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In the context of the dynamical system approach to cognition and supposing that brains

or brain-like systems controlling the behavior of autonomous systems are permanently

driven by their sensor signals, the paper approaches the question of neurodynamics

in the sensorimotor loop in a purely formal way. This is carefully done by addressing

the problem in three steps, using the time-discrete dynamics of standard neural

networks and a fiber space representation for better clearness. Furthermore, concepts

like meta-transients, parametric stability and dynamical forms are introduced, where

meta-transients describe the effect of realistic sensor inputs, parametric stability refers

to a class of sensor inputs all generating the “same type” of dynamic behavior, and a

dynamical form comprises the corresponding class of parametrized dynamical systems.

It is argued that dynamical forms are the essential internal representatives of behavior

relevant external situations. Consequently, it is suggested that dynamical forms are the

basis for a memory of these situations. Finally, based on the observation that not all brain

process have a direct effect on the motor activity, a natural splitting of neurodynamics

into vertical (internal) and horizontal (effective) parts is introduced.
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1. INTRODUCTION

From a neurocybernetics perspective the dynamical systems approach to embodied cognition can
be traced back to the work of Ashby (Ashby, 1960) and von Foerster (Von Foerster, 1960). The
assumption is that a living organism, in order to survive, must be able to develop internally some
stable “entities” (von Foerster) which refer to or classify objects and situations in the physical
world. These “entities” are the result of cognitive and sensorimotor processes developing through
continuous interactions of an individual with its specific environment. On the other hand, cognitive
and sensorimotor processes, relevant for the behavior of the individual, depend on the formation
of these stable structures; i.e., they are complementary in the sense that one defines or implies the
other. The assumption was, that an organism must be able to relate discrete internal structures to
relevant aspects of its own interaction with its environment.

Although, the underlying processes are continuous these internal “entities” have to be discrete
because the referenced objects or situations are discrete features of the environment. They also
have to be “stable” in a certain time domain. On the other hand, due to changing sensorimotor or
cognitive processes, they have to get “unstable” in the sense that different references have to be built
up; i.e., new “stability domains” have to be visited or formed.
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To pursue the dynamical systems approach to embodied
cognition in this spirit, this paper will consider an individual as
an autonomous system called an animat. An animat Dean (1998)
and Guillot and Meyer (2001) is a simulated or physical robot
equipped with sensors and actuators, and a neural network for
behavior control. The neural controllers then have to operate
in the so called sensorimotor loop, getting inputs from sensory
signals and generating motor signals, which in turn will lead
to new sensor inputs. The essential role of these closed loop
processes for living or live-like systems has been discussed over
several decades now from various points of view (Bishop, 1960;
Beer, 1995; Di Paolo, 2003; Philipona et al., 2004; Hülse et al.,
2007; Zahedi et al., 2010; Sándor et al., 2015). Here we use a purely
formal approach and carefully analyze the dynamical description
by making successive approximations to these processes.

Neurocontrollers, mimicking their biological counterparts,
are considered as recurrent neural networks which in general
allow for dynamical properties. That is, for fixed synaptic weights,
bias terms and inputs such a network can be described as a
dynamical system. Then, assuming that a neurocontroller is
driven by slow sensor inputs, it will be properly described as a
parametrized family of dynamical systems, where sensor inputs
(and proprioceptive signals as well) are considered in a first
approximation as parameters of such a family. Furthermore,
for every parameter value the corresponding dynamical system
may have a manifold of different attractors. The postulated
internal “entities” then will be identified with the basins of
attraction of parametrically stable neurodynamical systems. The
interaction with the environment thenmay change the references
to situations in the external world by changing parameter values
given, for instance, by the sensor signals. This process of changing
references will be described by so-called bifurcations.

For theoretical reasons, parameters are assumed to change
so slowly that the system can approach its asymptotic states.
This is often not the case for realistic sensor inputs. So, in a
second step we will introduce sequences of neural states called
meta-transients as for instance in Negrello and Pasemann (2008)
Negrello (2011), and Toutounji and Pipa (2014).

In general these meta-transients can not be given an
interpretation as trajectories of a dynamical system, mainly
because the inducing sequence of sensor signals is not a trajectory
of a dynamical system on sensor space. Instead, because of the
closed loop, it is superposition of movements in the environment
and the result of motor actions. The case where one has access
to controlling parameters has often been discussed in geometric
control theory (Gardner, 1983; Sussmann, 1983; Respondek,
1996; Kloeden et al., 2013). There then one can generalize the
concept of attractors and the like. Although we do not find this
approach applicable for the dynamics in the sensorimotor loop
we will work with a comparable view.

Finally, these meta-transients have to be mapped to motor
neurons, inducing then actions of the animats body; i.e., its
behavior. Due to this projection not all elements of the neural
system will be involved directly in the generation of motor
signals. This leads naturally to a fiber structure over the motor
space allowing to introduce the concepts of vertical or internal
neurodynamics, having no direct effect on behavior, and a

horizontal or effective neurodynamics, the projection of which
generates the movements of the animat.

To clarify concepts, the paper will address the discrete-time
neurodynamics of networks composed of standard sigmoidal
neurons of additive type. Using this simplifying setup, it
is assumed that the aspects described in the following are
transferable also to neural systems employing more biologically
plausible or other types of neurons. The basic concern here is to
specify the role of, for example, attractors, basins of attraction,
transients, bifurcations and stability properties in the context of
systems acting in a sensorimotor loop.

