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Both nociception and punishment signals have been used in robotics. However, the
potential for using these negatively valenced types of reinforcement learning signals for
robot learning has not been exploited in detail yet. Nociceptive signals are primarily
used as triggers of preprogrammed action sequences. Punishment signals are typically
disembodied, i.e., with no or little relation to the agent-intrinsic limitations, and they are
often used to impose behavioral constraints. Here, we provide an alternative approach for
nociceptive signals as drivers of learning rather than simple triggers of preprogrammed
behavior. Explicitly, we use nociception to expand the state space while we use pun-
ishment as a negative reinforcement learning signal. We compare the performance—in
terms of task error, the amount of perceived nociception, and length of learned action
sequences—of different neural networks imbued with punishment-based reinforcement
signals for inverse kinematic learning. We contrast the performance of a version of
the neural network that receives nociceptive inputs to that without such a process.
Furthermore, we provide evidence that nociception can improve learning—making the
algorithm more robust against network initializations—as well as behavioral perfor-
mance by reducing the task error, perceived nociception, and length of learned action
sequences. Moreover, we provide evidence that punishment, at least as typically used
within reinforcement learning applications, may be detrimental in all relevant metrics.

Keywords: reinforcement learning, inverse kinematics, nociception, punishment, self-protective mechanisms

1. INTRODUCTION AND MOTIVATION

Pain and punishment are essential feedback mechanisms for informing self-preservative behaviors
and both can heavily shape agent behavior. In robotics research, these types of feedback are often
studied and applied in isolation. For instance, pain is often used as a trigger of protective reflexes
with little or no adaptation, while punishment is often used within reinforcement learning setups
to prohibit the carrying out of certain action sequences. In the following section, we will discuss in
more detail both types of feedback and their use in robotics research, and later, we will introduce an
alternative way of using pain feedback in robot learning.

1.1. The Role of Pain in Robotics
Although it can be argued that robots do not need pain or will likely never be able to experience
pain, the mechanisms involved in pain management, e.g., physiological and autonomic responses,
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attention, and learning, may be modeled and taken as guidance
to improve robot performance. Pain can even be considered a
mechanism for developing safety features for human–robot inter-
action scenarios. It may be critical, for instance, to implement
safe human–robot interaction and collaboration without pro-
tective barriers as collision detection via the use of nociceptive
withdrawal reflexes (Kuehn and Haddadin, 2016). Chronic pain
could also be used as a way to signal malfunction or damage to
the enclosure of the robot that could be harmful to humans or
lead to accidents, for instance, after a collision, the shell of the
robot may be damaged and its surface may become rough or
sharp.

Pain denotes a complex psychological and neurophysiological
mechanism used to protect the body from injury (Westlund and
Sluka, 2013). The experience of pain involves most of the central
nervous system (CNS). It elicits immediate autonomic responses,
attracts attention, and its effects can have long-lasting behavioral
repercussions; evidence for the neural registration of pain are the
reports of pain in the absence of any physiological cause such
as chronic pain (Staahl and Drewes, 2004). More specifically,
pain is defined by the International Association for the Study of
Pain (IASP)1 as “an unpleasant sensory and emotional experience
associated with actual or potential tissue damage, or described in
terms of such damage” (Bonica, 1979, p. 250).

Under the definition of the IASP, pain is always subjective
and defined in terms of experience. Nociceptors, on the other
hand, are not considered as pain, per se. This is in line with
the fact that the same noxious stimulus is perceived differently
under different circumstances or different internal states such
as anxiety and expectation (McGrath, 1994; Brooks and Tracey,
2005). Because pain is an emotional experience rather than an
absolute measurable phenomenon, we prefer to differentiate it
from nociception, which we define as a descriptor of actual or
potential physical damage in robots.

