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One of the big challenges in robotics today is to learn from human users that are inex-
perienced in interacting with robots but yet are often used to teach skills flexibly to other 
humans and to children in particular. A potential route toward natural and efficient learning 
and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of 
humans and the underlying interactional mechanisms. In this perspective, this article dis-
cusses the importance of pragmatic frames as flexible interaction protocols that provide 
important contextual cues to enable learners to infer new action or language skills and 
teachers to convey these cues. After defining and discussing the concept of pragmatic 
frames, grounded in decades of research in developmental psychology, we study a 
selection of HRI work in the literature which has focused on learning–teaching interaction 
and analyze the interactional and learning mechanisms that were used in the light of 
pragmatic frames. This allows us to show that many of the works have already used in 
practice, but not always explicitly, basic elements of the pragmatic frames machinery. 
However, we also show that pragmatic frames have so far been used in a very restricted 
way as compared to how they are used in human–human interaction and argue that this 
has been an obstacle preventing robust natural multi-task learning and teaching in HRI. 
In particular, we explain that two central features of human pragmatic frames, mostly 
absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, 
potentially combined together, to convey and infer multiple kinds of cues; (2) new frames 
can be learnt continually, building on existing ones, and guiding the interaction toward 
higher levels of complexity and expressivity. To conclude, we give an outlook on the 
future research direction describing the relevant key challenges that need to be solved 
for leveraging pragmatic frames for robot learning and teaching.

Keywords: robot learning, robot teaching, human–robot interaction, pragmatic frames, social learning, language 
learning, action learning, cognitive developmental robotics

1. iNTRODUCTiON

Robots have long been predicted to become everyday companions capable to help and assist us in our 
daily tasks. A major challenge to achieve this vision is to enable robots to learn new tasks through 
natural social interaction with (non-expert) humans. So far, however, robots are designed for specific 
purposes and can therefore barely handle the diversity of learning and teaching cues used by humans 
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BOx 1 | Conceptual definitions.

This box explains the definition of relevant terms frequently used throughout 
this paper. It is useful to understand and clarify better the concept of pragma-
tic frames (which can appear rather vague) as the basis of our investigations. 
The definitions are adapted from Rohlfing et al. (2016).

Learning/teaching pragmatic frame
A pattern in verbal and non-verbal behavior involving goal-oriented actions  
coordinated with the interaction partner that emerges over recurrent interactions.

Recall the previous example of Bruner’s book-reading frame (Bruner, 
1983), which consists of (1) the parent directing the child’s attention, (2) the 
child paying attention, (3) the parent asking the child for a label, (4) the child 
answering according to her capabilities, and (5) the parent providing feedback 
and (6) the correct label (see Table S5 in Supplementary Material).

A learning/teaching frame like the above involves a teacher explicitly 
teaching a certain content (e.g., a word or an action) to the learner.

In contrast, in current human–robot interactions for teaching robot senso-
rimotor skills, pragmatic frames are predefined by the designer or developer 
including a lot of implicit prior knowledge about the action and often involve 
the developer to provide relevant structuring information for the learning robot 
system. As an example, consider the experiment of Calinon et al. (2010) where 
a robot learned through kinesthetic teaching to feed a doll with a spoon. 
In that frame, (1) the robot gazed straight ahead with a spoon in its hand 
and was prepared by preprograming to focus on the trajectory of the arm 
movement and the objects doll and plate: the doll was rigidly attached to the 
robot, adding a link to the robot’s kinematic chain, and it received data from 
an external vision system tracking the marker attached to the plate; (2) the 
experimenter/developer provided the signal for the beginning of the teaching, 
i.e., recording the data; (3) the tutor provided the arm movements through 
kinesthetic teaching; (4) the experimenter ended the recording and started 
the learning process; (5) the robot used the visual input and proprioception 
to derive the position of the landmarks (doll’s mouth, plate) to normalize the 
trajectories with respect to these landmarks; (6) the robot used the normalized 
trajectories to update the parameters of a HMM/GMM model; (7) the experi-
menter started the action execution behavior; and (8) the robot executed the 
action based on the updated model parameters.

Syntax of a teaching/learning pragmatic frame
We call the sequence of verbal and non-verbal actions that characterize the 
appearance of a pragmatic frame the syntax of the pragmatic frame, while 
Bruner refers to it with the term structure of a format (Bruner, 1983). We define 
the syntax as the observable sequence of behaviors constituting the pragmatic 
frame. The syntax contains among others the adequate sensory means, pos-
sible orders of behavioral units, and information about actors with which the 
pragmatic frame is realized. The syntax of a frame is highly conventionalized 
and can thus vary from person to person and from culture to culture. The form 
of the parts that constitute the syntax is variable with respect to the utterances 
and tokens used. Coming back to the book-reading frame described above, 
possible tokens include: X (=label), Its an X, Thats an X, There is an X, etc. (cf., 
Bruner (1983), p. 79); intonation, prosody, pause lengths, etc. Young infants, 
however, are presented with a stable caregiver’s behavior on which they rely. 
In teaching/learning frames, the syntax also specifies the slot for the learning 
content (i.e., where it is in the sequence) and the type of content (e.g., a noun 
is learned or a color is learned). This information about slot and type of learning 
content links the syntax to the meaning of a pragmatic frame.

The syntax of the pragmatic frame in the teaching example by Calinon et al. 
(2010) consists of the observable sequence of behaviors, i.e., the researcher 
activating the start/end button, the tutor providing the action demonstration 
in the correct way (i.e., only providing correct demonstrations and refraining 
from providing negative examples), etc. The slot in this example pertains to the 
movement trajectory relative to the positions of the landmarks.

Meaning of a teaching/learning pragmatic frame
We call the set of effects that a frame has on memory processes1 (i.e., the 
 cognitive operations involved in the frame) when learning new skills (e.g., 

1 We use the terms “cognitive operations” and “memory processes” interchangeably. 
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to acquire sensorimotor and linguistic skills (cf., Amershi et al. 
(2014) for an overview). Unsolved issues are linked to the neces-
sity to know which information to use for learning, how to behave 
naturally in interaction, and how to create common ground1 in 
communication.

Some studies on human development recognize social 
interaction as facilitating learning processes by providing a 
stable structure (see a summary in Rohlfing et al. (2016)). This 
stable structure is described by the concept of pragmatic frames, 
which has been introduced by Bruner (1983) and recently been 
re-introduced by Rohlfing et al. (2016). Accordingly, pragmatic 
frames are recurrent patterns of interaction that are constituted 
by a set of sequentially organized actions (including verbal, non-
verbal, and multimodal behavior which can also occur in parallel) 
and support children in language acquisition (cf., Box 1 on con-
ceptual definitions). Leveraging pragmatic frames for robotics 
might have the potential to overcome the open challenges in 
robot learning of sensorimotor and linguistic skills.

We detail an example of a pragmatic frame in the following. 
Bruner (1983) studied a book-reading frame, where a mother 
reads a picture book to her son in a natural setting. The parent 
first directs the child’s attention to one of the images in the book 
by means of pointing and saying “Look!,” for example. Then, she 
asks what the child sees on the image with a query like “What’s 
that?.” The child then is given the opportunity to respond, but 
irrespective of the performance, the mother will give feedback 
(positive feedback most of the time) by saying, for example, 
“Yes” and gives the child the learning input “It’s a pineapple.” This 
pragmatic frame is about explicit teaching. The mother explicitly 
teaches her son words for the things depicted in the book. The 
word “pineapple” in the previous example is the label the child is 
supposed to learn and thus represents the learning content (i.e., 
the input) of the pragmatic frame. There are many dimensions to 
pragmatic frames, and we will not regard all of them but focus on 
their confined learning scope or more precisely on the extent to 
which the structure of pragmatic frames provides cues to learning 
new words and actions. Frames such as the above thus are the 
kind of teaching/learning frames for acquiring sensorimotor and 
linguistic skills, which form the ground for the starting point 
of our analysis. Other early frames Bruner describes, which are 
not teaching/learning frames, are frames in form of well-known 
games such as, for example, peekaboo or the knee-ride games 
“This is the way the ladies ride” and “Ride a cock horse.” Although 
children clearly can also learn a lot in these pragmatic frames, 
they do not involve a specific learning content such as the label in 
the book-reading frame and involve different cognitive functions.

Pragmatic frames contain roles with tasks that are distributed 
among the interaction partners. For example, for teaching/learn-
ing, an action such as a movement with an object, the teacher’s role 
implies to first get the learner’s attention and to make an object 
visible (by, e.g., pointing to it or lifting it up); the learner’s role, in 
turn, implies to follow the pointing and to perceive the highlighted 

1 In broad accordance with Clark (Clark and Brennan, 1991) by common ground, 
we mean the set of assumptions that the interaction partners share about the ongo-
ing interaction. These assumptions may concern objects and actions as well as the 
interaction partner’s understanding of the situation and the communicative goals. 
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acquiring new words or actions) the meaning of a pragmatic frame. Whereas, 
of course, memory effects are present for both interaction partners, we focus 
on the learner side. These cognitive operations are recruited from memory to 
allow own behaviors to be triggered by conventionalized signals (i.e., individual 
elements of behavioral patterns that are known to the learner from previous 
interactions, already acquired pragmatic frames, or constituents of such) and 
to process the learning content of the pragmatic frame. The meaning in our 
book-reading frame example could be composed of image segmentation, 
classification, association of the label to the internal representation, etc. The 
meaning can be basic and automated in terms of being composed of reactive 
behaviors but bears some dispositions that are co-constructed with the 
partner: For example, when the tutor points to an object, the learner not only 
follows the gesture but also expects a referent (Gliga and Csibra, 2009). The 
meaning thus creates expectation/anticipation toward the learning content at 
the cognitive level.

In the robot teaching example (Calinon et  al., 2010), the cognitive pro-
cesses consist of all the perception algorithms involved in the scenario (i.e., 
the visual tracking of the plate marker, the proprioception of the arm joints, 
etc.) as well as the transfer of the relevant data to the relevant part of the 
learning algorithm, i.e., the arm movement data in the chosen learning space 
dimension to update the HMM parameters and the landmark positions and 
arm movement data to update the GMR model that represents the movement 
constraints and allows for two landmarks.

Learning content of a teaching/learning pragmatic frame
Whereas not every pragmatic frame has a learning content (e.g., a greeting 
frame, peek-a-boo), in the tutoring interaction context, the learning content is 
the information that should be transferred from teacher to learner. It is what 
the teacher wants to teach the learner, as for example, the labels for objects 
in Bruner’s book-reading frame. The learning content in the robot teaching 
example in Calinon et al. (2010) should consist of the information relevant to 
generalizing the demonstrated action (i.e., what is important about the action), 
however, it basically consists of the form of the trajectories from home position 
to landmark 1 and from landmark 1 to landmark 2. In this case, what is learned 
is how the plate landmark can be reached from different starting positions 
and how the mouth landmark can be reached from different plate landmarks. 
It does not contain the implicitly given information about the positions of the 
landmarks and the information about their sequence, as well as the structure 
of the action (i.e., path-oriented action where constraints of landmarks need 
to be met).

