (Section 
3.2). In general, occlusion of the tags, as in every marker-based 
visual tracking problem, is going to be one of the main hurdles 
and will need to be solved. It would be thus favorable to have 
a markerless system. However, as mentioned before, the human 
skin offers only very little texture making feature detectors for 
natural landmarks very problematic. Another approach would be 
a depth sensor, such as the Microsoft Kinect, which is right now 
prevented by the low precision these sensors offer.

Interestingly, it seems (recall Figure  3) that RR performs 
comparably, if not even a little better, to RR-RFF, which builds 
a non-linear model, indicating that, to some extent and for the 
experiment considered, there is a linear relationship between 
the positions of the AprilTags on the forearm and the position of 
the fingers. This could be related, although we cannot claim any 
result about this, to the linearity of the relationship between finger 
positions and ultrasound images shown in Castellini and Passig 
(2011). Although ultrasound images are of a completely different 
nature, they still visualize (inner) structures whose positions are 
directly related to muscle deformations, which in turn related 
to the intended level of activation. Clearly, that the relationship 
we have tried to model here is linear comes as a big advantage, 
given that RR is one of the simplest and fastest forms of machine 
learning available. Notice, however, that linearity probably holds 
only as long as, as it is the case here, the forearm stands in a fixed 
position with respect to the camera. This is the subject of future 
research.

As we envisioned in the Introduction, we plan to extend 
this work to realize a motion tracking system for an amputee’s 
stump, able to reconstruct the missing limb in a virtual world. 
Clearly, the challenge is formidable. First, one must track in real 
time the stump itself, at least finding its position and orientation; 
second, a set of markers or natural landmarks must be identified 
and tracked on the stump, and their relative positions compared 
to detect the deformations of the stump. This also depends on 
the degree of residual activity still found in the subject’s residual 
muscles. The results presented in this paper at least show that in 
principle this might suffice to perform the desired reconstruction.

Several assumptions made in this paper have to be addressed 
in order to make the usage in a Virtual-Reality scenario feasible. 
In our proof of concept, the forearm of the subjects is fixed. In 
order to provide a realistic AR/VR impression to the user, the 
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prototypical setup shown in this paper has to be extended to a 
mobile system, which can be worn by an amputee. The hardware, 
computational power, and high-resolution camera needed are 
nowadays available in wearable devices. Even superior would be 
not attaching the camera to the arm, but looking at the arm “freely,” 
with a static camera and the arm moving in front of it. The benefits 
of such an approach are obvious, but the challenges are huge: for 
example, such a system would need a robust motion detection 
and tracking for the arm itself, because the assumption we take 
in our prototype, that the camera is fixed relative to the forearm, 
no longer applies. However, such a system would not only allow 
a hand amputee to interact naturally in a VR but also VR therapy 
would be possible, such as the treatment of phantom pain.

Another interesting experiment would be to compare our 
approach with hand motion ground truth obtained by a hand 
tracking system like shown in Sharp et  al. (2015) or the com-
mercially available Leap Motion system (www.leapmotion.com), 
which offers a relatively high precision and robustness (Weichert 
et al., 2013).
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