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Combined efforts in the fields of neuroscience, computer science, and biology allowed 
to design biologically realistic models of the brain based on spiking neural networks. 
For a proper validation of these models, an embodiment in a dynamic and rich sensory 
environment, where the model is exposed to a realistic sensory-motor task, is needed. 
Due to the complexity of these brain models that, at the current stage, cannot deal with 
real-time constraints, it is not possible to embed them into a real-world task. Rather, 
the embodiment has to be simulated as well. While adequate tools exist to simulate 
either complex neural networks or robots and their environments, there is so far no tool 
that allows to easily establish a communication between brain and body models. The 
Neurorobotics Platform is a new web-based environment that aims to fill this gap by 
offering scientists and technology developers a software infrastructure allowing them to 
connect brain models to detailed simulations of robot bodies and environments and to 
use the resulting neurorobotic systems for in silico experimentation. In order to simplify the 
workflow and reduce the level of the required programming skills, the platform provides 
editors for the specification of experimental sequences and conditions, environments, 
robots, and brain–body connectors. In addition to that, a variety of existing robots and 
environments are provided. This work presents the architecture of the first release of the 
Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain 
Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to 

1 https://www.humanbrainproject.eu.
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1. InTRoDUcTIon

Developing neuro-inspired computing paradigms that mimic 
nervous system functions is a well-established field of research 
that fosters our understanding of the human brain. The brain 
is a complex structure, and designing models that can mimic 
such a structure is particularly difficult. Modeling brain function 
requires understanding how each subsystem (sensory, motor, 
emotional, etc.) works, how these subsystems interact with 
each other, and, as a whole, how they can generate complex 
behaviors in the interaction with the environment. Moreover, it 
is well known that during development the brain is molded by 
experience and the environment (Benefiel and Greenough, 1998; 
Briones et  al., 2004). Thus, studying and validating models of 
brain function requires a proper embodiment of the brain model 
as well as a dynamic and rich sensory environment in which the 
robot–brain ensemble can be embedded and then be exposed to 
a realistic sensory-motor task. Since advanced brain models are 
too complex to be simulated in real time, the researcher is faced 
with a dilemma. Either the brain model is simplified until it can 
be simulated in real time. In this case, the brain model can be 
embedded in a physical robot, operating in the real world, but 
the complexity of the brain models that can be studied is highly 
limited. Or the complexity of the brain model is maintained. In 
this case, there are no limits on the brain models; however, it is 
now no longer possible to embed the brain into a real-world task. 
Rather, the embodiment has to be simulated as well.

While adequate tools exist to simulate either complex neural 
network models (Gewaltig and Diesmann, 2007) or robots and 
their environments (Koenig and Howard, 2004), there is so far 
no tool that allows researchers to easily connect realistic brain 
models to a robot and embed it in a sensory-rich environment 
model.

Such a tool would require the capability of orchestrating and 
synchronizing both simulations as well as managing the exchange 
of data between them. The goal of such simulations is to study and 
quantify the behavior of models of the brain. As a consequence, 
we do not only need a complex, realistic experimental environ-
ment but we also need a controllable and measurable setup where 
stimuli can be generated and responses can be measured. In fact, 
real environment complexity and parameters are intrinsically 
difficult or even impossible to control. In addition, models of 
brain functions, designed to properly reproduce brain activ-
ity at different levels could not be executed in real time due to 

complex neuron dynamics and the size of the network (Kunkel 
et al., 2014). This is the reason why we propose to use a digital 
simulator implementing realistic scenarios. The main restriction 
we propose is to have a simulator that could run at a “slower” time 
(limited by the computation time required by the brain simula-
tion) and also that the time can be sampled in discrete intervals 
without compromising the simulation quality.

The idea behind this approach is providing a tool chain, which 
grants researchers’ access to simulation control as well as state-
of-the-art tools such as models of robot and brain and methods 
to connect them in a proper way (i.e., connecting spiking neural 
networks to robotic sensors and actuators). A first approach used 
to connect spiking neural networks and robots has been presented 
by Gamez et al. (2012). iSpike is a C++ library that provides an 
interface between spiking neural network simulators and the 
iCub humanoid robot. It uses a biologically inspired approach 
to convert the robots’ sensory information into spikes that are 
passed to the neural network simulator, and it decodes output 
spikes from the network into motor signals that are sent to control 
the robot. Another communication interface named CLONES 
(Voegtlin, 2011) between a neural simulator [BRIAN (Goodman 
and Brette, 2008)] and SOFA, a physics engine for biomedical 
applications (Allard et al., 2007), has been developed using shared 
memory and semaphores. The most similar system to iSpike and 
CLONES is the interface that was created for the CRONOS and 
SIMNOS robots (Gamez et al., 2006) which encoded visual and 
proprioceptive data from the robots into spikes that were passed 
to a spiking neural network simulated in SpikeStream. Spiking 
motor output from the network was transformed back into real 
values that were used to control the robots. This system was used 
to develop a spiking neural network that controlled the eye move-
ments of SIMNOS, learnt associations between motor output 
and visual input, and used models of imagination and emotion 
to avoid negative stimuli. All these systems provide an interface 
toward specific robotic platforms able to deal with spiking/digital 
inputs and convert them appropriately. Together with robotic 
platform restrictions, they do not provide a framework for the 
conversion, allowing the user to write his own transfer function. 
A more generic system which permits dealing with simulated 
robotic platforms is AnimatLab (Cofer et al., 2010b). AnimatLab 
currently has two different neural models that can be used. One is 
an abstract firing rate neuron model, and the other is a more real-
istic conductance-based integrate-and-fire spiking neural model. 
It is also possible to add new neural and biomechanical models as 

design and run basic experiments in neurorobotics using simulated robots and simulated 
environments linked to simplified versions of brain models. We illustrate the capabilities 
of the platform with three example experiments: a Braitenberg task implemented on a 
mobile robot, a sensory-motor learning task based on a robotic controller, and a visual 
tracking embedding a retina model on the iCub humanoid robot. These use-cases allow 
to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in 
neuroscientific experiments.

Keywords: neurorobotics, robot simulation, brain simulation, software architectures, robot programming, web 
technologies
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plug-in modules. There are several different joint types and a host 
of different body types that can be used. Although AnimatLab 
does not provide a comprehensive set of neurons and learning 
models, some behavior implementation based on this tool is 
available such as locust jumping (Cofer et al., 2010a) or dominant 
and subordinate crayfish (Issa et al., 2012). Despite some of the 
mentioned tools represents a good attempt to connect artificial 
brains to robots, these are not very common in the robotic and 
neuroscientific communities likely due to the limitations we have 
underlined (robotic platform restrictions, lack of a framework for 
conversions). For our framework, we decided to rely on widely 
used simulators for the brain models as well as for robots and 
environments. This strategic choice should allow to easily attract 
users of these platforms. We embedded these simulators in a 
comprehensive framework that allows the user to design and 
run neurorobotic experiments. In line with our approach, Weidel 
et  al. (2015, 2016) proposed to couple the widely used neural 
simulation tool NEST (Gewaltig and Diesmann, 2007) with the 
robot simulator Gazebo (Koenig and Howard, 2004), using the 
MUSIC middleware (Djurfeldt et al., 2010).

Here, we describe the first release of the HBP Neurorobotics 
Platform, which offers scientists and technology developers a set 
of tools, allowing them to connect brain models to detailed simu-
lations of robot bodies and environments and to use the resulting 
neurorobotic systems in in  silico experiments and technology 
development. The Neurorobotics Platform (NRP) also provides 
a comprehensive development framework including editors for 
creating experiments, environments, and brain and robot mod-
els. These tools are accessible via the web allowing them to use 
the platform without tedious installation of software packages. 
Moreover, through the web, researchers can collaborate and share 
their models and experiments with their colleagues or with the 
scientific community.