Approaching the description of neurodynamics in the
sensorimotor loop in three steps, we will first define the type of
neurodynamics studied in this paper (Section 2), exemplifying it
by somewell known results. Assuming that sensor inputs are slow
when compared to the activity dynamics of the neural system, we
argue in Section 3 that neural systems in the sensorimotor loop
are effectively described by parametrized families of dynamical
systems, were parameters correspond to the sensor inputs. Other
parameters, not considered here, are, for instance, signals coming
from proprioceptors and the synaptic weights of the network,
the change of which usually is associated with learning. Referring
to the more realistic situations, meta-transients are introduction
in Section 4. Finally, Section 5 discusses the generation of
motor signals resulting from a projection of attractor transients
or meta-transients, respectively, to the motor space; this then
allows to differentiate between so called effective and internal
neurodynamics. Finally the sensorimotor loop is closed through
the environment by a formal mapping from motor space M to
sensor space S. The paper concludes with a discussion of the
possible role the introduced concepts can play for understanding
neural representations of behavior relevant situations in the
external world and, correspondingly, for a notion of memory
which is not based on specific attractors like, for instance, fixed
point attractors in Hopfield networks.

2. NEURODYNAMICS

Besides the body of an animat, three different parts of it will be
discerned: The “brain” considered as a recurrent neural network
N with n neurons. Its sensor neurons will prescribe the sensor
space S, and the output neurons will define the motor space M.
Sensor space S andmotor spaceM are the interfaces of the “brain”
N to the physical world. Assuming strictly the point of view of an
animat, the world for an animat is what happens on its sensor
surface. We describe these parts more concrete as follows.

A state a(t) ∈ A ⊂ R
n of the neural system N at

time t is characterized by the activation of all its n neurons.
Correspondingly, the state space A is called the activation space
or phase space of N. It is a manifold of dimension dim(A) = n.
Neural states may be represented in an equivalent way by the
outputs o(t) of the n neurons, and we call the corresponding state
space of the network N its output space A∗.

The sensor space S consists of all possible sensor inputs, i.e.,
a sensor state s(t) ∈ S at time t consists of all sensor values at
time t. The sensor space is assumed to be a bounded manifold
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S of dimension dim S = m, where m denotes the number of
distinct sensor elements. S may be subdivided into modality
spaces corresponding, for example, to visual, acoustic, or haptic
inputs.

A motor state m(t) ∈ M at time t is given by the activation
of the motor neurons at time t driving the various actuators
of the animat. Thus, the motor space of the animat is an open
bounded manifold M of dimension dimM = k, the number of
all its motor neurons. The motor space M may be segmented
into different domains responsible e.g., for head movement, eye
movement, driving wheels, arms, and so forth. Special domains
may be related to corresponding domains in sensor space: Fixed
infrared sensors may be, for instance, related only to the wheels
domain; but with pan-tilt-camera vision is related to wheels, and
pan-tilt-motors, et cetera.

2.1. Discrete-Time Neurodynamics
For a general introduction into the theory of dynamical system
see for example (Abraham and Shaw, 1992; Hirsch et al.,
2012; Strogatz, 2014). Here, in a first approximation we will
understand the neural system N as a discrete-time dynamical
system (Kloeden et al., 2013); i.e., on its activation space A there
exists a differentiable map φ : Z × A → A, called the flow, with
the following properties:

(i) φ(0, a0) = a0, for all a0 ∈ A.
(ii) φ(s+ t, a0) = φ(s,φ(t, a0)), for all s, t ∈ Z and a0 ∈ A ,

were Z denotes the set of nonnegative integers. In the following
we consider a neural network N with activation space A ⊂ R

n,
writing it as N(A), which is composed of n standard additive
neurons with sigmoid transfer function τ : = tanh. The flow of
this system is then generated by a diffeomorphism f : A → A
given in component form by

ai(t + 1): = θi +

n
∑

j=1

wij τ (aj(t)) , i = 1, . . . , n , (1)

where θi represents a constant bias term of neuron i, wij the
synaptic strength or weight from neuron j to neuron i, and τ
denotes the transfer function. Thus, the output of neuron i is
given by oi: = τ (ai), and for the output space we have A∗ ⊂

(−1, 1)n.
The neural system N(A), considered as a dynamical system,

will be denoted by (A, f ). In this section terms like the bias terms
θi and synaptic weights wij are assumed to be constant. This
means that we consider an isolated system; i.e., there is no neural
plasticity involved, and sensor inputs are not considered.

Furthermore, we endow the vector space A with an Euclidean
metric dτ induced by the transfer function τ ; i.e.,

dτ (a, a
′): = d(τ (a), τ (a′)) =

√
√
√
√

n
∑

i=1

(τ (ai)− τ (a
′
i))

2 .

Due to the saturation domains of the sigmoid τ the distance of
activity states corresponding to very high (positive or negative)
activations is very small.

The flow on the state space A is then defined by

φ(t, a0): = a(t) = f t(a0) = f ◦ f ◦ . . . ◦ f ◦ f
︸ ︷︷ ︸

t times

(a0) ,

where a0 ∈ A is called the initial state. The flow φ satisfies the
group property; i.e., with initial condition φ(0, a0) = a0 one has

φ(n,φ(m, a=)) = f n ◦ fm(a0) = f n+m(a0) = φ(n+m, a0) .

