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Robotic and Virtual Reality BCIs
Using Spatial Tactile and Auditory
Oddball Paradigms
Tomasz M. Rutkowski *

BCI-Lab, Tokyo, Japan

The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI)

projects developed by the author, in collaboration with his graduate students, within

the BCI–lab research group during its association with University of Tsukuba, Japan.

The nine novel approaches are discussed in applications to direct brain-robot and

brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies.

The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive

electroencephalography (EEG) and they are translated to a symbiotic robot or virtual

reality agent thought-based only control. A communication protocol between the BCI

output and the robot or the virtual environment is realized in a symbiotic communication

scenario using an user datagram protocol (UDP), which constitutes an internet of

things (IoT) control scenario. Results obtained from healthy users reproducing simple

brain-robot and brain-virtual-agent control tasks in online experiments support the

research goal of a possibility to interact with robotic devices and virtual reality agents

using symbiotic thought-based BCI technologies. An offline BCI classification accuracy

boosting method, using a previously proposed information geometry derived approach,

is also discussed in order to further support the reviewed robotic and virtual reality

thought-based control paradigms.

Keywords: brain–computer interface (BCI), robotics, virtual reality, symbiotic brain–robot interaction, auditory BCI,

tactile BCI, spatial BCI, information geometry

1. INTRODUCTION

A brain-computer interface (BCI) is a neurotechnology application that decodes a central nervous
system signals of a user. The BCI allows thus for a direct thought–based communication with
other users or a control of various appliances (e.g., a direct brain–robot interface) without any
involvement of efferent peripheral nervous system fibers or muscles (Wolpaw and Wolpaw, 2012).
The state-of-the-art BCI applications rely mostly on visual (Chang et al., 2013; Aminaka et al.,
2015, 2016) stimulus modality. However, tactile (Mori et al., 2013a; Kodama et al., 2014, 2016;
Shimizu et al., 2014, 2015c; Rutkowski andMori, 2015; Yajima et al., 2015) and auditory (Schreuder
et al., 2010; Chang et al., 2013, 2014; Nakaizumi et al., 2015a) BCIs offer viable alternatives and in
some cases they are the more suitable communication augmentation options in case of locked-in-
syndrome (LIS) users who cannot focus or control their eye movements (Patterson and Grabois,
1986; Rutkowski and Mori, 2015). The direct brain–robot and virtual reality (VR) BCIs discussed
in this paper are utilizing brain event related responses (ERPs) to tactile or auditory stimuli. The
online control of robotic and VR applications still suffers from brainwave decoding flaws. In

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
https://doi.org/10.3389/fnbot.2016.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2016.00020&domain=pdf&date_stamp=2016-12-06
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tomek@bci-lab.info
https://doi.org/10.3389/fnbot.2016.00020
http://journal.frontiersin.org/article/10.3389/fnbot.2016.00020/abstract
http://loop.frontiersin.org/people/33686/overview


Rutkowski Robotic and Virtual Reality BCIs

order to improve the previously developed by the author and
his students, robotic as well as VR BCIs (Mori et al., 2013a;
Hamada et al., 2014; Kodama et al., 2014, 2016; Neto et al.,
2014; Nakaizumi et al., 2015a; Rutkowski and Mori, 2015;
Rutkowski and Shinoda, 2015; Rutkowski et al., 2015b; Shimizu
et al., 2015c; Yajima et al., 2015) a new information geometry
method, proposed by Barachant et al. (2012), is applied in offline
processing mode to the EEG signals from the previous online
(realtime) experimental projects. The information geometry-
based technique has been already successfully applied to a brain
sleep apnea automatic classification (Rutkowski, 2016). This
novel technique employs the information geometry framework
first envisioned by Amari (1997, 2016) and further expanded
within Riemannian geometry approaches by Barachant et al.
(2012).

From now on the paper is organized as follows. In the
next section, the novel information geometry-based classification
approach is explained and compared with the previously applied
machine learning methods for the VR and robotic BCIs.
Discussion and conclusions summarize the paper together with
future research remarks.

2. METHODS

All the nine robotic and VR BCI studies summarized below
were carried out in accordance with recommendations and
permissions of the Ethical Committee from Faculty of
Engineering, Information and Systems at the University of
Tsukuba, Japan, and Ethical Committee of RIKEN Brain Science
Institute, Japan. All the realtime BCI and EEG acquisition
experiments were conducted after the participants signed
written informed consents in accordance with the Declaration
of Helsinki. The EEG signals from the previously conducted VR
and robotic BCI studies (Mori et al., 2013a; Hamada et al., 2014;
Kodama et al., 2014, 2016; Neto et al., 2014; Nakaizumi et al.,
2015a; Rutkowski andMori, 2015; Rutkowski and Shinoda, 2015;
Rutkowski et al., 2015b; Shimizu et al., 2015c; Yajima et al., 2015)
have been uniformly bandpass filtered with cut-off frequencies
at 0.1 and 40 Hz, respectively. For the BCI classification
accuracy improvement simple comparison. All the signals were
additionally uniformly segmented (“epoched”) within 0–1000 ms
latencies from the auditory or tactile stimulus onsets.

