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Missing an upper limb dramatically impairs daily-life activities. Efforts in overcoming
the issues arising from this disability have been made in both academia and industry,
although their clinical outcome is still limited. Translation of prosthetic research into
clinics has been challenging because of the difficulties in meeting the necessary
requirements of the market. In this perspective article, we suggest that one relevant
factor determining the relatively small clinical impact of myocontrol algorithms for
upper limb prostheses is the limit of commonly used laboratory performance metrics.
The laboratory conditions, in which the majority of the solutions are being evaluated,
fail to sufficiently replicate real-life challenges. We qualitatively support this argument
with representative data from seven transradial amputees. Their ability to control a
myoelectric prosthesis was tested by measuring the accuracy of offline EMG signal
classification, as a typical laboratory performance metrics, as well as by clinical scores
when performing standard tests of daily living. Despite all subjects reaching relatively
high classification accuracy offline, their clinical scores varied greatly and were not
strongly predicted by classification accuracy. We therefore support the suggestion to
test myocontrol systems using clinical tests on amputees, fully fitted with sockets and
prostheses highly resembling the systems they would use in daily living, as evaluation
benchmark. Agreement on this level of testing for systems developed in research
laboratories would facilitate clinically relevant progresses in this field.
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INTRODUCTION

Recent progresses in active prosthesis control for the upper limb include the introduction of novel
control approaches (Scheme and Englehart, 2011; Jiang et al., 2014a; Amsuess et al., 2016), sensor
types and sensor fusion algorithms (Weir et al., 2003; Dosen et al., 2010; Cipriani et al., 2014; Ortenzi
et al., 2015; Nissler et al., 2016), surgical techniques (Kuiken et al., 2004; Aszmann et al., 2015), as
well as advanced hardware (Cipriani et al., 2011; Grebenstein et al., 2011; Catalano et al., 2014).
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Nonetheless, the impact of these advances towards improving
the experience of the everyday end user is still limited. The
discrepancy between myoelectric solutions which academia
develops and promotes, and the systems available on the market
is indeed substantial. This issue has been previously discussed
(e.g., Hill et al., 2009; Jiang et al., 2012; Farina and Aszmann,
2014) and relates to the conditions in which new methods are
tested.

The necessity for testing prosthetic solutions in a greater
number of amputees than currently done is a widely recognized
problem. Moreover, the tests used often fail to include clinically
relevant metrics. Performance metrics prevalent in laboratory
research may be poorly associated to the clinical outcome, as
noted previously (Simon et al., 2011; Jiang et al., 2014b; Ortiz-
Catalan et al., 2015). In this perspective article, we support these
arguments to further substantiate the relevance of this problem.

Transferring myoelectrical systems developed in the
laboratory to clinical settings is a challenge that requires
multidisciplinary efforts. Clinical tests, although not ideal, offer
the most realistic prediction of the system performance in the
daily use. These tests account for several of the challenges that
laboratory-based assessment methodologies tend to neglect. For
example, noiseless laboratory-based evaluation platforms fail
to account for the end effector loads, poor socket fitting and
sweating.

Here, we briefly introduce the evaluation methods regularly
applied for prosthetics use, with a focus on offline approaches
and some selected clinical measures. Moreover, we provide
experimental data on seven conventional myoelectric
users. The literature review and the experimental data
are limited to the primary aim of providing our view on
assessment procedures for myocontrol and suggestions for their
improvement.

PERFORMANCE EVALUATION

Laboratory-based techniques and tests for measuring the
performance in controlling a myoelectric interface are numerous
and, in case of offline techniques, have been mainly derived or
adapted from the machine learning literature. On the other hand,
initially, clinicians have mostly adapted established hand and
arm impairment assessment tools to the evaluation of functional
recovery with prostheses. However, in recent years, new clinical
measures have been introduced to specifically target the amputee
patient population.

Laboratory Metrics
Evaluation and assessment techniques for myocontrol in
strictly laboratory conditions can be broadly divided in two
groups—those quantifying the system performance through
offline metrics and those based on online assessments using
virtual prostheses or games.

Depending on the type of the evaluated control algorithm,
offline performance is most commonly assessed using either
classification accuracy (Ortiz-Catalan et al., 2013) or the R2 error
with respect to a given prompt (Ameri et al., 2014). The first
approach relies on the number of correct estimates that the

tested classifier makes, given the new, unseen data. The second
compares the estimated command with respect to a reference
cue. It has been shown that offline analysis fails to reflect the
performance exhibited in online scenarios (Jiang et al., 2014b;
Ortiz-Catalan et al., 2015). This is classically attributed to the fact
that offline analyses do not account for adaptation of the user to
non-stationary signal features.