Slot in a teaching/learning pragmatic frame
The slot of a pragmatic frame is the place in the interactional sequence 
holding the variable learning content, which the learner can pick up. The 
slot is embedded in a familiar fixed sequence constituting the frame. In the 
example of Bruner’s book-reading frame, which we revisited in the definition 
of a learning/teaching pragmatic frame, the slot is step (6) in the sequence of 
behaviors in which the parent utters the correct label of the relevant image 
(i.e., the learning content). The slot is specified by the syntax of the frame, and 
thus, when a pragmatic frame is learned, the slot is learned together with the 
syntax of the frame. In the robot teaching example (Calinon et al., 2010), the 
slot is step (3) of the pragmatic frame described above in the definition of a 
learning/teaching pragmatic frame, in which the user provides the kinesthetic 
demonstrations of arm movements.

Learning scope of a teaching/learning pragmatic frame
Once a frame is established, learning sensorimotor and linguistic skills (e.g., an 
action or word) within this frame does not extend to making sense of a whole 
sequence of observable behavior. Instead, the structure of the pragmatic 
frame constrains the learning hypotheses such that learning is limited to (1) 
the relation of specific observable features within the slot (e.g., the auditory 
information making up the label in the book-reading frame) with specific fea-
tures of the underlying concept (e.g., the visual appearance of a segmented 
object in the area of joint attention, such as the area of the book page the 
mother is pointing to in the book-reading frame) or (2) learning the concept 
that underlies the cognitive operations within a specific frame (e.g., learning 
to identify features regarding the shape of an object vs. features capturing 
attributes such as color). In the robot teaching example, the learning scope 

relates to the generalization of a movement from one landmark to another for 
different positions.

Format
Bruner’s term for pragmatic frames he observed in adult–child interactions 
the “principle vehicle” of the “Language Acquisition Support System” framing 
the interaction such that it helps the child to learn language. He states that 
“A format is a standardized, initially microcosmic interaction pattern between 
an adult and an infant that contains demarcated roles” and over time becomes 
a familiar routine (Bruner (1983), p. 120 f.).

Language game
Pragmatic frames bear resemblance of what Wittgenstein (1953) calls 
“language games [Sprachspiele].” He defines them as protocols or scripts in 
which action and language are interwoven to result in a behavioral disposition 
in the interlocutor. The notion of language games was introduced to the 
field of robotics by Steels (2001) for approaches to language evolution. Pre-
programed interaction protocols were specifically designed to allow robots 
to learn language. According to Steels, a language game is a “routinized 
sequence of interactions between two agents involving a shared situation in 
the world” (Steels and Kaplan (2002), p. 9), promoting grounding by creating a 
context that limits the possible meanings of words (Steels, 2001).
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object and then to follow its movement. The tasks corresponding 
to a role may indicate the target, obstacle, tool, pre-condition, 
post-condition, etc., of the action. Pragmatic frames provide a 
learning environment for the child that is familiar and stable. 
They tend to be instantiated by recurrent presentations bearing 
hardly any variability and can therefore function as guides for 
assessing and identifying what the relevant information for 
learning is. When a child is presented with a familiar frame, the 
processing is facilitated in the sense that in this familiar stable 
interaction pattern, the child can easily participate by predicting 
the next step of interaction and fulfilling his or her role, pick up 
the information that he or she is supposed to learn (i.e., the learn-
ing content), and understand what this information means. For 
the pragmatic frame of picture book reading, this information is 
the only variable part of the frame: what is depicted in the image 
pointed to and the corresponding label. Crucially, even though 
some aspects of pragmatic frames are certainly culturally moti-
vated (Nelson, 2009), in general, they are emergent, such that the 
child negotiates and learns new pragmatic frames, and is able to 
adapt to new forms tailored to her learning progress in repeated 
interaction with the caregiver.

In the light of the findings presented by Rohlfing et al. (2016), 
we propose pragmatic frames to be an efficient tool for robot 
learning language and action from human tutors. Pragmatic 
frames allow teachers and learners to converge on rich contextual 
information about the learning content such that the structure 
of the interaction is actively leveraged for learning sensorimotor 
and linguistic skills (e.g., conveying what type of information is 
to be learned and what this information is), allowing efficient 
and cumulative learning in the long term. The ground for the 
following review is the hypothesis that a robot learner capable of 
handling multiple pragmatic frames and even learn and negotiate 
new ones allows for more flexible and natural interaction, and 
thus is more easily usable by non-expert users. In this work, we 
will use the concept of pragmatic frames as a lens to identify and 
critically analyze the weaknesses of current approaches in robot 
learning from a human teacher (in comparison with natural 
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TaBLe 1 | Basic common pragmatic frames for the category: passive 
learning.

experimenter/
programmer actions

Teaching user 
actions

Robot learner 
actions

Robot 
learning

Frame 1
1. Start 2. Input Learning
3. End

Frame 2
1. Start

2. Perform
3. End

4
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human–human interactions). In addition to our analysis, we will 
outline challenges for future research on creating flexible and 
adaptive interaction systems allowing rich learning and teaching 
with pragmatic frames in human-robot interaction (HRI).

2. Review OF TeaCHiNG/LeaRNiNG 
FRaMeS USeD iN THe ROBOT LeaRNiNG 
iN HRi LiTeRaTURe

The following analyses provide a critical review on pragmatic 
frames present in the current literature on robot learning in inter-
action with a human teacher, their use, and the consequences as 
well as drawbacks tied to the common practice. The review does 
not aim to be a comprehensive one but tries to cover a variety of 
approaches. We are aware that our review comprises approaches 
with a different focus (for example, providing a learning algorithm 
which solves a certain problem) and compares the approaches 
nonetheless aiming to criticize a general issue.

As stated above, pragmatic frames consist of syntax and mean-
ing. Much of the syntax actually describes the interaction between 
the tutor and the learner, i.e., how they coordinate the informa-
tion exchange. In contrast, the meaning refers to the underlying 
cognitive processes which, in robotics, are modeled by machine 
learning approaches. Therefore, to identify the relevant causes 
for the poorness of pragmatic variation in learning approaches, 
we need to look (1) at the interactional characteristics of such 
approaches as well as (2) at the underlying learning algorithms. 
These two aspects open a complex search space. To structure 
this search space and to cover a diversity of works, we set up 
a taxonomy based on the categories developed by two reviews 
of learning approaches, one from an interactional perspective 
(Thomaz and Breazeal, 2006a) and one from an algorithmic per-
spective (Cuayáhuitl, 2015). Based on this taxonomy, we selected 
15 papers from the robotics literature focusing on scenarios in 
which the system is learning from a human teacher who teaches 
the robot new actions or words. We detail the development of 
this taxonomy and the selection of the papers in the following 
Method section.

As we focus only on pragmatic frames for explicit teaching of 
sensory motor skills and linguistic labels, we restrict our overview 
to machine learning approaches, targeting sensorimotor skills 
and linguistic labels. As, certainly, it is possible to learn other 
things such as social cues in pragmatic frames, there exist other 
very important works which we do not analyze (e.g., Boucenna 
et al. (2014a,b), Andry et al. (2001), and Nagai et al. (2003)).

The following questions were central to our analyses: What is 
the structure of interaction? What information is passed? What 
are the consequences for the learning algorithms?

2.1. Method
We began our review leveraging the categories established in 
two relevant works. Thomaz and Breazeal (2006a) categorized 
machine learning approaches from a human–robot interaction 
perspective. The dimensions they propose include implicit vs. 
explicit training (Is the system passively observing the performance 
of a human or is a human teacher teaching the robot?), human 

vs. machine leading the interaction (here, the machine leads in 
approaches of active learning or when employing queries), and 
the dimension of human guidance vs. exploration (human guid-
ance includes learning by demonstration approaches). Cuayáhuitl 
(2015) groups machine learning frameworks into four categories 
based on their algorithmic nature: supervised learning, reinforce-
ment learning, unsupervised learning, and active learning. Our 
choice of papers about teaching of sensorimotor skills and labels 
in interaction represents these categories in a balanced manner. 
As the above categories suggest, in this analysis, we focused not 
only on the technical side but also on the surface structure of 
the human–robot interaction. This surface structure represents 
the syntax of the pragmatic frames used in the paper and will be 
explicitly described and presented in tables. The meaning of the 
pragmatic frames is given by the processing of given information 
and the storage of the learning content. It will be treated by ana-
lyzing the usage of information elements in the pragmatic frame 
(see below) and with the description of the learning algorithm 
and the processing of the learning input.

This review is not only cataloging information from the papers 
but presents new insights, as in the vast majority of works, the 
pragmatic frame is not conceptualized or made explicit.

In the first step, for each work, we determined the focus of 
the approach and what is being learned. We then related it to the 
proposed learning algorithm.

In the second step, we analyzed the works according to the 
observable interactional sequence they presuppose and created 
a table for each approach (Tables 1–4). For this, we analyzed the 
kinds of information passed between interactants (robot, user, 
and experimenter) by identifying common classes of pieces of 
information (e.g., signals for the start and end of an interaction 
or the learning input, prompts to perform the learned task, 
feedback, etc.). We will call these classes information types, which 
do not hold any information on the means or token with which 
their elements are conveyed (i.e., their form) but comprise in part 
syntax and meaning. In Table 5, we provide a complete list of the 
information types that we identified in our analysis.

Our interest lay on the following three properties of given 
information: (1) form (i.e., the surface form of the piece of infor-
mation; e.g., verbal command, gesture), (2) usage (i.e., how the 
information is used; e.g., to advance the sequence, for learning, 
for transparency (cf., Thomaz and Breazeal (2006b))), and (3) 
flexibility (i.e., the degree of flexibility of the passed informa-
tion). The usage of the information relates to the meaning of the 
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TaBLe 4 | Basic common pragmatic frames for the category: active 
learning.

experimenter/
programmer actions

Teaching user 
actions

Robot learner 
actions

Robot 
learning

Frame 1
1. Start 2. Input query

3. Input Learning
4. End

Frame 2
1. Start

2. Perform
3. End

Steps (2) and (3) and learning repeat.

TaBLe 2 | Basic common pragmatic frames for the category: exploration 
learning with initial user demonstration.

experimenter/
programmer actions

Teaching user 
actions

Robot learner 
actions

Robot 
learning

Frame 1
1. Start 2. Input 3. Act Learning
4. End

Frame 2
1. Start

2. Perform
3. End

Step (3) and learning repeat.

TaBLe 3 | Basic common pragmatic frames for the category: exploration 
learning with user refinement.

experimenter/
programmer actions

Teaching user 
actions

Robot learner 
actions

Robot 
learning

Frame 1
1. Start 2. Act

3. Feedback Learning
4. End

Frame 2
1. Start

2. Perform
3. End

Steps (2) and (3) and learning repeat.

TaBLe 5 | The different information types found in the analyzed literature.

information types from human user  
(or experimenter/developer)

information types from 
robot

Start interaction Confirm
End interaction Error
Advance sequence
Direct attention Attention
Start input Act
End input Execute commands
Input
Correct input
Input submit
Prompt input query Input query
Answer input query
Prompt input performance Perform input
Prompt performance Perform
Prompt feedback Prompt feedback
Feedback binary Feedback binary
Feedback correction Feedback correction

5
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pragmatic frame, though it does not describe how the informa-
tion is processed. Regarding the flexibility, information

•	 can be optional, meaning it can be omitted;
•	 can be variable with respect to timing, i.e., when in the 

sequence, it is passed or in which pace, including the number 
of times a certain subsequence is repeated;

•	 can have a variable surface form, including, for example, the 
choice of object;

•	 can be passed simultaneously in a freer back-and-forth; and
•	 might not be specified in the sequence beforehand.

