
TECHNOLOGY REPORT
published: 02 November 2016

doi: 10.3389/fnbot.2016.00014

Edited by:
Florian Röhrbein,

Technische Universität
München, Germany

Reviewed by:
Robert J. Lowe,

University of Skövde, Sweden
Georg Martius,

Institute of Science and Technology
Austria, Austria

*Correspondence:
Oliver Lomp

oliver.lomp@ini.rub.de

Received: 08 August 2016
Accepted: 04 October 2016

Published: 02 November 2016

Citation:
Lomp O, Richter M, Zibner SKU and

Schöner G (2016) Developing
Dynamic Field Theory Architectures

for Embodied Cognitive
Systems with cedar.

Front. Neurorobot. 10:14.
doi: 10.3389/fnbot.2016.00014

Developing Dynamic Field Theory
Architectures for Embodied Cognitive
Systems with cedar
Oliver Lomp*, Mathis Richter, Stephan K. U. Zibner and Gregor Schöner

Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany

Embodied artificial cognitive systems, such as autonomous robots or intelligent
observers, connect cognitive processes to sensory and effector systems in real time.
Prime candidates for such embodied intelligence are neurally inspired architectures. While
components such as forward neural networks are well established, designing pervasively
autonomous neural architectures remains a challenge. This includes the problem of
tuning the parameters of such architectures so that they deliver specified functionality
under variable environmental conditions and retain these functions as the architectures
are expanded. The scaling and autonomy problems are solved, in part, by dynamic
field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and
cognitive processes. In this paper, we address how to efficiently build DFT architectures
that control embodied agents and how to tune their parameters so that the desired
cognitive functions emerge while such agents are situated in real environments. In DFT
architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is,
attractor states and their instabilities, from which cognitive function emerges. Tuning thus
amounts to determining values of the dynamic parameters for which the components of a
DFT architecture are in the specified dynamic regime under the appropriate environmental
conditions. The process of tuning is facilitated by the software framework cedar, which
provides a graphical interface to build and execute DFT architectures. It enables to change
dynamic parameters online and visualize the activation states of any component while
the agent is receiving sensory inputs in real time. Using a simple example, we take the
reader through the workflow of conceiving of DFT architectures, implementing them on
embodied agents, tuning their parameters, and assessing performance while the system
is coupled to real sensory inputs.

Keywords: neural dynamics, dynamic field theory, artificial cognitive systems, autonomous robots, attractors,
dynamic instabilities

1. INTRODUCTION

Neurally inspired architectures are a possible route along which artificial cognitive systems may be
developed. However, designing and tuning neural architectures that generate intelligent behavior
in embodied agents driven by real sensory inputs continues to be a challenge. While individual
neural processing components, such as forward neural networks, can be tuned by learning, there
is a gap between such neural processing and the capacity of an autonomous agent to organize
its own behavior and cognitive processes under variable environmental conditions. In this paper,

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 141

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://dx.doi.org/10.3389/fnbot.2016.00014
https://creativecommons.org/licenses/by/4.0/
mailto:oliver.lomp@ini.rub.de
http://dx.doi.org/10.3389/fnbot.2016.00014
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2016.00014&domain=pdf&date_stamp=2016-11-02
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00014/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00014/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00014/abstract
http://loop.frontiersin.org/people/336257/overview
http://loop.frontiersin.org/people/348046/overview
http://loop.frontiersin.org/people/22072/overview
http://loop.frontiersin.org/people/5242/overview
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

we address the problem of how autonomous embodied agents
can be conceived, instantiated, and parameter tuned based on
the principles of neural dynamics as formalized in dynamic field
theory (DFT) (Schöner, 2008; Schöner et al., 2015b).

Neural dynamics, a subclass of neural network models pio-
neered by Grossberg (1978), combines the advantages of neu-
ral network thinking with the rigorous characterization of the
functional properties of each computational element. Its modern
variant, DFT, provides neural process accounts for behavior and
cognition at the intermediate level of description of neural pop-
ulations. Neural representations in DFT capture the continuous
spatial, motor, or feature dimensions that are relevant to embod-
ied, situated cognitive systems, avoiding the sampling of such
dimensions by discrete neurons in conventional neural networks.
This happens within neural fields that represent particular spatial
locations, motor plans, or perceptual feature values by peaks of
activation localized along these dimensions.

A core principle of DFT is the stability of meaningful acti-
vation patterns that are attractor states of the neural dynamics.
The decision that a significant signal was detected in an input
stream, for instance, is stabilized over a range of input strengths.
Stability supports coupling of neural states to time-varying and
noisy sensory input and enables neural dynamic models to act as
controllers of effector systems.

Different attractor states represent different functional regimes
of a DFT architecture. Each regime is delimited by characteristic
instabilities that mediate qualitative change in neural represen-
tations as inputs vary, such as when working memory is first
created, updated, or deleted. Designing a functional architecture
in DFT entails specifying the conditions under which instabilities
occur. Learning processes shift these conditions to new input
configurations.

The tuning of parameters of DFT architectures focuses, there-
fore, primarily on assuring that within each neural field, the
relevant instabilities occur when its inputs have the appropriate
strength and form. When multiple neural fields are coupled, each

field retains its functional properties as long as the attractors
that instantiate these functions remain stable. This makes DFT
architectures modular and enables them to scale.

The potential of DFT to provide scalable, modular neural
dynamic architectures cannot be realized unless solutions are
provided to the problems of designing complex architectures,
parametrically tuning them, and evaluating their performance in
closed loop with real environments. This paper analyzes these
problems and provides solutions, captured by a modeling work-
flow and the software framework cedar (cognition, embodiment,
dynamics, and autonomy in robotics).1

2. CONCEPTS OF DYNAMIC FIELD
THEORY

In this section, we briefly review the core concepts of dynamic
field theory. We first introduce dynamic neural fields and nodes.
Next, we discuss how these can be coupled to form architectures.
Finally, we discuss how they may be connected to sensors and
motor systems typically found in robotic scenarios.

2.1. The Dynamics of Neural Fields
Dynamic neural fields are the core elements of DFT. A field con-
sists of a distribution of activation, u(x, t), defined over one or
more continuous metric feature dimensions x= (x1, . . ., xn) (see
Figure 1 for a one-dimensional example). The activation of a field
evolves in time, t, according to the neural dynamics

τ u̇(x, t) = −u(x, t) + h + s(x, t) + cnoise ξ(x, t)

+
∫

· · ·
∫

k(x − x′) g(u(x′, t))dx′. (1)

1cedar is open source C++ software licensed under the LGPL version 3.
The source code, documentation, and other downloads can be accessed
at http://cedar.ini.rub.de.

FIGURE 1 | Dynamic neural field defined over a one-dimensional feature space x. The activation u(x) of the field is plotted in blue, the subthreshold attractor
h+ s(x) in green, and the output g(u(x)) in red.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 142

http://cedar.ini.rub.de
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

The parameter τ defines the time scale of the dynamics. It
scales the rate of change of activation, u̇(x, t), which is inversely
proportional to the current level of activation at the same location,
−u(x, t). On its own, the −u-term creates an attractor at u(x)= 0
and is thus ultimately responsible for creating the field’s stability
properties. The negative constant, h< 0, is the resting level of the
dynamics. It shifts the attractor, so that the activation relaxes to
u(x)= h in the absence of any other inputs. Location-dependent
input, s(x, t) may shift this attractor upwards. At each field loca-
tion, Gaussian white noise, ξ(x, t), adds random perturbations to
the field, scaled with a noise strength, cnoise. Finally, the integral
term describes neural interaction, which is positive for neigh-
boring locations (local excitation) and negative for all or distant
locations (global inhibition), as characterized by the interaction
kernel, k(∆x) (see Figure 2 for a one-dimensional example).

Interaction only comes into effect when activation is above a
threshold, as characterized by a sigmoidal output function, g(u(x))
∈ [0, 1]. Different variants of the output functions may be used.
In Amari (1977), the output function is a step function. Another
common choice is the logistic function. We often use a compu-
tationally more efficient approximation of the logistic function
given by

g(u) =
1
2

(
1 +

βu
1 + β|u|

)
. (2)

Given sufficient external input that is localized in a region
along the feature dimensions, the field creates a localized peak of
suprathreshold activation as an attractor [see Figure 1 for a sketch;
for an in-depth analysis, see Amari (1977); Taylor (1999)].

In dynamic field theory, such stable peaks of activation are the
units of representation. The position of a peak along the metric
dimensions, x, determines which metric values it represents.

Different configurations of stable solutions emerge depending
on the strength and spatial structure of inputs as well as on param-
eter values in the interaction kernel. Changes in any of these may
lead to transitions from one set of stable states to another. These
transitions are dynamic instabilities from which basic cognitive
functions emerge. The detection instability occurs if excitatory
input pushes a subthreshold activation pattern above thresh-
old so that local excitatory interaction starts taking effect. This
further raises activation around the localized input. Activation
thus diverges from the subthreshold pattern and converges to a

FIGURE 2 | Interaction kernel defined over distance, ∆x, within a
one-dimensional feature space, x.

localized peak of activation. Only if the input level drops signif-
icantly below the level at which the initial detection instability
occurred does a reverse detection instability induce the decay of
the localized peak to subthreshold levels.