Although the capabilities to model virtual robots and envi-
ronments already exist as confirmed by the mentioned works, 
and although various labs have created closed-loop setups with 
simple brain models (Ros et al., 2006; Denoyelle et al., 2014), this 
platform is the first to allow the coupling of robots and detailed 
models of the brain. This makes it possible to perform experi-
ments exploring the link between low-level brain circuitry and 
high-level function.

The aim of this platform is twofold: from one side, the platform 
can be used to test neuroscientific models of brain areas, or even 
reconstruction of these areas based on neurophysiological data; 
on the other side, roboticists can take advantage of such a plat-
form to develop more biologically inspired control architectures. 
The physical and neural simulation are properly synchronized, 
and they exchange data through transfer functions that translate 
sensory information coming from the robot (camera image, 
encoders, etc.) into input for the brain (current and spikes) from 
one side and the network output into motor commands from the 
other. Additionally, the platform also provides a web interface, 
so that it can be easily accessed and used from a broader user 
base. From this web interface, the user can also access the editors 
that are used to construct experiments from scratch and run the 
experiments without any software installation, benefiting from 
the available computing and storage platforms that have been 

made available to support the NRP. Therefore, the NRP provides 
a complete framework for neurorobotics experiment design and 
simulation. One of the pillars of the NRP development is the reuse 
and extension of existing software, thus many components were 
implemented using suitably chosen existing software.

2. plATFoRM ReQUIReMenTS

2.1. Functional Requirements
In order to obtain the functional requirements for the NRP, we 
first determined which features are needed for the creation of a 
neurorobotic experiment. In that, we followed software engineer-
ing concepts and terminologies to itemize platform features as 
requirements (IEEE, 1998). These features can be divided into 
two categories: design features and simulation features, each with 
its own functional requirements.

During the design of a neurorobotic experiment, the user 
should be able to define all of its properties, and this includes

•	 the design of a suitable Robot model, by defining both kine-
matic and dynamic properties as well as the appearance, either 
from scratch or from preexisting models;

•	 the possibility to create a rich Environment models in which 
the robot can operate, by using a library of objects;

•	 the design of a Brain model, either from scratch or by selecting 
an existing model, that will be coupled to the robot;

•	 Brain–Body Integration, in order to specify how the brain 
model and the robot should be coupled in terms of sensory 
and motor data exchange to create a Neurobot;

•	 the capability to change dynamic properties of the Experiment 
itself, like defining events that can be triggered during the 
simulation and appropriate response behaviors.

When all properties are defined, the simulation can start. 
During the execution, the NRP should provide

•	 World maintenance and synchronization mechanisms in 
order to not only simulate both the physics and neural models 
but also to synchronize the two simulations and exchange data 
between them, providing a closed-loop control mechanism, as 
defined in the design phase. It must be possible to start, pause, 
stop, and reset the simulation. The simulation should react to 
the triggered events previously defined;

•	 a proper Interactive visualization of the running simulation, 
comprising a GUI and utilities to see details of the simulation 
like brain activity or robot parameters. Moreover, the user 
should be able to live edit and interact with the simulation once 
it is started, using the same design features described above.

A complete list of functional requirements can be found in 
Appendix A, while an overview of the platform functionalities is 
shown in Figure 1.

2.2. non-functional Requirements
Several non-functional requirements were also defined:

•	 usability and user experience—the platform should be easily 
accessible to a wide range of users that possibly have no 
experience in either the neuroscientific or robotic fields. This 
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should be achieved by a user-centric design with intuitive 
tools and a consistent user experience. Moreover, the platform 
should also provide an additional user level in order for expert 
users to have more detailed design capabilities.

•	 open source—the NRP should rely on existing building blocks, 
and in particular on open source ones, as the platform has to 
be released to a wide audience.

•	 interoperability—each software component that allows to save 
or load data should use, wherever possible, well-known data 
formats.

•	 software quality—in order to ensure software quality, the 
development of the platform should follow software engineer-
ing practices such as keeping a task tracking system, using 
version control with code review and continuous builds, and 
employing standard software development methodologies.

2.3. Integration with other hBp platforms
The NRP is one of six platforms developed in the Human Brain 
Project. In addition to the Neurorobotics Platform, the HBP devel-
ops a Neuroinformatics Platform, a Brain Simulation Platform, a 
High Performance and Data Analytics Platform, a Neuromorphic 
Computing Platform, and a Medical Informatics Platform. Most 
of these offer their services through the web and are built on top 
of a common set of APIs and services, called HBP Collaboratory 
Portal. It provides the following services:

•	 Authentication, access rights, and user profiles. The users are 
provided with a Single Sign-On mechanism so they can use 
the same credentials to access every HBP platform.

•	 Document repository. The users have access to a document 
repository in which they can store and manage their projects. 
It supports one of NRP’s requirements, namely, the possibility 
for the users to share their models (brain, connections, envi-
ronment, robots, or experiments) with team members.

•	 Collaboratory API. A web-based application with associated 
libraries allowing every platform’s web interface to have the 
same look and feel, and to be implemented as a plugin within 
the Collaboratory Portal.

All the HBP platform should provide some level of integra-
tion among each other. For this reason, short-term future 
development plans include the integration of the Neurorobotics 
Platform with the Brain Simulation Platform, the Neuromorphic 
Computing Platform, while in the long-term integration with the 
High Performance Computing and Analytics Platform will also 
be provided.

The Brain Simulation Platform aims at providing scientists 
with tools to reconstruct and simulate scaffold models of brain 
and brain tissue using data from within and outside the HBP. 
The Brain Simulation Platform will be integrated with the NRP 
for simulating brain models at various detail levels. Moreover, 
alongside the Brain Simulation Platform, scaffold brain models 
will be gathered and they will be available for usage in the 
platform.

The Neuromorphic Computing Platform provides remote 
access to large-scale neuromorphic computing systems built in 
custom hardware. Compared to traditional HPC resources, the 
neuromorphic systems offer higher speed (real time or acceler-
ated simulation time) and lower energy consumption. Thus, the 
integration of the platform will provide an alternative neural 
simulation backend more suitable for simulations that require 
a high computational burden, such as in experiments involving 
plasticity and learning.

3. SoFTWARe ARchITecTURe

The Neurorobotics Platform is based on a three-layer architec-
ture, shown in Figure 2.

The layers, starting from the one furthest from the user, are 
the following:

 1. the software components simulating the neurorobotics 
experiment;

 2. the REST server or Backend;
 3. the Experiment Simulation Viewer (ESV), a graphical user 

interface, and the Robot Designer, a standalone application 
for the design of physical models.
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The first layer comprises all the software components that 
are needed to simulate a neurorobotics experiment. The World 
Simulation Engine (WSE) is responsible for simulating robots and 
their environment. The Brain Simulator is responsible to simulate 
the neural network that controls the robot. The Closed Loop 
Engine (CLE) implements the unique logic of each experiment 
and orchestrates the interaction between the two simulators and 
the ESV.

The second layer contains the REST server, also referred to 
as Backend, which receives requests from the ESV and forwards 
them to the appropriate components, which implements the 
requested service, mainly through ROS. The REST server thus 
acts as a relay between the graphical user interface (the frontend), 
and the various simulation engines needed for the neurorobotics 
experiment. For practical reasons, the services provided by the 
REST server are tightly coupled with the high-level functionality 
shown in the ESV GUI. Thus any graphical control interacting 
with the REST server has a corresponding service. Actions that 
change the state of the simulations, such starting, stopping, or 
pausing a simulation, are implemented as a single parametric 
service.