In the tabular representation of pragmatic frames, we filter out 
many of the above properties, such as the usage, and focus on 
the information types and their flexibility (stated in bold in the 
tables) in order to reach a common informational representation 

of the structure of the pragmatic frames. Information types do 
not only concern the syntax of a pragmatic frame but also bridge 
the syntax and meaning, such that the structure we depict in 
the tables represents the surface in syntax and meaning of the 
pragmatic frame, including when the learning mechanisms come 
into play.

Third, we placed a special focus on the identification of the 
implicit knowledge the programmer and experimenter give to the 
robot to make sense of the learning data. This information might 
be hard-coded into the system or conveyed as a predefined signal 
inside the behavior sequence of the pragmatic frame.

For the analysis, we will thus describe the individual works 
using the following keys of analysis which have been detailed 
above:

•	 Focus: the focus of the work describes what the paper is con-
cerned with, briefly summarizing its contents.

•	 HRI category: the paper will be classified along the HRI dimen-
sions established by Thomaz and Breazeal (2006a) (implicit/
explicit training,2 human/machine leading, and human 
guidance/exploration).

•	 Pragmatic frame: the pragmatic frame used in the learning 
interaction will be described together with the form/usage/
flexibility of the information types this pragmatic frame 
encompasses.

•	 Implicit knowledge: further, we detail the implicit knowledge 
given to the robot and the human user and point out what the 
robot actually does not know beforehand.

Whereas, as described in the Introduction, naturally, prag-
matic frames emerge in social interaction, in HRI so far they have 
been most often hard-coded into the system as fixed interaction 

2 As we only consider explicit learning/teaching interactions from the developer’s 
point of view (i.e., the developer/programmer/experimenter intended the interac-
tion to be about learning and designed it accordingly), with this distinction, we 
refer to the teaching user’s intention. Explicit teaching hence relates to the user 
intending to teach the robot an action or word, whereas in implicit teaching, the 
user is not aware of the teaching interaction and, for instance, only provides the 
data for certain movements. 
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protocols. The developed learning algorithms often stand in the 
focus of the research, and thus, the design of the pragmatic frame 
which the respective studies use is adapted directly to the given 
algorithm. Since the learning algorithms are therefore often in the 
center, we will structure our analysis into four categories of learn-
ing which regroup Cuayáhuitl’s categories (Cuayáhuitl, 2015) to 
take the HRI perspective into account:

•	 Passive learning: passive learning refers to the most basic cate-
gory of interaction for machine learning techniques, in which 
the robot passively observes the user’s demonstration for 
learning – as opposed to actively querying the user for infor-
mation. It includes supervised and unsupervised approaches 
with symbolic encoding or encoding at trajectory level and 
interactive programing techniques in which, as opposed to 
the other machine learning techniques, no abstraction or tran-
scription of data into a new code (and thus, no generalization) 
is taking place, but data are merely stored.

•	 Exploration learning: in the exploration category, we mainly 
find reinforcement learning (RL) techniques, which we 
divide into the following two categories: with initial tutor 
demonstration and with tutor refinement. Importantly, these 
are not mutually exclusive, but there are approaches with both 
initialization and refinement from the tutor. These two types of 
approaches are also distinguished for RL in Billard et al. (2008) 
(Figure 59.18), where they are referred to as approaches with 
“Self exploration of the learned skill” and approaches with 
“Refinement of the learned skill through the user’s support,” 
respectively.

•	 With initial tutor demonstration: this category of approaches 
comprises RL approaches that use techniques learning 
from internal reward functions built after observing human 
behavior and other approaches also using the tutor’s demon-
stration as initialization or seed for exploration.

•	 With tutor refinement: this category includes RL approaches 
that do not learn via optimizing a reward function, but the 
rewards/reinforcements are given externally, e.g., from a 
human tutor who is iteratively providing feedback to the 
robot’s actions.

•	 Active learning: the category of active learning refers to 
approaches, in which the robot leads the interaction by query-
ing the user’s input. Of course active learning machine learning 
techniques fall into this category but also techniques that do 
not issue queries based on any algorithms (according to which 
the action of the robot is chosen to, for example, maximize the 
expected information gain from human feedback), such that 
the queries are preprogrammed or simply systematically cover 
all training examples.

There are many dimensions the works could be grouped in; we 
chose the one described above, but they could also be grouped 
along the dimension of flexibility allowed in the used pragmatic 
frame for instance. For each of these categories of approaches, 
we will identify a basic pragmatic frame, which is common to all 
works of the category and is displayed in Tables 1–4. In addition 
to the syntactic elements of information, this basic common 

pragmatic frame depicts when in the interactional pattern learn-
ing is taking place.

2.2. analysis
In the following, we present a range of learning approaches and 
analyze them with respect to the pragmatic frames that they 
implicitly encode and use in their experimental protocols. These 
experimental protocols differ from pragmatic frames occurring 
in natural interactions (1) in that they are predefined (by the pro-
grammer) and not evolved through interaction with the teacher 
and (2) in that they often include an experimenter (often the 
programmer) who provides the learning system with important 
cues such as start and end times for recording the learning data, 
information about unsuccessful teaching trials, etc.

2.2.1. Passive Learning
In this category, we first present works in which users teach the 
robot interactively sequential tasks with symbolic encoding of 
sequences of predefined actions. This can be done through several 
means: verbal commands, a graphical user interface (GUI), and 
kinesthetic teaching. We also consider interactive program-
ing approaches, even though they merely store input without 
abstraction, transcription, or generalization, because from the 
user perspective, the interactions these approaches entail would 
be considered learning/teaching interactions as well. Lallée 
et al. (2010), Saunders et al. (2006), and Nicolescu and Mataric 
(2005) describe respective approaches. Other works we will not 
analyze here that fall into this passive learning category are, for 
example, the works of Kuniyoshi et al. (1994), Voyles and Khosla 
(1998), Ijspeert et al. (2002), Lieberman (2001), and Lauria et al. 
(2002). The work of Petit et al. (2013), where a human user and 
a robot cooperate to carry out tasks as, for example, organizing 
objects into boxes, is similar to the described approaches as well; 
however, it also falls into the active learning category since the 
robot uses queries to actively signal unknown actions to the user. 
Teaching can not only be done via speech but also by imitation 
or kinesthetic teaching. This type of approach could actually be 
considered a form of learning new frames which are a shared 
plan to achieve joint actions, but these learned frames are not 
teaching/learning frames: they are not themselves frames used to 
teach new words or new actions where the structure is providing 
cues to help in the statistical inference.

2.2.1.1. Lallée et al. (2010) (Section 2)
2.2.1.1.1.  Focus. The focus of the work is to teach sequential 
tasks in a natural and intuitive way. The authors present an 
approach they term “Spoken Language Programing,” which uses 
natural language to give commands to a humanoid HRP-2 robot 
in a cooperative construction task with a human at a table. The 
human user and robot have to build a table together. The legs of 
the table are joined with the tabletop using screws. In the pre-
sented approach, no model is built and input is not generalized, 
but a sequence of already known behaviors is remembered for 
repeated execution.

2.2.1.1.2. HRI Category.  Here, training is explicit. The interac-
tion is lead by the human who guides the robot to assist him/her.
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2.2.1.1.3.  Pragmatic Frame. The robot signals the start of the 
interaction with uttering that it is ready (Table S1 in Supplementary 
Material). The user signals the start of the input, the input, and 
the confirmation that the input should be stored by means of a 
sequence of verbal commands. The robot asks to confirm the 
user’s command after every command. The user gives positive or 
negative feedback. On positive feedback, the robot executes the 
respective command and confirms that the sequence can advance. 
On negative feedback, the robot only gives confirmation and the 
user can repeat the command. The stored sequence of actions can 
then be played back. As user and robot are collaboratively work-
ing on a construction task, when there are steps on which the 
robot has to wait for the user to finish his/her action, the sequence 
can be advanced by the user via a “continue” command when the 
action is completed.

Basic example taken from Lallée et al. (2010) (R robot, U user):
R: I am ready.
U: Learn.
R: You said learn? Yes, I’ll start learning now. I am ready.
U: Prepare.
R: You said prepare?
U: Yes.
R: Preparing to grasp. … I am ready.
U: Left open.
R: You said left open?
U: Yes.
R: Opening left hand. … I am ready.
etc.
U: OK.
R: You said OK?
U: Yes.
R: OK we will store this plan. I am ready.

For subsequent performance:
U: Macro.
R: You said macro?
U: Yes.
R: Running the macro. Preparing to grasp. Waiting for your signal.
U: Continue.
etc.
R: In line macro finished. I am ready.

2.2.1.1.4. Implicit Knowledge. The robot is supplied with three 
text files for speech recognition (object names, posture names, 
and behavior names), a set of atomic action primitives, and the 
available control commands. It knows how to parse the input and 
what to do in the sequence. The user knows the robot’s atomic 
action primitives; the control commands; and objects, postures, 
and behaviors. The robot does not know beforehand the sequence 
of basic actions it should perform. Also, it can be taught the cor-
respondence between a label and a perceived object and actions 
additional to the set of basic action primitives, which can be 
hierarchically combined to form new actions.

2.2.1.2. Saunders et al. (2006)
2.2.1.2.1. Focus. This work focuses on an intuitive method to 
construct state/action memory maps in a hierarchical manner 

by “molding” and “scaffolding.” The human user teaches a small 
5-cm diameter Khepera mobile robot with vision sensor and 
gripper in a maze-like environment on an office desk via a 
screen-based GUI. For moving around the environment with 
different objects and containers, the user teaches the robot tasks 
on three levels: (1) sequences of known primitives, (2) tasks 
with a goal state, and (3) behaviors (the two latter depending on 
the environmental state). The user is basically programing the 
robot in an interactive manner by controlling the robot remotely 
using a screen-based GUI. For instance, a behavior the user 
could teach the robot is to move forward, when a light is off and 
backwards when a light is on avoiding obstacles. The resulting 
built task hierarchy of behaviors consisting of tasks, sequences, 
and primitives (tasks consisting of sequences and primitives, 
and sequences consisting of primitives) corresponds to an action 
selection mechanism based on a simple k-nearest neighbor 
approach: when performing what the robot has learned, the 
decision of which action to execute next is based on the robot’s 
current state (IR sensors, distance to light, angle to light, is the 
gripper open?, etc.).

2.2.1.2.2.  HRI Category. Teaching or programing the robot is 
explicit in this work. The user is guiding the robot via the pro-
graming interface and leads the “interaction.”

2.2.1.2.3. Pragmatic Frame. The interaction presupposed in this 
approach is rather unidirectional (Table S2 in Supplementary 
Material). Apart from executing commands given via button 
presses, the robot is not further involved in an interaction. The 
user is operating the robot from the computer (molding), and 
this is a special feature and can modify the training area of the 
robot for a higher information gain (scaffolding). The flexibility 
of information mainly lies in the aspect that, similar to other 
visual programing tools, such as Choregraphe by Aldebaran (Pot 
et al., 2009), the exact program (which parts to implement first 
or how the program is realized) is up to the user. Additionally, 
it is possible to run individual segments of code separately. The 
user thus gives the learning input including when it starts and 
ends, and commands the execution of movements (learned or 
primitives). As there are buttons for every command, the user has 
no flexibility in the form of information except the constellation 
of commands forming the program.