The level of input at which a reverse detection instability occurs
depends on the strength of excitatory interaction. For sufficiently
strong excitatory interaction, the reverse detection instability may
no longer occur for any (non-negative) input value. In this case, a
peak remains stable even when the inducing localized input has
been removed. The peak location reflects past localized inputs,
a model of working memory referred to as sustained activation.
The parameter configuration at which this solution emerges is the
working memory instability.

When interaction is mainly local, multiple peaks may be
present at the same time. Global inhibition may lead to selection,
in which a single peak suppresses all other localized inputs. Such a
selection decision may be multi-stable, in the sense that any of the
multiple peak locations may become realized depending on the
history of activation and stimulation. When input strengths are
sufficiently different at different field locations, thismulti-stability
may break down in the selection instability, in which a unique
“winner” of the implied competition emerges.

2.2. The Dynamics of Neural Nodes
Dynamic neural nodes (or nodes for short) are zero-dimensional
neural fields

τ u̇(t) = −u(t) + h + cuu g(u(t)) + s(t) + cnoise ξ(t), (3)

in which the feature dimension consists of a single point rep-
resented by the activation variable itself. The only interaction is
then self-excitation of strength cuu > 0. Dynamic neural nodes
may undergo detection and reverse detection instabilities andmay
also form working memory, that is, remain activated after s(t) has
returned to zero. Selectivity is not meaningful for a single node.
Multiple nodes may form competitive networks through mutual
inhibitory coupling (see below). Such networks may perform
selection and undergo a selection instability.

Nodes are used in DFT architectures to represent categorical
states. Although these could be envisioned to be embedded within
continuous spaces, the lack of an obvious topology may make it
useful to represent them by isolated nodes. Prominent examples
of categorical states are ordinal nodes that represent where in
a serially ordered sequence of events a particular behavior or
representation is activated (Sandamirskaya et al., 2011). Relatedly,
different behaviors may be activated or deactivated by dynamic
neural nodes inwhatwe call behavioral organization (Richter et al.,
2012). Categorical concepts may likewise be represented by nodes
(Richter et al., 2014b).

2.3. The Dynamics of Memory Traces
Dynamic memory traces account for synaptic changes and long-
term memory effects, such as habit formation (Schöner and
Dineva, 2007) and habituation (Schöner and Thelen, 2006). A
memory trace is modeled as a distribution of activation over a
specific feature space, much like a dynamic neural field. However,
the dynamics governing the memory trace differs from the neural
dynamics of fields. It receives input from the output of an asso-
ciated dynamic neural field and is essentially a low-pass filter of

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 143

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

that output, evolving on a slower time scale. A number of different
mathematical formulations are used [see Sandamirskaya (2014)
for review]. Memory traces generate distributions of activation
that reflect the history of activation in the associated field. They
may estimate the probability distribution of peak events in that
field (Erlhagen and Schöner, 2002). Memory traces are typically
fed back into the associated field, which they preshape, favoring
the generation of the previously activated patterns.

2.4. The Coupling of Neural Fields and
Nodes
Multiple fields, nodes, andmemory tracesmay be coupled to build
DFT architectures (Zibner et al., 2011a; Zibner and Faubel, 2015).
We explain the different kinds of coupling functions in reference
to a source field, A, of dimensionality a and a target field, B,
of dimensionality b. Consider first the simplest case, one-to-one
coupling, in which the two fields have the same dimensionality
(b= a). It is always implied that the dimensions of the two fields
are aligned with each other, so that the source field, uA(x, t), is
defined over the same vector, x, as the target field, uB(x, t). The
software framework cedar (see Section 4) provides routines for
remapping entries of the vectors when the dimensions of A and
B are not correctly aligned.

Coupling means that the output of the source field, g(uA(x, t)),
is an additive contribution, sB,A(x), to the external input, sB(x, t),
of the target field B. For one-to-one coupling,

sB,A(x, t) = g(u(x, t)). (4)

When the target field B represents more metric dimensions
than the source field A (b> a), the coupling is an expansion. This
means that the vector, xB, which describes the dimensions of the
target field contains all dimensions of the source field, xA, but has
additional entries not contained in the source field. In expansion
coupling,

sB,A(xB, t) = g(u(xA, t)), (5)
the right hand side does not depend on these extra dimensions of
xB. Input is, therefore, constant along those additional dimensions
[ridge or tube input in two or three dimensions; see Zibner et al.
(2011a)]. In cedar, functions can be used to arrange which slots of
xB receive constant input.

When the target field B represents fewer metric dimensions
than the source field A (b< a), the coupling is a contrac-
tion. Some dimensions, on which the source field A depends,
are not represented in the target field B. We assume these
extra dimensions of the source field are the last (a− b) slots,
xb+1, . . ., xa, of xA (again, cedar functions can be used to
arrange that). There are multiple possible ways how the depen-
dence of activation on these extra dimensions may be contracted.
The most common form is to take an integral over the extra
dimensions:

sB,A(xB) =
∫

· · ·
∫

g(uA(xA)) dxb+1, . . . , dxa. (6)

Couplings between fields and nodes are covered by these same
principles. For example, the expansion from a node A to a one-
dimensional field B provides input to the field,

sB,A(x, t) = g(u(t)). (7)

This implements a global boost to the target field, a mechanism
often used to induce detection instabilities.

The contraction from a one-dimensional field A to a node B,

sB,A(t) =
∫

g(u(x, t))dx, (8)

may implement a peak detector: under appropriate choice ofmodel
parameters, any peak occurring in the source field may push the
node through the detection instability.

Input from couplings, sB,A(x, t), may be further transformed
before being added to the neural dynamics of the target field. A
common form is to apply a weighting function, c(xB):

τ u̇B(xB, t) = · · · + c(xB) sB,A(xB, t). (9)

Another common transformation is to convolve the input with
a kernel, k (Zibner et al., 2011a):

τ u̇B(xB, t) = · · · +
∫

· · ·
∫

k(xB − x′
B) sB,A(x′

B, t) dx′
B. (10)

The kernel is often chosen as a Gaussian that spreads input to
neighboring sites that represent similar feature values.

2.5. The Coupling of Neural Fields to
Sensors and Effectors
DFT provides concepts for how to integrate sensory information
into cognitive architectures and for how to drive effector systems
based on the neural representations generated within a cognitive
architecture.

2.5.1. Sensors
Sensors provide input to DFT architectures. Mathematically, this
means that sensory data determine the values of input functions,
s(x, t), to relevant fields of the architecture. These functions are
defined over relevant feature dimensions, x. Sensory data may
be represented in these input functions in two ways. They may set
the amplitude of the input function, s. This is neurally interpreted
as a form of rate code, in which different levels of activation stand
for different sensory events. On the other hand, feature values
obtained from sensory data may be represented within the feature
dimension, x. Neurally, this corresponds to space or population
code.

For example, a color camera may deliver hue and saturation
values for each pixel. The input function, s(x, t), derived from such
a cameramay be defined over the feature space x= (x, y, h), where
x and y are Cartesian coordinates in the camera plane, and h is
hue. For every location, (x, y), only the point along the hue axis
that represents the hue value currently returned by the camera
at the corresponding pixel generates non-zero input. Everywhere
else along the hue axis, the input function is zero. The amplitude
of the entry at the matching hue value is the saturation reported
by the camera at that pixel. Formally:

s(x, t) =

{
S for h = hue value returned at pixel (x, y) at time t
0 otherwise,

(11)

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 144

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

where S is the saturation level returned by the camera at pixel (x, y)
at time t. Space codes may distribute input values more smoothly
along the feature axis, for instance, by applying a Gaussian fil-
ter along the feature dimension. Input distributions over feature
spaces may also be derived from preprocessing operations applied
to the raw sensory data. For example, batteries of edge filters may
generate different levels of input at different spatial orientations
for each location in a visual input.

2.5.2. Effectors
Ultimately, a neural field may be used to control an effector by
specifying a motor command. Typically, such a command is a
specific value, say a vector xcmd, which is contained within the
dimension, x, over which the field, u(x, t), is defined. Specifying
the motor command thus amounts to “reading out” a value from
the neural field. Intuitively, the location of maximal activation
would seem the best choice for such a read out. In neural net-
works, this intuition is sometimes realized by a “winner takes
all” mechanism. Such a mechanism is implemented in DFT by
the competitive selection of a single localized peak of activation
(which also ensures the stability of the selection decision). The
problem that then remains is to extract the location of the peak
along the dimensions of the field.