The ESV is the web-based graphical user interface to all 
neurorobotics experiments. Using the ESV, the user can control 
and visualize neurorobotics experiments. The ESV also provides 
a number of editors to configure the experiment protocol as well 
as the parts of the experiment such as the environment, the brain 
model, and the connection between brain and robots (Brain 
Interface and Body Integrator). The Robot Designer is a tool that 
was developed to allow the process of designing robot models that 
can be included in simulation setups executable on the NRP. This 
tool is developed as a plugin for the 3D modeling tool Blender 3D.2

3.1. Brain Simulator
The goal of the Brain Simulator is to simulate a brain circuit, 
implemented with a spiking neural network (SNN).

2 https://www.blender.org/.

Several simulators for SNNs exist, with different levels of detail, 
ranging from more abstract point neuron simulations, which 
consider neural networks as directed graphs, to the morphologi-
cally accurate ones where the properties of axons and dendrites 
are taken into account.

Inside the NRP, the simulator currently supported is NEST 
(Gewaltig and Diesmann, 2007), a point neuron simulator with 
the capability of running on high-performance computing plat-
forms, that is also one of the simulation backends of the Brain 
Simulation Platform. NEST is supported through the use of the 
PyNN abstraction layer (Davison et al., 2008) that provides the 
same interface for different simulators and also for neuromorphic 
processing units, i.e., dedicated hardware for the simulation of 
SNN such as SpiNNaker (Khan et  al., 2008), provided by the 
Neuromorphic Computing Platform. Both NEST and PyNN 
provide convenient mechanisms to design neural networks. 
Furthermore, they are among the most used tools in the neurosci-
entific community. On the other hand, the only APIs they provide 
are written in Python, which heavily constraints the choice of the 
language to use for interacting with them.

3.2. World Simulator
In order to have realistic experiments, the accurate brain simula-
tion must be coupled with a detailed physics simulation. The 
World Simulator component aims at delivering a realistic simula-
tion for both the robot and the environment in which the robot 
interacts.

Gazebo was chosen as the physics simulator. It offers a multi-
robot environment with an accurate simulation of the dynamics, 
in particular gravity, contact forces, and friction. This dynamic 
simulation can be computed with different supported software 
libraries like ODE (Drumwright, 2010) and Bullet (Coumans 
et al., 2013).

Any communication with the simulated robot and control of 
the simulation itself is done through the Robot Operating System 
(ROS) (Quigley et  al., 2009), which is natively integrated with 
Gazebo.
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ROS is a widely used middleware in the robotics community 
and provides C++ and Python APIs to the user.

3.3. Brain Interface and Body Integrator
The Brain Interface and Body Integrator (BIBI) plays a crucial role 
in the NRP, as it is the component that implements the connec-
tion between the robot and brain simulations. The main feature of 
the BIBI is the Transfer Function framework. A Transfer Function 
(TF) is a function that translates the output of one simulation 
into a suitable input for the other. Thus, we can identify two main 
types of transfer functions: the Robot to Neuron TFs translate 
signals coming from robot parts such as sensor readings and 
camera images into neuron signals such as spikes, firing rates, or 
electric currents; the Neuron to Robot TFs convert neural signals 
from individual neurons or groups of neurons into control signals 
for robot motors. Thus, these two kinds of transfer functions close 
the action–perception loop by filling the gaps between the neural 
controller and the robot.

The TFs also extend beyond the previously described two 
types. For example, the robot–brain–robot loop can be short-
circuited in order to bypass the brain simulation and use only 
a classical robotic controller, thus resulting in a Robot to Robot 
TF. This allows the comparison between a classical and a neural 
implementation of a robotic controller with the same setup, by 
simply switching from a transfer function to another. Moreover, 
the data coming from both simulations can be sent out of the loop 
(to a monitoring module) where it can be live plotted, elaborated, 
stored, or exported for data analysis with external tools (Robot to 
Monitor and Neuron to Monitor TFs).

In order to provide a proper abstraction layer toward the 
simulators, generic interfaces are provided, which are then 
implemented by specific adapters. From the robot simulator side, 
the interface is modeled following the publish–subscribe design 
pattern (Gamma et  al., 1995), where, from one side, sensory 
information is expected to be published by the robotic simulator 
and the Robot to Neuron TF subscribes to the subject, receiving 
the data, while on the other side the Neuron to Robot TF publishes 
motor commands and the simulator is expected to subscribe and 
execute them. This pattern is used by many robotics middlewares 
such as ROS and YARP (Metta et al., 2006), thus there is minimal 
work required in order to implement the adapters in such cases. 
In the current implementation of the NRP, ROS Topic adapters 
have been implemented. From the brain simulation side, the TFs 
provide stimuli and measurements by using Devices. Devices are 
abstract entities that have to be connected to the neural network, 
either to a single neuron or to a neuron population. Among such 
entities, there are spike generators and current generators (for the 
input side), and spike recorders, population rates recorders, and 
leaky integrators (for the output side). In the current implementa-
tion, devices are implemented as wrappers around PyNN objects 
instances, providing general interfaces toward different neural 
simulators.

The TF framework is implemented using the Python program-
ming language, where the business logic of each TF resides in a 
function definition. A library of commonly used transfer func-
tions, including common image processing primitives and simple 
translational models for motor command generation, is provided 

alongside with the framework. Information about the TF connec-
tions is specified via a custom Domain Specific Language (DSL) 
implemented with Python decorators that specify the type of 
transfer function, the device types, and the neuron which they are 
connected to, and the topics that the TF should subscribe to, or 
on which topic the TF should publish (Hinkel et al., 2015, 2017). 
An example of a transfer function implementation is displayed 
in Listing 1.
lISTIng 1 | An example of transfer function code, translating an image 
into spike rates.
@nrp.maprobotsubscriber(“camera”, Topic(’/robot/Camera’, 
sensor_msgs.msg.image))
@nrp.mapspikesource(“red_left_eye”, nrp.brain.
sensors[0:3:2], nrp.poisson)
@nrp.mapspikesource(“red_right_eye”,nrp.brain.
sensors[1:4:2], nrp.poisson) 
@nrp.robot2neuron()
def eye_sensor_transmit(t, camera, red_left_eye,  
red_right_eye):

image_results = hbp_nrp_cle.tf_framework.tf_lib.
detect_red(image=camera.value)

red_left_eye.rate = image_results.left
red_right_eye.rate = image_results.right

In this example, it can be seen that through the use of the 
decorators DSL several properties are specified, such as the type 
of TF (Robot to Neuron), the devices toward the brain simula-
tion (spike generators firing with Poisson statistics attached to 
the neuron population) and the input coming from the robotic 
simulation (camera image published through a ROS topic). It 
can also be noticed that the actual business logic is implemented 
inside the function, and in particular, the image is processed 
with a color detection filter implemented as part the TF library 
provided alongside the platform.

The choice of Python for the TF framework was the most 
natural one, given the fact that both the chosen physics and 
neural simulators provide Python APIs. Consequently, the rest 
of the server side NRP components have been written in Python. 
In principle, this could raise performance issues when compared 
with languages like C++. We chose to avoid fine tuning of the 
performance of the developed components, as currently the 
bottlenecks of a simulation reside in the physics and neural 
simulators. This choice has also the advantage of simplifying 
considerably the development process.

Internally, the complete BIBI configuration, comprising the 
transfer functions, the robot model, and the brain model, is 
stored as an XML file. Each transfer function can be saved either 
as Python code in an XML tag or can be constructed from custom 
XML elements which are later parsed in order to generate the 
equivalent Python code. The second way of describing these func-
tions is better suited for the automatic generation of such XML 
files, via graphical editors that could be used also by scientists 
with no experience in Python.