Example 1: The dynamics of 2-neuron networks have been
analyzed extensively, in the continuous-time case as well as the
discrete-time case, because already these simple systems, under
certain conditions, can show all possible dynamical features:
They can exhibit fixed point attractors as well as periodic,
quasiperiodic and chaotic attractors, and even show co-existing
attractors for one and the same condition (Wilson and Cowan,
1972; Marcus and Westervelt, 1989; Wang, 1991; Beer, 1995).
Here we recall some of the results, which can be found for
example in Pasemann (2002), to demonstrate basic properties
of recurrent neural networks for this most simple case. So, let
(A, f ) denote the two-dimensional system given by two neurons
(compare Figure 1) satisfying the equations

a1(t + 1) : = θ1 + w11 τ (a1(t))+ w12 τ (a2(t)) ,

a2(t + 1) : = θ2 + w21 τ (a1(t))+ w22 τ (a2(t)) . (2)

As a bounded dissipative dynamical systems, the time
development of neural states can be characterized by attractors
and transients. We first recall some basic definitions.

A time-sequence of states

O(a0): = {a0, a(1), . . . , a(t), . . .} , a0 ∈ A , (3)

is called an orbit or a trajectory of the system starting from a0 ∈ A.
An orbit O(a0) is called periodic of period p ≥ 1 if a(p) = a0,
and p is the smallest integer such that this equation holds. For
p = 1 the orbit is called a stationary state or a fixed point of
the system. A p-periodic point is a state on a p-periodic orbit
O(a0) = {a0, a(1), . . . , a(p)}. It corresponds to a fixed point of
the p-th iterate f p of the map f :

f p(a): = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

p−times

(a) = a , a ∈ A .

Let U ⊂ A denote a subset which is invariant under the action
of f ; i.e. f (U) = U. A closed and bounded set Ŵ ⊂ U is called

FIGURE 1 | A 2-neuron network.
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an attractor of the dynamical system (A, f ), if f (Ŵ) = Ŵ and there
exists an ε > 0 such that

d(a0,Ŵ) ≤ ε, a0 ∈ U, implies that d(a(t),Ŵ) → 0 as t → ∞ .

There are different types of attractors: Fixed points, periodic
orbits (a finite set of periodic points) as in Figure 2, quasiperiodic
orbits represented by a dense set of points on a closed line, and so
called chaotic attractors which are characterized, for instance, as
a fractal set in A (compare also Figure 3 and Abraham and Shaw,
1992; Hirsch et al., 2012; Strogatz, 2014). If Ŵ is the only attractor
of a system (A, f ), then it is called a global attractor.

The basin of attraction B(Ŵ) of an attractor Ŵ is the set of all
initial conditions a0 ∈ A such that d(a(t),Ŵ) → 0 as t → ∞.
Thus, the basin of attraction of Ŵ is considered as the set of all
orbits attracted by Ŵ. A transient O(Ŵ) of a system (A, f ) is an
orbit in the basin of an attractor Ŵ.

A dynamical system (A, f ) can have more than one attractor.
Then we say that the system has several co-existing attractors.
For instance, in Figure 4 four co-existing period-2 attractors
and their basins with regular boundaries are shown. Figure 5
displays several co-existing attractors separated by fractal basin
boundaries.

FIGURE 2 | Examples of attractors in (o1,o2)-output space for a two

neuron system (2). (Left) A fixed point attractor. (Right) A period-5 attractor.

(Parameters are given in Table A1 in the Appendix referring to networks sys1

and sys2.)

FIGURE 3 | Examples of attractors in (o1,o2)-output space for a two

neuron system (2). (Left) A quasiperiodic attractor. (Right) A chaotic

attractor. (Parameters are given in Table A1 in the Appendix referring to

networks sys3 and sys4.)

Often one uses the metaphor “landscape” to describe a
dynamical system (A, f ) qualitatively. This refers exactly to
what we defined as the flow of the dynamical system (A, f ).
One can think about water running downhill into a sink
when referring to transients approaching an attractor. Basin
boundaries then correspond to water partings. An attractor-
landscape, denoted by [A], then visualizes the different types
of attractors present in the system together with their basins
of attraction and basin boundaries as shown in the figures
above.

Two different dynamical systems can have similar landscapes
in the sense that there is the same number and type of
attractors involved; but attractors, as well as the corresponding
basin boundaries, may be deformed with respect to each
other. If one can map the attractor-landscape of one system
onto the attractor-landscape of the other system such that
orbits are mapped one-to-one onto each other by preserving
the time direction, then the qualitative behavior of such
systems is comparable. This situation is formalized by the
following

Definition 1. Two discrete-time dynamical systems (A, f ) and
(B, g) are said to be topologically conjugate, if there exists a
homeomorphism ψ : A → B, such that f ◦ ψ = ψ ◦ g, i.e., such

FIGURE 4 | (Left) Four co-existing period-2 attractors in (o1,o2)-output

space. (Right) Their basins of attraction (for parameters see Table A1,

network sys5).