This seemingly trivial step runs into a problemof normalization
(Kopecz and Schöner, 1995; Zibner et al., 2011a; Schöner et al.,
2015a). A common idea is that the activation peak, passed through
a sigmoid threshold function, g(u(x, t)), is used as a probability
density over the field dimension, x, so that the expected value (or
theoreticalmean) of the field dimension is the estimate of the peak
location:

xcmd(t) =
1
N

∫
x g(u(x, t)) dx. (12)

This is only an unbiased estimator of the peak location if the
probability density is correctly normalized by

N =
∫

g(u(x, t)) dx. (13)

The obvious problem arises when no peak is generated and
N = 0.

This normalization problem disappears when motor control is
also thought of in dynamical systems terms. The problem is then
no longer to compute xcmd(t), but to create a dynamical system
of a control variable, xctrl, which has an attractor at xctrl = xcmd(t)
that may vary in time slowly enough for the control dynamics to
track the change. This can be achieved without normalization by
realizing that the attractor should become unstable when the peak
disappears:

τctrl ẋctrl = −N(xctrl − xcmd) (14)

where τ ctrl is a time scale. This dynamics has an attractor for xctrl
at xcmd, which becomes marginally stable when N goes to zero.
That removes the problem of normalization. To see this, resolve
the parenthesis on the right hand side, insert equations (12) and
(13) for xcmd and N, and rearrange the terms under a single
integral:

τctrl ẋctrl = −
∫

(xctrl − x)g(u(x, t)) dx (15)

This formulation no longer requires the direct estimate of xcmd.

3. IMPLEMENTING DYNAMIC FIELD
THEORY

DFT architectures are typically solved numerically on a digital
computer. This may serve to simulate DFT models based on
artificial inputs that emulate experimental paradigms. This may
also serve to implement DFT models in artificial cognitive sys-
tems, such as autonomous robots or artificial perception systems.
In such cases, the numerical solution of the neural dynamics
must respect real-time constraints as current sensory readings
are fed directly into the DFT architecture, which may drive
effectors. We step through the issues that must be addressed in
such numerical solution of the neural dynamics with respect to
the sampling time, synchronization, the sampling of space, and
the order in which coupled subsystems of DFT architectures are
updated.

3.1. Sampling Time
The forward Euler method is the simplest algorithm for solv-
ing differential equations, although it has the lowest order of
convergence. Even so, it is the method we chose to realize in
implementation for a variety of reasons. First, the rate of the
numerical approximation of the neural dynamics is limited by
the rate at which sensor readings can be obtained. Methods of
higher order such as Runge–Kutta require multiple evaluations
at intermediate time steps. This implies that sensory channels are
sampled at a higher rate than themotor output is generated. This is
a complication and limits the advantage gained by higher orders.
Methods with adaptive step size are not suitable when the evolu-
tion in time of sensory readingsmust bemonitored.Moreover, the
neural dynamics that governs a typical neural field [see equation
(1)] is a stochastic differential equation. Higher order numerical
methods for stochastic differential equations require very many
function evaluations per time step (Kloeden and Platen, 1999),
which defeats their computational advantage when each evalua-
tion is computationally costly. Using the low-order Euler method
is not a problem in DFT because the functional states of DFT
architectures are attractors. Their stability properties also help
stabilize the numerical approximation of the underlying differ-
ential equations, reducing the demands on numerical precision
and enabling larger steps sizes compared to generic differential
equations.

For a stochastic differential equation

τ u̇ = f(u) + cnoise ξ(t) (16)

with deterministic dynamics, f (u), and Gaussian white noise of
unit variance, ξ(t), the stochastic Euler method is

u(ti) = u(ti−1) +
1
τ

(
∆ti f(u(ti−1)) +

√
∆ti cnoise ξi−1

)
. (17)

Here, ti is a discrete sampling of time (i= 1, 2, . . .),
which is approximately (but not strictly, see below) equidistant,

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 145

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

∆ti = ti − ti− 1, and ξi− 1 is the return of a Gaussian pseudo-
random number generator. u(ti) is then a discrete time approxi-
mation of u(t). Note how the stochastic term scales only with the
square root of the time step, while the deterministic term is linear
in the time step [see, e.g., Zwillinger (1989), p. 584].

The time step,∆ti, must be chosen such that the Euler approach
provides a good numerical estimate of the underlying dynamics.
To minimize computational effort, the largest possible time step
is desired. How large the chosen value for the time step can be
chosen depends on the time scale of the simulated dynamics.
Theoretically, the time step needs to be several orders of mag-
nitude smaller than the shortest time scale of the dynamics. In
practice, the fact that attractor solutions help stabilize the numer-
ical procedure means that we can use relatively crude sampling
without running into numerical instabilities. We have often used
time steps that were only one order of magnitude smaller than the
relaxation time of the dynamics.

3.2. Synchronizing Real and Simulated
Time
When DFT architectures are simulated off-line based on simu-
lated inputs, the real physical time a computer program takes
to update the dynamical variables matters only with respect to
how long we must wait for the simulation to finish. However,
when DFT architectures are used in artificial cognitive systems
that are tied to real sensory data and drive autonomous robots,
the alignment of the physical time, when the computer provides a
new value for the dynamical variables, with the simulated time, ti,
is important. In this case, which we now examine, another kind of
constraint arises for the choice of the time step.

Clearly, if the computer systematically takes longer to provide
an update of the dynamic variables than the Euler time step, then
the dynamics cannot be realized on the artificial cognitive system.

The real-time step may then be too long for the discrete time
series to be a good approximation of the dynamics. As a result,
the response of the robot or artificial perceptual system to time-
varying inputs can no longer be predicted from the dynamics. The
Euler time step has to be increased, so that the computer manages
to provide the update within a time interval that is smaller than
the chosen Euler time step.

This reverses the direction in which choices of parameter
values are made: the computation cycle determines the fastest
possible Euler time step, and that time step in turn determines
how fast the dynamics may be. In other words, the time scales
of the dynamics must be adjusted such that the dynamics can
be consistently approximated in real time. If the computational
cycle is the limiting factor, then the price to be paid is that the
system has a limitation to how fast changes in its sensory inputs
may be. Only changes that are slower than the slowest time scale
of the neural dynamics can be tracked by the neural activation
states.

Ideally, computation time is not a concern so that the computer
is fast enough to provide updates within the time interval that is an
adequate time step for the dynamics with the desired time scales.
Even in such a case, care must be taken that the physical time, at
which the updates of the dynamical variables are provided by the
computer program, does not become systematically desynchro-
nized with the simulated time of the differential equation. This is
illustrated in Figure 3 (top panel). Were we to start a new evalua-
tion of the numerical solution every time the computer program
has provided an update, then the time of the dynamics, captured
by ti, would become increasingly out of tune with the physical
time (in a sense, the time of the dynamics would run ahead of
physical time). Again, the properties of the neural dynamicswould
no longer be inherited by the physical implementation.

The simple solution is to wait with the initiation of a new
computational step until the desired Euler step has passed

FIGURE 3 | The synchronization of real and simulated time. The top panel illustrates that computing updates (green bars) as fast as possible may cause real
and simulated time to become asynchronous. The bottom panel illustrates that waiting between updates (blue bars) until the end of the fixed time step addresses this
issue.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 146

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

(bottom panel of Figure 3). This is implemented in cedar as a
mode of clocking the computational update cycle. The cedar
implementation also addresses the opposite limit case in which
a computational cycle occasionally takes longer than the desired
Euler step. In this case, cedar extends the Euler step, ∆ti, at the
next update to bring the time of the dynamics back in line with
physical time. Clearly, this must happen only occasionally, lest
the Euler step becomes consistently longer than planned and
the goodness of numerical fit suffers. cedar provides a “meter”
which indicates how often such adaptive changes to the Euler step
take place. When too many events of this kind occur, the meter
prompts the user to reparameterize the dynamics and lengthen
the planned Euler step.

A computer that implements a DFT architecture of an artificial
cognitive systemwill typically not operate in strictly deterministic
time as many processes, some unrelated to the implementation,
share processor time. As a result, the actual computational cycle
will fluctuate. A positive side effect of waiting to the desired Euler
step is that such fluctuations are minimized. Only instances in
which the cycle is longer than desired leave a trace in the time of
the dynamical system.

DFT architectures can become large and complex, potentially
including dozens of fields of different dimensionality (Zibner
et al., 2011b; Richter et al., 2012; Knips et al., 2014). This may ulti-
mately pose challenges to the real-time updating of the solutions
by the numerics. One possibility to optimize computational effort
is to recognize that not all component fields may require the same
Euler time step. For instance, some fields are not exposed to input
that varies at the same rate as others. Higher dimensional fields
impose disproportionately larger computational cost, so running
such fields at lower rates is attractive.