2.2.1.2.4. Implicit Knowledge. The robot has a predefined set of 
action primitives and relevant sensors for the given task environ-
ment. It also knows what each button press from the user interface 
means and the rules for executing the learned actions. The robot 
does not know the program beforehand. The human user should 
know the meaning of buttons and how the robot works. The set of 
robot action primitives and what each level of teaching (sequence, 
task, and behavior) entails should be given to the user. Moreover, 
the fact that the user is programing the robot requires the user to 
come up with a plan for realizing the program whose complexity 
is proportional to the complexity of the task to be taught and 
of the robot. Therefore, the proposed method might be difficult 
for non-expert users to use even if 100% familiar with the robot 
sensors and action capabilities.
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2.2.1.3. Nicolescu and Mataric (2005)
2.2.1.3.1. Focus. The Pioneer 2-DX mobile robot in this work 
is equipped with sonars, laser range finder, a camera, and a grip-
per. It learns representations of high-level sequential navigation/
manipulation tasks in a 5.4  m  ×  6.6  m arena. This is done by 
building a graph-based behavior network from the demonstra-
tions by a human user with a head-set for voice recognition who is 
guiding the wheeled robot that follows step-wise through a maze. 
Hereby, sequences of predefined basic behaviors are built. These 
basic behaviors are represented as nodes in the graph. Multiple 
demonstrations can be merged by computing the longest com-
mon subsequence of their nodes.

2.2.1.3.2.  HRI Category. Teaching is explicit in this example. 
The interaction is lead by the user who guides the robot.

2.2.1.3.3.  Pragmatic Frame. The user provides guidance and 
verbal commands bearing some flexibility: the first phase of the 
interaction is the learning phase (Table S3 in Supplementary 
Material). The user signals start and end of the demonstration by 
saying the verbal commands “start” and “end.” He or she walks 
through a maze and gives commands to take or drop objects. 
Optionally, he or she can also give a signal (i.e., say “here”) to 
direct the robot’s attention in order to disambiguate the task. In 
the second phase, during the robot’s performance, the user can 
give corrective feedback online and delete additional or insert 
missing elements of behaviors by saying “bad” or “come … go” 
and showing the behavior that should be inserted. The second 
phase for performing the action presents another separate 
pragmatic frame in which learned knowledge can be altered in 
the communicative cognitive operation of deleting and inserting 
behavior elements. The function of inserting behavior elements 
is equal to the adding knowledge function of the learning frame 
in the first phase. This learning frame thus is embedded in the 
performance frame with its knowledge retrieval communicative 
cognitive function. We would like to remark at this point that 
pragmatic frames can be hierarchically nested and this interac-
tion structure is a simple example of this.

2.2.1.3.4.  Implicit Knowledge. For this task, the robot knows 
beforehand about the predefined set of verbal user commands 
and how to follow the user by detecting legs. It knows the 
sequence underlying the pragmatic frame and how to detect and 
order the basic behaviors. The robot is not aware of the sequence 
of behaviors and the resulting path through the arena. The user 
also is aware of this syntax of the pragmatic frame including the 
rules of each of the two phases. He or she knows the set of robot 
behaviors, the robot’s sensors, and all spoken commands possible 
and their meaning.

Additionally to the above approaches, this category comprises, 
on the one hand, works with classifiers trained on (hand-)labeled 
data provided by the user or experimenter, or works learning 
movements with neural network models trained in a supervised 
manner using a human teacher’s demonstrations (backpropaga-
tion through time) and, on the other hand, works learning from 
unlabeled data, representing movement probabilistically (e.g., 
with GMMs).

The approaches presented by Thomaz and Cakmak (2009) and 
Yamashita and Tani (2008) represent two different supervised 
learning mechanisms.

2.2.1.4. Thomaz and Cakmak (2009)
2.2.1.4.1. Focus. This work presents an interaction for affordance 
learning in which a small humanoid robot torso, Junior, is shown 
different objects by a human user. The authors are interested in 
investigating how humans teach, how the robot can influence the 
teacher, and the resulting impact on machine learning algorithms.

2.2.1.4.2. HRI Categories. With respect to the HRI categories, 
the interaction is led by the human who guides the robot in a 
type of preprogrammed exploration. Teaching is done explicitly 
in this example.

2.2.1.4.3.  Pragmatic Frame. The user presents one object at a 
time and positions it centered in the robot’s field of view (Table 
S4 in Supplementary Material). Once the robot detects the object, 
it performs one of the two predefined actions: single arm swing 
and two arm grasp. If the robot does not recognize any object 
(it is too close or too far), it tilts its neck to the upper limit to 
indicate an error. The user then should reposition the object. 
After the interaction with the user, the affordances are hand-
labeled by the experimenter and support vector machine (SVM) 
classifiers are trained offline. The frame allows flexibility for the 
user who chooses which object to present and how many times. 
Information passed from user to robot (i.e., the positioning of the 
object) is used for learning and information from robot to user 
(i.e., the error indication signal) is used for transparency of the 
robot system.

2.2.1.4.4. Implicit Knowledge. Knowledge which is given to the 
robot implicitly includes to look for predefined objects and how 
to detect/distinguish them (based on color), which action to 
perform, and the sequence of actions in the frame. Additionally, 
the learning algorithm needs tuples [initial object state (dis-
tance; orientation); action; affordance (hand-labeled)] as input. 
The robot thus does not know beforehand how to predict the 
outcome (or rather the object affordance) when a certain action 
is performed given an initial object state. The human user is 
aware of the sequence and rules of the interaction and the robot’s 
behavior (except the neck tilt in case of an input error and how 
to react).

2.2.1.5. Yamashita and Tani (2008)
2.2.1.5.1. Focus. In this work, a small humanoid robot manipu-
lated a 9 cm × 9 cm × 9 cm cubic object on a workbench in front 
of it. It should learn to reproduce five different behaviors (one of 
four different simple object manipulations, such as moving the 
object left and right three times or clapping of the hands) from 
kinesthetic demonstrations. The authors present a neural network 
model for learning whose weights are optimized to represent the 
data by comparing the model output to the goal action shown 
through kinesthetic teaching. The focus of this work lies clearly 
on the modeling technique, whereas the interaction between user 
and robot is disregarded.
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2.2.1.5.2.  Pragmatic Frame. In such an interaction, the sole 
information from the user to the robot would be the kinesthetic 
demonstrations with which the human guides the robot (Table S5 
in Supplementary Material). For each task, the robot is presented 
with demonstrations for five different object positions. The 
experimenter would provide all other information to the robot 
and is leading the interaction. There is thus no flexibility at all in 
any of the information types.

2.2.1.5.3. HRI Category. A hypothetical interaction is character-
ized by human guidance, and the experimenter leads the interac-
tion. This could be called explicit teaching, but users could also 
only provide the training data without having been told and thus 
having the intention to teach.

2.2.1.5.4.  Implicit Knowledge. With respect to implicit knowl-
edge, the robot knows to visually track the object and record 
encoder values for each joint as learning input. It does not know 
the trajectories beforehand and generates a compact quasi-
symbolic representation of data by identifying common parts 
of different task trajectories that are encoded by single neurons. 
Everything else is provided via programing by the experimenter/
programmer. The user here is only providing the input; this is 
rather a batch learning approach feeding pre-recorded input data 
into the system without any interaction.

Calinon et al. (2010), Mühlig et al. (2012), and Akgun et al. (2012) 
present approaches to learning motor skills using probabilistic 
movement representations.

2.2.1.6. Calinon et al. (2010) (Section VI)
2.2.1.6.1. Focus. The authors describe an experiment in which a 
Fujitsu HOAP-3 humanoid robot is kinesthetically taught to feed 
a Robota doll by first bringing a spoon in the robot’s hand to a plate 
with mashed potatoes and then moving it to Robota’s mouth. The 
focus of the work lies in learning a controller with several con-
straints (i.e., multiple landmarks) and the generalization capabil-
ities of the approach. Their learning framework trains a controller 
relative to two landmarks (the plate and the mouth of the doll 
that is linked to the robot’s kinematic model) for reproduction 
of the movement shown in four kinesthetic demonstrations with 
varying positions of the landmarks. The movement is reproduced 
via the combination of hidden Markov models (HMMs) for each 
landmark encoding the relative trajectories and Gaussian mixture 
regression (GMR), such that the robot satisfies the constraints in 
order to reproduce the movement in a new situation (different 
landmark positions or perturbations).

2.2.1.6.2.  HRI Category. The interaction in which the human 
guides the robot is lead by the experimenter. Also for this work, 
this could be called explicit teaching, but users could also only 
provide the training data without having been told and thus hav-
ing the intention to teach.

2.2.1.6.3.  Pragmatic Frame. The start and end of the record-
ing of the movement is given to the robot by the researchers 
(presumably through pressing a button or the like) (Table S6 in 

Supplementary Material). Thus, the components of the inter-
actional sequence employed in this example are the start of the 
movement, leading the arm of the robot through the movement 
(from the home position to landmark 1, plate, to the goal, land-
mark 2, mouth of the doll), and finally the end of the movement. 
The user’s role is solely to provide kinesthetic demonstrations of 
the movement and is not further involved in an interaction. The 
interaction would follow the pragmatic frame shown in Table S6 
in Supplementary Material and bears no flexibility.

2.2.1.6.4. Implicit Information. The robot is given the informa-
tion when the trajectory it should record begins and ends by the 
experimenter. It knows that for learning, it should pay attention 
to the trajectory itself and not its end position or end state, and 
the robot knows that and how it should track the two landmarks 
and how to represent the trajectory. The robot does not know the 
exact trajectory beforehand.

2.2.1.7. Mühlig et al. (2012) and Gienger et al. (2010)
2.2.1.7.1.  Focus. In the work presented in these papers, the 
human tutor is sitting at a table with different objects and dem-
onstrates tasks to a Honda humanoid research robot (e.g., how to 
stack two objects or how to pour a beverage). The robot witnesses 
the demonstrations from a small distance away from the table and 
walks up to the table to perform the movement itself. The authors 
of this work put the emphasis on the interaction between user and 
robot and the generalization capabilities of the learning approach.

2.2.1.7.2. HRI Category. The interaction is led by the human in 
a human guidance imitation learning interaction. In an interac-
tion with users other than the developer/experimenter himself, 
teaching here would be explicit.

2.2.1.7.3.  Pragmatic Frame. In a pick and place scenario, the 
user guides the humanoid robot and provides most information 
to the robot via predefined artificial signals (e.g., lifting one or 
two hands in a fist) upon which the robot signals the receipt of 
information through gaze (Table S7 in Supplementary Material). 
The movements are learned with Gaussian mixture models. In 
this work, the robot detects the start and end of the trajectory 
itself. At first, the robot gazes toward the most salient object. 
The user can direct the robot’s attention to the relevant objects 
by touching them. The user then presents the demonstration of 
the movement. Upon its detected completion, the robot gazes 
at the tutor who then gives a signal to store the demonstration 
by lifting the left hand in a fist. At this point, the robot again 
shifts to a saliency-based gaze while the user moves the objects to 
the robot’s side of the table and lifts either one or both hands to 
prompt performance of the learned movement with one or both 
hands, respectively. At this point, the robot informs the human 
of possible predicted difficulties for carrying out the movement. 
The human in this case either aborts or confirms the execution. 
The robot walks up to the table, grasps the relevant objects, and 
imitates the movement.

