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Reaching for objects and grasping them is a fundamental skill for any autonomous

robot that interacts with its environment. Although this skill seems trivial to adults,

who effortlessly pick up even objects they have never seen before, it is hard for other

animals, for human infants, and for most autonomous robots. Any time during movement

preparation and execution, human reaching movement are updated if the visual scene

changes (with a delay of about 100 ms). The capability for online updating highlights

how tightly perception, movement planning, and movement generation are integrated

in humans. Here, we report on an effort to reproduce this tight integration in a neural

dynamic process model of reaching and grasping that covers the complete path from

visual perception to movement generation within a unified modeling framework, Dynamic

Field Theory. All requisite processes are realized as time-continuous dynamical systems

that model the evolution in time of neural population activation. Population level neural

processes bring about the attentional selection of objects, the estimation of object shape

and pose, and the mapping of pose parameters to suitable movement parameters. Once

a target object has been selected, its pose parameters couple into the neural dynamics of

movement generation so that changes of pose are propagated through the architecture

to update the performed movement online. Implementing the neural architecture on an

anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by

grasping wooden objects. Their size, shape, and pose are estimated from a neural model

of scene perception that is based on feature fields. The sequential organization of a reach

and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics

of behavioral organization, that effectively switches the neural controllers from one phase

of the action to the next. Trajectory formation itself is driven by a dynamical systems

version of the potential field approach. We highlight the emergent capacity for online

updating by showing that a shift or rotation of the object during the reaching phase leads

to the online adaptation of the movement plan and successful completion of the grasp.
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1. INTRODUCTION

Object-oriented reaching and grasping in natural settings, a key
element of human-robot cooperation, continues to be a challenge
for autonomous robots (Herzog et al., 2012). Humans grasp and
handle objects fluently, of course, although these are among the
harder movement tasks, learned in infancy (Thelen et al., 1996),
but with continued development for close to 10 years of life
(Schneiberg et al., 2002). Humans easily reach and grasp objects
that they see for the first time or that are partially occluded.
Theymay grasp an object after closing their eyes. Anytime during
movement preparation or execution, humans may update the
motor plan when the object shifts or rotates (Desmurget and
Grafton, 2000). This performance entails, in humans, a close
coupling among perceptual processes including gaze control,
shift of attention, segmentation, recognition, and pose estimation
of the object, as well as between perception and motor processes
including initiating, coordinating, and terminating reach and
grasp movements.

Robotic approaches to grasping (reviewed in Carbone, 2013)
have traditionally made strong demands on what perception
delivers, often based on object models. Except for visual servoing,
those approaches are most appropriate for static situations with
well-known objects. In contrast, recent work has employed
simpler perceptual processes, that deliver fast estimates of pose
and grasp parameters and enable grasping objects that move
with a conveyer belt (Cowley et al., 2013). Another recent
line of work learns to extract grasp parameters that are linked
to probabilistic models that enable generalization beyond the
trained poses, and lead to most impressive real time grasping
performance (Huang et al., 2013). Related work learns grasp
primitives from demonstration (Herzog et al., 2014), from
exhaustive simulation (Curtis and Xiao, 2008), from examples
of object categories (Madry et al., 2012), or based on tactile
feedback (Platt et al., 2006). Explicit modeling of the uncertainty
of grasp parameters provides a potential solution (Li et al., 2016).

This paper is based on two hypotheses. First, we think
that we may learn from how humans generate reaching and
grasping movements. For instance, as a major theme that
we address here, we believe that reaching and grasping is
possible in humans with much simpler, lower-level perceptual
representations than traditionally assumed in autonomous
robotics. The perceptual processes engage attention and enable
continuous online coupling to the sensory surface. Another
example is at the level of control: The nature of actuation through
muscles that act as relatively soft, tunable stringsmakes it possible
to grasp without a precise estimate of grasp points. It is enough
to set the equilibrium length of muscles in the hand to a posture
inside the object and the muscles will then generate grip forces
through their peripheral reflex loops (Santello et al., 2016). In this
paper, we address the first, but not yet the second idea.

The other hypothesis is, in a sense, the converse. Many of the
neural processes underlying human movement that is directed
at objects have not yet been comprehensively understood in
neuroscience (Andersen and Cui, 2009; Lisman, 2015). This
means that neurally based process models do not stand ready
to be imported into robotics. But this also means that how

the component processes work together in the nervous system
needs to be better understood. Integrated models demonstrate
reaching and grasping in neurally grounded ways that may make
a contribution to understanding neural function.

Our research agenda is thus to build an integrated model
of reaching and grasping based on neural process accounts
inspired by the human mind. We do this based on the theoretical
framework of Dynamic Field Theory (DFT, see Schöner, 2008
for an introduction, Schöner et al., 2015 for a systematic
tutorial), a neurally grounded set of concepts that address
visual representations, coordinate transforms, attentive selection,
working memory, and behavioral organization. To build and
implement a complete model of reaching for and grasping
novel objects, we propose a neurally inspired computational
architecture.

All processes are modeled as neural dynamics, so that the
entire architecture is essentially one big dynamical system. The
theoretical framework of Dynamic Field Theory (DFT) provides
the means to represent information, to perform detection and
selection decisions, to model attention, track time varying input,
and to store information in working memory. Instabilities of
the neural dynamics create the discrete events from time-
continuous processes at which processes are initiated and
terminated (Sandamirskaya et al., 2013). The neural dynamics
interfaces with attractor dynamics that generate movements and
control the robotic arm and hand (Reimann et al., 2011). The
model builds on earlier work on scene representation (Zibner
et al., 2011a), and on the simultaneous recognition of objects
and estimation of their pose (Faubel and Schöner, 2009). We
show how neural dynamics enable integrating and organizing all
component processes, from the perception to the initiation and
termination of robotic movements (Richter et al., 2012).