FIGURE 5 | (Left) A period-3 attractor (green) and a period-7 attractor (red) in

(o1, o2)-output space, co-existing with two chaotic attractors, one cyclic with

period 14. (Right) The corresponding basins of attraction; the two basins of

the chaotic attractors are white. The system is given as sys6 in Table A1.
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that the following diagram commutes:

f
A −→ A

ψ ↓ ↓ ψ

B −→ B
g

3. PARAMETRIZED FAMILIES OF
DYNAMICAL SYSTEMS

In the last section the bias terms θi and synaptic weights wij,
i, j = 1, . . . , n, were held constant, and one can consider them
as parameters of the neural system (A, f ). For different bias terms
or synaptic weight one gets different dynamical systems. Thus,
we introduce a parameter space Q ⊂ R

q for a neural system (A, f )
as a q-dimensional Euclidean manifold (Q, h) with metric h. A
parameter vector ρ = (θ ,w) ∈ Q is given by the bias vector
θ and the weight matrix w of the network N(A). Thus, one has
dimQ = q = n · (n+ 1).

As a next step we argue that the sensor inputs to the
neural system N(A) can be assumed to act as parameters of
the neurodynamics. Because brain-like systems will always act
in a sensorimotor loop, the sensor signals s(t) ∈ S will always
drive the neurodynamical system N(A). Assuming in a first
approximation that the sensor signals s(t) change so slowly that
the orbits of the neural system are always able to converge to an
attractor, then they can be considered as varying parameters. For
that reason we will subsume the sensor signals s(t) as part of the
bias terms θ(t): = θ̂ + s(t), with θ̂ = constant.

A neural system then has to be described as a parametrized
family of discrete-time dynamical systems denoted by (A, f ;Q),
with A ⊂ R

n the activation space, Q ⊂ R
q the parameter

space, and a differentiable map f : Q × A → A. For a specific
parameter vector ρ ∈ Q, we write fρ : A → A for the
corresponding dynamical system, and denote the q-parameter
family of neurodynamical systems also by (A, fρ), ρ ∈ Q. The
only varying parameters considered in the following are the bias
terms θi, i = 1, . . . , n. As stated above, other parameters of the
animats brain, like synaptic weights wij are constant.

We may now look at the “brain” as a fiber structure over
parameter space Q (compare Figure 6): To every ρ ∈ Q there
is attached the activation space A together with the flow ψρ
corresponding to ρ ∈ Q; i.e., there is a whole attractor-landscape,
denoted by [A]ρ , attached to every parameter ρ ∈ Q.

3.1. Parametric Stability
Now, given two different parameter vectors ρ and ρ′ in Q, one
may ask if the corresponding attractor-landscapes are similar
or not in the sense that there exist a homeomorphism carrying
oriented orbits onto oriented orbits, especially attractors onto
attractors. Using definition 1 we introduce the following

Definition 2. Given a neurodynamical system (A, f ;Q). Two
different parameters ρ, ρ′ ∈ Q are said to be homologous

FIGURE 6 | The fiber structure of a neural system: there is an

attractor-landscape [A]ρ attached to every parameter ρ.

if the corresponding dynamic systems (A, fρ) and (A, fρ′ ) are
topologically conjugate; i.e., if the following diagram commutes:

fρ
A −→ A

ψ ↓ ↓ ψ

A −→ A
fρ′

If two parameter vectors ρ, ρ′ ∈ Q are homologous, then
the corresponding neurodynamics have qualitative the same
behavior; i.e., attractors and basin boundaries may be deformed.
In Figures 7, 8, for example, attractors and output signals
of an oscillatory 2n-network with two different bias terms
are displayed. The two attractor-landscapes [A]ρ and [A]ρ′

corresponding to homologous parameters θ , θ ′ are qualitatively,
i.e., topologically, the same.

This leads us to an essential concept, that of parametric
stability, which we define in correspondence to the concept of
structural stability in the general theory of dynamical systems
(Thom, 1989).

Definition 3. Given a neurodynamical system (A, f ;Q) and a
parameter vector ρ0 ∈ Q. Then the system (A, fρ0 ) is called
parametrically stable, if there exists an ǫ > 0 such that for every
ρ ∈ Q satisfying ||ρ−ρ0|| < ǫ the systems (A, fρ) are topologically
conjugate to (A, fρ0 ).

Definition 4. Given a neurodynamical system (A, f ;Q). The
domain of parametric stability corresponding to a parameter
vector ρ0 ∈ Q, denoted by P(ρ0) ⊂ Q, is the maximally connected
parameter set in Q containing all ρ ∈ Q which are homologous to
ρ0 ∈ Q.

Thus, all systems (A, fρ) with ρ ∈ P(ρ0) are topologically
conjugate to (A, fρ0 ).

Parametrically stable systems are essential for modeling
experimental situations: If the experimental inaccuracy is smaller
than a domains of parametric stability, then the model remains
valid in spite of experimental perturbations. More general,
parametric stability is an essential concept, because interesting
real (i.e., physical, biological, etc.) phenomena are of course
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FIGURE 7 | (Left) Attractor in (o1, o2)-output space. (Right) Output signals of the 2-neuron oscillator Osci1 with parameters given in Table A1.

FIGURE 8 | (Left) Attractor in (o1, o2)-output space. (Right) Output signals of the 2-neuron oscillator Osci2 with parameters given in Table A1.

those which are stable under small perturbations of their defining
conditions. For instance, a convergent neural network may stay
convergent under a small perturbation of their parameters.