2.2.1.7.4.  Implicit Knowledge. Thus, the robot knows before-
hand which objects can be involved in the demonstration and 
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how to detect its start and end. It knows the overall sequence 
with all signals and how to detect them, as well as how to repre-
sent the movements (predefined feature points for each known 
object, choice of task space based on lowest inter-trial variance 
between demonstrations). The robot does not know beforehand 
which objects are involved in the demonstration, what to do with 
them (i.e., the movement trajectory), and if it should reproduce 
the movement with one hand or both hands. The user should 
know the rigid behavior pattern of the pragmatic frame as well 
as all signals.

2.2.1.8. Akgun et al. (2012)
2.2.1.8.1. Focus. The upper torso humanoid robot, Simon, learns 
goal-oriented and means-oriented movements, such as inserting 
a block through a hole, stacking a block on top of another, per-
forming a beckon gesture asking someone to come closer, or rais-
ing the hand, in an unsupervised manner comparing trajectory 
and keyframe kinesthetic demonstrations. We here consider the 
latter as they can be corrected step-wise. In this type of teaching, 
the human user moves the robots arm and picks configurations 
as keyframes by saying “Record frame.” The user in general gives 
commands to the robot via speech.

2.2.1.8.2. HRI Categorization. Concerning the HRI categoriza-
tion, training here is explicit. The interaction is lead by the human 
who guides the robot.

2.2.1.8.3. Pragmatic Frame. Similar to the approach presented 
in Nicolescu and Mataric (2005), in this work, two pragmatic 
frames are involved in the learning/teaching interaction (Table S8 
in Supplementary Material). The first pragmatic frame concerns 
storing the information, and in the second frame, this informa-
tion is accessed and modified via speech signals. “Next frame” 
and “previous frame” let the user navigate through the previous 
demonstration; when saying “modify this frame,” the user can 
move the robot’s arm to a new configuration and thereby modify 
the former frame, add a new frame after the current one with “add 
new frame,” and delete the frame after the current one with “delete 
this frame.” The user can retrieve the resulting demonstration 
with the command “play current demonstration” and if satisfied 
with it, submit it as a new instance to the learning set (command: 
“record this demonstration”). The step-wise correction allows for 
a certain flexibility of demonstration (number and location of 
keyframes, correction). This 2-stage teaching with correction or 
refinement is also possible in other approaches (e.g., Calinon and 
Billard (2007), Lee and Ott (2011), and Kormushev et al. (2011)).

2.2.1.8.4. Implicit Knowledge. Yet, user and robot must know the 
sequence of actions underlying the pragmatic frame as well as the 
predefined verbal commands through which the user provides 
information to the robot. The robot also knows which sensors to 
record and to pay attention to the trajectory, as opposed to the 
end state of the action. The only information that the robot is not 
given beforehand is the exact movement in terms of keyframes. 
Some elements of the interaction are optional, and the decision to 
enter into a certain element is up to the user who can also decide 
how many demonstrations he/she gives.

For these passive learning approaches, comprising the interactive 
programing approaches, the basic common pragmatic frame we 
identified is shown in Table  1. The user provides the learning 
input to the robot, which then learns from the data and is option-
ally performing the learned task.

2.2.2. Exploration Learning with Initial Tutor 
Demonstration
The exploration learning category of approaches comprises 
approaches that use techniques learning with an initial tutor 
demonstration, which we will describe first. Grollman and Billard 
(2011) present an approach (which does not use RL) belonging 
to this category and in principle (Lopes et al., 2007) also falls into 
this category but is a special case such that its frame structure 
rather reflects to be part of the passive learning category, which 
we will detail below. Other works we will not discuss that also 
belong to this category are, for example, Atkeson and Schaal 
(1997) and Smart and Kaelbling (2002).

2.2.2.1. Grollman and Billard (2011)
2.2.2.1.1. Focus. The authors present an approach for the proce-
dural learning of a movement skill. Their system (using a Barrett 
WAM robotic arm) learns from failed kinesthetic demonstrations 
to flip up a styrofoam block to stand on one end on a table or to 
play basket ball with a catapult. Movements are represented with 
GMMs.

2.2.2.1.2. HRI Categories. The authors do not describe an inter-
action with a user or a user study, and therefore, HRI categories 
are difficult to determine. Teaching is not necessarily explicit. In 
any case, the approach is positioned rather on the side of explora-
tion than human guidance.

2.2.2.1.3. Pragmatic Frame. The user only provides two specific 
failed demonstrations (with not enough and too much momen-
tum) to the robot as learning input (Table S9 in Supplementary 
Material). In a hypothetical interaction, the user would not have 
any flexibility to present, as here input demonstrations are specifi-
cally chosen to match the criteria of the learning algorithm. In an 
interaction, this selection step would most likely remain because 
the task is also difficult for humans to perform, and the result is 
not easily controllable. Here, the experimenter is responsible for 
the information of the start and end of the demonstrations and 
their selection and possible preprocessing.

2.2.2.1.4. Implicit Information. The robot knows what the input 
means and also what is important about the movement: in its 
exploration, its movements should agree on start and end posi-
tions of the demonstrations. It should reproduce agreements with 
respect to maximum velocity and timing of the two demonstra-
tions and explore on disagreements. The robot only does not 
know the demonstrations beforehand.

The basic pragmatic frame of exploration learning approaches 
with initial user demonstration is depicted in Table 2.
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2.2.2.2. Lopes et al. (2007)
2.2.2.2.1.  Focus. This work presents a special case for the 
“Exploration learning” category, in which sequential task demon-
strations from a human user are recognized and the task is learned 
based on an object affordance-based world model. Without 
interaction with a user, the robot first learns affordances with 
Bayesian networks providing it with the world dynamics of the 
setup. Second, the user demonstrations are interpreted in terms 
of the robot’s own action repertoire and thus can be reproduced 
by extracting the reward function via Bayesian inverse reinforce-
ment learning and computing the optimal policy. Importantly, in 
this example, due to the known world model, the robot does not 
explore in order to obtain the optimal policy after having learned 
the reward function. Instead, the optimal policy is computed.

2.2.2.2.2. HRI Category. The training in this example could be 
implicit or explicit as the robot only passively observes the user’s 
demonstrations. Therefore, no real interaction is taking place.

2.2.2.2.3. Pragmatic Frame. The robot platform BALTAZAR, a 
torso with one arm, first learns the affordances of three type of 
objects (i.e., large balls, small balls, and boxes) by exploration with 
the three actions it has in its repertoire (i.e., grasping, tapping, and 
touching) (Table S10 in Supplementary Material). The user comes 
into play after this and demonstrates what to do in a “recycling 
game” in which objects of different size, shape, and color have 
to be separated with different actions: boxes should be dropped 
into a container, small balls should be tapped off the table, and 
the top of large balls should be touched whereupon the ball is 
removed from the table by the experimenter. The workspace of 
the robot consists of two positions (left and right), at which each 
action can be performed. The user provides demonstrations with 
actions for all possible states of the state-space (16 states equal to 
the number of possible combinations of objects at the two posi-
tions plus one additional state for when the robot’s actions fail). 
The system is able to cope with a certain degree of incompleteness 
and inaccurateness of the demonstrations. The robot classifies the 
actions of a demonstration according to the observed effects, cor-
responding to the known affordances (i.e., the before built simple 
world model), learns a reward function (with which an optimal 
policy is computed using the learned world model), and performs 
the actions itself when presented with the respective initial state.

2.2.2.2.4.  Implicit Knowledge. The robot has three available 
action primitives: it knows the features according to which to 
classify the objects and how to describe the effects of actions on 
the objects (velocity, contact, object-hand distance). The  affor-
dances are not known beforehand but are learned with about 250 
trials of acting on one of the objects (Montesano et  al., 2007). 
The order of objects and the number of trials for each of them 
is determined by the experimenter. For the second part of the 
work, the robot does not know the rules of the recycling game 
beforehand (i.e., it does not have the reward function or optimal 
policy). The human user is presented with each initial state by 
the experimenter and performs according to the policy of the 
recycling task.

2.2.3. Exploration Learning with User Refinement
In this part, we present exploration learning approaches, where 
the actions of the robot are iteratively refined with the user’s input 
(e.g., feedback or guidance). Kaplan et  al. (2002), Grizou et  al. 
(2013, 2014), and Steels and Kaplan (2002) present respective 
approaches but also the approaches described, for instance, in 
Blumberg et al. (2002), Lockerd and Breazeal (2004), Isbell et al. 
(2001), and Kuhlmann et al. (2004) fall into this category.

2.2.3.1. Kaplan et al. (2002)
2.2.3.1.1.  Focus. The authors implement a technique used 
to train dogs called clicker training to teach the AIBO robot 
sequences of actions, as moving in a clock-wise circle, for exam-
ple. Defining reinforcement signals for the robot, the user gives 
feedback as positive reward after an observed correct action. No 
reward function is defined in this technique, which is a form of 
shaping (Saksida et al., 1997).

2.2.3.1.2. HRI Category. Thus, the human leads the interaction 
in explicit training, which incorporates both human guidance 
and robot exploration.

2.2.3.1.3. Pragmatic Frame. In the first phase, the user teaches 
a secondary reinforcer by presenting it in conjunction with a 
previously defined positive signal as a primary reinforcer (Table 
S11 in Supplementary Material). After having witnessed these 
two reinforcers together many times, the robot has learned and 
confirms the secondary reinforcer. In the second phase then, the 
robot shows an exploratory behavior based on a control architec-
ture. The user gives positive feedback in form of the secondary 
reinforcer upon a correct action the robot performs until the 
robot can put together the whole desired target sequence. This 
is confirmed by the user with the primary reinforcer and a label 
is presented to name the learned sequence. The robot confirms 
the storage of the label. Then, the robot is able to perform the 
learned sequence and if no positive feedback is provided can 
alter this sequence slightly in another exploration loop. To sum-
marize, apart from the explorative actions, the robot gives signals 
to the user in order to confirm the secondary reinforcer and the 
receipt of the input in form of a label for the learned sequence 
(wagging its tail or blinking its eyes). The confirmation signals 
serve as transparency device of the system, but the work does 
not detail what is the user’s role in case of an error situation in 
which this confirmation signal is absent (if the robot for instance 
fails to detect the input). Without confirmation signal for the 
secondary reinforcer, the robot behaves according to the absence 
of a secondary reinforcer which means to the robot that it is not 
getting closer to the behavioral goal, which is used by the robot 
to redirect its exploration in other directions. Thus, the previous 
behaviors might have to be repeated by the user. The exact form 
of the secondary reinforcer is up to the user (possibilities range 
from choosing a visual stimulus to choosing a verbal command). 
The user also chooses the label of the target sequence.

2.2.3.1.4. Implicit Knowledge. The robot is looking for a prede-
fined primary reinforcer and knows from preprogrammed rules 
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how to detect the secondary reinforcer (within 5  s before the 
primary reinforcer, 30 times). It is given all verbal commands, 
the pre-programed high-level behaviors, the exploration rules, as 
well as the behavior sequence of the pragmatic frame. It does not 
know beforehand the form of the secondary reinforcer and what 
the task is. The user is aware of the possible primary reinforcers 
which are chosen by the experimenters; he or she knows how 
clicker training works and the exact sequence of the pragmatic 
frame, the verbal command for starting the exploration (“try”) 
and the transparency signals.