The pain system is responsible for processing pain signals in
humans and other mammals. It consists of specialized recep-
tors called nociceptors, several nociceptive pathways, and brain
structures responsible for processing and modulating diverse
responses called nocifensive behaviors such as somatic and auto-
nomic responses, endocrine changes, affective responses, and
memory (Westlund and Willis, 2012).

The activation of nociceptors may trigger a number of
nocifensive responses or behaviors that include somatic and
autonomic reflexes, endocrine changes, motivational and affective
responses, the formation of memories, complex conscious pain
responses, among others (Westlund andWillis, 2012). Nocifensive
and defensive behaviors are hierarchically organized in a series
of nested and increasingly complex control loops, which involve
at least the periaqueductal gray, hypothalamus, stria terminalis,
amygdala, and ultimately the cortex (Canteras, 2002; Blessing and
Benarroch, 2012).

Autonomic reflexes can be considered as part of the primary
group of nocifensive responses, e.g., inflammation, activation of
the immune system, endocrine changes, vocalizations, and motor
reflexes. For instance, responses related to noxious cutaneous

1https://www.iasp-pain.org/.

stimuli, called nociceptive withdrawal reflexes or nociceptive flexor
withdrawal reflexes, are designed to prevent or reduce tissue dam-
age by eliciting fast motor responses (Gebhart and Schmidt, 2013,
p. 2226). Nociceptive withdrawal reflexes are primarily defined by
cutaneous noxious stimuli and characterized by large receptive
fields and actuation over all muscle groups of the body part
affected (Strominger et al., 2012; Gebhart and Schmidt, 2013).
On the other hand, autonomic reflexes associated with visceral
systems are more general, e.g., changes in heart rate, blood pres-
sure, and respiration, up to complex behavioral responses such as
scratching. The particular type of responses associated with vis-
ceral noxious stimuli are also known as pseudo-affective responses
because they resemble affective responses associated with painful
stimuli, but they are not able to prevent damage or eliminate the
threat (Gebhart and Schmidt, 2013, p. 2277).

Although autonomic reflexes are essential to any autonomous
agent, they are not enough to cope with a highly dynamic envi-
ronment, thus nocifensive responses, such as avoidance, moti-
vated and affective behavior, memory formation, and learning,
are also needed. These nocifensive responses are elicited by a
sophisticated network of sensorimotor pathways. For example,
nocifensive behaviors related to muscle and joint pain are char-
acterized by a decrease of force and joint use, and a decrease
of the mechanical withdrawal threshold (Gebhart and Schmidt,
2013, pp. 2284–2289). Adaptive nocifensive responses are critical
to cope with the changes in the organism body due to aging, to
lesions, to environmental constraints or to extraordinary events.
For instance, changes in gait may be required to prevent fur-
ther injury, or sometimes it may be required to experience pain
to escape from life-threatening situations; how and when those
changes in behavior happen cannot be predetermined and need
to be designed in accordance with the problem at hand.

1.1.1. Use of Nociception in Robotics
From the possible responses triggered by nociceptors or the pain
system, only those related to autonomic reflexes have been typi-
cally applied to robot behavior. Autonomic reflexes are hard-wired
responses elicited by painful stimuli designed to prevent or reduce
damage.

For instance, Kawaji and colleagues (Akayama et al., 2006;
Matsunaga et al., 2008, 2012) modeled pain perception produced
by mechanical stimuli in humans. Specifically, they focus on
touch, pressure, and brief impacts on the skin of human upper
fingertips and arms. They considered how physiological aspects
of the human skin, such as elasticity, sensitivity, and nociceptor
distribution, influence pain perception in terms of intensity and
duration. To model participants’ responses, Kawaji and colleagues
(Akayama et al., 2006; Matsunaga et al., 2008, 2012) proposed
a 2-DoF mass-spring-damper system model of mechanical pain.
In this model, the pain intensity and the duration of the pain
perception are expressed by the position of the outermost mass,
which is proportional to the force of impact. The model can also
be tuned to emulate fast and slow pain responses.