Several virtual reality (VR) based assessment benches have
been proposed in recent years. These systems simulate the online
use of the prosthesis, at various levels of abstraction, while still
being research-based settings. They offer the advantage of not
dealing with the full implementation of the system, avoiding
the challenges of socket design and hardware implementations.
These VR systems are sometimes abstract with respect to the
intended control (Ison et al., 2016) and commonly consist
in steering a computer avatar in multiple directions to assess
the performance when controlling specific degrees of freedom.
Alternatively, computer games can be presented to the users,
e.g., controlling a cursor to hit targets on a computer screen
(Ameri et al., 2014; Jiang et al., 2014a). Finally, users can
also be instructed to move a virtual arm into a target
posture (Simon et al., 2011), as a part of an elaborate VR
test bench.

The online systems are superior to the offline evaluations
since they include the user in the loop and therefore account
for his/her adaptation to the system. Parameters such as
completion rate, path efficiency, number of overshoots or
throughput, provide a solid quantitative evaluation of online
performance. Further, the Fitts’ law (Fitts, 1954) has also been
applied in evaluating myocontrol. It provides a single statistical
measure to characterize online control (Fimbel et al., 2006; Park
et al., 2008; Scheme and Englehart, 2013). Nonetheless, even
if some of these test benches offer realistic testing scenarios,
they have limitations. For example, weight bearing by the
prosthesis and stump dynamics causing pressure changes within
the socket fitting are important realistic factors of influence
(Daly et al., 2014), not included in these tests. On the other
hand, VR systems have found relevant applications in patient
training (Roche et al., 2015; Sturma et al., 2015) and can
be combined with table-top prosthetics (Stubblefield et al.,
2011).

Clinical Metrics
Clinical and rehabilitation specialists rely on a set of tests as well
as questioners for assessing the user performance in myoelectric
control. These tests prompt users to manipulate a variety of
objects and to execute tasks mimicking those of daily living.
The majority of the clinical scores validate the capability of
executing certain tasks by quantifying the completion time.
A battery of clinical tests requires the presence of certified
examiners.

The box and blocks (B&B) test is one of the simplest and most
commonly used clinical tests for evaluating the severity of upper
limb deficiency. It consists of transporting, one by one, a number
of square wooden blocks over a barrier using the prosthesis.
The quantitative performance index for this test is the number
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of blocks that are successfully moved in a fixed time interval
(usually 1 min). This test is simple to implement but only focuses
on a limited number of DoFs and requires a minimal skill by
the user.

The Clothes Pin Relocation Test (CPRT) requires the user to
move a set of clothes pins of various resistances from a horizontal
to a vertical bar. Since this is primarily a rehabilitation tool, the
exact evaluation procedure has not been defined yet. However,
most therapists use four clothespins of different resistances
(1, 2, 4 and 8 lbs) and prompt the subjects to relocate them
from the lowest horizontal bar to the most convenient position
on the vertical bar. The time of execution is then recorded
from the starting neutral position to the final neutral position.
The CPRT requires activation of several degrees of freedom,
although it often promotes compensatory movements which are
not accounted for in the final outcome score.

The Southampton Hand Assessment Protocol (SHAP) is one
of the most elaborate hand impairment evaluation tests (Light
et al., 2002). It consists of 26 individual tasks that include six grips
and their combinations. It can be separated into abstract object
handling and execution of activities of daily living (ADL). Its final
outcome is a number in the range 0–100, where 0 corresponds to
absence of hand function and 100 to a healthy hand function,
which mainly reflects the time needed for completing the tasks.
SHAP is a very detailed hand assessment tool and therefore it
tends to be lengthy and tiring for the patients, especially those
with limited capabilities. Additionally, it mainly quantifies the
time needed for execution and does not account for the way in
which the tasks are completed.

The Action Research Arm Test (ARAT) is a global arm
function assessment procedure. It is divided into four sub-
scales—grasp, grip, pinch and gross movement—that evaluate
abstract object manipulation strategies. The maximum ARAT
score is 57, corresponding to normal upper limb function. This
score is based on the opinion of certified examiners that rate
the quality of execution of each task on a scale from 0 (cannot
perform) to 3 (performs normally).

In addition to the above, several other clinical tests and
questioners have been devised targeting different functions and
ways of assessing upper limbs, such as the Assessment of Capacity
for Myoelectric Control (ACMC; Hermansson et al., 2005) and
the Jebsen-Taylor Test of Hand Function (JTHF; Davis Sears and
Chung, 2010). Contrary to the other tests discussed, ACMC is a
clinical evaluation test specifically tailored for myocontrol rather
than generically for hand function. Nonetheless, it suffers of a
relatively large subjective component which has so far limited
its use.