A practical way to implement different Euler time steps is to
carve up an architecture into components that are computed in
separate threads of execution. This has the added advantage that
the computation can be performed in parallel onmulti-coreCPUs.
cedar provides this option when DFT architectures are designed.
This approach implies that slight asynchronies may arise when
the threads interact. Each thread reads output of other threads
at times that may come from time samples that deviate from its
own current time step. Our approach to the sampling of time
guarantees, however, that the discrete time steps remain close to
physical time. So these asynchronies do not accumulate and are
thus small, of the order of one time step (the largest time step in
the worst case). This is not a problem in practice, therefore, as we
have observed empirically as well. This approach is also useful in
accommodating constraints on cycle times that come from sensor
or effector hardware.

3.3. Sampling Space
Activation fields are defined over continuous dimensions, which
need to be discretely sampled for numerical evaluation by grids
of the appropriate dimensionality. A simple rectangle rule is used
to transform the integrals into sums. Integrodifferential equations
are particularly well-behaved under discretization as they effec-
tively filter discretization error, so this simplest approach works
reliably. When fields are coupled that are defined over different
size grids, the output of one field must be resampled to determine

the input to the other field. Different interpolation methods for
such resampling are available in cedar.2

The grid sampling deals correctly with the convolutions (with
an odd number of sample steps) to provide unbiased estimates.
The convolutions require padding of the fields. The default
is padding with periodic boundary conditions, although other
options are available for one- and two-dimensional fields. Con-
volution kernels are decomposed into separable components so
that convolutions can be done separately along each dimension.
Convolutions in three and more dimensions exploit fast Fourier
transform (FFT) for computational efficacy. In two dimensions,
FFT is used depending on the grid size.

4. ARCHITECTURES IN DYNAMIC FIELD
THEORY

To provide neural process models of cognitive function within the
framework of dynamic field theory, typically entire architectures
must be built. We outline the issues that must be addressed when
DFT architectures are built and introduce elements of cedar that
help solve these problems.

In the information processing paradigm, cognitive architec-
tures are designed in terms of modules that can be characterized
by input/output functions. While the architecture organizes the
flowof information, the actual processing is done by the individual
modules that realize a particular function. When such architec-
tures are used to build artificial cognitive systems, not only must
the architecture be specified but also the individual functions
must be programmed to deliver the respective functionality. These
functions are, by themselves, relatively unconstrained.

In DFT, in contrast, all components of an architecture are either
dynamic fields or dynamic nodes, whose function is constrained
by the same differential equation throughout the architecture.
The only extent to which the function of each component can be
adjusted is by “tuning” its parameters to determine one of a limited
number of dynamic regimes. For example, fields may be in the
mode in which only one self-stabilized peak may be induced at a
time. Theymay also be in amulti-peak regime, in which the peaks
may be sustained or may depend on localized input.

What the activation within each dynamic field or node rep-
resents is determined by how the field or node is connected to
the rest of the architecture, and ultimately to the sensory and
motor surfaces. The ways in which fields and nodes are coupled
are also highly constrained, as we outlined earlier. Activation
patterns output by one field may provide excitatory or inhibitory
input to another field or node. Which outputs may be avail-
able as input to any given field or node is determined by the
architecture.

Applying an “operator” (e.g., adding) to two inputs, for
instance, is achieved by a coupling structure, in which every
location in both input fields is connected to any possible loca-
tion in the target field. This amounts to a coordinate transform

2In the current version of cedar, the grid step is one in each direction, so that it is
not possible to vary the spatial resolution without a rescaling of the neural dynamics
itself. This is merely an algorithmic simplification that could be improved upon if
need be.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 147

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

(Schneegans and Schöner, 2012). Once implemented within DFT,
an operator can become part of a stable coupling from time-
varying sensory inputs to motor control.

Building a DFT architecture that realizes a particular cognitive
function thus amounts to specifying the dynamic elements, fields
and nodes, their dynamic regimes, and the coupling structure.
The constraints in all three aspects make it both possible and
attractive to provide a software framework within which DFT
architectures can be built. cedar (Lomp et al., 2013) is such a soft-
ware framework. In cedar’s graphical user interface (Figure 4), the
different components ofDFT architectures are available as icons in
an element panel. Dragging the icons into the architecture canvas
instantiates the corresponding field or node. The field and node
represented by icons can be coupled by graphically connecting
the output slots on one icon to the input slots on another icon.
Contraction or expansion of field dimensions can be specified for
each connection.

cedar thus makes it easy to specify DFT architectures that can
reach considerable complexity (a simple example be elaborated
in the next section). The result is one big dynamical system,
automatically instantiated by cedar. The remaining task is to
“tune” the system by choosing values for the parameters of the dif-
ferent neural dynamics that include resting level, input strength,
and the strength and spatial range of excitatory and inhibitory

interaction. Themathematical framework of DFT imposes homo-
geneity within each field, effectively reducing the potentially high-
dimensional set of neural connections to a small number of ker-
nel parameters. Similarly, the constraints on coupling functions
within DFT leads to a reduced set of coupling parameters that
does not depend on how the fields are sampled along their dimen-
sion (in contrast, for instance, to how the number of connec-
tion weights grows with the number of neurons in connectionist
networks).

The difficulty of tuning of DFT architectures is further reduced
by an approximate form of modularity. The dynamic mode in
which each field or node operates determines its function. That
mode and thus function remains invariant as the dynamics of
other components of the architecture vary until an instability is
reached. Tuning thus amounts to ensuring that such instabilities
occur onlywhen andwhere desired.As a result, the onerous task of
tuning analog computers, in which any change in any component
may affect any other component, is much reduced in DFT. This
also means that the “diagnostic” for correct function is local and
often qualitative. The goal is to ensure that the right kind and
number of peaks are formed under the right circumstances in each
field. Assessing the performance of a DFT architecture does not
always require an estimate of the continuous activation patterns
along all dimensions and fields at the same time.

FIGURE 4 | The graphical user interface of cedar.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 148

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

What remains a challenge to tuning the parameters of DFT
architectures is to scan the range of relevant inputs. Simulations
of experimental paradigms rely on the same restrictions psy-
chophysicists impose on humans to limit the range of stimuli
used. But building artificial cognitive systems requires that a
range of potentially naturalistic inputs must generate the desired
behavior and cognition. Tuning DFT architectures while they are
linked to naturalistic inputs from real sensors is challenging but
made easier in cedar. The task then remains to vary the physical
stimulation provided and assess the state of the DFT architecture.
cedar supports this task by providing flexible visualization of the
dynamic state of any element, delivered in real time (illustrated in
Figure 4). Such visualization can be used to assess the qualitative
state of any field (e.g., number and identity of peaks). Quantitative
assessment may make use of cedar’s recording functions (see
below).

5. WORKFLOW TO DEVELOP AND
EVALUATE DFT ARCHITECTURES

Developing and evaluating DFT architectures involves a sequence
of steps: (1) conceiving of an architecture, (2) building it to enable
simulation or implementation on an artificial cognitive agent,
(3) tuning its parameters, (4) evaluating its performance, and
(5) documenting the system. Often these steps must be iterated
as an architecture is expanded or updated. The resulting work-
flow is outlined in this section around a simple, but exemplary
problem. Our emphasis is on artificial cognitive systems that
may be realized as autonomous robots or perception devices.
We will use cedar to make each step concrete. DFT architectures
may also be used to account for experimental data obtained in
specific experimental paradigms. We refer to that problem only
briefly here and point the reader to Ambrose et al. (2015) for
an extensive review of the workflow in that context (that review
refers to the MATLAB-based framework COSIVINA rather than
to cedar).

The task we solve is a simple object-oriented action illustrated
in Figure 5: an autonomous robot arm equipped with a camera
examines an array of objects on a tabletop and points at the object
in the scene that matches a description provided in terms of a
feature cue (e.g., “green”) and a spatial term (e.g., “left”). The
DFT architecture (Figure 6) is simple but makes use of both
fields and nodes, couplings with both expansion and contraction,
couplings to sensors and effectors, and many of the characteristic
instabilities of the neural dynamics discussed earlier (Section 2).
[For amore complete system of this general nature, see Bicho et al.
(2010).]

5.1. Conceiving an Architecture
Developing a DFT architecture that solves the given task requires
thinking about the sources of sensory specification, the means for
action, and the cognitive properties implied by the task. Sensory
specification is not only constrained by the sensors available (here
a video camera) but also depends on the task (here, specification
by color and space). Sensory specification leads to the iden-
tification of relevant dimensions of perceptual representations,
here both space and hue value. Analogously, on the motor side,

FIGURE 5 | The robotic setup for our object-oriented action task.

constraints that derive from the effector system together with the
task lead to ideas about relevant motor dimensions (here, end-
effector position in a Cartesian space). The requested cognitive
properties may point to operators (here, kernels that ground spa-
tial concepts “left” and “right”), to transformations (e.g., to achieve
desired invariances; not a problem here, as the camera does not
move), to problems of memory (e.g., to enable learning), or to
problems of sequence generation (here, to first detect and then
point).

The concepts of DFT are used to express the ideas derived from
such an analysis. Feature or motor dimensions are represented in
fields, concepts in nodes. Their coupling functions are used to
realize operators and transformations. The dynamic regimes of
the nodes and fields are used to create functions, such as detection,
selection, and memory.