This model was applied to a simple nociceptive withdrawal
reflex (Matsunaga et al., 2005), i.e., when the robot collides with
an obstacle, it moves away from the obstacle and is programmed
to avoid the coordinates of the collision until the pain dynamics
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modeled with the suggested 2-DoF mass-spring-damper system
disappear.

More recently, Kuehn and Haddadin (2016) suggested a more
elaborated set of nociceptive withdrawal reflexes based on the
intensity of a mechanical stimulus applied to a BioTac® sen-
sor. Here, the nociceptive signal was used to trigger appropri-
ate withdrawal reflexes, change joint stiffness and position, and
limit movement for a predetermined time. The extent and inten-
sity of these changes are directly dependent on the strength of
the detected nociceptive stimulus, which Kuehn and Haddadin
(2016) divided into four categories: none, light, moderate, and
severe.

Although mainly preprogrammed, such a detailed model could
also be applied as a feedback signal for learning and it can even be
speculated that such models may contribute to the development
of some sort of empathic robots, i.e., robots that could judge
subjective pain or tissue damage based on the observed speed,
shape of the objects involved, among other variables.

Along with a similar line or research, however, instead of
reacting to nociceptive signals other research groups have focused
on preprogramming reflexes for anticipating pain, particularly
to prevent a fall or reduce the damage from an imminent fall.
Reactions to a lack of stability are meant to prevent a fall or
to protect vital organs in an imminent fall. Due to the inherent
instability of humanoid robots, it seems reasonable to imbue them
with fast and adaptable collision and fall management systems
instead of just reducing operational speed or posing restrictions
on the robot’s workspace.

Shimizu et al. (2011, 2012) designed a reflex management
architecture for the humanoid robot iCub. The architecture
efficiently orchestrates preprogrammed responses against colli-
sions and falls. The system was optimized for falls that start
from a still and upright pose. Robot responses are divided into
global and local reactions. Those reactions are meant to protect
the robot’s head and torso while reducing the overall damage.
Global reactions were designed to provide a whole body reac-
tion when falling and local reactions were designed to respond
to particular conditions while performing a global reaction
sequence.

Another sophisticated example of a fall management system
for robots was developed by Ruiz-del Solar et al. (2009, 2010).
Similar to the system developed by Shimizu et al. (2012), this
system focuses on the falls produced by external events and not
inherent in the robot’s locomotion. It employs whole body reac-
tions and the system can naturally cope with a fall from any robot
position. But contrary to the system of Shimizu et al. (2012), here,
the instabilities are evaluated in real time and thus can be used
regardless of the robot’s gait or pose. The main drawback of the
system is that it was optimized for robot soccer applications and
thus suitable only on even surfaces.

Although of significant importance, these applications do not
fully exploit the potential of nociceptive signals, as they are only
used as triggers for preprogrammed behaviors. However, these last
examples of reacting in anticipation of pain can be further devel-
oped using, for instance, reinforcement learning. Reinforcement
learning can be used to improve upon preprogrammed behaviors
or to learn new behaviors from scratch using nociceptive signals as

guidance. However, nociceptive signals in reinforcement learning
are rarely used in an embodied context as will be discussed in the
next section.

1.2. Reinforcement Learning and
Punishment
Reinforcement learning and particularly temporal-difference
(TD) learning are the preferred algorithms to model learning by
feedback, whether this is in the form of reward or punishment.
Reinforcement learning algorithms follow a trial-and-error learn-
ing paradigm and are formalized according to the idea of an agent
who learns from its experience, and whose task is to maximize
the cumulative reward in the long term (Sutton and Barto, 1998,
p. 56). However, no special treatment is given to punishment,
which is simply modeled as a negative reward without further
implications (Seymour et al., 2005, 2015; Balkenius and Winberg,
2008; Lowe and Ziemke, 2013; Palminteri and Pessiglione, 2017).
Yet, recent evidence indicates that thismay not be the case and that
in fact punishment is processed by a different neural pathway than
reward, at least for procedural or skill motor learning (Galea et al.,
2015; Palminteri and Pessiglione, 2017). Moreover, punishment-
driven learning may be a more demanding cognitive task than
reward-driven learning (Wächter et al., 2009; Kim et al., 2015;
Palminteri and Pessiglione, 2017).