The approach is tested on a robotic agent called CAREN
consisting of a Kuka LWR4 with seven degrees of freedom, with
an attached Schunk Dextrous Hand (SDH) featuring additional
seven degrees of freedom and tactile sensors. The arm is mounted
on a Schunk PR 90 rotary module with one degree of freedom.
We are using a Kinect camera to perceive the scene (see Figure 1).

This work is innovative in two different ways. On the
one hand, this work is part of a research program in
which robotic demonstrations are used to evaluate theoretical
models of human cognition and behavior (Adams et al.,
2000). Neural dynamics is a theoretical perspective within
this program in which process models are formulated that
may be linked to real sensory and motor systems (Erlhagen
and Bicho, 2006). Previously, neural dynamics has been used
to demonstrate reaching (Strauss and Heinke, 2012; Fard
et al., 2015; Strauss et al., 2015). We expand on this work
by including the autonomous sequential organization of the
behavior and addressing grasping as well. Ours is one of
the first demonstrations that cover the complete path from
sensing to acting in a difficult task, that includes attention,
recognition, estimation, executive control, movement planning,
and control. In this demonstration, we integrate four separate
neural dynamics models of component processes for scene
representation (Zibner et al., 2011a), object classification
with concurrent pose estimation (Faubel and Schöner, 2009),
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FIGURE 1 | This figure shows CAREN, the robotic platform used in this

work. It consists of a Kuka LWR4 (A), a Schunk SDH (B), and two Schunk

rotary modules, one used as trunk (C), the other as pan-tilt head (D). A Kinect

(E) is attached to the head of the robot. Two markers (green and blue) are

placed on the table surface (F). They denote the x-axis of the table’s

coordinate system.

behavioral organization (Richter et al., 2012), and movement
generation (Reimann et al., 2011).

On the other hand, in direct comparison to approaches
to grasping that are unconstrained by analogies with human
cognition, the strength of the present work is the capacity to
accomodate online updating to changing sensory information,
while at the same time addressing the sequential organization
of behavior and perception. For instance, work like Huang
et al. (2013) has powerful online updating of the grasping
action itself, but has a highly simplified perceptual system and
limited behavioral flexibility. We think of online updating as a
characteristic and attractive property of the neural organization
of reaching and grasping and this is why we focus on
demonstrating it here.

2. METHODS

We begin by providing a survey over the component processes
involved in autonomous grasping and the over-all flow of
activation in the neural dynamics architecture (Figure 2).
Perception (on the left) consists of scene representation and
object recognition. Scene representation entails the processes of
visual exploration, which sequentially attends to subregions of
the scene that may contain objects and commits an estimate
of local height at each attended location to working memory.

Visual exploration is a precondition of the query behavior, which
processes a cue that defines a target object, brings matching
locations into the attentional foreground and thus enables the
process of object recognition to take over. Object recognition
entails two interacting processes, shape classification, and pose
estimation. Shape classification determines the type of grasp that
will be used for the current target object, while pose estimation
specifies parameters of the reach and the grasp such as hand
orientation. Once both processes have converged, a sequence
of actions executes the grasp (illustrated on the right). Initially,
two behaviors are activated: “Open hand” does what the name
suggests and “approach” drives the hand to a point close to the
target object while orienting the hand based on a pose estimate.
After both behaviors are completed, the “grasp” behavior moves
the fingers. Up to that point, online updating of the classification
and pose estimation processes is possible, after this point, online
updating is suppressed. After detecting contact of the hand on
the object’s surface through tactile feedback, the “lift” behavior is
activated, which raises the arm with the grasped object upwards
from the table surface.

Although this description suggests that the individual
behaviors and processes are separate modules, in reality they are
all just subsets of one large system of differential and integro-
differential equations, the neural dynamics, whose solutions
evolve continuously in time. These equations are coupled
internally according to the architecture and to online sensory
inputs. Online updating is thus a pervasive property of the
architecture and neural dynamics approaches, in general. We
now take a closer look at the elementary building blocks of the
architecture to illustrate how neural dynamics and, specifically,
DFT, are organize the interaction of the behaviors and processes.

2.1. Dynamic Neural Fields
Dynamic neural fields are the building blocks of Dynamic Field
Theory (DFT). Continuous neural activation patterns, u(x, t),
defined over a feature dimension, x, evolve in time according
to an integro-differential equation that has been proposed as a
simplified model of cortical neural dynamics (Amari, 1977):

τ u̇(x, t) = −u(x, t)+ h+ s(x, t)+

∫

w(x− x′)σ (u(x′, t))dx′.