2.2.3.2. Grizou et al. (2013, 2014)
2.2.3.2.1. Focus. The authors take the first step to provide the 
user with more flexibility. The two papers present two different 
scenarios, in which a sequential task and at the same time a 
feedback-to-meaning mapping is learned. In the first paper, a 
robotic arm with a gripper learns how to stack 3 blocks in towers 
of up to 2 blocks onto 4 possible positions in a pick and place 
scenario. The second paper presents a simulation experiment 
using EEG data of brain signals elicited by either correct or erro-
neous assessments used as binary feedback. An agent that can 
perform the five different actions of moving in either direction 
and staying at the current position learns which position is the 
target is should reach in a 5 × 5 grid world with 25 discrete posi-
tions and respective 25 possible tasks. In each of the scenarios, 
the user gives feedback or instructions for each move the learner 
makes. Technically, the authors represent the task with Markov 
decision processes. They define a pseudo-likelihood function, 
computing the likelihood that the system’s prediction about what 
the meaning of the feedback signals is according to a certain task 
hypothesis, is equal to what the classifier trained on the signal-
meaning pairs will predict for a new situation.

2.2.3.2.2.  HRI Category. In this explicit teaching interaction 
between the robot system and the user, the human provides 
feedback to the exploration of the robot (when providing binary 
yes or no feedback), but he/she can also provide input in form of 
guidance signals (e.g., up, down, left, right, no move) upon which 
the robot acts. Again, the human guides the robot in interaction 
which involves either the user leading by providing guidance sig-
nals dependent on the robot’s state or the user providing feedback 
for the robot’s exploration (the robot leads).

2.2.3.2.3. Pragmatic Frame. The form of the verbal commands 
which represent the feedback or guidance signals can be chosen 
by the user (Table S12 in Supplementary Material). This approach 
is special in the sense that part of the pragmatic frame is learned. 
The system does not know which signal from the user corresponds 
to which given meaning. We think that this mapping is part of the 
pragmatic frame itself. Thus, this approach is the sole example 
among the presented papers, where part of the pragmatic frame 
is learned.

2.2.3.2.4.  Implicit Knowledge. The robot and user know the 
feedback signal features, which actions the robot can choose, 
the set of possible tasks, the set of meanings, and the sequence 

of actions of the interaction (especially the timing). The robot 
does not know beforehand the mapping of feedback and guidance 
signals to their meanings, and it does not know the task in terms 
of which it is the goal position.

2.2.3.3. Steels and Kaplan (2002)
2.2.3.3.1.  Focus. Whereas in the previously described work, 
the exact words used to teach the robot could be variable (open-
ended variability with the limit being detection capabilities), the 
authors of this work allow for a certain variability in the dialog 
surface structure of how the learning input is provided. The task 
the robot AIBO should learn is about image-label associations. 
The authors aim at showing that these can be learned in social 
interaction with a human user under varying lighting conditions.

2.2.3.3.2.  HRI Category. The user leads the interaction and 
guides the robot in acquiring object labels in this explicit learning 
situation.

2.2.3.3.3. Pragmatic Frame. The object (such as a red ball or a 
similar toy) is always presented by the user who can then either 
give directly the label to the robot (“Ball.”), ask the robot to produce 
a label (“What is it?”), or provide either a correct (“Is it … Ball?”) 
or an incorrect label (“Is it  …  Smiley?”) to the robot that can 
then correct the user (“No; ball.”) (Table S13 in Supplementary 
Material). The robot signals attention to the object by looking at 
it and trying to touch it. Then, it produces the learning input (i.e., 
the label) itself in all three possible subsequences (“Ball (?)”) and 
receives a verbal feedback with potential correction from the user 
(“Good.”, “Yes.”, “No; listen; Ball.”), which is used for learning. This 
is another example, where there is not only one pragmatic frame 
used. Whereas the form of the dialog to provide the robot with 
the label implies no difference for the learning mechanism (as 
the association of the produced label with the visual perception 
of the object is strengthened or weakened according to the user’s 
feedback in all cases), from the perspective of communicative 
cognitive functions, the robot either adds knowledge, retrieves 
acquired knowledge from memory, or compares a given label 
with the respective knowledge in memory. Thus, we consider this 
approach to involve three different pragmatic frames.

2.2.3.3.4. Implicit Knowledge. The robot has the implicit knowl-
edge to look for objects and words as input and how to find it: 
the robot is supplied with a lexicon for speech recognition, and it 
knows how to detect three predefined objects. It is also aware of 
the sequence of the pragmatic frame. The robot does not know 
which label corresponds to the objects it detects. The user is 
instructed about the pragmatic frame and which words to use 
(including to keep the input simple and say “Ball” instead of, for 
example, “This is a pretty red ball that is for throwing and dogs 
will catch it.”).

For the pragmatic frames of the presented approaches using 
exploration learning with user refinement, we identified a 
common basis where the user gives feedback (binary feedback 
or guidance signals) on the robot’s exploration from which the 
system learns (see Table 3).
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2.2.4. Active Learning
The active learning category comprises approaches in which 
the robot leads the interaction by querying the user’s input. Of 
course active learning machine learning techniques fall into this 
category but also techniques that do not issue queries based on 
any algorithms.

2.2.4.1. Calinon and Billard (2006)
2.2.4.1.1.  Focus. In this work, communicative gestures are 
learned in a supervised manner through an imitation game. The 
focus lies on speeding up the convergence of the used learning 
algorithms by exploiting social cues from the human teacher. 
The first phase of the interaction consists in a game, in which 
a small Fujitsu HOAP-2 humanoid robot displays different 
pre-programed communicative gestures (such as pointing to an 
object, mutual gaze, or a turn-taking signal) and the user who 
is sitting opposite the robot at a table imitates them. This is the 
actual learning part of the interaction. In the second phase of 
the interaction, the previously learned gestures serve as social 
signals, when the user shows pointing-at-objects gestures to the 
robot that should recognize the target object and subsequently 
point to the same object.

2.2.4.1.2. HRI Category. In this example, the machine leads the 
interaction by acting first and prompting the user to act, even 
though the overall aim is to be able to deal with person specific 
characteristics of gestures. However, the human guides the 
machine in explicit teaching, as there is no exploration involved 
and the human user provides the learning input.

2.2.4.1.3. Pragmatic Frame. In the imitation game, in the first 
phase, the user can decide how often he/she wants to produce 
a certain action (Table S14 in Supplementary Material). In the 
second phase, gaze plays the role of displaying attention to the 
user’s gesture and also functions as a turn-taking cue, prompting 
performance or feedback by mutual gaze. The user can correct the 
robot by showing the previous gesture again.

2.2.4.1.4. Implicit Knowledge.  The implicit knowledge provided 
to the robot comprises the sequence of actions of the pragmatic 
frame, to record data from the X-sens motion sensors with a cor-
respondence of joint angles and robot DOFs, and the gestures and 
their meaning. Additionally, there is a calibration phase prior to 
the experiment, in which object locations are stored and kines-
thetic recordings of the communicative gestures are provided. It 
remains unclear how the robot segments the movement from the 
user recorded with the motion sensors. The robot does not know 
beforehand the way the human executes the gesture. The human 
user must know about his or her role during the phases of the 
interaction and the sequence of the frame together with possible 
(gaze) cues.

2.2.4.2. Cakmak and Thomaz (2012)
2.2.4.2.1. Focus.  In this work, no learning algorithm is involved, 
because the focus lies on determining the human users’ prefer-
ence for robot questions. In theory, the work involves kinesthetic 

trajectory learning of tasks such as pouring cereal into a bowl, 
adding salt to a salad, or pouring soda into a cup.

2.2.4.2.2. HRI Category.  The interaction is led by the machine 
that asks specific pre-scripted questions about the demonstrated 
task and, with respect to this point, controls the interaction. 
The human user gives demonstrations as learning input in explicit 
teaching with which he or she guides the robot.

2.2.4.2.3. Pragmatic Frame.  The user gives two kinesthetic dem-
onstrations of a specific task, including telling the robot verbally 
when a demonstration starts and ends (“New demonstration” and 
“End of demonstration”) (Table S15 in Supplementary Material). 
The robot confirms the commands with speech and head nods. 
It gazes to the object during the demonstration. Again these sig-
nals serve as transparency signals, but the authors do not describe 
what are the options in case of a transparent error. The user then 
asks the robot if it had any questions to which the robot responds 
with one of two pre-scripted queries for each of the demonstrated 
actions: for the task of pouring cereal into a bowl, the robot asks 
a query to determine if a certain way of executing the task is also 
acceptable (tip the box of cereal over too early or approaching the 
bowl from an uncommon direction). For the task of adding salt to 
a salad, the robot asks a query by first creating a new scenario and 
requesting a new demonstration from the teacher (starting from a 
position either slightly outside the expected range or high above 
the bowl). For the task of pouring soda, the robot asks a query 
about a certain feature of the demonstration (such as a certain 
orientation at the start of the movement or the importance of 
the height from which to pour). The user answers the query ver-
bally after which the sequence is advanced through a button press 
by the experimenter. As there is no learning involved, the query 
answer does not have any function and is not used for learning 
or as feedback. In this work, the authors assessed the participants’ 
preference for the type of queries by evaluating the time it took 
participants to answer the query and a questionnaire on the per-
ceived smartness, informativeness, and ease of the question. The 
user’s exact verbal response is not predefined and thus is variable 
in its form, although the modality of response is fixed.

2.2.4.2.4. Implicit Knowledge.  The robot is given the set of pre-
scripted queries (two for each of the three tasks) and the sequence 
of the pragmatic frame according to which it behaves. The user is 
instructed about the sequence of the frame using a video example 
of an interaction involving a similar task. He or she knows the 
possible speech commands with a reminder on the nearby white-
board and if he or she does not know how to respond to certain 
queries, the experimenters would help.

For the active learning approaches, we identified the basic com-
mon pragmatic frame as shown in Table 4. The robot leads and 
asks the user for a certain input which the user provides. The 
robot learns from this and optionally performs the learned task.

2.3. Discussion
The following discussion represents a synthesis of the above 
analyses. In general, for the presented pragmatic frames, we 
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find only little flexibility of information types. The structure of 
the frames is rigid and freedom is not often granted to users as 
deviations most likely cannot be dealt with by the robot system 
and lead to errors. A naive user thus has to be familiar with 
this pre-programed artificial sequence and adeptly perform its 
restricted role without errors. For many of the above papers, 
especially the approaches involving exploration learning 
with initial tutor demonstration and some passive learning 
approaches, the user even assumes a minor role as the input 
producer and no real interaction is established. These works 
do not reveal the situation (including who is performing, 
the detection, segmentation, and even preprocessing of data, 
potential instructions of users, etc.) in which input is collected. 
In most papers, as the focus is another, the programmers 
themselves record and prepare the learning input and feed it 
into the system.

Concerning the usage of information types, in most works, the 
robot performance can be probed but the acquired knowledge 
cannot be modified. Similarly, most signals the robot gives serve 
transparency of system processes, but in most works, these are 
not put to good use as there is no workflow/consequence for the 
user in case of erroneous or missing processing. It seems that 
the programmer or adept experimenter in such a situation must 
abort the interaction and learning process.