3.2. Bifurcations
As a second step to describe the dynamics of neural systems we
have assumed that the dynamics depends on control parameters,
that is, on variables that vary much more slowly than the
states of the system. Suppose these parameters change along
a smooth path ρ(t) ∈ Q. If all ρ(t) for t ∈ [t1, t2] are
homologous, the corresponding neurodynamical systems will
show qualitatively the same behavior, although the attractors and
their basins in activation space A will move and deform. To such
a situation we refer to as a morphing attractor-landscape with
its morphing attractors (Negrello and Pasemann, 2008; Negrello,
2011; Toutounji and Pipa, 2014).

But the path ρ(t) may reach a point ρc in parameter space
Q where the behavior of a system changes qualitatively, i.e., the
type and/or numbers of attractors will change, when the path
crosses ρc. Such points ρc ∈ Q are called critical parameters
or bifurcation points. Thus, bifurcation points are associated

with the appearance of topologically non-conjugate systems.
The values of ρc ∈ Q are called the bifurcation values. The
appearance of bifurcations in a system are often studied with
the help of bifurcation diagrams. These are demonstrations of
attractor sequences resulting from the variation of only one
control parameter (compare Figure 10).

The (closed) subspaceK ⊂ Q of all bifurcation points is called
the bifurcation set of the system (A, f ;Q). Bifurcation sets are sets
in Q (i.e., curves, surfaces, hyperspaces) which separate different
domains of parametric stability.

Example 2: As the most simple example we will discuss a
single neuron with self-connection w as a 2-parameter family of
dynamical systems (A, f ;Q) given by

a(t + 1) = θ + w · τ (a(t)) , t ∈ Z , (4)

(compare also Pasemann, 1993a for a single neuron with logistic
function σ (x) = (1 + e−x)−1 as transfer function). Stability
analysis tells us that for |w| < 1 there exist only global fixed
points. Otherwise one will find bi-stable systems for w > 1, and
a domain with global period-2 attractors for w < −1. Typical
bifurcation diagrams are shown in Figure 10.
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FIGURE 9 | The parameter space Q ⊂ R2 of a single neuron with

self-connection w with its three domains of parametric stability: P0

(white) relates to global fixed point attractors, P+ (red) to bi-stable

systems, and P− (green) to period-2 oscillations. These domains are

separated by bifurcation sets K
+ and K

−, respectively.

In Figure 9 the three different domains of parametric stability
in Q ⊂ R2 are shown: Here P

0 (white) denotes the parameter
domain for systems having a global fixed point attractor,P+ (red)
refers to bi-stable systems, and P

− (green) to oscillatory systems.
They are separated by bifurcation sets K+ and K

− in Q. Thus,
a single neuron with self-connection comes in three dynamical
forms (compare definition 5).

At K+, that is for w ≥ 1, there are saddle-node bifurcations,
and at K

−, that is for w ≤ −1, there are period-doubling
bifurcations. This can be clearly seen in the bifurcation diagrams
of Figure 10. They show that a single neuron with positive self-
coupling can act as a hysteresis element (short term memory),
whereas a neuron with negative self-connection can serve as a
switchable oscillator (compare also Pasemann, 1993a).

What should be taken from this simple example is, that
in situations where there are parameter domains for which
there are coexisting attractors, it depends on the direction from
which a path ρ(t) in parameter space Q hits a bifurcation set
K ⊂ Q (compare Figure 10). This leads to phenomena, called
generalized hysteresis effects, demonstrating that the development
of the system depends crucially on the history of the system. And
therefore the behavior of these path-dependent systems will not
be explicitly deducible from the knowledge of their actual state.
This is one reason for the “complexity” of neural systems, and a
source of their fascinating faculties.

Having clarified the decisive role of domains of parametric
stability P ⊂ Q for the behavior of parametrized family of
dynamical systems, it is natural to associate to a non-critical
parameter vector ρ∗ ∈ Q a set of dynamical systems (A, fρ) which
are parametrically stable with respect to ρ∗ ∈ Q. With reference
to the designation of Thom Thom (1989), we give the following

Definition 5. Given a system (A, f ;Q), and let ρ0 ∈ Q denote a
non-critical parameter vector. A dynamical form of (A, f ;Q) is a
connected set Fρ0 ⊂ Diff (A) of dynamical systems (A, fρ) which
are topologically conjugate to (A, fρ0 ).

Assuming that changing parameter values correspond to
changing sensor signals, one can deduce that if a sequence
of signals stays in a certain domain of parametric stability P ,
the dynamics of the neural system stays qualitatively the same.
And therefore we can assume that the resulting behavior of the
controlled system, the animat, will not change dramatically.

4. META-TRANSIENTS

In the next step we will have to ease the restrictions on the
parameters by assuming that the sensor signals can change so fast
that the activations a(t) of the neurodynamical system (A, fρ) can
not approach an attractor Ŵ ⊂ A asymptotically.

In the following the considered parameters will be the sensor
inputs s(t) of an animat, and all other parameters are fixed. Due
to properties of the environment, or due to the behavior of the
animat, its sensor inputs may change so fast that they can not be
considered as parameters in the strict mathematical sense.