Here, τ determines the time scale on which activation evolves.
The−u-term endows this neural dynamics with the fundamental
stability mechanism that creates different kinds of attractor
solutions under different conditions. The attractor at the resting
level, h < 0, is stable in the absence of external input, s(x, t).
When such input from other neural fields or from sensory
surfaces remains small, the attractor is shifted to h + s(x, t).
When inputs become sufficiently strong so that this solution
reaches a threshold given by the sigmoidal nonlinearity, σ (·) =
1/(1 + exp(−β·)), this attractor becomes unstable. The system
switches to a new attractor state, a localized peak of activation that
is sustained by local excitatory and global inhibitory interaction
characterized by the interaction kernel, w(1x). The instability at
which a switch to such a self-stabilized peak solution occurs is
the detection instability, used to implement detection decisions
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in DFT. Localized peaks become unstable at the reverse detection
instability at lower levels of input. Multi-modal inputs may lead
to the formation of a self-stabilized peak at a single location in
the field. This is how selection decisions are realized in DFT.
Under appropriate conditions (for resting level and interaction
strength), self-stabilized peaks may remain stable once the
inducing localized input, s(x, t), is removed. Dynamic fields
may be analogously defined over multi-dimensional spaces. Such
sustained peaks of activation are the model of working memory
in DFT. See Schöner et al. (2015) for a systematic exposition
of the mathematical and conceptual structure of DFT. The
stability regimes described here depend, of course, on parameter
values. Typical values of the main parameters of the neural field
dynamics used throughout the architecture are: τ = 100ms,
β = 100, h between −15 and −5, global inhibition between 0.01
and 0.5, excitatory interaction 1, width of exitatory interaction
kernel between 3 and 5.

2.2. Neural Dynamics of Behavioral and
Process Organization
Zero-dimensional neural activation fields are essentially discrete
activation nodes described by a differential equation analogous to
Equation 1:

τ u̇(t) = −u(t)+ h+ s(t)+ wσ (u(t))

This dynamics may have an “off” attractor at negative levels of
activation, and an “on” attractor at positive levels of activation.
The “off” attractor may disappear in a detection instability
at sufficiently high levels of input, s. The “on” attractor may
disappear in a reverse detection instability at sufficiently low
levels of input, s. Both attractors may co-exist bistably for
intermediate levels of input. Such nodes are used in DFT to
represent the activation and deactivation of categories, processes,
or behaviors. For the organization of processes and behaviors,
pairs of such activation nodes form an executive control unit
(ECU, see Richter et al., 2012). When the intention node of an
ECU is “on,” it provides spatially homogenous excitatory input
(a “boost”) to parts of the architecture that is responsible for
executing an associated process or behavior. The Condition of
Satisfaction (CoS) node is activated when sensory or internal
inputs are detected that indicate the completion of a process or
behavior. CoS nodes inhibit the intention node, turn “off” the
associated process or behavior. A third node may be joined to an
ECU to represent a working memory of CoS activation, which
maintains a record of the past completion of a processing step.
Typical values of the parameters of the neural dynamic nodes
used throughout the architecture are: τ = 100ms, β = 100, h
between−1 and−2, global inhibition 0.01.

2.3. Visual Processing Pathway
The autonomous neural dynamics of visual processing controls
exploratory attentional processes that build a working memory
representation of the scene, which can be queried to activate a
particular target object. A second block of processes determines
object identity through classification and estimates object pose to
determined grasp parameters.

FIGURE 2 | Schematic overview over the behaviors that make up the

reaching and grasping architecture and how they interact.

2.3.1. Scene Representation
The architecture contains an expanded version of a neural
dynamic system for scene representation (Zibner et al., 2011a),
in which neural dynamic nodes implement a form of process
organization (Richter et al., 2012) to enable the autonomous
visual exploration of the scene which can transition into a query
mode that focusses attention on a target object in the scene.
Figure 3 expands this part of the complete architecture. As a
cue to locations on a table surface, at which objects may be
placed, we use color and visual depth estimates obtained from
a Kinect sensor that views the scene in the work space of the
robot arm. The idea is that color saturation on the homogeneous
table surface guides attention to candidate locations. The height
over the table surface estimated at these locations is then used to
decide if an object is present (Petsch and Burschka, 2010).

Specifically, we use the Point Cloud Library (Rusu and
Cousins, 2011), to find the largest surface in the RGB-D data,
which is then identified as the table surface. Height and color
maps are extracted in world coordinates. The distribution of
saturation in the color map is passed through a sigmoid function
and provides input to a neural field defined over the table surface
(the space field in the green box of Figure 3). Only regions on the
table at which saturation reaches a threshold level drive the neural
field through a detection instability and induce a self-stabilized
local peak of activation. This effectively suppresses outliers and
filters out the noise that is typical of RGB-D data. The field is
operated in a dynamic regime in which multiple self-stabilized
peaks may coexist. It functions as a salience map for color (Itti
et al., 1998).

The color salience space field provides input to a second neural
field, the attention field, also defined over the table surface. This
field is operated in the dynamic regime in which a single localized
peak is stable at any time, implementing a selection decision. A
self-stabilized peak in this field implements, therefore, selective
attention and provides the attentional focus for the rest of the
architecture. Height estimates from the subregion on the table,
at which activation in the attention field is above threshold,
are input into a one-dimensional neural field, the height field.
The selected spatial region and the neural activation pattern
representing height estimates are crossed to provide input into
a three-dimensional field, the space-height field (on the top right
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FIGURE 3 | The portion of the architecture responsible for scene representation.

in the red box of Figure 3). For details of how the combination
of two lower-dimensional inputs can be used to drive a higher-
dimensional field, please refer to Zibner et al. (2011a) or Chapter
9 of Schöner et al. (2015). The space-height field is operated
in multi-peak working memory mode, so that it represents the
location on the table and height of a potential object as a self-
sustained peak, even after the attentional and height inputs are
removed. It provides input to a second, three-dimensional field,
the height query field, that is operated in single-peak mode and
thus selects location and the associated height. Input from the
attention field controls the location at which input from the
space-height field may induce a peak. The height query field thus
serves to retrieve a stored object location and height from scene
memory.