2.1. Brain ERP Responses Classification
for BCI with SWLDA and MDM Methods
The P300 responses are usually discriminated in BCI application
using a stepwise linear discriminant analysis (SWLDA)
classifier method, which is an extension of the classical
linear discrimination technique proposed by Krusienski et al.
(2006). The SWLDA is broadly applied in many realtime
BCI applications (Renard et al., 2010; Schalk and Mellinger,
2010; Stocks, 2011). A problem of event related potentials
(ERPs) classification is related to very noisy and transient EEG
brainwave discrimination during online experiments. In order
to deal with the problem, Barachant et al. (2012) proposed to
specify a generic model for the observed data. Let’s assume that

x(t) ∈ R
3N be a zero–mean ERP data sample captured from N

EEG electrodes, at a discrete time sample t, concatenated with
averaged matrices of rare targets and non-targets (N-channels
each) of the oddball BCI paradigm (Wolpaw and Wolpaw,
2012). The trick with adding the averaged references of the rare
targets and non-targets is to compensate for a lack of a spatial
variability of the ERP responses. Let also xk,i ∈ R

3N be a single
ERP, together with reference averages from a training session
number i, which is a member of rare targets (carrying the P300
responses) or non-targets (no P300). The rare targets carry EEG
positive deflections usually within 300–600ms interval latencies
(see Figures 1D,E, 2B, 3C, 4C, 5C, 6C,F, 7B with various
sensory modality–based P300 responses from robotic and VR
BCI experiments discussed in this paper). Each captured ERP
thus belongs to k ∈ {1, 2} class and it contains M samples. In
this study all ERPs from the previously developed by the author
and his students robotic as well as VR BCI projects (Mori et al.,
2013a; Hamada et al., 2014; Kodama et al., 2014, 2016; Neto
et al., 2014; Nakaizumi et al., 2015a; Rutkowski and Mori, 2015;
Rutkowski and Shinoda, 2015; Rutkowski et al., 2015b; Shimizu
et al., 2015c; Yajima et al., 2015) have been standardized for
an easy comparison within latencies of 0–1000ms. Within an
information geometry-based approach proposed by Barachant
et al. (2012), each ERP record is assumed to have a zero mean.
With the above assumption, a single trial covariance matrix xk,i,
which represents ERP from a class k, together with the averaged
training references, is given as,

Ck,i =
1

M − 1
xk,ix

T
k,i, (1)

whereM stands for a number of samples in each event xk,i. With
an additional assumption of the ERPs being from multivariate
Gaussian distributions, a covariance matrix shall be the only
unique parameter for each target or non-target response classes.
Barachant et al. (2012) proposed a classification algorithm
that employs the covariance matrices as input features. In
this paper, the same approach is utilized since the covariance
matrices convey a satisfactory discriminable information of the
monitored EEG brainwave responses. A classification step is
usually defined by assigning to an unlabeled ERP an existing and
predicted class (rare target vs. non-target responses), which is
obtained from the covariance matrix features, Ck,i calculated as
in Equation (1), of the input EEG brainwave channels. Barachant
et al. (2012) and Congedo et al. (2013) proposed a very natural
for information geometry–based (especially the Riemannian
geometry) derived features classification algorithm, which is
based on fining a minimum distance of the newly acquired
ERPs, within the realtime monitored EEG, from the class–
representing mean covariance matrices. A minimum distance to
mean (MDM) classifier (Barachant et al., 2012; Congedo et al.,
2013) meets the above criterium and it has been reviewed in
this paper.

During a classifier training phase, geometric mean covariance
matrices Ck representing each target or non-target ERP classes
k are computed using a training phase dataset. Next, in
testing steps the remaining datasets are evaluated for the
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FIGURE 1 | A screenshot from a video available online1 that demonstrates the tactile–bone–conduction auditory (VRtbcaBCI) and

tactile–push–pressure (VRtppBCI) BCIs for the VR agent control. Published with permission of the depicted user. The grand mean averaged ERPs with P300

responses (rare targets – orange line; and non–targets green) together with standard error intervals are shown in (D,E). (A) The VRtbcaBCI. (B) A simple VR scene.

(C) The VRtppBCI. (D) Grand mean averaged ERP of the rare targets with P300 (orange line) and non–targets (green) together with standard error intervals from

VRtbcaBCI experiments. (E) Grand mean averaged ERP of the rare targets with P300 (orange line) and non–targets (green) together with standard error intervals from

VRtppBCI experiments.

FIGURE 2 | The RtcBCI experimental set–up (a screenshot from an online demo video2) and grand mean averaged tactile ERPs with P300 responses

visualized. Published with permission of the depicted user. (A) A screenshot from a video available online2 that demonstrates the RtcBCI–based small LEGO vehicle

robot control. (B) Grand mean averaged ERP of the rare targets with P300 (orange line) and non–targets (green) together with standard error intervals from RtcBCI

experiments.

BCI accuracy improvement analysis with the proposed MDM
classifier, and in comparison with the classical and perviously
used SWLDA technique. The covariance matrices are symmetric
and positive definite (Barachant et al., 2012). This implies that
they can be diagonalized by a rotation and they have also
all positive eigenvalues. In order to compute a distance of a
newly arriving ERP trial sample from the above mentioned
class-characterizing mean covariance matrix Ck, an appropriate
metric, allowing a simple discrimination, is employed. A point
on a Riemannian manifold represents the symmetric positive
definite matrix (Barachant et al., 2012; Barachant and Congedo,
2014; Yger et al., 2016).

The Riemannian distance between two covariance matrices Ci

and Cj is defined as follows (Barachant et al., 2012; Amari, 2016),

δR =
∣

∣

∣

∣ln(C−1
i Cj)

∣

∣

∣

∣

F
=

√

∑

n

[ln(wn)]2, (2)

where the symbol || · || denotes a Frobenius norm and w1, . . . ,wn

the eigenvalues of C−1
i Cj, respectively. The geometric mean,

1An online link to the supplementary material with the vrtbcaBCI and vrtppBCI

video https://youtu.be/mLT-CpV5l20
2An online link to the supplementary material with the RtcBCI NAO video https://

youtu.be/-Qka_AQerLI
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FIGURE 3 | Screenshots from a video available online3 that demonstrates the robotic body–tactile (RbtBCI) for the LEGO robotic hand control and

grand mean averaged tactile ERPs with P300 responses visualized. Published with permission of the depicted user. (A) A user laying on the vibrotactile pad

with embedded tactile stimulators and with the EEG cap on his head. The LEGO robotic prothetic hand model is on a table next to him. (B) The LEGO robotic

prosthetic hand during the RbtBCI control. (C) Grand mean averaged ERP of the rare targets with P300 (orange line) and non–targets (green) together with standard

error intervals from RbtBCI experiments.