3.4. closed loop engine
The Closed Loop Engine (CLE) is responsible for the control of 
the synchronization as well as for the data exchange among the 
simulations and the TFs. The purpose of the CLE is to guarantee 
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that both simulations start and run for the same timestep, and 
also to run the TFs that will use the data collected at the end of the 
simulation steps. Figure 3 shows a sequence diagram of a typical 
execution of a timestep: after the physics and neural simulations 
have completed their execution in parallel, the TFs receive and 
process data from the simulations and produce an output which 
is the input for the execution of the next step. The idea behind the 
proposed synchronization mechanism is to let both simulations 
run for a fixed timestep, receiving and processing the output of 
the previous steps and yielding data that will be processed in the 
future steps by the concurrent simulation. In other words, data 
generated by one simulation in the current timestep cannot be 
processed by the other simulation until the next one. This can 
be read as the TFs introducing a delay of sensory perception and 
motion actuation greater than the simulation timestep.

We decided not to use MUSIC for the synchronization in this 
first release, even if it was shown to be working by Weidel et al. 
(2015, 2016), in order to ease the communication between brain 
and world simulations without introducing any middle layer. 
Moreover, relying on the already existing Python APIs for the 
communication with the two simulators had the effect of simplify 
the development process.

Besides orchestrating running simulations, the CLE is also 
responsible of spawning new ones, by creating new dedicated 
instances of the World Simulator and the Brain Simulator, and a 
new instance of the orchestrator between the two.

3.4.1. Simulation Control
During its life cycle, each simulation transitions through several 
states, as depicted in Figure  4. At the beginning, a simulation 
is in state created, and it will switch to state initialized once the 
CLE is instantiated. Up to this point, no simulation steps have 
been performed yet. Once the simulation is started, the CLE will 
start the interleaving cycle that can be temporarily interrupted by 
pausing the simulation (paused) or preemptively terminated by 
stopping the simulation (stopped). If any error occurs during the 
execution or during the transitions between states, the simulation 

will pass automatically to the state halted. The reset transition can 
be considered parametrized, as it allows restoring to their initial 
status separate parts of the simulation singularly. Currently, the 
resettable parts in a simulation are the robot pose, the brain 
configuration, and the environment.

Thanks to the possibility of pausing and restarting the closed 
loop cycle during the simulation execution, it was possible to add 
features that modify simulation properties at runtime, without 
the need to restart the simulation from scratch. These features 
include support for transfer function adding, editing and removal, 
brain model, and environment editing. Using these features, it 
is possible to test different configurations of the simulation and 
immediately see the effects of them, without having to wait for a 
complete restart.

From the point of view of the implementation, the timestep of 
the physics simulation is sent to Gazebo through a ROS service 
call, while the brain simulation is directly run for the desired 
timestep with a PyNN call, as it can be observed from the archi-
tecture depicted in Figure 5. ROS service calls and the PyNN calls 
are implemented through generic adapter interfaces and perform 
a client-server interaction. Hence, in principle, a CLE instance 
can interact with different simulators than the ones currently 
supported (Gazebo and NEST). This abstraction layer, besides 
providing the possibility to change with relative ease the underly-
ing simulators, simplifies the update process of the simulators, by 
limiting the number of files that need to be changed in response 
to a possible API update.

3.4.2. State Machines for Simulation Control
In real experiments, it is often the case that the environment 
changes in response to occurring events, generated by the behav-
ior of the subject, by the experimenter or automatically generated 
(i.e., timed events). Thus, in order to reproduce this behavior, the 
possibility to generate events that can influence the environment 
was added to the platform. In particular, the user can interact 
with some objects without having to interrupt the simulation, 
like changing the brightness of lights or screen colors, and an 
event system is provided. The event system is implemented with 
a state machine that is programmable by the user. In the current 
implementation, support for timed events is provided, allowing 
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the user to program changes in the environment that have to 
occur at specific points in time.

The event system is managed by the State machines manager, 
implemented using the SMACH state machine framework 
(Bohren and Cousins, 2010) that is already integrated into 
ROS. Using such a framework, it is possible to program timed 
events that directly call Gazebo services in order to modify the 
environment.

3.5. Backend
The Backend is the component connecting the user interface 
to the core components of the platform, exposing a web server 
implementing RESTful APIs on the user interface end point and 
forwarding processed user requests via ROS on the other end 
point. This component is the first handler for user requests. In 
case they could not be completely managed within the backend, 
they are forwarded either to the CLE or to the State machines 
manager that will eventually complete the request processing, 
interacting, if necessary, with the simulators. An overview of the 
Backend architecture and of the interaction with other compo-
nents is depicted in Figure 6.

Actions provided by the backend to the user interface (ESV) 
include experiment listing and manipulation, simulation listing, 
handling and creation, and gathering of backend diagnostic and 
information.

Every available experiment on the platform is identified by 
a name and a group of configuration files, including a preview 
image to be showed on the ESV and files representing environ-
ment, brain, state machines, and BIBI, where neural populations 
and transfer functions are stored. Experiment listings and manip-
ulation APIs allow the user to list all the available experiments 

on the server as well as retrieving and customize singularly the 
configuration files of the experiment.

In the NRP setting, a simulation is considered as an instance of 
one of the available experiments. In order to create a new simula-
tion, the user has to proceed in a different way depending on 
whether the NRP is accessed within or outside of the Collaboratory 
Portal. If users are accessing from the Collaboratory Portal, they 
are able to clone the configuration files related to one of the avail-
able experiments on the Collaboration storage they are using 
and instantiate that local copy of the experiment. The backend 
allows users to overwrite said configuration files as well as saving 
CSV recordings of simulation data directly on the storage. In case 
a user is not working from the Collaboratory Portal, they can 
instantiate an experiment choosing directly from the experiment 
list, and they can edit it without having to instantiate a local copy.

Once a simulation is created, the backend allows the user to 
retrieve and change its current state according to the simula-
tion lifecycle depicted in Figure 4, by interfacing with the CLE. 
Other APIs provide functionalities for retrieving and editing 
at runtime the brain configuration, the state machines, and 
the transfer functions, delegating again the task to the CLE. 
Furthermore, information about the simulation metadata, 
brain populations, and environment configuration is available 
through dedicated APIs.

For diagnostic purposes, the backend provides some APIs for 
retrieving the errors which have occurred on the server as well as 
the version of the backend itself and the CLE.

3.6. experiment Simulation Viewer
The Experiment Simulation Viewer is the user interface to the NRP. 
It is implemented as a web-based application, developed using a 
modern web software stack exploiting established open-source 
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software. The ESV is currently integrated in the Collaboratory 
Portal (see Figure 7A) using the Collaboratory APIs. By building 
it using standard web technologies, cross-platform support, also 
for mobile devices, is enabled. The downside of this choice is the 
added complexity of using translation layers, albeit lightweight 
ones, for the interaction with server-side components.

The ESV simulation interface embeds a 3D view that allows 
the user to see and navigate through the virtual environment, 
and a user bar for simulation control (e.g., for playing, pausing, 
resetting, or stopping the ongoing simulation). It also provides 
means for editing objects by altering their attributes and monitor-
ing brain activity and the state of the embodiment, on a running 
simulation. Furthermore, the simulation interface hosts the tools 
that allow the user to design and edit an experiment, explained in 
depth in Section 3.6.3. Any modifications to the running simula-
tion can be exported either on the user computer or saved on 
Collaboratory storage.

In the following sections, we start presenting the ESV user 
interface, its architecture, and then we continue describing the 
design tools.