This translation of constraints and task demands into the lan-
guage of DFT amounts to designing a DFT architecture, typically
first sketched on paper, and “mentally simulating” it to specify
the dynamic regimes and their interdependencies. Figure 6 is
such a sketch for the present example, and we will step through
this architecture now to illustrate the notion of “mental simula-
tion.”

The perceptual representation on which this task can be real-
ized is a three-dimensional perceptual field (center of Figure 6)
defined over the tabletop (so in an allocentric reference frame)
with hue as the third dimension. A colored, localized object is
represented by a blob of activation (a peak in 3D), whose center
indicates location and hue value of the object (there are four such
blobs in the figure).

The camera provides a continuous stream of color images (top).
These are in the camera frame, so they must be transformed to
the allocentric coordinate frame. Each pixel delivers a hue value
and its saturation. The pixel location transformed to the tabletop

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 149

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

FIGURE 6 | Exemplary DFT architecture that does a simple feature search. Activation levels in the architecture are schematically represented with shades of
red, where more opaque colors represent higher levels of activation. Lines with normal arrow heads represent excitatory synaptic connections; lines ending in circles
represent inhibitory connections.

frame, and the hue value determines the 3D location in the field to
which the input is directed. The saturation value determines the
strength of the input.

The concepts used to cue the pointing target are represented by
nodes. On the left, there are two nodes for “green” and “red.” At the
bottom, there are two nodes for “left” and “right.” These nodes are
in the bistable dynamic regime, so that they can be set by input
from the user, reflecting the task specification. In the figure, the
“green” and the “left” node have been set this way.

The coupling of the nodes into the perceptual field implements
the relevant cognitive operation. For color, each node provides
a sheet of input that is localized along the hue dimension but is
homogeneous along the two spatial dimensions of the perceptual
field. For the spatial terms, the “left” node projects onto the left
half space homogeneously along the color dimension. The “right”
node projects onto the right half space in the same way.

The idea is then that a single self-stabilized peak (blob) may
arise in a detection instability when input from the camera is
combined with input from the cue nodes. By operating the field
in the single-peak dynamic regime, a single object is selected.
This will be the object for which camera input overlaps best with
cue input. In the figure, the green object in the top left wins
the competition because it lies within both the “green” sheet
and the “left” kernel. Without camera input, only subthreshold
activation should be induced.Without both cues, localized camera

input should likewise be insufficient to induce the detection insta-
bility. This form of “mental simulation” serves to identify the
dynamic regimes the perception field must have under various
conditions.

The output from the perceptual field goes directly into a system
that controls the robot arm. The coupling function contracts along
the color dimension, so that an activation pattern over the two
spatial dimensions of the tabletop is handed to the robot arm.
This activation pattern is transformed into an attractor dynamics
for two variables that control the two Cartesian coordinates of
the robot’s end-effector (the tip of its pointing tool). The vertical
position of the attractor is fixed. This transformation from an
activation field to an attractor dynamics is described in Section 2.
Details are provided in Section S1 of the Data Sheet in the
Supplementary Material.

The robot arm moves from its initial position to the attrac-
tor state. This takes time. The sequential organization of the
task consists of initiating and terminating this movement. The
movement is initiated when the peak in the perceptual field first
arises in a detection instability. Termination of the movement
is controlled by a condition of satisfaction (CoS) field defined
over the two spatial dimensions of the tabletop and illustrated
on the right of Figure 6. The movement CoS field receives input
from the perceptual field reflecting the location of the selected
target (inducing the rightmost subthreshold hill of activation).

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1410

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

The CoS field also receives input from a simulated proprioceptive
sensor that indicates the tabletop coordinates over which the tip
of the robot’s pointer tool is positioned (inducing the leftmost
subthreshold hill of activation). When the two sources of input
overlap, the CoS field goes through a detection instability and gen-
erates a self-stabilized peak, which projects inhibitorily onto the
perceptual field and all cue nodes. As a result, the perceptual field
goes through a reverse detection instability, losing its peak, and the
nodes switch into the deactivated state. The removal of input from
the perceptual field makes the peak in the CoS field unstable. The
CoS peak decays, and the CoS system returns to its initial state.
So, reaching the selected target ends the movement and resets all
fields and nodes to subthreshold values. The architecture is open
to receiving a new cue. Here, “mental simulation” leads to a set of
conditions under which instabilities in the different component
fields and nodesmust arise. Thesewill be used to set the parameter
values of the components as discussed below.

This form of specification of an architecture is limited in scope
by the range of constraints that a designer can focus on at any given
time. Architectures will typically be developed piece by piece.
These pieces can be joined up due to the inherent (approximate)
modularity of DFT architectures. Commonly, architectures are
also developed in an incremental form, in which functioning
portionsmay be expanded or updated to accommodate additional
tasks or constraints, leading to an iterative specification process.
Building and simulating the architecture is an important check
on the validity of the “mental simulations.” The capacity to do
this early in the specification process is a strength of cedar and
a practical necessity in using the DFT framework for complex
tasks.

5.2. Building DFT Architectures in cedar
Building a DFT architecture in a way that it can be solved numer-
ically in simulation or on an artificial cognitive agent requires
transforming the conceived model into computer code. In the
past, one would have gone about that by first writing out all the
mathematical equations that formalize the conceived model and
then coding these equations in a computer program that solves
the equations numerically. It is easy to visualize that the set of
equations for even this relatively simple model is quite large.
Notation for each dynamical variable or field and the associated
parameters would need to be fixed. Updates during the iterative
process of specifying themodelwould then often require rewriting
such code.

Modern software tools make it possible to shortcut this work-
flow by going directly from the conceived architecture, repre-
sented as a graphical sketch of the model, to its implementation in
numerical software through a graphical programming interface.
This is exactly the functionality that cedar provides. Figure 7
shows the end-result of such a graphical assembly process for the
architecture we conceived in Figure 6.

In building DFT models in cedar, the coupling structures
between dynamic elements typically consist of multiple process-
ing steps, through which the range of possible couplings can be
spanned. Let us look at one example of such a coupling structure,
the projection from a color node (NeuralField red on top left)
to the perceptual field (NeuralField perceptual in the top
center). The color node is labeled as a NeuralField, but the
instantiated field is zero-dimensional, so it is really just a single
activation variable. Its output, the activation level passed through
a sigmoid function, is multiplied in the first processing step (box

FIGURE 7 | The complete architecture assembled in cedar. The connection to the hardware level (sensor and motor) is hidden in the collapsible groups
“camera” and “robotic arm.” The position of all elements on the canvas roughly resembles those in our earlier sketch of the architecture (Figure 6) to ease the
comparison.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1411

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

with a circle and incoming arrows to the right of the color node)
with a Gaussian kernel (box on top). The outcome is a one-
dimensional vector that reflects the projection of the color node
along the hue dimensions. This vector is multiplied in the second
processing step with a constant, the strength of the coupling (box
with a green dial). The third processing step is an expansion, in
which the one-dimensional vector along the hue dimension is
expanded homogeneously along the two spatial dimensions. This
creates the sheet-like input pattern sketched in Figure 6. All other
coupling structures contain similar processing steps, including
in some instances, contractions and making use of other kernels
(e.g., the somewhat triangular kernels for the spatial terms at the
bottom).

The couplings from the camera (center top) and to the robot
arm (bottom right) contain more complex series of processing
steps that are detailed in Sections S1.1 and S1.2 of the Data Sheet
in the Supplementary Material. These entail communicating with
sensory and robotic hardware through the interprocess commu-
nication functions from the YARP library (Metta et al., 2006),
which can also be used to run different parts of an architecture
on different networked computers.

5.3. Tuning Parameters
As soon as the architecture has been graphically assembled in
cedar, it can be numerically simulated. The parameter values of
the architecture can thus be tuned by simulating the model using
live inputs and observing the resultant activation patterns. The
goal of tuning is to ensure that all neural fields and dynamic
neural nodes are in the specified dynamic regimes. This also
depends on the input patterns and their strengths, so being able to
provide live input is critical. Some of the normalization problems
when input varies are reduced by the sigmoid function and the
relatively invariant shape of self-excited peaks of activation. Still,
the remaining tuning task is often non-trivial so that tuning can
be a demanding part of the workflow.

Tuning parameters online is facilitated in cedar by two fea-
tures. First, parameter values can be changed (in the properties
panel of the user interface) while the numerics is running, and
these changes take immediate effect in the next update step of
the Euler approximation. Second, the effects of such changes
are instantly observable with cedar’s online plotting capabilities,
through which the user can visualize the state of any element in a
DFT architecture.