To guide visual exploration, a multi-peak field over the table
surface, the space memory field, keeps track of all locations that
have come into the attentional focus of the system. A sustained
peak of activation is induced each time selective attention is
focussed at a location. The space memory field in turns inhibits
the attention field and thus biases the process of attentional
selection away from locations that have previously been the focus
of attention. Autonomous exploration is now organized by a
Condition of Satisfaction connection from the height query field
into the attention field. Every time a peak has been successfully
selected in the height query field, this signals that a memory has
been created that matches the currently selected location and
currently estimated height. This is the CoS of memory formation
and inhibits the attention field, deleting the self-stabilized peak
there in reverse detection instability. As a result, the peak in the
height query field is no longer supported by selective attention
and also decays, releasing the attention field from inhibition.
The attention field is ready to select the next location for spatial
attention. Inhibitory input from the space memory field now
tends to inhibit return to the same location or other recently

attended locations, biasing the selection process to new locations
with salient color input. This process of visual exploration is
continuously ongoing, confirming past memories in the space-
height field, updating such memories or creating new such
memories as needed.

Autonomous visual exploration can be interrupted at any time
by a query for a target object, that triggers the estimation of grasp
parameters. The target object can be specified by a spatial cue or
by cues of characteristic object features, such as color (for a more
detailed description of the querying behavior, see Zibner et al.,
2011b). There is a set of neural nodes that activate and deactivate
parts of the architecture by boosting or deboosting the resting
levels of the associated fields. Not all of those nodes are plotted in
the survey over the architecture for simplicity (see a description
in the first part of the Results Section for the functional role of
these nodes).

2.3.2. Shape Classification and Pose Estimation
Estimation of grasp parameters is based on a recurrent
architecture for object recognition (Faubel and Schöner, 2009).
In the original work, a weighted sum of object templates, one
for each known object, is compared to the current input image.
Applying cascaded transformation operations of shift, rotation,
and scaling) to the current input and matching the transformed
input to each of the memorized templates (by cross-correlation,
“C”) yields a competitive weight of each template. Dynamic
neural nodes compete with each other, leading to the selection of
the template in a classification decisions. In a concurrent process,
all templates are weighted with the current activation level of
their dynamic neural node and summed. This inverse cascade
of image transformations is applied and a match to the input
image in each possible pose provides input into neural activation
fields defined over the pose parameters for shift, rotation, and
scaling. These fields are operated in a single-peak mode so
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that an emerging self-stabilized peak represents a selection
decision among poses. The concurrent upward classification, and
downward pose estimation processes converge in closed loop,
activating an object identity representation in the set of neural
nodes, and a pose estimate in the set of neural fields.

For the present purpose, we replace learned object templates
with simple geometric shapes (square, circle, oblong rectangles).
The subregion on the table that the attentional focus defines
provides the visual input to the shape classification and pose
estimation system. The two-layer decision architecture of the
original model was further simplified into single layer decision
fields connected each to a single inhibitory node that slows down
the decision process, allowing multiple candidate peaks to form
before a decision emerges. Figure 4 gives an overview of the
resulting architecture. The different stages of pose estimation are
highlighted by the background color: translation (red), rotation
(yellow), and scaling (green). The set of neural nodes that makes
shape classification is highlighted in blue.

As the shape classification and poste estimation process
converges, it delivers a shape candidate whose location is

specification more precisely within the table surface than the
attentional systems does. The scaling and rotation estimates
together with features of the shape category are used to
determined the grasp parameters, represented in the grasp
decision field Oblong objects with a low height are grasped from
above, while cylindrical objects and cuboids with a square base
with sufficient height are grasped from the side. The latter objects
need different approach movements prior to grasping, since
cylinders, unlike cuboids, can be grasped sideways equally well
from any direction.

Note, that the estimation process is continuously coupled to
visual input through the attentional channel. As a result, changes
in the scene are fed into the pose fields enabling online updating
of the grasp parameters. In the current version of the model,
online updating occurs only with respect to two dimensions of
the task, translating, and rotating the gripper.

2.4. Reaching and Grasping
This section explains how data from the scene representation
and the shape classification/pose estimation systems are used to

FIGURE 4 | A sketch of the shape/pose estimation system used to classifify the attended part of the visual scene into a shape category and to

concurrently estimate its pose. Along the downward pathway on the left, the input image is transformed based on the current estimates of translation, rotation,

and scaling before being compared to the stored shape templates at the bottom. Along the upward path on the right, the current weighted sum of shape templates is

inversely transformed by scaling and rotation operations. Cross-correlations with the input image yield updates to pose estimates. The pose fields in the center

column feed into the representation of grasp parameters.
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generate movement and to grasp an object. The overall scheme
is as follows. Depending on the object pose parameters (position,
height, rotation, and shape) and the current arm configuration, a
desired wrist position and orientation for the hand are computed.
These desired values are then set as attractors in a dynamical
system that generates movement for the arm. The movement
unfolds autonomously in three phases organized by a neural
dynamics of the type reviewed earlier (Section 2.2). First, the
hand is opened, brought close to the object, and oriented in a
way that enables grasping the object. Second, the hand is moved
through the remaining distance to the object, and is closed. The
third phase begins when the object has been grasped as signaled
by the tactile sensors on the fingers. The hand is then moved
upward in space, lifting the object. This sequence of actions is
generated by a neural dynamics of behavioral organization that is
illustrated in Figure 5.