Such a situation is often described in terms of the dynamics of
non-autonomous systems. But it is different from the situations
covered by control theory (Gardner, 1983; Sussmann, 1983;
Respondek, 1996) or by skew-product systems (Kloeden et al.,
2013) in so far as a sequence of such sensor inputs is neither
the trajectory of a dynamical system in parameter space, nor
is it a well defined sequence leading to a preexisting goal.
Here the sensor inputs depend on the dynamics of the physical
environment (exo-motion) as well as on the movements/actions
of the animat itself (ego-motion). We will come to that later
again.

Assuming that parameters change almost as fast as the internal
states, the resulting sequence of states is no longer that of a
transient to one and the same attractor. Suppose the neural
system at time t is in a state a(t) on a definite transient
O(Ŵρ(t)) to an attractor Ŵρ(t) of the neural system (A, fρ(t)). If
the parameter vector a short time later satisfies ρ(t + k) 6= ρ(t)
the corresponding state a(t + k) will be an element of a different
transient O(Ŵρ(t+k)) to a different attractor Ŵρ(t+k) ⊂ A.

So, let σθ : = {s(t), s(t + 1), s(t + 2), . . .} denote such a
sequence of sensor inputs represented by a sequence of parameter
vectors θ(t) in Q. This will induce a sequence of states α(σθ ): =
{a(t), a(t + 1), a(t + 2), . . .} on A with

a(t + 1) = fρ(t)(a(t)) , that is, ai(t + 1)

= θi(t)+

n
∑

j=1

wij aj(t) . (5)

Such a sequence α(σθ ) in A will be called a meta-transient
(Negrello and Pasemann, 2008). Thus, a meta-transient is not
a transient of a dynamical system, but it is a sequence of states
a(t) ∈ A following the morphing attractors of a sequence of the
parametrized dynamical systems (A, fρ(t)). The projection of such
a meta-transient on A back to the parameter space Q then gives
the sequence of “driving” parameter values σθ .

If we define a map 8 : Q × A → A associated with the given
parametrized family of dynamical systems by

8(ρ, a) = fρ(a) , a ∈ A ,
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FIGURE 10 | Bifurcation diagrams for output space A∗ of a single neuron with self-connection w; the bias term θ is varied back and forth over the

interval. (Left) Demonstrating bi-stability and hysteresis for w = 2.0. (Right) Switching on and off a period-2 oscillator for w = −2.0.

then the elements of a meta-transient α(σθ ) are generated by this
map according to

α(σθ ) = · · · ◦ fρ(t+2) ◦ fρ(t+1) ◦ fρ(t)(a(t)) .

For example, if the input to a neuron with excitatory self-
connection is slow when compared with the internal dynamics
one will observe a clear hysteresis signal as in Figure 10. If
the input signal changes much faster, then there will not be
“jumps” at the boundaries of the hysteresis domains but a kind
of “squashed” hysteresis loop will appear, as was observed for
instance in Manoonpong et al. (2010) for the dynamics resulting
from audio input signals.

Furthermore, if all the parameter values, corresponding to the
sequence σθ of sensor inputs, lie in one and the same domain of
parametric stability P , the behavior of the animat’s body will not
change dramatically, and one may describe it as “the same.” But
if a sequence of parameter values crosses a bifurcation set K in
parameter spaceQ the systemmay behave in a very different way.

5. PROJECTIONS TO MOTOR SPACE M

All the dynamics discussed so far has the goal to generate
appropriate body movements. Therefore, the only interesting
thing here is the effect of the activities of the neural system which
activate the motor neurons. Thus, we have to project the meta-
transients α(σθ ) on phase space A to the motor space M with
dim(M) = k < n. This projection, denoted by 5 : A → M,
is assumed here to correspond to the application of a one-layer
feedforward network (compare Figure 11). The activations of the
k motor neurons then are spanning the output layer, and we
define

5(a)j: =

n
∑

i=1

wjiτ (ai) , a ∈ A, j = 1, . . . , k , (6)

where wji, i = 1, . . . , n, j = 1, . . . , k denote the weights from the
n internal neurons to the k motor neurons. The activation of the

jth motor neuronmj ∈ M having a bias value θMj is then given by

mj = θMj +5(a)j , a ∈ A, j = 1, . . . , k . (7)

Such a motor neuron in general will not be connected to all of
the brains neurons. Therefore, there will be many internal states
a ∈ A which will project to identical motor activations m ∈ M.
This will give the second fiber structure of the sensorimotor loop,
where the fiber Fm ⊂ A overm ∈ M is given by

Fm: = {a ∈ A |5(a) = m} , m ∈ M . (8)

Then, what is observable is the behavior of the animat generated
by a sequence of motor states

µ(σθ ): = {m(t),m(t + 1),m(t + 2), . . .} (9)

which corresponds to a given meta-transient α(σθ ) on A; that
is, with ρ(t) ∈ Q, a(t) ∈ A, and bias terms of motor neurons
θM ∈ R

k one has

m(t) = θM +5 ◦8(ρ(t), a(t)) . (10)

From the projection argument it is clear that not the whole state
space A is of direct relevance for the behavior of the animat. It is
obvious that the activity of neurons not connected to the motor
neurons do not have a direct effect on the behavior of the animat.
Therefore an attractor in A, if it is a fixed point, a periodic orbit
or even a chaotic attractor, may be projected to only one and the
same motor state m ∈ M; attractors, their transients or meta-
transients may then have little or no effect on motor activities at
all.