Figure 8 illustrates online parameter tuning by showing the
current camera input (left column) and the online plot of the
perceptual field (summed along the hue dimension) at three
different moments in time (rightmost three columns) in three
different settings (three rows). On top, a scene was assembled
in which a unique response should be obtained to the query
“green” and “left” object. To tune the parameters of the perceptual
field, the activation of the two nodes for “green” and “left” are
controlled (through a user input panel). Parameters, here pri-
marily the input strengths, are varied such that the field remains
below threshold in the presence of camera input while both cue
nodes (Figure 8B) or at least one cue node (Figure 8C) remain
off. The system must go through the detection instability and
generate a self-excited peak only once both cue nodes are activated

and camera input contains an object matching the description
(Figure 8D).

Themiddle and bottom row illustrate how the parameter values
are refined to address selection. A scene is presented in which two
objects match the cues “green” and “left.” In the middle row, two
self-excited peaks are generated in the presence of both cues (right
panel). The inhibitory coupling within the perceptual field is not
strong enough to impose the single-peak dynamic mode specified
for the field. By tuning the strength of inhibitory and excitatory
components of its interaction kernel, the field can be brought into
that mode as shown in the bottom row.

cedar offers additional features helpful for tuning such as the
capacity to slow down or speed up time in the numerical solvers
to enable the user to observe time courses conveniently. There
are also tools to optimize performance, such as measuring com-
putation time for individual components, which enables the user
to find costly components and helps to make decisions about
components that should be offloaded onto another CPU.

5.4. Running Experiments
The transition from the model to real-world operation of an
artificial cognitive system can make use of intermediate steps,
in which the activation time courses are used to drive simu-
lated robots and/or in which sensory inputs come from prior
sensor recordings rather than from closed loop live sensors. Run-
ning DFT architectures with simulated robots is useful to free
oneself from the safety constraints and physical limitations of
hardware in an early phase of testing. It also enables running
large numbers of trials efficiently and to obtain statistical data
from such tests. Using sensor recordings makes it possible to
test architectures against reproducible input streams, useful, for
instance, when different variants of an architecture are to be
compared.

cedar provides a built-in simulator of kinematic chains and
color cameras overlooking a tabletop scene. This is illustrated in
Figure 9 showing snapshots of the simulated robotic arm obtained
at different moments of time from the architecture of Figure 7.
For additional robots and more advanced simulation features
(such as a full-fledged physics engine necessary for realistic object
interactions), cedar’s network transparency can be used to interact
with commercial robot simulator software [e.g., “Webots,” Michel
(2004)]. cedar also features an experimentation framework that
enables users to compile a set of conditions that trigger a list of
actions associated with each condition. For the task of Figure 5,
for instance, the experimentation framework could be used to
automate the running of cued reaching experiments. At specific
points in time (conditions), boosts may be specified to set the cue
nodes (actions). Similarly, when themovement CoS field becomes
active (condition), a trial could be terminated and a next trial
started (action).

Ideally, the transition from simulated robotics to real-world
robotics requires no or little additional parameter tuning. In cedar,
this transition is brought about by replacing the simulated robot
module by the corresponding real robot module. This directs the
output to the hardware rather than the simulator. Figure 10 shows
snapshots of the real robot arm acting out the same task as shown
previously (Figure 9) in simulation.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1412

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

FIGURE 8 | For three different settings (three rows), this figure shows the camera input (leftmost column, A,E and I) and the resulting activation in the
perceptual field at three different points in time (three rightmost columns): with none of the dynamic nodes activated (second column from the left,
B,F and J), with the “left” node activated (third column, C,G and K), and with both the “left” and “green” node activated (fourth column, D,H and L).
The three-dimensional activation of the perceptual field is shown here projected onto the two-dimensional table space.

5.5. Documenting Results
Characterizing the performance of an artificial cognitive system
is not a trivial task. It requires defining some form of scenario
or benchmark that probes relevant aspects of the desired cogni-
tive function and the environmental conditions under which it
is delivered. The time-continuous nature of processing in DFT
architectures and their capacity to update processing online in
response to changes in the environment make this task even more
difficult.

A key functionality of the cedar framework for evaluating
DFT architectures is data recording, the capacity to register any
data structure within an architecture (e.g., matrices of activation,

sigmoid output, or projection stages) as a time series or as a
snapshot. Time series are recorded at a user selected rate while the
architecture is running and stored in CSV files (comma-separated
values) together with a time stamp. Figure 11 illustrates how data
obtained this way can be used to document real-world perfor-
mance. The activation of the perceptual field and all dynamic
neural nodeswere recorded during an experiment performedwith
the real robot (Figure 10).

cedar also comes with a graphical tool that enables users to
generate plots from recorded data. The tool is written in Python
and uses the versatile matplotlib. Users can choose which data
to plot and plotting modes of time course (e.g., activation over

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1413

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

FIGURE 9 | Snapshots of the simulated robotic arm pointing toward a green mug on the left side of the table. The target position is denoted by the green
sphere. The colored lines show the coordinate axes of the world. Time increases from (A) to (D).

FIGURE 10 | Snapshots of the KUKA LWR4 robotic arm pointing toward a green mug on the left side of the table. Time increases from (A) to (D).

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1414

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

FIGURE 11 | Activation of the dynamic neural nodes of the exemplary architecture over time (top) with snapshots of the activation of the perceptual
field at three relevant points in time (bottom). The activation of the nodes “red” and “right” have the same time course apart from noise. The perceptual field is
projected onto the table space.

time), snapshot (i.e., the state of part of the architecture at a point
in time), or a sequence of snapshots. High-dimensional fields can
be projected onto lower dimensional spaces. The resulting plots
can be saved as vector graphics (e.g., in SVG format) to include
them in publications without loss of quality. This is how Figure 11
was produced.

6. DISCUSSION

In this paper, we sketched the issues that must be addressed
whenneural cognitive architectures based ondynamic field theory
(Schöner et al., 2015b) are developed to endow embodied agents
with autonomy. The workflow of developing and evaluating such
architectureswas explained around a simple, but exemplarymodel
system in which an artificial cognitive system points to an object
within a visual scene that it selects based on a feature description
(e.g., “the red object on the right”). Four stages of the workflow
may be iterated, which are as follows: (1) The conception of the
DFT architecture makes use of the concepts of DFT, specify-
ing components as dynamic fields or nodes and their dynamic
regimes in terms of the attractor states and their instabilities.
“Mental simulation” of the conceived architecture uncovers the
sequential logic in which instabilities must be induced in the
model in response to external or internal signals. (2) As soon as
a DFT architecture conceived as a graphical sketch is instanti-
ated in the cedar framework through its graphical programming
interface, the model can be simulated numerically. To do this,
fields or nodes are dragged as icons from an element panel, and
their coupling is specified by drawing connections within an
architecture canvas. (3) Model parameters are tuned to realize

the specified dynamic regimes. cedar provides online updating
of parameter values with online visualization of any component
of an architecture. (4) Assessing a DFT architecture in response
to real or simulated sensory inputs is then possible by recording
within cedar relevant inner states as well as the output of the archi-
tecture, for example, real or simulated robot motion. How cedar
solves problems for users of the DFT framework is summarized
in Table 1.

This workflow is only feasible because DFT architectures can
be built incrementally. This scaling property of DFT architec-
tures ultimately comes from the stability constraint: in terms of
dynamical systems theory, the function of a neural dynamics is
captured by its solutions, the time courses of activation generated
by the neural dynamics. To endow an individual component, a
dynamic field, or node, with a particular function, we tune its
parameters such that it has the desired dynamic regime as defined
by attractor states. When other components are added to the
model, the dynamic equation of the original component may
change due to coupling. The solutions for the activation patterns
of this particular component may then change as well. Because we
generate functional states as attractors, the scaling requirement is
merely that these attractors remain stable as new components are
added. If that is the case, all solutions converging to the attractor
are only changed in a graded way,3 which is sufficient to retain
the function represented by the attractor. Attractors resist change
not only in time but also when the dynamical equation is var-
ied. As a result, the dynamic regime of any dynamic component
typically remains invariant when the component is embedded in

3The mathematical concept is that of structural stability (Arnold, 1983).

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1415

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

TABLE 1 | An overview of problems for users of dynamic field theory and
cedar’s approach to solving them.

Problem cedar’s solution

Programming effort to
implement DFT models

Graphical programming interface and object
orientation minimize coding effort

Tuning parameters Interactive inspection of model state and online
updating of parameter values facilitate manual
tuning of parameters; online slowing down of
simulation time enables detailed inspection of
dynamics

Handling large
architectures

Graphical interface visualizes connectivity; cedar
enables fast prototyping and incremental building
of architectures

Embodiment Built-in interfaces to hardware and simulation
environments including “Webots” facilitate the
design of autonomous robots

Collaboration cedar architectures can easily be exchanged
between users

Reproducibility Virtual machines can be shared to enable any user
to reproduce simulations without installing cedar

Dissemination of DFT
framework

cedar can be used to implement DFT models
without knowledge of programming languages

Sharing results Simulation data may be recorded and shared for
off-line analysis

Connecting to other
frameworks

Plug-in infrastructure facilitates integrating functions
from other frameworks; cedar supports YARP, and
a ROS prototype is under development

a larger architecture. This invariance is only approximate, so in
practice, some retuning may be required.