The use of punishment in applications of TD-learning algo-
rithms is widespread and often used: (1) with the intention to
limit the time spent in certain states or to avoid them altogether
(Weber et al., 2004; Balkenius and Winberg, 2008) and (2) with
the expectation to obtain solutions with shorter action sequences
(van derWal, 2012). The punishment signal is usually a numerical
value devoid of any relationship to embodied perception and of
which its effect on learning in general is typically not quanti-
fied. Moreover, most approaches do not take into account that
punishment-driven learning may not be appropriately modeled
by TD-learning algorithms and perhaps reinforcement learning
algorithms in general (Palminteri and Pessiglione, 2017).

A wealth of research has identified the key brain regions
involved in different aspects of reward- and punishment-driven
learning, including the midbrain, the striatum, the amygdala, the
orbitofrontal cortex, and the medial prefrontal cortex. Most find-
ings shed light on the neural pathways involved in reward-seeking
behaviors only; however, less is known about punishment-driven
learning (Wächter et al., 2009; Kim et al., 2015) and the combined
effects of both types of reinforcement on behavior learning (Dayan
and Niv, 2008; Wächter et al., 2009). Evidence suggests that there
are substantial neurobiological differences (Wächter et al., 2009;
Kim et al., 2015). For instance, the striatum, the amygdala, and the
medial OFC seem to be more involved in reward-driven learning,
while for punishment-driven learning, the insula or the lateral
OFC play a greater role. Moreover, Wächter et al. (2009) and Kim
et al. (2015) show the differential involvement of the striatum in
reinforcement learning tasks that require action execution. Specif-
ically, the ventral striatum has been linked to reward anticipation,
while the dorsal striatum has been associated with both reward
and punishment anticipation and thus valence-free action value
representations. These findings support existing evidence that the
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ventral striatum is involved in reward-driven learning, whereas
the dorsal striatum is associated with the formation of habits
during reward learning (Kim et al., 2015).

During feedback, punishment-driven rather than reward-
driven learning elicits a greater engagement of the prefrontal
cortex and thus more attentional and cognitive resources are
recruited (Kim et al., 2015). This could indicate that punishment-
driven learning is a more complex and cognitively demanding
process. Dayan and Niv (2008) agreed with this view and argue
that this may be due to the heterogeneous range of effects that
aversive predictions elicit, which greatly depend on contextual
information.

A behavioral study on a procedural learning task by Wächter
et al. (2009) found that reward-driven learning can lead to sig-
nificantly higher performance than punishment-driven learning,
where performance is measured with respect to reaction time and
error rate. By contrast, punishment did not have an effect on
learning, but did have an effect on behavioral aspects, e.g., leading
to an immediate reduction of the reaction time, when tested on a
sequence-less version of the task (Wächter et al., 2009).

These results could be considered contradictory to other studies
(Hester et al., 2010), where punishment-driven learning has been
found to improve learning performance; however, the nature of
the tested tasks is different, i.e., procedural learning vs. associative
learning, respectively. Besides, the recognized existence of dif-
ferential pathways for reward- and punishment-driven learning
reconciles both results.