Although being the best test bench available so far, existing
clinical tests are still limited in fully representing the functional
benefit of the prosthetic system for the patients. The main
limitation that needs to be addressed in the field is the lack of
objective clinical metrics to quantify the way movements are
performed with respect to natural motor tasks. Different control
algorithms may score similarly for clinical tests that quantify the
time needed to perform a set of standard tasks but yet provide
very different ability for the user to perform movements with
natural postures (Aszmann et al., 2016).

FIGURE 1 | Correlation between clinical scores and classification
accuracies. (A) Correlation between the clinical Southampton Hand
Assessment Protocol (SHAP) score and offline classification accuracy.
The offline scores have been obtained in realistic conditions with the patients
wearing their prostheses and training and testing performed on sets of data
obtained in different arm positions. Despite the realistic conditions, the
associations shown here are not strong. For example, a SHAP score of
approximately 40 may correspond to classification accuracy lower than 70%
or greater than 85% depending on the user. The SHAP requires precise
manipulation over short periods of time which is not captured by this offline
metrics. (B) The correlation between the clinical Box&Blocks (B&B) test and
the offline classification accuracy shows almost complete absence of
association between the two. For instance, the two patients who achieved
classification accuracies >95% were radically different for the number of
blocks they could transfer. When computed in less realistic conditions (without
prosthesis and testing on the same arm posture as training) the offline scores
were greater than in the presented conditions but showed almost no
correlation with clinical tests, since the majority of the patients were not able to
conclude the clinical evaluation without substantial retraining.

EXPERIMENTS

We provide data on amputees that compare the accuracy
estimated offline, for one of the classic control schemes
developed over the past decades, with clinical scores. These
data serve the purpose of representatively supporting the
need for clinical tests for myocontrol developments. Therefore,
the experiment and results do not aim at providing general
conclusions on all myocontrol schemes and evaluation methods
but rather at exemplifying the view presented in this perspective
article.

Sevenmale transradial myoelectric users agreed to participate.
They were all fit with custom-made sockets and with the
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Michelangelo hand (Ottobock Healthcare GmbH, Austria) with
additional wrist rotation and flexion/extension units. The study
was performed in accordance with the recommendations of
the local ethics board of the Medical University of Vienna
(Ethics Commission number 1044/2015), with written informed
consent from all subjects. Subjects were fully briefed on
the study protocol and possible adverse effects in presence
of a clinical staff. All given consents are in accordance
with the Declaration of Helsinki. All involved participants
were transradial amputees with previous experience in using
commercially available prosthetic devices. Before participation
in the experiment medical state of each participant has been
checked by the clinical staff.

The control of the prosthesis was based on the common
spatial pattern (CSP) based classifier, as described by
Amsuess et al. (2016). The EMG signals were recorded with
8 bipolar surface electrodes (Otto Bock raw signal electrodes
13E200 = 50AC). The control system allowed the subjects to
access seven prosthetic functions—wrist flexion/extension,
wrist pronation/supination, hand open, pinch, and key grip.
All the motions were recorded in three arm positions (relaxed,
fully extend arm in front of the ipsilateral shoulder, and fully
extended arm across the contralateral shoulder) and at three
forces (30%, 60% and 90% relative to the EMG level at maximum
voluntary contraction force) while wearing the full prosthetic
fitting. For offline accuracy assessment, the classifier was trained
by data collected in only one arm position and tested against
the remaining two data sub-sets. The average of the three

scores was the reference performance of the subject. The entire
data set was used for training the same CSP classifier that
allowed execution of the B&B and SHAP tests. These particular
clinical tests were chosen since they cover a wide range of
assessment goals while being entirely objective. Additionally,
these two tests have been widely recognized and familiar to
academic and industry-based developers as well as clinical
experts.