To reflect this property we introduce a splitting of every state
a ∈ A into a so called horizontal and a vertical part; i.e.,

a = av + ah , with 5(av): = 0 . (11)
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And due to this splitting we have a direct decomposition of the
space of brain states A into horizontal and vertical parts; i.e.,

A = Av ⊕ Ah , (12)

where Av is given as Av = ker 5.
Let there be l ≥ k internal neurons being directly connected

with neurons in the motor layer; they serve as an l-dimensional
input space B ⊂ Ah of the feedforward network (compare
Figure 11). Furthermore, due to the geometry of feedforward
networks (Pasemann, 1993b), in general there is a (l − k)-
dimensional linear subspace Cm ⊂ B on which the activation of
the motor neurons is constant.

The dynamics directly relevant for behavior then will actually
live in the horizontal state space Ah ⊂ A. Correspondingly, what
will lead to an effective behavior is a sequence of horizontal states
given by a horizontal meta-transient on A

αh(σθ ): = {ah(t), ah(t + 1), ah(t + 2), ah(t + 3), . . .} . (13)

Going back to section 3 let us consider again a discrete-time
dynamical systems fρ :A → Awith fixed parameter vector ρ ∈ Q.
Then, post hock, we can introduce a well-defined splitting of the
dynamical system fρ into vertical and horizontal parts by

fρ(a) = f vρ (a
v)+ f hρ (a

h) , f vρ (a
h): = 0 , f hρ (a

v): = 0 . (14)

It is obvious that only the horizontal dynamics f hρ : Ah → Ah

contributes to the observable behavior of an animat, whereas the
vertical dynamics f vρ :Av → Av will describe brain processes which
may be associated to a dynamical kind of memory, to association,
planning, dreaming, contemplation, and the like; that is, to the
cognitive faculties of the brain.

Furthermore, suppose that two dynamical systems fρ and fρ′

with ρ, ρ′ ∈ P ,P ⊂ Q a domain of parametric stability (compare
section 3.1), are topologically conjugate. Then it is reasonable
that their horizontal components f hρ and f h

ρ′
will generate motor

states inM which lead to variants of a specific behavior. The next
example gives a demonstration of this situation.

Example 3: In evolutionary robotics one often used the
motor dynamics of a system as a fitness criterion to reduce
the “ineffective” higher dimensional neurodynamics of evolved
controllers to analyzable, minimalistic solutions for which the
discussed effects could be studied (Wischmann and Pasemann,
2006; von Twickel et al., 2011; Pasemann et al., 2012). Here
only a simple example of a neurocontroller may be given by the
following recurrent neural network (Figure 11). It provides an
obstacle avoiding behavior of a Khepera-like Robot (Toutounji
and Pasemann, 2016). It uses five distance sensors (sensor layer)
and two motor neurons (motor layer).

The hidden layer (the “brain”) has eight neurons, but only
two of them project to the two-dimensional motor space M.
Though the brain dynamics runs in an 8-dimensional state
space A only a 2-dimensional subspace B ⊂ A determines the
motor activity directly. What is going on in the 6-dimensional
vertical state space has no immediate effect on the behavior
of the robot. Indirectly, of course, the dynamics on A can

FIGURE 11 | A neural network for obstacle avoidance behavior of a

two-wheeled robot. One discerns between the sensor space, the so called

“brain” (hidden layer), and the motor space.

influence the behavior of the robot; for instance, the over-critical
excitatory self-connections of the input neurons I (Figure 11)
control the turning angle of the robot at walls. The submodule in
N(A) composed of the two neurons A and B has an interesting
dynamics not influencing the motor behavior. They display a
“chaotic” meta-transient while the the robot is turning, ending up
in a period-2 attractor after a complete right turn, and in a period-
4 attractor after a complete left turn. This internal (vertical)
dynamics does not contribute to the behavior of the robot, but
can be used as a kind of memory for subsequent decisions. The
over all performance of this controller is comparable to that
of the 2-neuron network called the MRC (minimal recurrent
controller) in Hülse et al. (2004).

5.1. Closing the Loop
Every activity of the motor neurons will change the sensor input
to the system (compare Figure 12). In this sense we have a closed
loop, and one may call it the ego-motion-loop. But the essential
point is, that this loop has to go through the environment of
the system; i.e., how the motor activity is reflected by the sensor
input depends, first, on the appearance and properties of the
environment, and second, on processes in the environment itself,
called exo-motion. This may lead to a discrimination of sensor
input variations into those which are due to changes of the motor
signals, and those which are due to changes in the environment
only (Philipona et al., 2003).

That this inextricable fusion of two influences can not be
described as a control theoretical type of closed loop with
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FIGURE 12 | The sensorimotor loop through the environment.

an additional noise term is clear by two facts: First, what is
happening in the physical environment of an animat in general
will not be a well defined process, and, second, the motor
outputs, as we have seen, are not necessarily a direct reflex of
the sensor inputs. Planning, focusing, ignoring performed by the
vertical brain activation dynamics are modulating the reaction
to sensor inputs. Thus, even formally it is difficult to describe
the neural dynamics in the sensorimotor loop in terms of a
control-theoretical model.