2.4.1. Generating Motor Commands
Motor commands are generated from desired values for the
wrist position and hand orientation using the attractor dynamic
approach (Reimann et al., 2011). To move the wrist, movement
speed, and direction are controlled separately. The rate of change
of movement direction depends on the angle between the current

movement velocity, Ev, and the vector, Ek, from the wrist position
to the target position,

φ = arccos





(

Ev, Ek
)

|Ev||Ek|



 . (1)

Reducing this angle to zero corresponds to changing the
movement direction into the direction in which the target
lies. This constraint is imposed by the dynamics of that angle,
given by

φ̇ = −αdirφ, (2)

which is linear, simplifying Reimann et al. (2011). Here, αdir is a
rate factor.

To translate this constraint into a motion command for the
robotic arm, consider the direction, Ev⊥, in which the movement
vector, Ev, is changed. It is perpendicular to Ev and lies in the plane

spanned by Ev and Ek. Computed as:

Ev⊥ = |Ev|
(Ek× Ev)× v

|(Ek× Ev)× v|
. (3)

and normalized to have the same length as Ev.
Combining the two equations we determine the direction in

which the wrist’s velocity vector in cartesian space should change
so as to bring the hand closer to the target location:

Efdir = Ev⊥(φ̇ − φ̇dev). (4)

Here, φ̇dev is the rate at which the direction from the hand to
the target changes due to the movement, Ev, of the hand in space.
The direction of change lies in the appropriate plane and is
proportional to the rate of change of the direction to the target
corrected for the rate of change of that direction that is induced
by the movement of the wrist in space.

To control movement speed, its rate of change, v̇, is
proportional to the difference between the current speed, v = |Ev|,
and a desired speed vdes:

Efvel =
Ev

v
(−αvel(v− vdes)) (5)

where αvel is a rate constant. As a contribution to the rate of
change of the 3D velocity vector, this contribution lies in the
direction of the current velocity.

A third contribution to the dynamics of the hand velocity
vector slows down the hand when it is close to the target object in
order to reduce any impact in case of misestimation and collision.
A local safe control law is proportional to the distance between
hand position, Eg, and target position, Ep:

vlocal = −βpos(Eg − Ep), (6)

FIGURE 5 | The neural dynamics of behavioral organization used for movement generation. There are four ECUs: open hand (A), approach target (B), grasp

target (C), and lift (D). The precondition node (E) ensures that the grasp behavior is only activated once (A,B) have met their CoS. The precondition node (F) ensures

that the grasp behavior has met its CoS before the object is lifted.
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and is expanded in vector form as

Efpos = −αpos(Ev−min{|vlocal|, vdes}
vlocal

|vlocal|
), (7)

where αpos and βpos are two rate factors. The introduction of vdes
is a change over the approach of Reimann et al. (2011) intended
as a safety measure to delimit movement speeds of the arm.

The rates of change of the hand’s velocity vector in Cartesian
space are transformed into joint space with the help of the
pseudo-inverse, J+p , of the Jacobian matrix of the wrist position.
The three contributions are then summed after each contribution
is weighted with a sigmoidal factor that reflects the distance of the
hand to the target. The result is the planned angular acceleration,
EF, of the robotic arm in joint space:

EF = σ (|Ek| − dthr)(J
+
p · Efdir + J+p · Efvel)

+ (1− σ (|Ek| − dthr))J
+
p · Evvel. (8)

This control strategy for the hand’s position largely follows
Reimann et al. (2011). The control law of the hand’s orientation
is formulated for the three Euler angles of the hand used as target
angles for the three most distal joints of the arm. The desired
rotationmatrixR can thus be split into three subsequent rotations
around three fixed axes. For each of these three most distal joints,
θi, the angular acceleration θ̈i is proportional to the deviation
between the current joint angle, θi, and the desired joint angle,
θi,des, corrected for by the current angular velocity, vθi , induced
by the movement of the hand in space according to Equation 9:

θ̈i = −αrot(vθi − βrot(θi − θi,des)). (9)

Here, αrot and βrot are rate constants of the dynamics.
Finally, the opening and closing of the hand is controlled

through a linear first order dynamical system:

Ėθ = −αhand(Eθ − (wgrasp Eθclosed + wapproach
Eθopen)). (10)

This dynamical system has attractors either at a joint angle
configuration, Eθopen, corresponding to an open hand or at a

joint angle configuration, Eθclosed, corresponding to a closed hand.
These joint configurations depend on the shape template of the
object to be grasped.

2.4.2. Target Positions and Orientations
Desired positions, g, for the wrist are defined for the approach,
grasp and lift behaviors, as well as for different grasp types. All
approach points for the different object types are updated online.
The target point, Egapproach, for the approach behavior depends on
the grasp type. For vertical objects, it lies in a horizontal plane
at two thirds of the object’s height at a certain distance from the
object that depends on the object’s shape. For cylindrical objects,

the vector, Ek, from the current wrist position to the object position
is projected onto the table plane to obtain the direction from
which to grasp. For objects with a square base, one of the four

sides is selected. This entails computing the inner product of Ek
with each of four vectors that are orthogonal to each side. Using

four competing neural nodes, the vector that best matches is
selected. For objects that are grasped from above, the approach
point is at a fixed distance above the object. A weighted sum

Egapproach =
1

n

∑

i

wiEgi, (11)

over the n different object types is used to calculate the
instantaneous approach point. The values for wi are the output
values of the grasp decision field.