3.6.1. User Interface
Entering the ESV, the user is presented with a list of available 
experiments (see Figure 7A). For each experiment, the user can 
choose to launch a new simulation, or to join an already launched 
one as a spectator; it is also possible to launch an instance of an 
existing simulation while uploading a custom environment in 
which it will be executed, thus replacing the original one.

The user starting a simulation is called the owner of that simu-
lation whereas any other user is called a watcher. The owner has 
full control over his simulation, being able to start, pause, stop, or 
reset the simulation and interact with the environment while it 
is running. Other features like monitoring or navigation into the 
scene are accessible to both owners and watchers.

Of particular interest are the monitoring features (Figure 7B). 
The Spike Monitor plots a spike train representation of the 

monitored neurons in real time. Monitored neurons must be 
specified by transfer functions, as described in Section 3.3.

The Joint Monitor plots a line chart representation of the 
joint properties of the robot in real time. For every joint selected, 
properties like position, velocity, and effort can be chosen.

The goal of these monitoring tools is to get live insights on how 
the simulation performs. Both spike data and joint data can also 
be saved in CSV format for further off-line analysis, see Section 
3.6.3.3.

3.6.2. Architecture
In order to have a coherent user interface and experience through-
out, all the tools developed in the Human Brain Project, including 
the NRP User interface are implemented as web applications. An 
architectural overview is shown in Figure 8.

The application framework of choice is AngularJS.3 AngularJS 
is a Model View Controller (MVC) Web Framework for devel-
oping single-page applications. Using AngularJS services, the 
interaction with the NRP Backend, which provides the API for 
the simulation control, is realized via standard REST calls.

The Rendering of the 3D view of the virtual environment is 
performed by Gzweb, Gazebo’s WebGL client. It comprises two 
main parts: gz3d and gzbridge, which are, respectively, respon-
sible for visualization and for communicating with Gazebo’s 
backend server gzserver.

To enable the communications with the CLE and Gazebo via 
ROS, the ESV employs roslibjs, a JavaScript library. Roslibjs in 
turn interacts via WebSockets with rosbridge, a tool providing a 
JSON API to ROS functionality for non-ROS programs.

3.6.3. Editors
In order to design the experiment to be simulated, the NRP 
provides the user with a complete array of tools. Thanks to these 

3 https://www.angularjs.org/.
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tools, it is possible to configure all the aspects of an experi-
ment: Environment, Transfer Functions, Brain, and Experiment 
Workflow.

3.6.3.1. Environment Editor
The purpose of the Environment Editor is to allow the user of 
the platform to set up the scene in which the simulation will 
run, either starting from scratch or editing one from an existing 
experiment.

The Environment Editor is seamlessly integrated into the ESV 
application: this dramatically shortens the time needed to proto-
type the experiment. Switching between simulation and editing 
the environment is a very fast process: the user can immediately 
simulate the interaction of the robot with the new environment 
and, if not satisfied, directly modify it again.

While running the environment editor, the user is able to 
move (e.g., translate or rotate) or delete existing objects in the 
scene, or to place new objects by choosing them from a list of 
models (Figures 9A and 10).

When the editing of the scene is completed, the user can export 
the result into the Simulation Description Format (SDF),4 either 
on a local workstation or on the Collab storage of the respective 
experiment. Once saved, the environment can be loaded at a later 
time into another different, new or existing, experiment.

Importing a new environment in an existing experiment does 
not change in any way the workflow of the experiment itself, i.e., 
it will keep its transfer functions, state machines, the BIBI, and 
the robot involved.

3.6.3.2. Brain Editor
The Brain Editor (Figure 9D) allows the user to upload and edit 
custom brain models as PyNN scripts (Davison et al., 2008).

The PyNN script describing the brain model used in the 
current experiment is shown in a text editor featuring Python 
keyword and syntax highlighting. It is also possible to define 

4 http://sdformat.org/.

populations (i.e., sets of neurons indices) that can be referred to 
in transfer functions.

Once the user has finished editing, the new model can be 
applied without restarting the whole simulation.

3.6.3.3. Transfer Functions Editor
The Transfer Functions (TFs) describe how to transform simula-
tor specific sensory data (such as image, joint angles, forces, etc.) 
to spiking activity for neural network simulation and vice versa. 
TFs are defined as Python scripts exploiting the DSL described 
in Hinkel et  al. (2015). Like for the Brain editor, the Transfer 
Functions Editor (Figure 9B) displays these scripts and enables 
the user to change them in a text editor pane found in the menu.

From within the editor, the user can create and edit TFs as well 
as save them to and load them from files. Once edited, the changes 
can be applied to the simulation. Thus, the user can test immedi-
ately the robots’ behavior and, possibly, modify it again resulting 
in a very short cycle of tuning and testing. Every uploaded transfer 
function is checked for syntax errors, and several restrictions for 
Python statements are applied for security reasons.

Furthermore, the user can log TFs’ data to files in the 
Collaboratory storage to analyze them at a later time. The data 
format used is the standard Comma Separated Values (CSV). 
Like for the other editors, the edited TFs can be downloaded on 
the user’s computer or saved into the Collaboratory storage.

3.6.3.4. Experiment Workflow Editor
The workflow of an experiment is defined in terms of events 
which are either triggered by simulation time, user interaction, or 
state of the world simulation. In the current implementation, all 
events manipulate the simulated environment, as no stimulation 
of the brain or manipulation of the brain-controlled robot can be 
performed by the State machine manager.

The workflow is specified in Python code exploiting SMACH 
(Bohren and Cousins, 2010)—a state machine library integrated 
into ROS. This approach enables users to specify complex work-
flows in terms of state machines.
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FIgURe 9 | The eSV editors’ menu panes. With the Environment Editor (A) the user can add an object to the environment, choosing from a library of models. 
The Transfer Function editor (B) allows a live editing of the Transfer Functions, without the need for restarting the simulation. SMACH State Machine Editor (c) that 
currently implements the Experiment Workflow Editor, actions that have to be performed by the State machine manager can be defined. The brain model used in the 
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A state machine controlling an experiment interacts with the 
running simulation by publishing on ROS topics and calling ROS 
services and can monitor any simulation property published on 
ROS topics (e.g., simulation time, sensor output, and spiking 
activity of brain). Like the other editors, the Experiment Workflow 
Editor (Figure 9C) displays Python scripts and allows the user to 
change them in a text editor.

3.7. Robot Designer
In order to build neurorobotic experiments, the NRP not only 
has to offer scientists a rich set of robot variants to choose from 
but also give them the opportunity to integrate virtual counter-
parts of existing robots in their lab, or robots with the desired 
morphology for a special, given task. The Robot Designer (RD) 
hence aims at being a modeling tool for generating geometric, 
kinematic, and dynamic models that can be used in the simula-
tion environment.

The development from scratch of a custom software (either 
web or desktop) for modeling and designing a robot is an enor-
mous undertaking, so we decided to adopt existing solutions. In 
particular, no reasonable web solutions were found, and adapting 
existing solutions for web would require a considerable effort 
which would not be counterbalanced by the possible benefits. 

We chose to use Blender (a powerful and extendable open source 
software) among the existing modeling softwares, due to its avail-
ability for a wide range of platforms with a simple installation 
process.

Existing extensions for Blender with similar goals were tak-
ing into account when developing the Robot Designer. Most 
notably these are the Phobos project5 and the RobotEditor of the 
OpenGrasp simulation suite (León et  al., 2010; Terlemez et  al., 
2014). The RobotEditor project was finally chosen as the basis of 
the Robot Designer after an evaluation with competing projects. 
Afterward, it went through a major refactoring and has been 
extended by components required for the NRP. These include 
the aspects of importing and exporting files with support for the 
Gazebo simulator, additional modeling functionalities, a refined 
user interface, and data exchange with the Collaboratory storage.