FIGURE 4 | Screenshots from a video available online4 that demonstrates the RautdBCI–based LEGO robotic prosthetic arm model control and grand

mean averaged tactile ERPs with P300 responses visualized. Published with permission of the depicted user. (A) A user wering EEG cap and placing his hands

under AUTD array. (B) The LEGO robotic prosthetic hand model during RautdBCI control experiment. (C) Grand mean averaged ERP of the rare targets with P300

(orange line) and non–targets (green) together with standard error intervals from RautdBCI experiments.

using the Riemannian distance defined in Equation (2), of J
covariance matrices is computed as follows (Barachant and
Congedo, 2014),

G(C1, · · · ,CJ) = argmin
C

J
∑

j=1

δ2R(C,Cj). (3)

The class representing mean covariance matrix Ck, denoted by
corresponding labels li ∈ {1, 2, . . . , k} and calculated within the
MDM classifier training process, is thus obtained as,

Ck = G
(

Ci|li = k
)

. (4)

A the classification step, originally proposed by Barachant and
Congedo (2014), a new ERP trial is assigned a label by finding
the minimum distance among the class-representing means as
follows,

l̂ = argmin
k

δR
(

Ck,C
)

. (5)

The above shortly introduced classification method
employing the information geometry principles to
EEG brainwaves, constitutes a very generic approach

allowing for a minimization of the ERP averaging
number and resulting with BCI classification accuracy
boosting. The MDM classifier is a novel and superior
method, comparing to the classical SWLDA as shown
in following sections reviewing robotic and VR BCIs
applications.

3. RESULTS

In this section, the previously developed virtual reality
(VR) (Neto et al., 2014) and robotic (Mori et al., 2013a;
Hamada et al., 2014; Kodama et al., 2014, 2016; Nakaizumi
et al., 2015a; Rutkowski and Mori, 2015; Rutkowski and
Shinoda, 2015; Rutkowski et al., 2015b; Shimizu et al.,
2015c; Yajima et al., 2015) BCIs are reviewed together
with new results reporting BCI accuracy boosting in
offline analysis set-up using the proposed information
geometry MDM classifier approach introduced in
Section 2.1.

3An online link to the supplementary material with the btBCI video https://youtu.

be/hMEMDCzIk30
4An online link to the supplementary material with the RautdBCI video http://

youtu.be/JE29CMluBh0
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FIGURE 5 | Screenshots from a video available online5 that demonstrates the robotic tactile pin–pressure BCI (RtppBCI) in application to the NAO

humanoid robot control and grand mean averaged tactile ERPs with P300 responses visualized. Published with permission of the depicted user. (A) The

pin–pressure device placed on a user palm and used in the RtppBCI experiments. (B) User controlling the humanoid NAO robot with the RtppBCI. (C) rand mean

averaged ERP of the rare targets with P300 (orange line) and non-targets (green) together with standard error intervals from RtppBCI experiments.

FIGURE 6 | Screenshots from a video available online6 that demonstrates robotic spatial auditory (RsaBCI) and tactile–glove (RtgBCI) BCIs for

humanoid robot NAO control. Grand mean averaged ERPs with P300 responses visualized are also depicted for the both paradigms. Published with permission of

the depicted users. (A) An user during the RsaBCI–based humanoid NAO robot control. (B) An user head with EEG cap and small in–ear headphones during the

RsaBCI–based humanoid NAO robot control experiments. (C) Grand mean averaged ERP of the rare targets with P300 (orange line) and non–targets (green) together

with standard error intervals from RsaBCI experiments. (D) An user during the RtgBCI–based humanoid NAO robot control. (E) An user head with EEG cap and a

hand wearing a glove with vibrotactile transducers used in the RtgBCI–based humanoid robot NAO control experiments. (F) Grand mean averaged ERP of the rare

targets with P300 (orange line) and non–targets (green) together with standard error intervals from RtgBCI experiments.

3.1. VR Tactile Bone-Conduction Auditory
(VRtbaBCI) and Tactile Pin-Push
(VRtppBCI) BCIs

A virtual reality (VR) study has been conducted at the BCI-

lab research group and it covered two BCI prototypes tested

using online (realtime) applications (Neto et al., 2014), as

also depicted in Figure 1. The first VR BCI (vrBCI) type has
been developed for those paralyzed or locked-in syndrome
(LIS) (Plum and Posner, 1966) patients, who could not see

visual stimuli or hear air-pressure-conducted sounds due the
advanced stages of their diseases (bad eyesight or blocked
external ear canals) (Gelinas, 2007; Rutkowski and Mori, 2015).
Our group developed a tactile and bone-conduction auditory
brainwave evoked response-based BCI prototype (VRtbaBCI)
using vibrotacile transducers attached to a user head and

5An online link to the supplementary material with the RtppBCI video https://

youtu.be/dSrZ5O59vhI
6An online link to the supplementary material with the RsaBCI and RtgBCI

video https://youtu.be/lKQ8sc_PifE
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operating in acoustic frequencies (Mori et al., 2013d; Rutkowski
and Mori, 2015), as shown also in Figure 1A. The second VR
BCI prototype, discussed in this section, has been developed
for a rapid tactile stimulus presentation based on a small
pin-push pattern (VRtppBCI) applied to user fingers using
a small matrix of nine solenoids controlled by a personal
computer (Shimizu et al., 2014, 2015c), as also depicted in
Figure 1C. The experimental VR scene was developed within
the Unity3D gaming engine. A chosen virtual agent resembled a
young gentleman walking in a an open space with cubic obstacles
as shown in Figure 1B. The virtual agent was able to walk freely
and it was controlled within a two dimensional space using
commands from the vrBCI application. The agent could execute
the following commands: walk-straight, return, walk-left, walk-
right, or to stop. Within the virtual space (see Figure 1B) four
obstacle cubes were placed for visual reference and in order to
define a walking path for the user to follow. The vrBCI users
executed several walking path scenarios around the cubes.