For the target point of the grasping behavior, we use a point

on the object vector, Ek, at a certain distance, di, from the object

Eggrasp =
1

n

∑

i

widi
−Ek

|Ek|
. (12)

To lift the object, a position, Eglift is set to a point 50 cm above the
table surface located directly above the current position.

The current target position for the movement generation
system is then set to the weighted sum over all these different
target points

Eg = wapproach Egapproach + wgrasp Eggrasp + wlift Eglift, (13)

in which the weight factors are the activation states, wi, of the
corresponding behavior.

The orientation of the hand at grasp is chosen so that the
opening of the hand points toward the object and the fingers
are aligned with the object’s surfaces. For tall, narrow objects
that are grasped from the side, the palm is chosen to be oriented
perpendicular to the table surface. For flat objects that are grasped
from above, the palm is oriented parallel to the table. Again a sum
is used to obtain the desired orientation of the hand from these
contributions, weighted with the activation level of the associated
shape class.

3. RESULTS

A first goal of our experimental work is to illustrate how
the neural dynamic architecture generates the time courses
of visual exploration, shape classification and pose estimation,
and movement generation. In each case, we aim to show
how transitions between different phases of behavior emerge
autonomously from the space time continuous dynamical
systems. Although we inspect the three components of scene
representation, shape classification, and movement generation,
one by one, these componets are tightly coupled in the overall
neural architecture and evolve in parallel. The second goal is to
demonstrate and assess the properties of the neural architecture
in achieving reaching and grasping actions. We report three sets
of experiments that probe online updating with respect to three
dimensions of the task (grasping, translating, rotating). In the
following sections, we first give detailed account of the general
flow of neural activation through the dynamic fields and nodes.
Then we report the results of the three experiments set up to
probe specific characteristics of the system.
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3.1. Time Course of Scene Representation
As long as there is no active cue, the neural architecture of scene
representation (Figure 3) performs visual exploration which can
be described as follows. The distribution of color over the table
surface is captured by the space field that forms one peak at each

location with salient color. These peaks provide localized input
to the attention field, which generates a single peak and inhibits
all alternative locations. This peak masks input from the height
map to the height field so that only height measurements within
this window contribute. A neural node that detects a peak in the

FIGURE 6 | This figure shows the time course of the convergence process of the pose estimation and shape classification processes. In each column,

the current weighted sum of shapes is shown on top. Below, inputs and activation levels of the fields representing the shape weights, as well as scale and rotation

estimates are displayed (the translation estimate is not shown since the attentional blob sufficiently centers the input image, trivializing this estimation). At the bottom,

the raw and transformed input image is shown. At the beginning (time passes from left to right) the transformed input is blurred out and the estimation fields only

contain sub-threshold activity. While the process converges, the estimation fields select pose candidates. With the fixed pose, the shape field converges onto a

classification of the base shape. Note that this is a recurrent process, that is, pose estimates and shape classification converge in parallel and support each other.
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attention field provides a boost to the height field, which together
with significant input from the masked height input may induce
a peak in this field.

The attention and height fields now contain separate
representations of spatial position and height. Spatial input
projects as a cylinder localized in space, elongated along height
into the three-dimensional space-height field. Height input
projects as a slice localized along color, extended along space.
Where these inputs intersect, a localized peak arises that binds
height to location. This peak induces localized input into the
three-dimensional space-height query field, which receives at
the same time a cylinder of input localized in space, extended
along height from the peak in the attention field. These inputs
overlap and create a matching peak in the height query field.
A CoS node detects this peak and inhibits the attention field,
triggering a cascade of reverse detections in the attention, height,
and height query fields, followed by de-activation of the CoS
node itself, and a release from inhibition of the attention field.
Parallel to this cascade of instabilities, the looking memory
field has stabilized a sustained peak at the currently attended
location which projects inhibitorily back onto that same location
in the attention field. Upon the release from inhibition from
the CoS node, the attention field selects a new salient location
for activation, that is not typically the same as the previously
examined location.

This form of visual exploration runs continuously and
completely autonomously, in an ongoing sequence of shifts of
attention. This ongoing sequence is interrupted when a cue is
given from the outside, for example, by a human operator. The
cue resets the attention field through a short burst of inhibition
and acts as a mask to the input path from the color map,
amplifying the specified color. When the attention field recovers
from inhibition, it now selects a locationmatching the cued color.
This attentional peak induces activation from working memory
of the height value associated with that location, which can now
be handed on to the reach and grasp module.

3.2. Time Course of Shape Classification
and Pose Estimation
With the activation of the cueing behavior, a peak in the
attention field defines a window of attention, that channels input
to the shape classification and pose estimation portion of the
architecture (Figure 4). The CoS node of the cueing behavior
provides a boost to the resting level boost of all estimation
fields, which gets the estimation process started. The classification
nodes are all equal and at resting level.

At the beginning of the process (see left column of Figure 6),
the sum of shape templates in the top-down path is a
homogeneous mixture of every known shape. Since all shapes
are stored in a centered fashion, even this sum provide a cue
to translation estimates. Over time, the pose estimation fields
build up peaks, which compete within the fields for selection.
As these estimates sharpen, the cross-correlations at every stage
of pose transformation produce increasingly precise input to the
pose fields. The match between the transformed input image and
the stored shapes improves at the same time (middle column of

Figure 6). The pose estimates converge somewhat earlier than
the neural nodes that make shape selection, which operate on a
slightly slower time scale (right column of Figure 6). At this point
both the top-down pathway as well as the bottom-up pathway are
fully converged onto candidate estimates, but are still reactive to
changes in the input (e.g., caused by rotating or shifting the target
object). Both bottom-up and top-down pathways participate in
this bootstrap process.