The RD provides users with an easy-to-use user interface that 
allows the construction of robot models and defining kinematic, 
dynamic, and geometric properties. The robotics-centered user 
interface of the RobotEditor has been redesigned and allows the 
user to define kinematic models of robots by specifying segments 

5 https://github.com/rock-simulation/phobos.
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FIgURe 11 | The Robot Designer. Using the Robot Designer the user is able to edit kinematic properties of a robot model (A). An example of a completed model 
of the six-legged walking machine Lauron V (Roennau et al., 2014) with a collision model with safety distances is shown in (B). Deformable meshes can be 
transformed into disjoint rigid bodies for collision model generation (c), by considering the influence of each joint onto the mesh vertexes, e.g., hip joint (D) and knee 
joint (e) for a human leg.
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and joints either using the Euler angles or following the Denavit–
Hartenberg convention (Denavit, 1955). The robot dynamic 
model can be created through mass entities with inertia tensors 
and controller type with parameters for joints. For geometric 
modeling, the RD can rely on the vast 3D modeling capabilities 
provided by Blender, although several additions were made for 
the automation of robot-related tasks. Figure 11A shows on the 
left the Robot Designer panel inside Blender while editing the 
properties of a segment of a six-legged robotic platform, Lauron 
V (Roennau et al., 2014). The plugin provides overlays for the 3D 
view that shows reference frames and names for each robot joint, 
thus facilitating editing.

The original code of the RobotEditor has been heavily 
refactored, and the documentation for users and developers 
of the robot designer and the core framework has been greatly 
expanded. The core framework offers many additional features 
such as resource handling, logging to external files, debug mes-
sages with call stacks, and the concept of pre- and postconditions 
checking for validation of functionality.

Data exchange with the NRP and with ROS has been a major 
aspect of the development of the Robot Designer. For this reason, 
support for the widespread Unified Robot Description Format 

(URDF)6 file format has been added and been improved in several 
ways during the development. An XML schema definition file has 
been generated for this file format which then made it easier 
to generate language-specific bindings7 requiring only a small 
interface between internal data types and the representation in 
the XML document (see Section 3.3).

In addition to exporting raw URDF files, the Robot Designer 
also supports novel features unique to the robot simulation of 
the NRP. Above all, this includes generating input to a Gazebo 
plugin loaded by the CLE. It automatically generates software 
implementing necessary joint controllers for position and/or 
velocity control. This additional information is not included in the 
URDF standard and is stored together with the model in the same 
file. For the user of the NRP, this means that different controller 
types and parameters for each joint can conveniently be specified 
directly in the designer and become available in the simulation 
without the need of writing additional joint controller software 
and its deployment on the platform servers. The persistent storage 
and data exchange mechanisms of the Robot Designer offer the 

6 http://wiki.ros.org/urdf/XML.
7 https://pypi.python.org/pypi/PyXB.
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TABle 1 | Summary of quality control statistics for the nRp repositories.

Repository Total 
lines

Tests line coverage 
(%)

Branch coverage 
(%)

CLE 2,944 147 88 100
Backend 3,045 239 93 100
Frontend (ESV) 2,427 455 95 87
Experiment control 455 46 96 100
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user the option to encapsulate models into installable and zipped 
ROS packages.

Several modeling and automatization features were also added 
to the already feature-rich modeling software. Collision models 
can automatically be created from the geometric model of a robot 
either by computation of its complete convex hull or an approxi-
mate convex hull with a fixed polygon count and an additional 
safety distance to the original mesh (see Figure 11).

When generating collision models for deformable geometries, 
the underlying mesh, where each vertex has a linear influence of 
multiple joints, has to be transformed into several disjoint rigid 
bodies. The RD can perform this transformation based on several 
rules (see Figures 11C–E) as it is demonstrated on the showcase 
of a mesh created with the MakeHuman8 project.

Finally, automatic robot generation from the mathematical 
kinematic model has been added as an experimental feature.

The Robot Designer provides an easy installation process. To 
download and activate the software, an installation script that 
runs within Blender has to be executed by the user. This script, 
the Robot Designer itself, and its documentation are hosted on a 
publicly available repository.9

4. SoFTWARe DeVelopMenT 
MeThoDology

The NRP is developed within the Scrum agile software develop-
ment framework (Schwaber and Beedle, 2002). The basic unit of 
development, in Scrum parlance, is called a Sprint. It is a time-
boxed effort, which is restricted to a specific duration of either 2 
or 3 weeks. This methodology provides a reactive environment, 
able to deal with changing requirements and architectural 
specifications.

The Scrum process includes daily stand-up meetings, where 
each team of developers discusses about how they are working to 
meet the sprint goals. At the end of the sprint, a review meeting 
is held; the whole NRP team is present, and the members make 
demonstrations of the software in stable development status. 
Each completed task provides a new feature to the user, without 
breaking compatibility with the current code base. Thus, at the 
end of each sprint, there is a new shippable platform that provides 
new features.

The NRP software process uses industry standards for quality 
control. The acceptance criteria of the version control system 
include the necessity of a code review by, at least, a second pro-
grammer, while a continuous integration system ensures that new 
code does not introduce regressions by executing a set of unit tests. 
Moreover, code coverage criteria ensure that at least 80% of the 
code is covered during tests and coding standards are enforced by 
automatic static code analysis tools (PEP8 and Pylint). Each build 
in the continuous integration system also produces the software 
documentation documenting the APIs and comprising software 
usage examples. A summary of quality control statistics regarding 
the main NRP repositories is presented in Table 1. No repository 
has PEP8 or Pylint errors.

8 http://www.makehuman.org/.
9 https://github.com/HBPNeurorobotics/BlenderRobotDesigner.

5. USe cASeS FoR The 
neURoRoBoTIcS plATFoRM

In order to assess the functionalities of the NRP, several experi-
ments were designed. These experiments, albeit simple in nature, 
aim at demonstrating various features of the platform. The first 
use case is just a proof of concept: a very simple brain model is 
connected to a robot via TFs in order to have a complete action–
perception loop performing a Braitenberg vehicle experiment 
(Braitenberg, 1986). Results show that the two simulations are 
properly synchronized and the experiment is correctly performed.

Then, an experiment that makes use of the TF framework 
capability of implementing classic robotic controllers was 
designed and implemented. In this case, the robot–brain loop is 
short-circuited, and a controller implemented inside a TF is used 
to perform sensorimotor learning with a robotic arm.

Finally, in order to demonstrate the extensibility of the frame-
work, an already existing computational model of the retina was 
integrated inside the platform and used to perform bioinspired 
image processing.

5.1. Basic proof of concept: Braitenberg 
Vehicle
This experiment was designed in order to validate the overall 
functionalities of the NRP framework. By taking inspiration 
from Braitenberg vehicles, we created an experiment where a 
four-wheeled robot equipped with a camera (Husky robot from 
Clearpath Robotics) was placed inside an environment with two 
virtual screens. The screens can display a red or blue image, and 
the user can interact with them by changing their displayed image 
by using the ESV. The robot behavior is to turn counterclock-
wisely until it recognizes the red color and then to move toward 
the screen displaying the red image.