Note that cognitive architectures based on classical models
of information processing, such as ACT-R (Anderson, 1996) or
SOAR (Laird et al., 1987), also have a systematic approach to
scaling based on encapsulation. This comes, however, at the price
of invoking mechanisms that are difficult to realize in neural
process models, such as function calls and handing over argu-
ments to operators. Neurally inspired approaches are beginning
to overcome these limitations (Aisa et al., 2008; Jilk et al., 2008).

Beyond the toy example used here, DFT architectures have
exploited the scaling properties of DFT to push both toward
generating motor behaviors in autonomous robots (Knips et al.,
2014; Strauss et al., 2015; Zibner et al., 2015) and toward higher
cognitive function, such as grounding spatial language (Richter
et al., 2014a), parsing action sequences (Lobato et al., 2015), or
task learning (Sousa et al., 2015). These architectures are fairly
complex. Designing them, tuning their parameters, and evalu-
ating their performance was challenging. The workflow and its
support by the cedar software framework presented in this paper
were developed based on the experience of developing some of
these models (which used preliminary versions of cedar).

The functionality of cedarmay be extended beyond the theoret-
ical language of dynamic field theory. User-supplied plug-ins may
provide added functionality, such as other types of differential
or integrodifferential equations, additional processing steps, new
tools of visualization, and additional functions to improve online
parameter tuning. cedar itself does not impose very constraining
limits on the kind of functionality such extensions may provide.
Still, the conceptual framework of cedar is particularly suited to

continuous-time dynamical systems. Functionality that can be
implemented through state variables that evolve in continuous
time is thus integrable within cedar in the most direct way. Exam-
ples are the neural dynamics of the Hopfield type (Hopfield, 1999)
and related continuous-time associative memories (Deco and
Rolls, 2004) or the neural dynamics of central pattern generators
(Ermentrout, 1998).

In a different context, neural models are aimed at modeling
experimental data in particular behavioral paradigms. This con-
text puts different demands on the conception, tuning, and eval-
uation of neural models. In particular, to simulate experimental
paradigms, the task and set of sensory inputs must be captured
and simulated, and measurements on the activation states of the
modelsmust bemade that can be compared to behavioral observa-
tions. The workflow of modeling experimental paradigms within
DFT was reviewed in Ambrose et al. (2015). A software frame-
work, COSIVINA, written by Sebastian Schneegans in MATLAB,
was specifically aimed at the development of DFT models that
account for experimental data. COSIVINA facilitates scripting
experimental paradigms and the collection and statistical anal-
ysis of simulation data. Unlike cedar, COSIVINA does not have
a graphical programmer interface, and parameter tuning may
become challenging oncemodels become very large. The coupling
to sensory and robotic hardware is central to cedar, but not, at this
point, part of COSIVINA.

Other theoretical frameworks for neural models have devel-
oped analogous programming or simulation frameworks. Clas-
sical PDP models, for instance, can be efficiently assembled and
simulated using pdp++ (O’Reilly and Munakata, 2000), now
further developed and renamed “Emergent” (Aisa et al., 2008).
Emergent has features that resemble both cedar and COSIVINA,
having elements of a graphical programming interface, while also
providing scripting that may be used to emulate experimental
paradigms, which may be its main use case. Using the neural
engineering framework of Eliasmith (2013) is facilitated byNengo
(Stewart et al., 2009), a software that also provides a graphical
programming interface to specifying neural networks. Tuning
parameters of neural architectures in robotic implementations
that are situated in real environments is not a routine part of the
workflow of these approaches.

A major motivation for the use of neurally inspired approaches
in artificial cognitive systems is, of course, that they are open
to learning. The approaches to learning provided by neural net-
works are well known. Typically, networks are learned up in
training scenarios, in which stimulus patterns with or without
supervisory information are used to update the connectivity of
the network. Autonomously learning from experience is not as
well understood. In robotics, reinforcement learning is used as
a paradigm to learn from experience, but not typically within
neurally grounded architectures [for review, see, Kormushev
et al. (2013)]. DFT provides the processing infrastructure that
supports autonomous learning from experience (Sandamirskaya,
2014; Sandamirskaya and Storck, 2015). For instance, neural
states that drive exploratory behavior must be kept in working
memory to compare with the outcome. Errors must be detected
and represented, and the autonomous sequences of processing
steps required to bring about an instance of experience must be

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1416

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

generated. Even the simple, first examples of such autonomous
learningwithinDFT required, therefore, relatively complex neural
architectures, which were implemented using the cedar frame-
work. While reviewing autonomous learning in greater depth is
beyond the scope of this paper, it is a major frontier for future
work.

AUTHOR CONTRIBUTIONS

OL, SZ, and MR developed cedar. MR implemented the architec-
ture in the present paper and ran the experiments. All four authors
contributed to the writing of the paper.

ACKNOWLEDGMENTS

cedar is a collaborative effort; we would therefore like to acknowl-
edge the contributions of other authors, especially Jean-Stephane

Jokeit and Hendrik Reimann. Further contributors are credited in
cedar’s source files.

FUNDING

The authors acknowledge the financial support of the European
Union Seventh Framework Programme FP7-ICT-2009-6 under
Grant Agreement no. 270247 – NeuralDynamics. This work
reflects only the authors’ views; the EC is not liable for any use
that may be made of the information contained herein.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fnbot.2016.00014/
full#supplementary-material.

REFERENCES
Aisa, B., Mingus, B., and O’Reilly, R. (2008). The emergent neural modeling system.

Neural Netw. 21, 1146–1152. doi:10.1016/j.neunet.2008.06.016
Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybern. 27, 77–87. doi:10.1007/BF00337259
Ambrose, J., Schneegans, S., Schöner, G., and Spencer, J. P. (2015). “Conclusions: a

“how-to” guide tomodeling with dynamic field theory (chapter 15),” inDynamic
Thinking: A Primer on Dynamic Field Theory (New York: Oxford University
Press), 369–387.

Anderson, J. R. (1996). A simple theory of complex cognition. Am. Psychol. 51,
355–365. doi:10.1037//0003-066X.51.4.355

Arnold, V. I. (1983). Geometrical Methods in the Theory of Ordinary Differential
Equations. Berlin: Springer-Verlag.

Bicho, E., Louro, L., and Erlhagen, W. (2010). Integrating verbal and nonverbal
communication in a dynamic neural field architecture for human-robot inter-
action. Front. Neurorobot. 4:1–13. doi:10.3389/fnbot.2010.00005

Deco, G., and Rolls, E. T. (2004). A neurodynamical cortical model of visual
attention and invariant object recognition. Vision Res. 44, 621–642. doi:10.1016/
j.visres.2003.09.037

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological
Cognition. New York, NY: Oxford University Press.

Erlhagen, W., and Schöner, G. (2002). Dynamic field theory of movement prepara-
tion. Psychol. Rev. 109, 545. doi:10.1037/0033-295X.109.3.545

Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming sys-
tems. Rep. Prog. Phys. 61, 353–430. doi:10.1088/0034-4885/61/4/002

Grossberg, S. (1978). “A theory of human memory: self-organization and perfor-
mance of sensory-motor codes, maps, and plans,” in Progress in Theoretical
Biology, Vol. 5, eds R. Rosen and F. Snell (New York, NY: Academic Press
(Elsevier)), 500–639.

Hopfield, J. (1999). Brain, neural networks, and computation. Rev. Mod. Phys. 71,
431–437. doi:10.1103/RevModPhys.71.S431

Jilk, D. J., Lebiere, C., O’Reilly, R. C., and Anderson, J. R. (2008). Sal: an explic-
itly pluralistic cognitive architecture. J. Exp. Theor. Artif. Intell. 20, 197–218.
doi:10.1080/09528130802319128

Kloeden, P. E., and Platen, E. (1999). The Numerical Solution of Stochastic Differen-
tial Equations, 2 Edn. Berlin: Springer-Verlag.

Knips, G., Zibner, S. K. U., Reimann, H., Popova, I., and Schöner, G. (2014).
“A neural dynamics architecture for grasping that integrates perception and
movement generation and enables on-line updating,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (New York: IEEE), 646–653.

Kopecz, K., and Schöner, G. (1995). Saccadic motor planning by integrating visual
information and pre-information on neural dynamic fields. Biol. Cybern. 73,
49–60. doi:10.1007/BF00199055

Kormushev, P., Calinon, S., and Caldwell, D. (2013). Reinforcement learn-
ing in robotics: applications and real-world challenges. Robotics 2, 122–148.
doi:10.3390/robotics2030122

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: an architecture for
general intelligence. Artif. Intell. 33, 1–64. doi:10.1016/0004-3702(87)90050-6

Lobato, D., Sandamirskaya, Y., Richter, M., and Schöner, G. (2015). Parsing of
action sequences: a neural dynamics approach. Paladyn 6, 119–135. doi:10.1515/
pjbr-2015-0008

Lomp, O., Zibner, S. K. U., Richter, M., Rano, I., and Schöner, G. (2013). “A software
framework for cognition, embodiment, dynamics, and autonomy in robotics:
cedar,” in ICANN2013, Lecture Notes in Computer Science 8131,Number 270247,
ed. V. Mladenov (Heidelberg: Springer), 475–482.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Michel, O. (2004). Webots: professional mobile robot simulation. Int. J. Adv. Robot.
Syst. 1, 39–42. doi:10.5772/5618

O’Reilly, R. C., and Munakata, Y. (2000). Computational Explorations in Cognitive
Neuroscience – Understanding the Mind by Stimulating the Brain. London: The
MIT Press.