3.3. Time Course of Movement Generation
Figure 7 illustrates the time line of the neural dynamics of
behavioral organization of movement generation. Initially, none
of the movement intention nodes is active, since no object has
been recognized yet. When all fields of the pose estimation
system have stabilized a peak, movement generation is initiated.
The approach behavior and the open hand behavior become
active at the same time and unfold in parallel. The open hand
behavior terminates once the hand is open, while the approach
behavior continues until the wrist of the arm has reached a certain
target point and the hand is oriented correctly. The successful
completion of either behavior is signaled through the respective
CoS node. Once both CoS nodes become activated, the grasp
behavior is activated. The arm moves the remaining distance
to the object while the hand is closing. Pressure sensors in the
fingers signal to the CoS node of the grasp behavior which is
activated once a grasp is detected. The grasp intention node is
deactivated by its CoS, and the lift behavior is activated. The
series of snapshots of the robot arm during the reaching toward
and grasping of an object is shown in Figure 8. This instance of
reaching and grasping contains online updating as the object is
moved and rotated by the experimenter after the movement has
been initiated. We examine online updating next.

3.4. Three Experiments to Probe Online
Updating
The task is to successfully reach for and grasp an object that
is positioned on the table in front of the robot and then lift
it up without losing grip, even if the object’s pose is changed
after the beginning of a trial. To assess performance, we count
a grasp and lift as successful, if the object is lifted without losing
grip. Failures include tipping over the object, closing the fingers

FIGURE 7 | Time course of the elementary processing units of

movement generation. Each line represents the activation level of the

intention node of a behavior through line thickness.
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FIGURE 8 | This figure shows snapshots of a reaching and grasping trial. The third and fourth snapshot show a human intervening in the scene by moving and

rotating the target object. Shortly after this intervention, the grasp approach adapts to the new pose leading to a successful grasp in the new pose followed by lifting

up of the object.

without grasping, and not lifting the object. In addition, we also
count trials as failed if the experimenters have to intervene with
a safety stop due to singular arm configurations or any form of
collision. In some cases, the grasp was executed successfully even
without precise estimates (e.g., orientation estimate is off, base
shape is not detected correctly). We count such trials as errors in
classification.

For the experiments, we used a set of three simple wooden
objects. The objects relate to the different grasps that the
architecture is capable of executing: One cylinder and two
cuboids, one with square base shape, the other with an oblong
base shape (see Figure 9 and Table 1). The object recognition
system uses three geometric shapes that loosely fit the base shapes
of the objects, that is, scale and aspect-ratio of the templates are
close to those of the objects.

For practical reasons, the trunk degree of freedom of the
robot was kept constant at 0◦ or −45◦ during all trials. This is
a small number of trials to singular arm configurations, which
our approach did not explicitly avoid. This limitation should
be overcome in future implementations and illustrates how the
trunk degree of freedom helps to cover a large workspace.

3.4.1. Grasping without Online Updating
In a first experiment, we placed a single object from the
object pool onto the table in front of the robot. We picked
five different positions, P1–P5 (see Figure 10) and multiple
orientations for the square cuboid (0◦, 30◦, 60◦) and the oblong
cuboid (0◦, 45◦, 90◦, 135◦). For the cylinder, we repeated each
trial three times, for a total of 50 trials in experiment 1.

The performance of plain grasps without online updating
is shown in Table 2. To minimize singular arm configurations,
the sideways grasps were executed with the trunk joint at
−45◦, while the top grasps were executed with a trunk joint
angle of 0◦. Of the 50 trials, 46 were successful (92% success
rate). Individual trials failed due to a singularity in the arm
configuration (twice) or failed recovery from a lost peak in
the estimation architecture (twice). Table 2 also contains the

FIGURE 9 | The three simple wooden objects used in the experiments

are shown. Each object is colored blue on its top surface. Blue was used as

query cue to indicate the target object.

TABLE 1 | Object sizes.

Object Size axis 1 Size axis 2 Height

Cylinder (cm) 7 7 25

Square (cm) 7 7 25

Rectangle (cm) 15 5 12

classification rate in all successful trials. In three trials, the base
shape of the object was not detected correctly, but nonetheless
the object was grasped successfully.

3.4.2. Online Updating of Position
The second experiment investigates the tracking capabilities for
position changes. For this experiment, we placed the cylindrical
object in one of the five starting positions P1–P5. For positions
P1–P4, we moved the object by hand toward position P5 once the
arms started moving, covering a distance of 10 cm in roughly one
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FIGURE 10 | This is the object placement layout for all experiments.

Point P5 is located at a distance of 45 cm along the x-axis of the world

coordinate frame originating in the center of the robot’s trunk. The shifts of

points P1 to P4 are illustrated.

TABLE 2 | Results of first experiment.

Cylinder Square Oblong Total

cuboid cuboid

No. of successful trials 14 13 19 46

Success rate (%) 93.33 86.67 95 92

Successful classifications 12 12 19 43

Classification rate (%) 85.71 92.31 100 93.48

to two seconds.When the object started in position P5, we instead
moved the object in the direction of one of the four other starting
positions by 10 cm. These eight conditions are tested three times
for a total of 24 trials, which the robot performed at a fixed trunk
joint angle of 0◦.