All reviewed works have in common that they use predefined 
pragmatic frames with very rigid and mostly artificial structures. 
Grizou et  al. (2013, 2014) present a small exception to this, as 
in their work, a very first step is taken toward learning a small 
part of a pragmatic frame. All works use one (for the cognitive 
communicative function of learning/adding knowledge) or only 
few (for the cognitive communicative functions of learning, and 
retrieving, comparing, or altering the acquired knowledge) prag-
matic frames and are implicitly assuming much prior knowledge 
in robot learner and human teacher. These fixed sequences used 
in the learning approaches presented above imply limits in (a) 
learning capabilities and (b) interaction, which extend to other 
works:

 (a)  Providing this fixed sequence with its matching specifications 
of the learning algorithm (equivalent to artificial memory 
processes) to the robot means specifying the relevant parts for 
learning as implicit knowledge. Thus, learning is restricted to 
some tasks within a specific setting. In the case where multiple 
tasks can be learned in one frame, learning is slowed down 
considerably by statistical inference and could be quicker 
if richer information about the social interaction could be 
exploited (cf., Cederborg and Oudeyer (2013)). Consider 
the example of a common state-of-the-art imitation learning 
approach we presented above: in Calinon et al. (2010), the 
authors describe an experiment in which a humanoid robot 
is taught to feed a doll. The number of pragmatic frames and 
operations is 1 (see Table S6 in Supplementary Material). 
Without specifying the goal and what the intention of the 
tutor is to the robot beforehand, the robot in this example 
would be faced with a combinatorial explosion. The system 
coping with an enormous search space would only be able 
to learn slowly (statistically; distinguishing relevant from 

irrelevant information). Open-ended cumulative learning 
using several frames actively, which conveys different forms 
of information, could accelerate considerably the speed of 
learning.

Hence, a certain structure in interaction seems beneficial, even 
necessary for learning. However, this structure should be flexible, 
and negotiated and learned in interaction with the user, such that 
the system can cope with multiple pragmatic frames to process 
not only one kind of learning input.

 (b)  The sequences also impose heavy constraints to the inter-
action. An untrained, naive user teaching the robot would 
most likely not conform to the constraints given by the 
strictly enforced pragmatic frame, which can even contain 
artificial signals. When teaching a robot, humans intuitively 
try to use a range of different interaction frames (cf., Amershi 
et  al. (2014) for an overview). In the example, some users 
might focus on how to grasp the cutlery and maybe even 
point out some object properties of cutlery and plate. When 
showing the action, they might emphasize the manner of 
the action which is linked to the object used. For instance, a 
spoon transporting a piece of apple needs to be kept straight 
during the motion, whereas when using a fork, this is not 
important. The user might even show the robot a motion 
that s/he deems wrong in order to give a negative example. 
Without the adequate frame, the robot could not learn the 
action from these examples. Thus, the human tutor needs to 
operate within rigid constraints, if a single predefined frame 
is used, and these do not admit of interactive freedom or 
flexibility. Relevantly, artificially designed pragmatic frames 
imply high costs of teaching.

In contrast to the hard-coded pragmatic frames we find in 
the robot learning from a human tutor literature, natural human 
interaction is highly dynamic and flexible, and learning is most 
certainly not limited to only one single task. In such natural, rich 
teaching scenarios, it has been shown that important pragmatic 
structure (pragmatic frames) is provided by the interaction and 
that this emergent structure is presumably indispensable for com-
prehending language (Schumacher, 2014) and action (Koterba 
and Iverson, 2009), as well as for more generalizable learning 
performance (Thom and Sandhofer, 2009).

We here thus make two major points for pragmatic frames in 
natural social interaction. These are stability of interaction on the 
one hand and flexibility of interaction on the other. These two 
benefits seem to be contradictory at first, so we will try to elucidate 
this incoherence. Regarding the stability of interaction, pragmatic 
frames provide a very stable structure with which a learner is 
presented by the teacher enabling the learner to understand the 
situation, his/her own role, and pick up and learn the learning 
content rapidly. However, the structure of pragmatic frames is 
stable only locally in time. If we zoom out with respect to the 
time scale point of view (to, for example, a time frame of 1 year), 
importantly, pragmatic frames emerge and evolve by negotiation 
between the interaction partners. The flexibility of interaction 
thus refers to the ability to learn, use, and develop pragmatic 
frames over time, such that there are multiple pragmatic frames 
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TaBLe 6 | a book-reading frame in adult–child interaction (Bruner, 1983).

Teaching parent actions Child learner actions

Frame 1a
1. Direct attention: optional, form, point and/

or verbal command “Look!”
2. Attention: form, gaze to 

image of joint attention
3. Prompt performance: form, “What’s that?” 4. Act: form, babble strings and 

smiles
5. Binary feedback + input: form, positive 

feedback and label, “Yes, a fish!”
6. Act: form, babble strings and 

smiles
7. Binary feedback: form, positive feedback, 

“Yes”

Frame 1B
1. Direct attention: optional, form, point and/

or verbal command “Look!”
2. Attention: form, gaze to 

image of joint attention
3. Prompt performance: form, “What’s that?” 4. Act: form, lexeme-length 

babble or words
5. Binary feedback: form, positive feedback, 

“Yes”

Frame 1C
1. Direct attention: optional, form point and/

or verbal command “Look!”
2. Attention: form, gaze to 

image of joint attention
3. Prompt performance: form, “What’s that?” 4. Act: form, label, “Fishy”
5. Binary feedback + prompt performance: 

form, positive feedback and label, “Yes, 
and what’s he doing?”

6. Act: form, words

7. Binary feedback: form, “Yes”

The parent decides if and how often steps (4) and (5) of Frame 1A occur. The parent 
decides how often steps (3) and (4) of Frame 1B are repeated. The parent decides how 
often steps (5) and (6) of Frame 1C are repeated.
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for teaching and learning. We aim at showing the flexibility of 
natural pragmatic frames by means of their social emergence with 
presenting the ontogenetic development of a pragmatic frame 
along a child’s age and capabilities. As mentioned earlier, Bruner 
(1983) (p. 78 ff.) analyzed the development of the book-reading 
pragmatic frame in adult–child interaction. In Table 6, we show 
a respective table for this natural human–human interaction, 
created with the same tool of analysis we applied for the robot 
learning literature.

2.3.1. Bruner (1983)
2.3.1.1. Focus
Bruner observed a mother and her son during the natural occur-
rence of (picture) book reading during the child’s second year 
of life.

2.3.1.2. Interaction Category
The interaction is about explicit training and can be lead by both 
the parent and the child. The parent directs the child’s attention, 
but the child can also initiate the interaction by first pointing to 
an image, for example. The parent guides the infant to produce 
an acceptable label.

2.3.1.3. Pragmatic Frame
For the book-reading pragmatic frame, Bruner (1983) (p. 78 ff.) 
identified a set of acceptable tokens for the mother’s utterances 
(Table 6). Similar to our analysis, he also classifies her utterances 

into key utterance types, which we will here present with their most 
frequent tokens (≥10%) (taken from Bruner (1983) (p. 78 ff.)):

•	 Attentional Vocatives, “Look!” (94%);
•	 Queries, “What’s that?” (67%);
•	 Labels, “X (=a stressed label, a noun for a whole object)” 

(42%), “It’s an X” (16%), “That’s an X” (13%);
•	 Feedback, “Yes” (63%), “Yes, I know” (10%).

The most flexibility of form is thus present in the presenta-
tion of the label (i.e., the learning content) and thus in the slot. 
Positive feedback is the common type, and negative feedback with 
or without correction is much less frequently given (only 15% 
of feedback utterances). The child participates with vocalization, 
gesture, smile, eye contact, and search for object. Not surprisingly, 
his participation increases with age and changes as, for example, 
undifferentiated deictics develop to pointing gestures. The ini-
tialization of the interaction can also come from the child who 
points to an image resulting in the omission of the attentional 
vocative the mother usually initiates the interaction with. The 
mother determines how often she will ask for the label, as she 
concludes the interaction when she is satisfied with her son’s 
performance. Importantly, the mother’s and child’s turns appear 
in a sequence and only overlap by accident (about 1% of the time).

Concerning the development of the pragmatic frame, Bruner 
(1983) (p. 124) describes that the mother adjusts the level of vari-
ability and difficulty to her son’s age and capabilities: “The mother 
restricts the task to the degrees of freedom that she believes the 
child can handle, and once he shows signs of doing better than 
that, she raises the level both of her expectancies and of her 
demands on the child.”

At first (Table 6, Frame 1A), the child only produces babble 
strings and smiles for his turn upon which the mother utters 
positive feedback and the correct label.

Then (Table 6, Frame 1B), with the appearance of standard 
lexical labels, she is only satisfied with the child’s answer, when he 
produces a lexeme-length babble. As soon as her son acquired the 
capability to produce words, she instead insists on words.

Another big change happens, when the mother knows that the 
child knows the label she asks him for (Table 6, Frame 1C). Then, 
her intonation pattern in the query (“What’s that?”) switches from 
a rising to a falling intonation. The child then gazes at the mother, 
smiles, and to tease her delays his answer a bit. With her positive 
feedback, she would then elaborate comments and questions for 
new information (e.g., “What’s that?” “Fishy.” “Yes, and what’s 
he doing?”; the rising intonation which was previously on the 
labeling query now shifts to “doing” in the new turn), developing 
the frame from labeling to predication.

2.3.1.4. Implicit Knowledge
There is no implicit knowledge. The pragmatic frame itself 
however carries important information for learning (where the 
learning content is, what type it is, and how to process it).

Table 7 summarizes shared points and highlights the major 
shortcomings of the various presented papers. Compared to 
natural adult–child interaction (final row of the table) like the 
one we describe above, only few rigid frames are used in the robot 
learning approaches which in general are not learned.
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TaBLe 7 | Summary table of major commonalities and limits of the discussed literature.

work Number  
of frames

Number of  
information types 
(user and robot)

Number of  
communicative  

cognitive functions

Degree of  
flexibility  
of frame

Number of  
elements of a  
frame learnt

Number of  
new frames  

learnt

Lallée et al. (2010) 1 8 2 None 0 0
Saunders et al. (2006) 2 9 2 None 0 0
Nicolescu and Mataric (2005) 2 7 3 Medium 0 0
Thomaz and Cakmak (2009) 1 5 1 Low 0 0
Yamashita and Tani (2008) 2 2 2 None 0 0
Calinon et al. (2010) 2 2 2 None 0 0
Mühlig et al. (2012) and Gienger et al. (2010) 1 10 2 None 0 0
Akgun et al. (2012) 1 8 3 Medium 0 0
Grollman and Billard (2011) 1 2 None 0 0
Lopes et al. (2007) 2 2 2 None 0 0
Kaplan et al. (2002) 2 8 2 Medium 0 0
Grizou et al. (2013) and Grizou et al. (2014) 1 2 1 Low 1 0
Steels and Kaplan (2002) 3 10 3 Low 0 0
Calinon and Billard (2006) 2 10 2 Low 0 0
Cakmak and Thomaz (2012) 1 8 1 Low 0 0
Natural social adult–child interaction, (e.g., Bruner (1983)) Many Many Many High All All
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3. PeRSPeCTiveS aND CHaLLeNGeS 
FOR FUTURe ReSeaRCH

Despite tremendous research efforts and advances in human–
robot interaction with learning and teaching mechanisms, 
learning interactions with robots remain brittle and often 
highly pre-structured. There are many challenges to be 
addressed to allow for more natural and flexible interaction. 
Those which are currently gathering significant research efforts 
include the development of robot perceptual skills that allow 
robust multimodal recognition and tracking of social cues 
(Vinciarelli et al., 2012), rich verbal and non-verbal behavioral 
expression to convey understandable and usable information 
to non-expert humans (Lütkebohle et al., 2010; Lohse and van 
Welbergen, 2012; Salem et al., 2012), powerful statistical learn-
ing mechanisms that can generalize from limited input and 
identify patterns across modalities and time scales (Cuayáhuitl 
et  al., 2015), adequate cognitive biases that can guide such 
inferences with, for example, intuitive physics and intuitive 
psychology (Lake et al., 2016), and even more basically physi-
cal bodies that are adapted to compliant and safe interaction 
with objects and people (Zinn et al., 2004; Sandini et al., 2007; 
Tsagarakis et al., 2011).