During the VR BCI experiments, evaluating the VRtbaBCI
and VRtppBCI paradigms, EEG signals were recorded by the
g.USBamp EEG bio-amplifier using the g.GAMMAbox with
attached eight active electrodes g.LADYbird (g.tec Medical
Instruments GmbH, Austria). The EEG electrodes were placed
on the 10/10 extended international system head locations:
Cz, Pz, P3, P4, C3, C4, CP5, as well as CP6. A grounding
electrode was connected to FPz position and a reference, of
the unipolar recording montage, to a left earlobe. We did not
observe any electromagnetic interference on EEG caused by the
vibrotactile exciters (electric coils), which operated in higher
acoustic frequencies (above 100 Hz), as well as from solenoids
placed on the user hand using a vinyl isolating glove.

The recorded EEG signals were processed in realtime
by an in-house expanded BCI experimental environment
BCI2000 (Schalk and Mellinger, 2010; Matsumoto et al., 2013).
Experimental stimuli in the both discussed VRtbaBCI and
VRtppBCI paradigms were presented with an inter-stimulus-
interval (ISI) of 150 ms. Each single stimulus duration
was set to 100 ms length. For the online P300 responses
classification we used a stepwise linear discriminant analysis
(SWLDA) classifier (Krusienski et al., 2006), while in offline
EEG post-processing the MDM has been applied as introduced
in Section 2.1. The bone-conduction auditory and tactile
stimuli were generated by vibrotactile transducers and solenoids
controlled by ARDUINOUNOmicro-controller board managed
from the visual multimedia programming environment MAX
(Cycling’74, USA). The BCI commands were sent also from
the same MAX environment using the UDP protocol to the
virtual reality agent programmed in the Unity3D, as an internet-
of-things (IoT) scenario set-up. A pre-defined walking path
within the VR environment was explained, before each of
the experiments, to the BCI user. The user was requested to
follow the path. The BCI controlled commands were walk
up, down, left, right, or stop, as can be seen in an online
video. Averaged BCI accuracy results for head tactile bone-
conduction auditory BCI using limited number of averaged
ERPs [smaller in comparison to the previous report by Neto
et al. (2014)] are summarized in Table 1 and depicted in

form of grand means in Figure 1D. Similarly, for the case of
VRtppBCI paradigm, the BCI accuracy results are summarized
in Table 1 and Figure 1E, respectively. For the both above cases
introduction of the MDM classifier for a limited number of
averaged ERPs allowed for a significant boost of BCI accuracy
results.

The above discussed VR environment study results, in the
online BCI experimental set-up, confirmed the proposed tactile
and bone-conduction auditory modalities-based agent control
paradigm validities. Even if the vrBCI concept may still need
improvements, we have shown that the proposed paradigm could
lead to development of efficient and comfortable virtual reality
applications.

3.2. Robotic Tactile Chest BCI (RtcBCI) for
a LEGO Vehicular Robot Control
The first direct brain-robotics project developed at the BCI-lab
research group created a multi-command robotic tactile chest
BCI (RtcBCI) for a small vehicular LEGO robot control (Mori
et al., 2013a), as depicted in Figure 2. This research project
was an improvement of a previously reported finger stimulus
tactile BCI developed also by the BCI–lab research group (Mori
et al., 2013b). The direct brain–robotics interface was based on
the P300 response (Donchin and Coles, 1988) classification in
a tactile sensory modality (Brouwer and Van Erp, 2010). The
ERPs were evoked by tactile stimuli generated by vibrotactile
transducers attached to five chest positions (Mori et al., 2013a). In
the reported study five male volunteers participated with a mean
age of 26.6±9.5 years. Tactile stimuli were delivered as sinusoidal
waves generated by a portable computer with MAX software
(Cycling’74, USA), via five channel outputs of an external digital-
to-analog signal converter RME Fireface UCX, (RME, Germany)
coupled with the two acoustic YAMAHA P4050 power amplifiers
(YAMAHA, Japan). The stimuli were delivered to the user chest
locations via the tactile transducers HiWave HIAX25C10-8/HS
operating at 200 Hz to match their resonance frequencies. The
tactile pulses were designed to stimulate the Pacini endings
(fast-adapting type II afferent type tactile sensory innervation
receptors) which are the large receptive field mechanoreceptors
in deeper layers of human skin (Johansson and Flanagan, 2009).
Instructions during a training session were presented visually by
means of the BCI2000 program (Schalk and Mellinger, 2010;
Matsumoto et al., 2013) with numbers 1, 2, . . . 5 representing
robot movement directions (#1: move left at −90◦; #2: straight-
left at −45◦; #3: straight at 0◦; #4: straight–right at 45◦; and
#5: right at 90◦) and communicated via vibrotactile transducers
attached to the user chest (Mori et al., 2013a).

During the online EEG experiment, brainwaves were
captured using a bio-amplifier system g.USBamp (g.tec Medical
Instruments GmbH, Austria). Sixteen active electrodes were
attached to the 10/10 international system head locations (Jurcak
et al., 2007) as follows: Cz, Pz, P3, P4, C3, C4, CP5, CP6, P1,
P2, POz, C1, C2, FC1, FC2, and FCz. A ground electrode was
connected to the FPz position, while a reference to a left earlobe.
An electromagnetic interference from the vibrotactile transducer
was not observed since it operated in higher frequencies
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FIGURE 7 | A screenshot from a video available online7 that demonstrates the robotic full–body tactile BCI (RfbtBCI) humanoid robot NAO control and

grand mean averaged tactile ERPs with P300 responses visualized. Published with permission of the depicted user. (A) A RfbtBCI user lying on a mattress with

vibrotactile transducers embedded and controlling the humanoid robot NAO. (B) Grand mean averaged ERP of the rare targets with P300 (orange line) and

non–targets (green) together with standard error intervals from RfbtBCI experiments.