Richter, M., Lins, J., Schneegans, S., Sandamirskaya, Y., and Schöner, G. (2014a).
“Autonomous neural dynamics to test hypotheses in amodel of spatial language,”
in Proceedings of the 36th Annual Conference of the Cognitive Science Society,
eds P. Bello, M. Guarini, M. McShane, and B. Scassellati (Austin, TX: Cognitive
Science Society), 2847–2852.

Richter, M., Lins, J., Schneegans, S., and Schöner, G. (2014b). “Chapter – a
neural dynamic architecture resolves phrases about spatial relations in visual
scenes,” in Proceedings of Artificial Neural Networks and Machine Learning –
ICANN 2014: 24th International Conference on Artificial Neural Networks,
September 15-19, 2014 (Hamburg, Germany: Springer International Publishing),
201–208.

Richter, M., Sandamirskaya, Y., and Schöner, G. (2012). “A robotic action selec-
tion and behavioral organization architecture inspired by human cognition,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (New York),
2457–2464.

Sandamirskaya, Y. (2014). Dynamic neural fields as a step toward cognitive
neuromorphic architectures. Front. Neurosci. 7:276. doi:10.3389/fnins.2013.
00276

Sandamirskaya, Y., Richter, M., and Schöner, G. (2011). “A neural dynamic archi-
tecture for the behavioral organization of an autonomous robotic agent,” in
IEEE International Conference on Development and Learning and on Epigenetic
Robotics, (New York) 1–87.

Sandamirskaya, Y., and Storck, T. (2015). “Learning to look and looking to
remember: a neural-dynamic embodied model for generation of saccadic gaze
shifts and memory formation,” in Artificial Neural Networks SE – 9, Volume
4 of Springer Series in Bio-/Neuroinformatics, eds P. Koprinkova-Hristova, V.
Mladenov, and N. K. Kasabov (Berlin: Springer International Publishing),
175–200.

Schneegans, S., and Schöner, G. (2012). A neural mechanism for coordinate
transformation predicts pre-saccadic remapping. Biol. Cybern. 106, 89–109.
doi:10.1007/s00422-012-0484-8

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1417

http://journal.frontiersin.org/article/10.3389/fnbot.2016.00014/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fnbot.2016.00014/full#supplementary-material
http://dx.doi.org/10.1016/j.neunet.2008.06.016
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1037//0003-066X.51.4.355
http://dx.doi.org/10.3389/fnbot.2010.00005
http://dx.doi.org/10.1016/j.visres.2003.09.037
http://dx.doi.org/10.1016/j.visres.2003.09.037
http://dx.doi.org/10.1037/0033-295X.109.3.545
http://dx.doi.org/10.1088/0034-4885/61/4/002
http://dx.doi.org/10.1103/RevModPhys.71.S431
http://dx.doi.org/10.1080/09528130802319128
http://dx.doi.org/10.1007/BF00199055
http://dx.doi.org/10.3390/robotics2030122
http://dx.doi.org/10.1016/0004-3702(87)90050-6
http://dx.doi.org/10.1515/pjbr-2015-0008
http://dx.doi.org/10.1515/pjbr-2015-0008
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.5772/5618
http://dx.doi.org/10.3389/fnins.2013.00276
http://dx.doi.org/10.3389/fnins.2013.00276
http://dx.doi.org/10.1007/s00422-012-0484-8
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Lomp et al. Developing DFT Architectures with cedar

Schöner, G. (2008). “Dynamical systems approaches to cognition (chapter 4),” in
The Cambridge Handbook of Computational Psychology, ed. R. Sun (Cambridge,
UK: Cambridge University Press), 101–126.

Schöner, G., and Dineva, E. (2007). Dynamic instabilities as mechanisms for emer-
gence. Dev. Sci. 10, 69–74. doi:10.1111/j.1467-7687.2007.00566.x

Schöner, G., Faubel, C., Dineva, E., and Bicho, E. (2015a). “Embodied neural
dynamics (chapter 4),” inDynamic Thinking: A Primer on Dynamic Field Theory
(New York: Oxford University Press), 95–118.

Schöner, G., Spencer, J., and The DFT Research Group. (2015b).Dynamic Thinking:
A Primer on Dynamic Field Theory; Oxford Series in Developmental Cognitive
Neuroscience. New York: Oxford University Press.

Schöner, G., and Thelen, E. (2006). Using dynamic field theory to rethink
infant habituation. Psychol. Rev. 113, 273–299. doi:10.1037/0033-295X.113.
2.273

Sousa, E., Erlhagen, W., Ferreira, F., and Bicho, E. (2015). Off-line simulation
inspires insight: a neurodynamics approach to efficient robot task learning.
Neural Netw. 72, 123–139. doi:10.1016/j.neunet.2015.09.002

Stewart, T. C., Tripp, B., and Eliasmith, C. (2009). Python scripting in the nengo
simulator. Front. Neuroinform. 3:7. doi:10.3389/neuro.11.007.2009

Strauss, S., Woodgate, P. J., Sami, S. A., and Heinke, D. (2015). Choice reaching with
a LEGO arm robot (CoRLEGO): the motor system guides visual attention to
movement-relevant information. Neural Netw. 72, 3–12. doi:10.1016/j.neunet.
2015.10.005

Taylor, J. G. (1999). Neural ‘bubble’ dynamics in two dimensions: foundations. Biol.
Cybern. 80, 393–409. doi:10.1007/s004220050534

Zibner, S. K. U., and Faubel, C. (2015). “Dynamic scene representations and
autonomous robotics (chapter 9),” in Dynamic Thinking: A Primer on Dynamic
Field Theory (New York: Oxford University Press), 227–246.

Zibner, S. K. U., Faubel, C., Iossifidis, I., and Schöner, G. (2011a). Dynamic neural
fields as building blocks of a cortex-inspired architecture for robotic scene
representation. IEEE Trans. Auton. Ment. Dev. 3, 74–91. doi:10.1109/TAMD.
2011.2109714

Zibner, S. K. U., Faubel, C., and Schöner, G. (2011b). “Making a robotic scene
representation accessible to feature and label queries,” in IEEE International
Conference on Development and Learning, ICDL 2011. New York.

Zibner, S. K. U., Tekülve, J., and Schöner, G. (2015). “The neural dynamics of
goal-directed arm movements: a developmental perspective,” in International
Conference on Learning and Development ICDL-EpiRob 2015. New York.

Zwillinger, D. (1989).Handbook of Differential Equations. San Diego, CA: Academic
Press.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer RL declared a past collaboration with the author GS to the handling
Editor, who ensured that the process met the standards of a fair and objective
review.

Copyright © 2016 Lomp, Richter, Zibner and Schöner. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org November 2016 | Volume 10 | Article 1418

http://dx.doi.org/10.1111/j.1467-7687.2007.00566.x
http://dx.doi.org/10.1037/0033-295X.113.2.273
http://dx.doi.org/10.1037/0033-295X.113.2.273
http://dx.doi.org/10.1016/j.neunet.2015.09.002
http://dx.doi.org/10.3389/neuro.11.007.2009
http://dx.doi.org/10.1016/j.neunet.2015.10.005
http://dx.doi.org/10.1016/j.neunet.2015.10.005
http://dx.doi.org/10.1007/s004220050534
http://dx.doi.org/10.1109/TAMD.2011.2109714
http://dx.doi.org/10.1109/TAMD.2011.2109714
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar
	1. Introduction
	2. Concepts of Dynamic Field Theory
	2.1. The Dynamics of Neural Fields
	2.2. The Dynamics of Neural Nodes
	2.3. The Dynamics of Memory Traces
	2.4. The Coupling of Neural Fields and Nodes
	2.5. The Coupling of Neural Fields to Sensors and Effectors
	2.5.1. Sensors
	2.5.2. Effectors

	3. Implementing Dynamic Field Theory
	3.1. Sampling Time
	3.2. Synchronizing Real and Simulated Time
	3.3. Sampling Space

	4. Architectures in Dynamic Field Theory
	5. Workflow to Develop and Evaluate DFT Architectures
	5.1. Conceiving an Architecture
	5.2. Building DFT Architectures in cedar
	5.3. Tuning Parameters
	5.4. Running Experiments
	5.5. Documenting Results

	6. Discussion
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References