6. DISCUSSION

The description of biological brains as dynamical systems is often
assumed to be an appropriate approach to describe cognition
and the behavior of animals (Port and Van Gelder, 1995; Thelen
and Smith, 1996). Based on the observation that the typical
activity of an animat is a reaction to its environment, we
used the sensorimotor loop to carefully approach the dynamics
hypothesis in three steps. Relying on experiences in the field
of evolutionary robotics (Nolfi and Floreano, 2000) we used
discrete-time neurodynamics to, first, describe the (isolated)
brains as dynamical systems. Having realized that (living) brains
are always driven by sensor inputs, we made clear that the
description of brains as parametrized families of dynamical
systems is more appropriate. This allowed to introduce the
concept of parametric stability which helped to formalize the
general observation that a certain behavior is robust against
“noise,” and can be classified as “the same,” although the
initializing sensor inputs vary over a larger domain.

In a third step, assuming that sensor inputs may change so
fast that they can not be assumed to serve as parameters in the
mathematical sense (compare for instance Manoonpong et al.,
2005), we were compelled to introduce the concept of meta-
transients to describe the brains activity in a sensorimotor loop.
These meta-transients in general will not be describable as orbits
of a dynamical system. Finally, we used the fact that not all of
the brains activity is directly reflected in the motor performance
to discern between the brains effective (horizontal) and internal
(vertical) activations.

In a more general sense the horizontal part is associated
more with the sensorimotor pathways, whereas the vertical part
is assigned to the higher centers of the brain, associated with
cognitive faculties of a system. Of course horizontal and vertical
processes are not decoupled and depend on each other; they are

processes on one and the same highly recurrent network. As
usual, higher centers are assumed to check the adequacy of the
activities along the sensorimotor pathways; they are modulating
the sensorimotor flow of signals. On the other hand, the vertical
processes are permanently restricted by the “horizontal” flow of
signals; otherwise, that is, without sensor inputs, they will run
freely into perhaps noxious states of brain and body.

Following a purely formal approach to neurodynamics, we
introduced in Section 3.2 the concept of parametric stability
and the associated concept of a dynamical form. We think
that these concepts may help to discuss questions concerning
the representation of objects or, in this context better, behavior
relevant situations in the external world.

From the dynamical point of view certain patterns of sensor
inputs will be associated with the existence of certain attractors
in activation space A; or otherwise stated, with the existence
of a certain attractor-landscape. Because one has to assume
that the brains dynamics is always driven by sensor inputs
(including proprioception) it is more plausible to refer to a basin
of attraction as a candidate for representing an external situation.
Taking our argument for meta-transients serious it becomes
obvious, that a dynamical form, associated with a certain type
of behavior, is a reasonable representative for behavior relevant
situations in the external world. Thus, taking parametric stability
as essential for the reproducible identification of “the same”
situations gives a reasonable conceptual basis for treating brain
dynamics induced by an ever changing complex environment.

If one approves this interpretation then it will also allow for
a less restrictive dynamical view on memory. Neural memories
usually are represented by asymptotically stable fixed points,
like in Hopfield’s associative-memory model, or are conceived
as periodic, quasiperiodic, or even chaotic attractors of neural
networks. In fact, the correspondence between attractors and
memories is one of the fundamental aspects of neural networks.
But, as we have seen, situated in a sensorimotor loop and driven
by sensor inputs, the best we can expect is that attractors of a
neural network serve as kinds of symbols, while the system always
runs on transients to these attractors (or on meta-transients). So
in a first step memory should be associated with the basins of
certain attractors. Taken that the natural situation is such that
neural systems in the sensorimotor loop run on meta-transients,
we have to assume that the union of all basins of attraction,
belonging to the possibly morphing attractors of a dynamic form,
should be identified with thememory of certain behavior relevant
external situations. We will call this kind of memory model
a blurred memory. The relation between learning and blurred
memory will be the subject of further research.
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APPENDIX

The following is a list of parameters corresponding to the
designated 2-neuron networks used for demonstrations in this
paper.

TABLE A1 | Parameters for 2-neuron neural networks (Equation 2)

discussed in the paper.

System θ1 θ2 w11 w12 w21 w22

sys1 −2.0 0.0 0.0 1.6 −1.6 0.0

sys2 −1.6 0.0 −3.0 1.6 −1.6 0.0

sys3 0.0 0.0 1.1 0.6 −0.6 0.9

sys4 −3.0 0.0 −4.8. 2.3 −2.3 0.0

sys5 0.0 0.0 −1.5 1.5 1.5 1.5

sys6 −2.51 0.0 −2.75 1.5 −1.5 0.0

Osci1 0.0 0.1 1.0 −1.0 1.0 1.0

Osci2 0.0 0.5 1.0 −1.0 1.0 1.0

Frontiers in Neurorobotics | www.frontiersin.org 12 February 2017 | Volume 11 | Article 5

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Neurodynamics in the Sensorimotor Loop: Representing Behavior Relevant External Situations
	1. Introduction
	2. Neurodynamics
	2.1. Discrete-Time Neurodynamics

	3. Parametrized Families of Dynamical Systems
	3.1. Parametric Stability
	3.2. Bifurcations

	4. Meta-Transients
	5. Projections to Motor Space M
	5.1. Closing the Loop

	6. Discussion
	7. Author Contributions
	Acknowledgments
	References
	Appendix