TABLE 1 | The VRtbcaBCI and VRtppBCI classification accuracies

obtained with the information geometry–based MDM classifier versus the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

VRtbcaBCI

MDM (%) 55.4± 7.9 80.9± 9.9 95.7± 4.9 99.6± 2.0 100.00± 0.0

SWLDA (%) 22.1± 18.3 24.1± 18.8 23.9± 16.3 22.1± 16.3 26.2± 15.0

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

VRtppBCI

MDM (%) 58.5± 12.0 74.2± 12.6 68.7± 18.3 54.2± 28.6 84.1± 3.3

SWLDA (%) 22.4± 17.2 23.5± 20.3 25.9± 22.1 23.5± 20.3 23.5± 21.5

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p < 0.01 p≪ 0.001

comparing to the EEG spectrum (above 100 Hz). The captured
EEG signals were processed online using an in-house extended
BCI2000 application (Schalk and Mellinger, 2010; Matsumoto
et al., 2013). The LEGO robot control application demonstrated
a feasibility of the five-commands and chest locations based
RtcBCI paradigm. The RtcBCI was tested with five “body-able”
users. The RtcBCI allowed for a real-time operation of a robotic
small vehicle as visualized in Figure 2A or in an online video
available online.1 The experimental BCI accuracy results using
SWLDA and MDM classifiers (a chance level of 20.0%) are
summarized in Table 2. Also in this case the offline MDM
classifier application resulted with significantly better results, as
tested with a pairwise rank-sum Wilcoxon test. The obtained
grand mean averaged rare target (carrying P300 responses) and
non-target ERPs are depicted in Figure 2B.

3.3. Robotic Body–Tactile BCI (RbtBCI) for
a LEGO Prosthetic Hand Model Control
The second robotic project, conducted at the BCI-lab research
group, was carried out by applying vibration stimuli to the
user back (see Figure 3A). Such experimental set-up allowed

7An online link to the supplementary material with the RfbtBCI NAO video http://

youtu.be/sn6OEBBKsPQ

TABLE 2 | The RtcBCI classification accuracies (a chance level of 20.0%)

obtained with the information geometry–based MDM classifier versus the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 61.1± 12.5 99.6± 0.8 100.00± 0.0 100.00± 0.0 100.00± 0.0

SWLDA (%) 23.0± 23.2 22.0± 23.2 26.2± 19.6 26.8± 20.8 24.8± 23.0

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

TABLE 3 | The RbtBCI classification accuracies (a chance level was at

16.7%) obtained with the information geometry–based MDM classifier vs.

the standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 51.4± 9.9 68.8± 5.4 94.7± 8.3 99.8± 1.3 100.0± 0.0

SWLDA (%) 22.2± 9.9 17.2± 5.4 26.3± 8.3 23.2± 1.3 22.7± 0.0

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

for stimulation of places at larger distances on a user body for
a robotic body-tactile BCI (RbtBCI) paradigm (Kodama et al.,
2014, 2015). The RbtBCI paradigm has been tested with a LEGO
robotic prosthetic hand model depicted in Figure 3B. In the
experiments the user lied down on the vibrotactile stimulating
pad (Comfort Research, USA). The user interacted with stimulus
patterns delivered to the whole back of the body in an oddball-
style (Wolpaw and Wolpaw, 2012) paradigm, as illustrated in
Figure 3A. In the reported experiments seven healthy BCI–naive
users participated. An average age was of 25.0 ± 7.8 years. In
the RbtBCI online experiments, the EEG signals were acquired
with a bio-signal amplifier g.USBamp (g.tec Medical Instruments
GmbH, Austria). We used sixteen active EEG electrodes (Cz,P3,
P4, Pz, C3, C4, CP5, CP6, P1, P2, POz, C1, C2, FC1, FC2, and
FCz). The EEG signals were captured and classified during online
RbtBCI experiments by in-house modified BCI2000 software.
The EEG sampling frequency was set to 512 Hz in all trials.
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TABLE 4 | The RautdBCI classification accuracies (a chance level at

16.7%) obtained with the information geometry–based MDM classifier vs.

the standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 54.7± 14.3 71.7± 3.2 91.4± 10.9 98.3± 3.8 99.8± 1.5

SWLDA (%) 20.6± 19.4 23.6± 19.5 27.1± 20.6 26.6± 20.8 30.1± 23.1

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

The vibrotactile spatial pattern stimuli in the two experimental
settings were generated using the MAX visual programing
environment (Cycling’74, USA) with a program developed by our
team. The RbtBCI experimental accuracy results using SWLDA
and MDM classifiers are summarized in Table 3. In this case also
the offline MDM classifier application resulted with significantly
better results, as tested with a pairwise rank-sum Wilcoxon test.
The obtained grand mean averaged rare target (carrying P300
responses) and non-target ERPs are depicted in Figure 3C. The
chance level was at 16.7%.

3.4. Robotic Airborne Ultrasonic Tactile
Display–Based BCI (RautdBCI) for a LEGO
Prosthetic Arm Model Control
The airborne ultrasonic tactile display (AUTD) based BCI
received The BCI Annual Research Award 2014 and it allowed
for a creation of several very interesting applications (Hamada
et al., 2014, 2015; Rutkowski et al., 2014, 2015a; Rutkowski and
Shinoda, 2015) including a robotic AUTD paradigm (RautdBCI)
applied to a LEGO prosthetic hand model control described
in this section (see Figure 4). The AUTD stimulus generator
in the RautdBCI experiments delivered tactile and contactless
stimuli to the user skin only via air pressure modulation using a
technique of beam-forming-based focused ultrasound (Iwamoto
et al., 2008; Mori et al., 2012, 2013a,b,c,d; Hamada, 2014).
The AUTD stimulation effect was achieved due to a generated
ultrasonic radiation static force, which was produced by an
intense sound pressure amplitude. The effect was a result of
a nonlinear acoustic phenomenon (Iwamoto et al., 2008). The
above mentioned radiation pressure allowed for a deformation of
a skin surface of hand fingers and palms, creating thus a virtual
touch sensation (“a contactless somatosensory stimulation”).
Next, the modulated radiation air-pressure brought a sensation
of the tactile vibration, which was similar to the mechanical
equivalent delivered by the classical vibrotactile transducers
usually attached to the user skin (Yajima et al., 2014, 2015).
The AUTD device (Iwamoto et al., 2008; Hamada, 2014) used
in our study complied with ultrasonic medical standards. The
permitted skin absorption levels were not exceed (approximately
40 times below the permitted limits). The vibrotactile sensation
used in the study was set to 50 Hz (Hamada, 2014) in
order to match frequency tuning characteristics of tactile skin
mechanoreceptors (Iwamoto et al., 2008; Mori et al., 2012). Also
the above frequency was aligned with the notch filter that EEG
amplifiers use for power line interference rejection. Thirteenmale