The overall control architecture can be observed in Figure 12A. 
Identification of the red color is done in a robot to neuron transfer 
function where the image coming from the robot camera is pro-
cessed via a standard image processing library, OpenCV, in order 
to find the percentage of red pixels in the left and right halves of 
the image. Such information is then translated into firing rates and 
sent as an input to Poisson spike generator devices. These devices 
provide the input for a simple Brain Model comprising 8 neurons. 
Among these, three are sensor neurons, receiving inputs from the 
spike generator devices, and two are actor neurons, encoding the 
generated motor commands. The behavior of the neural network 
is to make one of the two actor neurons have a much higher fir-
ing rate compared to the other if no input encoding red pixels is 
present, while making the two neurons fire with a firing rate that 
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is more similar the more red is present in the two image halves. 
Two leaky integrator devices receive input from the actor neurons 
and are used in the neuron to robot transfer function responsible 
for the generation of motor commands. In particular, membrane 
potential of these devices is used to generate motor commands 
for the left and right wheels such that when the two actor neu-
rons’ firing rates differ, the wheels turn in opposite directions, 
effectively turning the robot, and when the firing rates match, the 
wheels move in the same direction, moving the robot forward.

The behavior of the experiment is shown in Figures 12B,C, 
where it can be observed that every time there is a rise in the red 
percentage on the image there is an increase in the spike rate of 
neuron 7 so that it matches that of neuron 8. Then, the generated 
motor commands change accordingly, and the wheels move in 
the same direction, effectively moving the robot forward.

5.2. classic Robot controller: 
Sensorimotor learning
The goal of the experiment is to learn sensorimotor coordina-
tion for target reaching tasks to be used in future manipulation 
experiments. In particular, the experiment aims at predicting a 
forward model for an anthropomorphic arm, by estimating the 

tool center point (TCP) position from the current joint configura-
tion. In its current form, the experiment consists of two phases, 
repeated every iteration: in the first phase, shown in Figure 13B, 
the robot explores the working space and learns its kinematics by 
performing random movements (i.e., motor babbling), observ-
ing its TCP position and corresponding joint configuration; in 
a second phase, the model is evaluated by moving the arm in a 
random position and comparing the TCP predicted by the learnt 
kinematic model with the real one. This experiment does not 
use any brain model, thus it shows that the NRP also provides a 
framework for implementing classic robot controllers.

The control schema of the experiment is presented in 
Figure 13A. The state machine for experiment control switches 
between the different phases and communicates the current 
phase to the robot controller. The robot controller implements a 
supervised learning method, the Kinematic Bezier Maps (KBM) 
(Ulbrich et al., 2012), and communicates directly to the simulated 
robot in a robot to robot transfer function. During the learning 
phase of each iteration, the robot controller moves the arm in a 
random joint configuration and feeds this information, alongside 
the real TCP of the attached end effector, to the KBM model. 
During the evaluation phase, the arm is moved into another 
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random joint configuration, and the KBM model is used to 
predict the position of the new TCP. This information is sent to 
the monitoring module. The monitoring module also gathers 
information from the simulation, such as the real TCP and joint 
values. This information can be stored, displayed, or further 
processed. In particular, this information is used to compute the 
accuracy of the KBM prediction. Figure 13C shows the learning 
curve for the training of the kinematic model, where the error is 
computed as the distance in space between the predicted TCP 
and the real one. It can be noticed that the error decreases during 
training iterations, reaching an accuracy of 1 cm.

5.3. Integration of Bioinspired Models: 
Retinal Vision
In order to have full biologically inspired closed loop controllers, 
the transfer functions should also make use of neuroscientific 
models of sensor information processing from one side and 
motion generation on the other. As a first step in this direction, a 
model of the retina was included in the NRP as a robot to neuron 
transfer function (Ambrosano et al., 2016).

The model chosen for the integration was COREM, a computa-
tional framework for realistic retina modeling (Martínez-Cañada 

et al., 2015, 2016), that provides a general framework capable of 
simulating customizable retinal models. In particular, the simula-
tor provides a set of computational retinal microcircuits that can 
be used as basic building blocks for the modeling of different 
retina functions: one spatial processing module (a space-variant 
Gaussian filter), two temporal modules (a low-pass temporal 
filter and a single-compartment model), a configurable time-
independent non-linearity, and a Short-Term Plasticity (STP) 
function.

The integration work proceeded by creating Python bind-
ings for the C++ COREM implementation and by adding the 
appropriate functions that could feed the camera image in the 
model and extract the retinal output without changing the core 
implementation. Such implementation provides, as an output, 
analog values representing the intensity of presynaptic currents 
of ganglion cells (Martínez-Cañada et al., 2016). Thus, the retina 
simulator now provides an interface that is callable by the transfer 
function framework. Moreover, the retina model is defined via a 
Python script, which can be uploaded by the user.

In order to test the proper integration of the retina simulator, 
a first experiment that involves visual tracking of a moving target 
via a retinal motion recognition was designed. The environment 
setup consisted of placing the simulated robot (iCub humanoid 
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robot) in front of a virtual screen. The screen displayed a red 
background with a green circle that can be controlled (target). 
The overall control scheme can be observed in Figure 14A. This 
model improves a previously designed visual tracking controller 
implemented using the same Brain Model of the experiment 
described in Section 5.1 (Vannucci et  al., 2015). A model of 
retinal red–green opponency was used as a robot to neuron 

transfer function. This opponency is a basic mechanism through 
which color information is transmitted from the photoreceptors 
to the visual cortex (Dacey and Packer, 2003). This model has 
two retinal pathways whose outputs are more sensitive to green 
objects appearing in receptive fields that were earlier stimulated 
by red objects and vice versa. Only one horizontal stripe of the 
retinal output, intersecting the target position, is extracted and 
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fed into a brain model, via current generator devices. The brain 
model consists of 1,280 integrate and fire neurons organized in 
two layers. The first layer acts as a current to spike converter for 
the retina ganglion cells, while in the second layer, every neuron 
gathers information from 7 neurons on the first layer, acting as a 
local spike integrator. Thus the second layer population encodes 
the position of the edges of the target in the horizontal stripes 
(corresponding to 320 pixels). Such information, encoded as a 
spike count, is then used by the robot to neuron transfer function 
in order to find the centroid of the target. Information about the 
target centroid can also be used to generate motor commands 
that make the robot perform visual tracking of the moving target.

The accuracy of target detection can be observed in Figure 14B, 
where the results of a trial where the target was moved with a 
sinusoidal motion and the robot eye was kept still are shown. 
It can be noticed that the target motion is fully captured by the 
model and this is reflected in the corresponding brain activity 
(Figure 14C). Figure 14D shows the behavior of the controller 
during a step response toward a static target: the eye is able to reach 
the target, albeit with some overshooting. Comparing the brain 
activity during this task (Figure 14E) with the target detection 
one (Figure 14C), it is noticeable how the retinal output is noisier 
during this trial. This is due to the intrinsic motion detection 
capabilities of the retina as the activity of ganglion cells increases 
when some motion is detected. Nevertheless, the second layer of 
neurons in the brain model (lower half) is still able to filter out 
activity of the first layer (upper half) not relative to the target, 
thus its position can be computed with more accuracy. Similarly, 
during a task where the robot had to follow a target moving lin-
early, the eye motion produces some noise in the retinal output 
(Figure 14G), but the controller is still able to extract the target 
position and successfully perform the task (Figure 14F).

6. FUTURe DeVelopMenTS

The features detailed in the previous sections describe the first 
release of the Neurorobotic Platform. The development of the 
platform will continue, in order to provide even more simulation 
capabilities and features to the end user.

Short-term development plans include integration with the 
Brain Simulation Platform and the Neuromorphic Computing 
Platform, as described in Section 3, as well as an extension of the 
CLE that will be able to orchestrate distributed brain simulations, 
giving it the potential to simulate larger brain models in shorter 
times, that will lead to the integration with the High Performance 
and Data Analytics Platform.