The performance scores in both offline and clinical tests are
presented in Figure 1. The offline classification accuracies are
slightly lower than in other studies (Ahsan et al., 2010; Liu et al.,
2013) because of the different arm positions used for training
and testing as well as the full prosthetic fitting which is not
usual in offline evaluation studies. Although with these choices
we have presumably maximized the prediction capacity of offline
indexes for clinical scores, still the clinical scores did not strongly
correlate with the offline performance measures. For example,
there were two patients who achieved a similar SHAP score
just below 40 but with very different classification accuracies
of<70% and>85% (Figure 1A). Similarly, two patients who had
similar classification accuracies of 70%–75% had SHAP scores
of 27 and 47 (Figure 1A). The B&B test requires less skill to
be performed than the SHAP. However, the B&B score was
even less associated to the offline classification than the SHAP
(Figure 1B). For example, subjects with an offline accuracy >95%
performed very differently in this test (Figure 1B). Furthermore,
when considering strictly the hand movements—hand open,
fine pinch and key grip—that are primarily used for this test,

FIGURE 2 | Classification output for two patients with substantially different outcome of the B&B test but very similar classification accuracies over
all motions. The focus here is on the three hand motions that are most relevant for the B&B task—hand open, key grip and fine pinch. The offline accuracy for these
motions is lower for the subject with the higher clinical score.
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the mismatch between this test and offline performance was
even more substantial. This was observed consistently in all
patients but it is shown representatively for only two patients
in Figure 2. For these patients, the average classification rate
across the three hand motions was 89% and 79% whereas
the transferred blocks (score of the B&B) were 5 and 12,
respectively.

When the offline evaluation was performed by using data
collected without wearing the prosthesis and tested on the
same arm position as the training, as more commonly done in
laboratory tests (e.g., Englehart et al., 1999; Hargrove et al., 2009;
Li et al., 2010; Ortiz-Catalan et al., 2014b), the resulting offline
classification rates were high and comparable to those reported
in the literature (>90% on average). However, once fully fitted,
the majority of patients were unable to successfully conclude
the clinical evaluations without retraining, suggesting that the
classic offline evaluation procedure performed in several research
studies, even though indicative, does not necessarily vouch for
superior clinical performance.

DISCUSSION

Abandonment rates among upper limb myoelectric prosthetic
users are still very high (Burrough and Brook, 1985; Glynn et al.,
1986; Østlie et al., 2012). At the same time, research efforts
have provided several new solutions for myocontrol that have
been proven to be highly functional strictly under laboratory
conditions. The limited transfer from research to real world
applications likely depends on an insufficient level of evaluation
procedures.

Using novel prototypes of myoelectric systems in daily life
would provide the ultimate assessment, but this strategy would
often require official certification by notified bodies, which often
goes beyond the possibilities of academic development. The
COAPT system (Coapt LLC, 2016) is one of the first systems
that has reached this level of testing. Clinical evaluations at
earlier stages are a compromise between laboratory conditions
and real-life tests. Although not perfect, clinical tests are closer to
the conditions of interest for the users than offline assessments
or online tests using virtual prostheses which provide valuable,
but not always sufficiently transferable scores. Here, we have
presented an example of this dissociation on a small sample of
amputees and focusing on offline metrics, for demonstration
purposes. We have compared clinical scores with offline indexes
of performance extracted in the most realistic offline conditions
(patients wearing a prosthesis, training and test sets obtained
on different arm postures). Despite these conditions rarely
being met in the offline studies, the prediction capacity for
clinical outcome was not strong. On the other hand, when
the offline indexes were obtained in more common laboratory

conditions without the prosthesis and for the same arm posture
for test and training, the clinical information they provided
was minimal (indeed with this training, once fitted with the
prosthesis patients could not even finish the clinical tests without
re-training). Further extrapolating, it is obvious that an offline
analysis performed in these simple conditions and, in addition,
on able-bodied individuals instead of patients, is of rather poor
clinical value. While we are fully aware that in the initial
evaluation of a new myocontrol scheme the strict laboratory
tests on healthy individuals are valuable and needed for assessing
the basic algorithmic working principles, there is also the need
to make efforts in continuing the evaluations of promising
algorithms in clinically-relevant settings (and to further develop
clinical tests that fully represents the functional benefits). We
believe that the evaluation stages after the laboratory level have
had so far a slower progress, and less academic interest, with
respect to the proposal of new algorithms.

Considering the discrepancy presented in the literature (Jiang
et al., 2014b; Ortiz-Catalan et al., 2015) and further supported
here, it seems necessary that novel myoelectric systems that
passed laboratory testing are then fully clinically evaluated for
assessing their performance. For this purpose, researchers and
clinicians should jointly devise a standardized testing framework
for quantitatively and qualitatively assessing the performance of
upper limb prosthetic devices and their users to boost the process
of commercialization and, as a consequence, availability for the
patients. This need does not only relate to the feed-forward
control aspects, on which we focused here, but also to fully
closed-loop systems that include sensory feedback integration
(Gonzalez and Yu, 2009; Jorgovanovic et al., 2014; Ortiz-Catalan
et al., 2014a).
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