volunteer BCI users participated in the experiments. An average
age of the users was of 28.54± 7.96 years.

The user brainwaves were acquired using the bio-signal
amplifier g.USBamp (g.tecMedical Instruments GmbH, Austria).
The electrodes were applied to the Pz, Cz, P3, P4, C3, C4,
CP5, CP6, P1, P2, POz, FC1, FC2, C1, C2, and FCz as in the
10/10 extended international system head locations. A ground
electrode was applied to the FPz and a reference to a left earlobe,
respectively. No electromagnetic interference was observed from
the AUTD.

The users were given an instruction to copy-spell six digits
sequences representing the stimulated places on their fingers and
palms. The digits were mapped to robotic prosthetic hand model
control (six pre-programmed movements allowing for simple
picking and moving small objects) as shown in Figures 4A,B.
The RautdBCI experimental accuracy results using SWLDA and
MDM classifiers are summarized in Table 4. The offline MDM
classifier application applied to the RautdBCI resulted, also in
this case, with significantly better results, as tested with a pairwise
rank-sum Wilcoxon test. The obtained grand mean averaged
rare target (carrying P300 responses) and non-target ERPs are
depicted in Figure 4C. The chance level was at 16.7%. A video
demonstrating a fully successful robot control is available online4.

3.5. Hand Tactile Pin-Pressure BCI
(RtppBCI) for the Humanoid Robot NAO
Control
In the fourth robotic project conducted by the BCI-lab research
group also a tactile stimulus generator was utilized. A tactile
pin-pressure generator used in the study was composed of
nine solenoids arranged in 3 × 3 point matrix (Shimizu et al.,
2014). Six stimulus linear patterns were composed of the tactile
pressure pins and they were delivered in random order to the
user fingers (Rutkowski et al., 2015b,c; Shimizu et al., 2015a).
The robotic tactile pin-pressure BCI (RtppBCI) is presented
in Figures 5A,B. Three of the linear patterns were horizontal
arrangements ordered from the top to the bottom of user
fingers. The remaining three patterns were vertical in the left
to right order. The solenoid generated linear pressure patterns
were at each time 100 ms long. The decoded from EEG
brainwave BCI commands were sent next to the robot via the
UDP network protocol packets using a wireless connection (the
IoT scenario). The humanoid robot NAO executed the pre-
programmed movements (user intended commands) as a result
of the successfully classified P300 responses to stimuli delivered
to the hand of the user (see Figure 5). EEG signals were acquired,
during online BCI experiments from eight active EEG electrodes
Cz, P3, P4, Cpz, C3, C4, CP5, and CP6. A reference electrode was
connected as an ear-clip to a left earlobe. A ground electrode
was attached on a forehead at FPz location, similarly as in
a study by Shimizu et al. (2015c). The user brainwaves were
acquired using the bio-signal amplifier g.USBamp (g.tec Medical
Instruments GmbH, Austria). The user wore on polyethylene
glove in order to limit a possible electric interference leaking
from the tactile generators. The users were also asked to possibly
limit body and eye movements in order avoid EMG interference.
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TABLE 5 | The RtppBCI classification accuracies (a chance level at 16.7%)

obtained with the information geometry–based MDM classifier vs. the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 50.8± 17.8 71.5± 1.8 71.7± 2.6 72.7± 4.2 100.0± 0.0

SWLDA (%) 16.7± 20.7 22.0± 17.5 24.0± 22.7 22.0± 19.9 20.0± 21.1

Significance p < 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

The EEG signals were acquired and processed by our in-house
expanded BCI2000 application (Schalk and Mellinger, 2010;
Matsumoto et al., 2013).We used in online experiments, similarly
as in previous sections, the SWLDA classifier (Krusienski et al.,
2006). The EEG sampling rate was of 256 Hz. The ISI was
set at 400 ms length and each stimulus duration of 100 ms,
respectively. The humanoid NAO robot was controlled using
six pre-programmed commands, which were decoded from user
EEG and classified by the developed RtppBCI. The commands
were transmitted from the RtppBCI to the robot in form of
numbers representing the six movement commands. Ten male
users participated in the study with an average age of 24.8 ±

3.8 years. The RtppBCI experimental accuracy results using
the classical SWLDA and the proposed MDM classifiers are
summarized in Table 5. The offline MDM classifier application
applied to the RtppBCI concluded, also in this case, with
significantly higher results, as tested with a pairwise rank-sum
Wilcoxon test. The obtained grand mean averaged rare target
(carrying P300 responses) and non-target ERPs are depicted in
Figure 5C. The chance level was at 16.7%. A video demonstrating
a fully successful robot control is available online5.