The State machines manager will be extended in order to 
respond also to event produced by the robot behavior, such as the 
robot entering a certain area of the environment or performing 
an action, allowing the user to design more complex experiments. 
The user will also be able to design the experiment workflow 
using a graphical support included in the ESV GUI, with a 
timeline-based view that allows users to directly select objects 
and properties in the 3D environment and create events based on 
their state in the world simulation. Moreover, we plan to support 
fully automated repetitions of experiments including success 
evaluation for each trial.

Finally, the users will be able to upload environment built 
offline from custom physicals models within the platform, greatly 
enhancing the environment building capabilities. At the same 
time, the Robot Designer will be extended to include support 
of external debuggers, static type checking, and code analysis. It 
is also planned to separate the core framework from the Robot 
Designer and release it as an independent project to facilitate 
plug-in development in Blender in general.

7. conclUSIon

This paper presented the first release of the HBP Neurorobotics 
Platform, developed within the EU Flagship Human Brain 
Project. The NRP provides scientists for the first time with an 
integrated toolchain for in silico experimentation in neurorobot-
ics, that is, to simulate robots with neuro-controllers in complex 
environments. In particular, the NRP allows researchers to design 
simulated robot bodies, connect these bodies to brain models, 
embed the bodies in rich simulated environments, and calibrate 
the brain models to match the specific characteristics of the 
robots sensors and actuators. The resulting setups can permit to 
replicate classical animal and human experiments in  silico and 
ultimately to perform experiments that would not be possible in 
a laboratory environment. The web-based user interface allows 
to avoid software installation and the integration within the 
HBP collaboratory portal gives access to storage and computing 
resources of the HBP. Users can run experiments alone or in team, 
and this can foster collaborative research allowing the sharing of 
models and experiments.

In order to demonstrate the functionalities of the platform, we 
performed three experiments, a Braitenberg task implemented on 
a mobile robot, a sensory-motor task based on a robotic control-
ler, and a visual tracking embedding a retina model implemented 
on the iCub humanoid robot. These use cases make it possible to 
assess the applicability of the NRP in robotic tasks as well as in 
neuroscientific experiments.

The final goal of the NRP is to couple robots to detailed mod-
els of the brain, which will be developed in the HBP framework. 
It will be possible for robotics and neuroscience researchers to 
test state of the art brain models in their research. At the cur-
rent stage, the results achieved with the NRP demonstrate that 
it is possible to connect simulations of simple spiking neural 
networks with simulated robots. Future work will focus on the 
integration of the mentioned neural models. In addition to this, 
the integration of high-performance computing clusters and 
neuromorphic hardware will also be pursued in order to improve 
execution time of spiking neural networks replicating detailed 
brain models. All informations relative to the NRP, including 
how to access it and where to find the code, are available on the 
plaftform website: http://neurorobotics.net.
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AppenDIX

A. Functional Requirements
As stated in Section 2.1, the itemized functional requirements 
should be interpreted as implemented platform features. All the 
listed requirements are to be satisfied by the NRP as a whole. For 
the sake of clarity, the requirements are grouped by topic.

A.1. Design and Editing
A.1.1. Robot

•	 Assemble a virtual robot
 – shall enable the user to load a ready-made robot from a 

graphical library
 – shall enable the user to assemble a robot using ready-made 

robot parts from a graphical library
 – shall provide standard sensors and actuators to the ready-

made or block-assembled robot
•	 Define a kinematic chain

 – shall enable the user to define a kinematic chain by building 
a tree-like structure of the single links

 – shall enable the user to group kinematic chains
•	 Robot editing

 – shall enable the user to select parts of the robot
 – shall enable the user to edit a robot parts graphical attributes 

or physical attribute
•	 Save/load designed robot

 – shall enable the user to save a model of a virtual robot
 – shall provide well-defined file formats (e.g., XML, URDF, 

and SDF)

A.1.2. Environment

•	 Assemble and model virtual environment
 – shall enable the user to instantiate any number of objects
 – shall enable the user to remove objects from the  

environment
 – shall enable the user to interactively change objects poses 

and orientations
 – shall provide a GUI to view the object parameters
 – shall provide a GUI to edit the object parameters
 – shall enable the user to select (e.g., drag and drop) objects 

from a local library of available objects
•	 Load/save virtual environment

 – shall provide a custom environment which can be loaded in 
a new experiment

 – shall provide a custom environment which can be loaded in 
an existing experiment

 – shall enable the user to save the environment status at any 
moment during the simulation/editing

 – shall provide the user to store the environment in a well-de-
fined file format

A.1.3. Brain

•	 Create Brain Model
 – shall support binary format for data-driven brain model 

representation

•	 Save/load and edit brain models
 – shall enable the user to save brain models
 – shall enable the user to reload brain models
 – shall provide a visual interface to edit brain models

A.1.4. Brain–Body Interface

•	 Transfer Modules
 – shall provide input or output variables that are produced 

or consumed by the brain simulation (currents, spikes, and 
spike rates)

 – shall provide input or output variables that are produced or 
consumed by the sensor or the actuators of the robot

 – shall provide data from both simulators that can be con-
sumed by monitoring or debugging interfaces

 – shall produce suitable output for experiment data gathering, 
saving it to a common file format

 – shall handle intensive computations such as the simulation 
of a spinal cord or retina model

 – shall hold a state, defined as a set of variables that keeps 
some values in between the loops

•	 Transfer modules editing
 – shall enable the user to save and reload transfer modules
 – shall enable the user to edit transfer modules through a 

visual interface
 – shall enable the user to select populations of neurons
 – shall enable the user to label populations of neurons
 – shall enable the user to connect groups of neurons to a 

transfer module and vice versa
 – shall enable the user to connect sensors and actuators to a 

transfer module and vice versa

A.1.5. Experiment

•	 Configuring and loading/saving an experiment setup
 – shall enable the user to select the virtual environment
 – shall enable the user to select the Neurobot to use in the 

experiment
 – shall provide user to load/save a definition of an experiment 

setup
•	 Defining action sequences

 – shall enable the user to define events (e.g., change of light 
intensity and moving of an object) occurring at a certain 
point in time

 – shall enable the user to define the properties of an event 
(e.g., duration)

 – shall enable the user to specify complex events (by combin-
ing single events)

 – shall enable developers to define more complex actions a 
scripting-interface

A.2. Simulation
A.2.1. Simulation Consistency and Synchronization 
Mechanisms

•	 Simulation control
 – shall support start, stop and pause of an experiment at any 

time
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 – the simulation framework shall be capable of injecting 
actions into the simulation of the virtual world as defined 
by the experimenter

A.2.2. Interactive Visualization

•	 Simulation control/editing
 – shall enable the user to control the simulation through the 

GUI
 – shall enable the user to live edit the experiment configura-

tion using the GUI
•	 Simulation monitoring

 – shall display a 3D rendering of the world scene
 – shall enable the user to navigate the 3D scene
 – shall display measurements from the two simulations
 – shall enable multiple users to view the same running simu-

lation at the same time

 – shall reset every component of the simulation at any time
 – shall be capable of exposing its internal simulation execu-

tion speed
 – shall be presented to the user in a visual interface
 – shall provide an interface to modify any variable parameters 

to control the details of the simulation
 – shall be completely reproducible

•	 Physics simulation
 – shall maintain a consistent model of the world and the robot 

during the execution of an experiment
 – shall maintain a world clock to update the world state in 

suitable time-slices
•	 Synchronization

 – the loop between the brain simulator and the WSE shall 
operate at a rate of an order of magnitude of 0.1  ms of 
simulated time

 – the world clock shall be synchronized to the brain simulat-
ion clock to achieve a consistent, overarching notion of time
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