In this article, we have highlighted and discussed another 
fundamental challenge which has so far received less attention: 
understanding how robots could handle and learn through a rich 
system of pragmatic frames, constituting a grammar of social 
interaction for learning and teaching that may be as important 
as the concept of grammar for the use and learning of natural 
language.

We have shown that in many current approaches, some forms 
of pragmatic frames are used. However, such use has often been 
implicit, obfuscating the understanding of important dimensions 
of the mechanisms at work. Also, and more crucially, existing 
work has most often used only very few pragmatic frames in 
the same experiment (often just one), leading to rigid sequences 
of interaction, and it has used little potential cues conveyed by 

frames to bias the inference of learning algorithms. Hence, this 
has limited (a) learning capabilities and (b) interaction.

On the contrary, social learning in adult–child interaction has 
been shown to rely on the adaptive use of an open rich repertoire 
of flexible frames, facilitating learning by providing familiar 
contexts in form of coordinated action patterns that guide the 
children to pick up new action of language elements (Bruner, 
1983). Furthermore, pragmatic frames in adult–child interaction 
constitute an evolving system where new frames are continually 
learned through mutual negotiation and alignment with caretak-
ers, building cumulatively on interaction skills learned previously.

For robotics, such a rich and adaptive use of pragmatic frames 
promises to yield the following advantages: (a) a robot learner 
could benefit from the rich contextual information provided 
through the pragmatic frame for learning (Which information 
is important? What does it mean?); (b) a robot that could handle 
multiple pragmatic frames and even negotiate and learn new ones 
would allow for more natural interaction and flexible learning, 
being thereby more easily usable for inexperienced users.

However, there are many technical challenges to address in 
order to implement successfully such flexible mechanism in 
HRI with learning and teaching. In the following, we specify 
three challenges, each bearing a different aspect relevant to our 
perspective on flexible learning and teaching.

3.1. Handling Multiple Predefined 
Pragmatic Frames
The first challenge is how to enable robots to use multiple prag-
matic frames, even if they might be hand-coded by engineers at 
the beginning (and in this case an open question is: which set of 
predefined frames shall be designed for a robot?). Using multiple 
of these frames in interaction with the human could allow the 
robot to dynamically switch between frames but entails solving 
several sub-challenges: The robot needs to detect which prag-
matic frames are used by the interaction partner and to handle 
switches from the currently used frame. In addition, the robot 

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


17

Vollmer et al. Review of Pragmatic Frames in HRI

Frontiers in Neurorobotics | www.frontiersin.org October 2016 | Volume 10 | Article 10

needs to be able to propose a frame to its interaction partner, such 
that the frame is accepted and adopted, and to actively switch into 
a different frame. In order to achieve such a challenge, adequate 
repertoires of behaviors and perceptual modules need to be in the 
interactional toolkit of the robot so that it can flexibly use these 
frames in interaction and repair interaction when, for example, 
the human switches to another one.

A central scientific challenge is to understand what kind of 
computational representations shall be used and manipulated by 
robots, and covering both the syntax of pragmatic frames and 
their meaning by mapping elements/parameters of the interac-
tional structure to adequate biases that will inform the inference 
process of learning algorithms. Examples of formal frameworks 
that could serve as a basis for these representations include the 
PaMini Framework (Peltason and Wrede, 2010), which consists 
of interaction patterns which share some aspects that are crucial 
for pragmatic frames (i.e., specification of recurring patterns, 
detection of patterns, interface to robot back-end) or the formal 
frameworks for construction grammar, which have already been 
suggested for extension to social interaction in general (Dominey, 
2005, 2007).

Another central scientific challenge is how to design a system 
that can handle such a complexity and yet remain usable and 
efficient in its interaction with non-expert users. For example, 
techniques that would allow robots to initiate new pragmatic 
frames should be evaluated from the user’s perspective: how can 
it be correctly understood by the human and at what time during 
the interaction the initiation of a frame is appropriate and toler-
ated? If the users do not understand the frame as intended, do 
they ascribe a different frame to the situation? Or if they do not 
understand at all, how do they react?

Finally, the pragmatic frames considered are interaction 
protocols used to allow a robot to acquire target sensorimotor 
and language skills through interaction with a human. Even when 
pragmatic frames are already known, a respective architecture 
would entail using low-level learning mechanisms to acquire 
these target skills that can be adequately parameterized to benefit 
from the information contained in the interactional structure to 
bias their statistical inference (e.g., algorithms for learning motor 
skills should be able to get information about what aspects of the 
demonstrated behavior are important based on the interactional 
cues). For learning sensorimotor skills, Gaussian Mixture Models 
(or similar probabilistic models) could be used as a method 
to acquire new target motor skills, such as in state-of-the art 
methods for robot learning by demonstration [both for motor 
skills (Calinon and Billard, 2007) and language skills (Cederborg 
and Oudeyer, 2013)]. To acquire the meaning of new words, 
Bayesian inference techniques such as those presented in Xu and 
Tenenbaum (2007) could be used.

3.2. Strategically Choosing  
which Frame to Use
A related challenge lies in giving the robot and human teacher the 
means to actively choose the most efficient pragmatic frame in the 
process of learning and teaching a new skill. Indeed, frames may 
carry different forms of information: e.g., one frame (possibly 

characterized by specific gestures or keywords) might cue that 
the teacher is trying to teach a new movement and providing 
information about its manner, and another frame could provide 
information about its goal or the conditions in which it shall be 
executed or not. In this context, a challenge is to let a robot know 
and learn which interaction frames should be used to teach/learn 
which skills. Thus, to approach this challenge, algorithms need 
be developed that allow the robot to estimate at each learning 
episode which target skill and which pragmatic frame should be 
used so as to maximize information gathering (and thus minimize 
the number of interactions needed to acquire the repertoire of 
target skills). Such estimations should be key for the robot either 
to decide to engage in an adequately chosen frame or to provide 
information to the teacher about its internal learning state so 
that the teacher can understand how to personalize/tune his/her 
teaching strategy.

As different skills and different frames are differentially 
difficult or useful to learn, random choices are bound to be 
highly inefficient. One way to address this issue is to formulate 
the problem of active selection of target skills and frames as an 
active learning problem, within the formal framework of strategic 
learning (Lopes and Oudeyer, 2012) developed in recent years in 
developmental robotics for learning motor skills in high dimen-
sions (Baranes and Oudeyer, 2013), and more recently used in 
Intelligent Tutoring Systems to personalize teaching sequences 
(Clement et al., 2014). Such systems have been relying on the use 
of multi-armed bandits, which are used to make adaptive and 
active choices of the best current learning strategy (Nguyen and 
Oudeyer, 2012). As these techniques will allow to express vari-
ous strategies both for the learner and teacher, human–human 
experiments need to be conducted and used to select those strate-
gies that are closest to the ones spontaneously used by humans.

3.3. Learning an Unfamiliar  
Pragmatic Frame
Robots should also be prepared to be confronted with new frames 
which are not already in their repertoires. Two sub-challenges 
have to be differentiated here: (i) how to recognize a new frame 
against the background of familiar frames and (ii) how to learn 
the syntax and the meaning of a new frame. To develop a learning 
mechanism for learning the syntax of a pragmatic frame and to 
provide the back-end learning mechanism with information about 
the relevant slots that are given within this frame, the important 
steps are to allow a robot to detect that the human is using a new 
interaction structure, and learn the patterns of gestures, gazes, 
movements, and sounds, which rule its organization (its syntax).

For learning the meaning of pragmatic frames in the context 
of the acquisition of sensorimotor and language skills, an algo-
rithmic framework should allow a robot to infer what kind of 
information is provided by a pragmatic frame. The first challenge 
is to develop adequate representations of the space of frame 
meanings so that it can be used operationally to bias the inference 
of a statistical learning algorithm used to learn a target skill or a 
target word. A possibility could be to use a Bayesian framework, 
where at the low-level, Gaussian Mixture Models (or similar 
probabilistic models) can be used as method to acquire new target 
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motor skills or word meaning, such as in state-of-the art meth-
ods for robot learning by demonstration (both for motor skills 
(Calinon and Billard, 2007) and language skills (Cederborg and 
Oudeyer, 2013)). Such methods could allow to encode the mean-
ing of frames as Bayesian priors over the space of motor skills or 
new words, and multiplicative operations over these priors are 
naturally capable of encoding the combination of multiple priors 
(such as, for example, when the meaning of a frame encodes an 
information such as “the target concept is a movement of the 
hand and the demonstration shows the goal”).

While one may consider incremental mechanisms which first 
learn the syntax of new frames, and then acquire its meaning 
afterward, an interesting target is to enable a robot to jointly learn 
the target concepts (e.g., a new movement or the meaning of a 
new word) and the meaning of a frame used to teach this concept 
(e.g., that this frame provides a particular information bias). This 
considers the problem where initially the learning robot will know 
neither the target concepts nor the frame meaning (so the robot 
will have no bias initially and face a large space of hypotheses 
for inference). A possible approach to this challenge relies on the 
use of expectation–maximization methods as those developed in 
Grizou et al. (2013) to allow a robot to jointly learn new skills and 
to interpret the meaning of new teaching signals.

3.4. advancing the Understanding of 
Pragmatic Frames in Human–Human 
interaction
While we have discussed here the question of how to transfer 
the concept of pragmatic frames to robot learning in interaction 
with a human teacher, there are many things we do not know 
about pragmatic frames in human–human interaction. More 
specifically, we know only little about how children react to novel 
pragmatic frames and how parents introduce them.

The load that a new situation brings about can be manifested 
by children’s inhibited behavior (Matthews et  al., 2010; Beisert 
et al., 2012). Almost every word learning study is aware of the 
cognitive load trying to diminish it with a warm-up period 
preceding the experimental situation. Consequently, we know 
little about how children make sense of novel situations. Our own 

(Salas Poblete, 2011; Rohlfing et al., 2013) and others’ work (e.g., 
Moore et  al. (2013)) provide first methodological approaches 
to actively manipulate pragmatic frames in the context of word 
learning and explore their influence on learning success. Clearly, 
the novelty of a situation imposes a greater cognitive load on 
children. It is likely however that children make use of the rep-
ertoire of frame they dispose of to understand new structures. 
This phenomenon becomes visible in adults (Vollmer et al., 2014). 
Thus, further adult–child experiments on interaction within new 
frames should shed light on this matter.

Also, experiments on human–robot interaction have the 
potential of contributing considerably to research on pragmatic 
frames in humans. Utilizing a fully controllable robotic system as 
a tool in the experimental design enables stable learner behavior 
and controlled manipulation of learner behavior for testing 
experimental conditions. Additionally, teachers in human–
human interaction are never confronted with a learner that does 
not resort to an already acquired set of interaction protocols or 
only draws on a specific repertoire of pragmatic frames. Thus, it 
is interesting to understand how humans cope with such a robot 
learner and to investigate the emergence and negotiation of novel 
pragmatic frames in experiments with humans and robots.
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