Of the 24 trials, 21 were successful (87.5% success rate). In
seven trials the cylinder was erroneously recognized as a square
cuboid from the start or after the hand of the experimenter had
touched the object to move it to the new position (see Table 3

for a listing of successful trials per condition). Three trials were
counted as failed due to a safety stop of the experiment. In two
of these cases, the arm configuration reached a singularity, in the
third case the fingers almost collided with the object due to an
erroneous position estimate. Table 3 also lists the rate of correct
classification in successful trials.

3.4.3. Online Updating of Orientation
For the third experiment, we picked the two cuboids, which
require a distinct hand orientation for grasping. Each object
was placed in one of the starting positions P1–P5. Once the
arm started moving, we turned the object in place around 45◦

within about one second. We repeated this three times for each
object and starting position, altering the starting orientation and
turning direction, ending up with 30 trials. Grasps of the square
cuboid were performed with a trunk joint angle of 45◦, while the
top grasp object was grasped with the trunk being at 0◦ (see first
experiment).

Out of 30 trials, 25 were successful (83.34% success rate, see
Table 4). We repeated two trials for the square cuboid due to an

TABLE 3 | Results of second experiment.

P1 → P5 P2 → P5 P3 → P5 P4 → P5 Total

No. of successful trials 3 3 3 2 11

Success rate (%) 100 100 100 66.67 91.67

Classification rate (%) 66.67 0 66.67 50 45.45

P5 → P1 P5 → P2 P5 → P3 P5 → P4 Total

No. of successful trials 3 1 3 3 10

Success rate (%) 100 33.33 100 100 83.33

Classification rate (%) 100 100 100 66.67 90

TABLE 4 | Results of third experiment.

Square P1 P2 P3 P4 P5 Total

No. of successful trials 2 3 3 3 2 13

Success rate (%) 66.67 100 100 100 66.67 86.67

Oblong P1 P2 P3 P4 P5 Total

No. of successful trials 3 1 2 3 3 12

Success rate (%) 100 33.33 66.67 100 66.67 80

erroneous estimate of base shape (circle instead of square). Of
the two failed trials for the square object, one was a safety stop
near a singular arm configuration, while the other failed due to
an error in behavioral organization (the fingers did not open).
The three failed trials of the longish cuboid comprise twowrongly
estimated orientations (and safety stops before collision) and one
approach was aborted by the behavioral organization caused by a
reverse detection in an estimation field.

4. CONCLUSION

The neural dynamics architecture presented in this paper
integrates modules that have previously been developed for
scene representation, concurrent object classification and pose
estimation, behavioral organization, and movement generation
into one big dynamical systems. Sequences of perceptual events
induce reach and grasp actions, as the architecture goes through
controlled instabilities. As a result, the system is open to time-
varying sensor information at all times. We demonstrated on-
line updating of reaching and grasping movements to shifts
and rotations of the object. The architecture also responds
flexibly at the level of organization. When a target object is
removed, the perceptual and motor actions are abandoned and
the system returns to scene exploration. When the concurrent
object classification and pose estimation fail to converge, for
instance, because the object is too different from a learned
template, then the perceptual process terminates and the system
similarly returns to scene exploration.

The stability of all relevant states in the neural dynamics is
critical for both integration and online updating. Attractor states
are robust to the changes in the dynamics of a component that
occur as the component is coupled into the larger architecture.
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Instabilities, at which attractor states disappear, are controlled
through the mechanism of a condition of satisfaction.

Although we have evaluated the implementation of the
architecture quantitatively, the current model is a demonstration
of principle, that has not yet fully exploited all features of the
approach. We did not use the size estimates obtained from the
object classification system, for instance, and have made use
of only a small number of shape templates, which in addition
resemble the target objects and do not show generalization to
objects of different shape. The avoidance of obstacles was not a
focus of this work. We believe that the human-like organization
and the smooth temporal structure of behavior in the neural
dynamics architecture will prove most useful when cognitive
robots cooperate with humans. On-line updating is critical there,
as human users will not always wait for their turn.

Finally, we did not yet address the issue of learning to
grasp. There are two obvious parts of the architecture that
could benefit from learning. One is the set of geometric shapes
used during classification and pose estimation, the other is
the grasp type associated with each geometric body. Naturally,
the set of geometric shapes should arise from exposure to a
large amount of graspable objects. Any learning process has
to address the challenge of making the decision if the shape
of an object can be sufficiently matched by an existing shape
from the set or if the object shape should be added to the
set of templates. This may also include a pruning process
to remove shapes if they become obsolete by adding better-
fitting shapes to the set. The links between grasp types and

geometric shapes will also have to be established by a learning
process. To decide if a grasp type is suitable for a geometric
body (considering the base shape and the height), one may
use a reinforcement learning approach by trying different grasp
types for the same object and using the CoS activation (or its
absence) of the grasping and lifting behaviors as positive or
negative reinforcement signals. The links may also be established
by learning from demonstration (see, for example, Herzog
et al., 2012). If both learning of geometric shapes and links
to grasp types are done concurrently, one might run into a
chicken-egg problem of not being able to learn one without
a mature state of the other. A developmental process of first
restricting possible shapes and executable grasps to small and
primitive sets and bootstrapping the architecture with increasing
complexity over time is a possible procedure to overcome this
dilemma.
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