3.6. Robotic Spatial Auditory BCI (RsaBCI)
for the Humanoid Robot NAO Control
In the fifth robotic project conducted by the BCI–lab research
group, five spatial sound (auditory) stimuli were used in an
oddball paradigm (Nakaizumi et al., 2014, 2015a,b) as shown in
Figures 6A,B. Five Japanese vowels were positioned spatially on
a virtual horizontal acoustic plane reproduced using headphones
with head-related impulse responses (HRIRs) by Nakaizumi et al.
(2014). The experimental azimuth locations were left side at−80◦

and−40◦; center at 0◦; and right at 40◦ and 80◦, for the Japanese
kana vowels of a, i, u, e, and o, respectively. A synthetic computer
voice was used in the experiments. The online EEG experiments
were conducted to investigate P300 response validity for a
robotic spatial auditory BCI (RsaBCI) thought-based control (see
Figure 6C with the grand mean averaged auditory ERPs). The
brain signals were recorded by a bio-signal amplifier g.USBamp
(g.tec Medical Instruments GmbH, Austria). The EEG signals
were acquired using sixteen active electrodes attached to the
following head position Cz, P3, P4, Pz„ Cp5, Cp6, P1, P2, Poz, C1,
C2, FC1, FC2, and FCz. The ground electrode was connected on
the forehead at the FPz and the reference on the left earlobe. Our
laboratory in-house expanded BCI2000 (Schalk and Mellinger,
2010; Matsumoto et al., 2013) application together with MAX

TABLE 6 | The RsaBCI classification accuracies (a chance level at 20.0%)

obtained with the information geometry–based MDM classifier vs. the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 55.22± 5.6 59.0± 4.8 98.0± 3.4 97.3± 3.0 99.2± 1.1

SWLDA (%) 28.3± 22.6 28.9± 19.4 26.1± 22.8 32.8± 27.5 32.2± 26.7

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

environment (Cycling’74, USA) were used for the online spatial
auditory BCI (saBCI) experiments to present stimuli and display
online classification results. A single stimulus duration was set to
150 ms. The inter-stimulus-interval (ISI) was set to 150 ms. The
EEG sampling rate was of 512 Hz. Five female users participated
in the study with an average age of 21.6 ± 0.5 years. The RsaBCI
experimental accuracy results using the classical SWLDA and the
proposedMDM classifiers are summarized inTable 6. The offline
MDM classifier application applied to the RsaBCI also in this
case resulted with significantly higher outcomes, as tested with
a pairwise rank-sum Wilcoxon test. The obtained grand mean
averaged rare target (with the P300 responses) and non-target
ERPs are depicted in Figure 6F. The chance level was at 20.0%. A
video demonstrating a fully successful robot control is available
online6.

3.7. Robotic Tactile–Glove BCI (RtgBCI) for
the Humanoid Robot NAO Control

In the sixth robotic project conducted by the BCI–lab research
group, a somatosensory stimulator in a form of a “tactile–
glove” was employed (Yajima et al., 2014, 2015) in order to
create a robotic tactile-glove BCI (RtgBCI) as presented in
Figures 6D,E. Nine vibrotactile exciters were attached to user
fingers. Each finger, except thumb, had two vibrotactile exciters
attached. Similarly as in previously discussed BCI paradigms,
intentionally modulated tactile P300 responses were translated
to the humanoid NAO robot control commands as shown in
Figure 6. The user brainwaves were acquired using the bio-signal
amplifier g.USBamp (g.tecMedical Instruments GmbH, Austria).
The EEG signals were recorded from eight active electrodes,
which were attached to the following head positions of Cz,
P3, P4, C3, C4, CPz, Cp5, and CP6, respectively. The ground
electrode was set on a forehead (FPz), and a reference on a left
earlobe. The extended BCI2000 software (Schalk and Mellinger,
2010; Matsumoto et al., 2013) together with MAX environment
(Cycling’74, USA) were used in the experiments. The acquired
and filtered brain signals were next segmented as well as finally
classified online, after a preliminary training, by the SWLDA
classifier, also in this scenario. Five male users participated in
the study with an average age of 26.6 ± 9.5 years. The RtgBCI
experimental accuracy results using the classical SWLDA and the
proposedMDM classifiers are summarized inTable 7. The offline
MDM classifier application applied to the RtgBCI, as well as in
this case, resulted with significantly higher outcomes, as tested
with a pairwise rank-sum Wilcoxon test. The obtained grand
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TABLE 7 | The RtgBCI classification accuracies (a chance level at 20.0%)

obtained with the information geometry–based MDM classifier vs. the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 55.6± 8.2 70.8± 2.4 73.1± 0.7 89.1± 10.5 100.0± 0.0

SWLDA (%) 25.0± 25.9 28.6± 21.6 26.8± 20.7 26.8± 20.7 35.7± 23.4

Significance p < 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

mean averaged rare target (with the P300 responses) and non-
target ERPs are depicted in Figure 6C. The chance level was at
20.0%. A demonstration video with a realtime humanoid robot
NAO control as available online6.

3.8. Robotic Full–Body Tactile
Stimulation–Based BCI (RfbtBCI) for the
Humanoid Robot NAO Control
In the final robotic study conducted by the BCI-lab research
group, a stimulus-driven tactile BCI have been developed, in
which somatosensory stimuli were given to the full body of
the user in order to evoke tactile P300 responses (Rutkowski
et al., 2015b,c; Shimizu et al., 2015a,b; Kodama et al., 2016) as
depicted in Figure 7A. Six spatial tactile stimuli were delivered to
various body locations of the users entire back. The classified BCI
results were next employed for an intuitive robot control-based
application. The robotic control was designed for a paralyzed
user who would be in a bedridden condition. An approach
has been defined as a robotic full body BCI (RfbtBCI). In
the proposed RfbtBCI paradigm, the tactile P300 generating
stimuli were applied (Rutkowski et al., 2015b,c; Shimizu et al.,
2015a,b; Kodama et al., 2016) to the user back and waist. The
user responded mentally only to the identified rare targets as
in the classical oddball set-up (Wolpaw and Wolpaw, 2012).
The presented approach has been in an active development
in mind for clinical conditions and for locked-in syndrome
(LIS) bedridden users, although at the current stage of the
presented pilot study only healthy participants were tested. For
this reason, we developed a tactile stimulus generator applying
vibration patterns to a full body of the user’s back (Rutkowski
et al., 2015b,c; Shimizu et al., 2015a,b; Kodama et al., 2016).
Tactile transducers DAYTON TT25-16 were embedded within a
mattress in order to generate somatosensory evoked potentials
(SEP) with intentionally modulated P300 responses. The tactile
stimuli were applied to six distinct areas of the user back and
limbs (both arms and legs; waist; and shoulder areas). The NAO
humanoid robot was controlled by the RfbtBCI direct brain-
robot communication application. Six robot preprogrammed
movements were mapped to the RfbtBCI commands (e.g.,
walk ahead; return; left; or right; sit; and say “goodbye”). The
developed direct brain-robot control application is depicted in
Figure 7.

The EEG signals were acquired with a bio-signal
amplifier g.USBamp (g.tec Medical Instruments GmbH,
Austria), and processed using in–house extended BCI2000
environment (Schalk and Mellinger, 2010; Matsumoto et al.,

TABLE 8 | The RfbtBCI classification accuracies (a chance level at 16.7%)

obtained with the information geometry–based MDM classifier vs. the

standard SWLDA method together with grand mean difference

significance p-values obtained from pairwise rank–sum Wilcoxon tests.

Classifier type
BCI accuracy depending on a number of averaged ERPs

1 2 3 4 5

MDM (%) 59.8± 10.0 71.9± 1.2 93.6± 9.1 99.1± 4.5 99.1± 4.5

SWLDA (%) 26.4± 18.7 28.8± 20.3 32.8± 22.0 39.2± 23.9 44.0± 21.8

Significance p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001 p≪ 0.001

2013). The online P300 responses were classified using the
SWLDA method. Eight active EEG g.LADYbird electrodes were
attached to eight locations of Cz, Pz, P3, P4, C3, C4, CP5, and
CP6, as in 10/10 international system. The EEG sampling rate
was set to 512 Hz. Ten healthy users (five males and five females;
mean age of 21.9 ± 1.45) took part in the study. The RfbtBCI
experimental accuracy results using the classical SWLDA and
the proposed MDM classifiers are summarized in Table 8. The
offline MDM classifier application applied to the RfbtBCI, also
here, resulted with significantly higher accuracies, as tested with
a pairwise rank-sum Wilcoxon test. The obtained grand mean
averaged rare target (with the P300 responses) and non-target
ERPs are depicted in Figure 7B. The chance level was at 16.7%.
This direct brain-robot control project shall be considered as
a relatively novel approach. We could successfully realize a
full body tactile BCI to bring closer to reality a concept of the
direct brain-robot control application (Rutkowski et al., 2015b,c;
Shimizu et al., 2015a,b; Kodama et al., 2016). A demonstration
video with a user controlling the NAO humanoid robot with the
discussed above RfbtBCI paradigm is available online7.

4. DISCUSSION

The paper reviewed nine realtime implementations of robotic
and VR BCI paradigms developed by the BCI-lab research group.
Realtime virtual reality agent and robotic device control scenarios
have been explained. The novel information geometry-based
MDM method have been introduced, which boosted the VR and
robotic BCI accuracies in offline EEG processing applications.

The previously reported VR and robotic BCI paradigms
employed the SWLDA classifier that required larger number
of averaged ERPs (10–15), which resulted in slower interfacing
speeds. The MDM classier introduced in this paper, and
compared with the previous SWLDA method, required smaller
ERP averaging scenarios (1–5) that allowed for perfect scores
achievement for the majority of the tested, and reviewed in this
paper, VR and robotic BCIs.

The results obtained with the proposed MDM classifier
where significantly better (p < 0.001), as tested with pairwise
rank-sum Wilcoxon tests, comparing to the classical SWLDA
method. The MDM-based classification boosting results were
also independent of the presented oddball BCI stimulation
modalities (auditory, tactile, bone–conduction auditory, or
mixed) and applications (VR or robotic), which have proven the
proposed approach validity for the so expected by our society
human augmentation solutions.
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5. CONCLUSIONS

The nine reviewed in this paper robotic (humanoid, vehicular,
and prosthetic) and VR (a computer graphic walking agent) BCI
control studies demonstrated results obtained with the novel
tactile and auditory BCI paradigms. The two chosen non-visual
spatial sensory modalities did not require any muscle movements
(e.g., eye focusing or saccades necessary to operate themajority of
visual BCIs). Additionally the VR and robotic devices operation
with the spatial tactile or auditory BCI paradigms allowed for the
user to focus their sights on the control tasks without the same
modality–based stimulus obstruction (the usual case caused by
the visual BCIs).

The tactile and especially auditory BCIs usually suffer
from lower accuracies. The employed information geometry
MDM classifier-based approach served as the very good
solution, as shown with the reviewed nine case studies in
application to robotic and VR agent control scenarios. The
application of the MDM in lower ERP averaging scenarios
(1–5) allowed for significant BCI classification accuracy
boosts, which approached the perfect average scores for the
majority of the improved paradigms. Only the discussed
VRtppBCI paradigm (see Section 3.1) resulted on with
lower than 99.0% grand mean outcomes (84.1 ± 3.3%)

using the five ERP averaging scenarios, yet still above a
theoretical threshold of 70% understood as necessary, by
the BCI research community, for a smooth communication
for locked-in syndrome users (Wolpaw and Wolpaw,
2012).

The results presented in this paper offer a step forward in
the maturation of the very promising, as well as very much
expected to improve life of ALS patients, human augmentation
neurotechnology applications. The evaluated virtual reality and
robotic BCI non–visual paradigms, relying on spatial tactile
and auditory sensory modalities, still obviously require further
improvements or modifications. These needs to determine the
major lines of the neurorobotics- and virtual reality-based
human augmentation, especially the BCI, research studies for the
near future. However, even at the current stage, the proposed
neurorobotic and virtual reality BCI applications can be regarded
as practical solutions already for the ALS/LIS patients (those
locked into their own bodies despite having often intact cognitive
functions).
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