1.2.1. Use of Punishment in Robotics
Attempts to fill the knowledge gap of TD-learning models with
respect to punishment-driven learning and its effects when com-
bined with reward are still scarce. In a rare example, Tamosiunaite
et al. (2009) studied the effect of different reward and punishment
strategies in a learning-to-reach task. They used 4 types of strate-
gies all based on reward only but the best strategy was further
studied in combination with punishment. The first strategy was
reward only, the reward here was only given once the target had
been reached. The second strategy was based on the distance to
the target, i.e., the closer to the target the greater the reward.
The third strategy combined both aforementioned strategies and
was tested using two variants. Both variants gave a distance-based
reward and a bonus once the target was reached, but one of the
variants gave the distance-based reward only if the distance was
minimized (approach-distance-based reward). Finally, the fourth
strategy was differential, here the agent was given a reward based
on how much the distance to the target was minimized. From the
tested conditions, the approach-distance-based reward plus bonus-
on-touch converged faster and required shorter action sequences
than the other strategies.

Further, the approach-distance-based reward in combination
with punishment on joint constraint was analysed. Here, a pun-
ishment is given when the joint reaches either limit. This new
strategy increased convergence speed and worked better over a
larger range of hyperparameters. Tamosiunaite et al. (2009) also
tested punishment as a constraint together with punishment when
moving away from the target but this had no impact on their
results.

Balkenius and Winberg (2008) studied a modular Actor-Critic
architecture with an additional module (Punish) that learns state-
action pairs that lead to punishing states in maze-navigation
tasks. All three modules, i.e., the Actor, Critic, and Punish, encode
the current state differently. The Actor learns only using local
information as input. Specifically, it uses a matrix of binary val-
ues indicating whether obstacles are present in the current state
or immediately neighboring states. This facilitates generalization
while also informs the Actor of possible actions in each state
narrowing the search space. The Critic uses global position infor-
mation for learning. This seems more appropriate for evaluating
the actions chosen by the Actor in a goal-directed manner by
creating a gradient toward the goal. Finally, the Punish module
encodes obstacle configuration around the agent into mutually
exclusive classes. These classes encode specific state-action pairs
that are not generalized to achieve context-specific responses. In
this way, the Punishmodule can further reduce the search space of
theActor when in a given state by actively suppressing actions that
lead to known aversive outcomes, in other words, it tells the Actor
what actions to avoidwhen in a given state. Balkenius andWinberg
(2008) showed that having dedicated modules for aversive and
appetitive learning improved learning speed by reducing the total
number of steps required to solve a maze.

A more neurally motivated study was presented by Lowe and
Ziemke (2013). Here, rather than focusing on the task or the
embodied nature of the nociceptive signals, Lowe and Ziemke
(2013) tested alternative ways of representing reward and pun-
ishment, and how these representations are later combined for
decision-making in an n-armed bandit navigation task. These
representations are updated independently and combined into
an action value function (Qrp) used for action selection. Here,
the value representation of reward (Qr) is linearly modulated
by the value representation of punishment (Qp), so that Qr is
inhibited as Qp increase. Additionally, two meta parameters are
used to influence the probability of exploration. Similarly, as for
the action value function, an internal representation of reward R
is linearly modulated by an internal representation of punishment
P, where strong punishment inhibits behaviors associated with
reward. This method encompasses many reinforcement contin-
gencies modulated by the expected reward and punishment that
are observable in context-dependent levels of exploration versus
exploitation.

The abovementioned evidence presented in Section 1.1 and
Section 1.2 motivates this research. Here, we study to what extent
reward in combination with punishment and nociceptive input
affects agent behavioral performance and motor skill learning
capabilities during an inverse kinematics learning scenario. We
chose a version of the well-established TD-learning algorithm to
evaluate their suitability for capturing the differential dynamics of
reward- and punishment-driven learning. In contrast to the exist-
ing work on computational nociceptive signals and punishment
where they are either used as a trigger of reactive or anticipatory
preprogrammed behavior or have little or no embodied origin,
here we suggest an embodied approach where nociceptive infor-
mation is used to aid learning by increasing the state space or as a
negative reward. In this way, we improved learning performance
(indicated as the number of learning steps needed) and behavioral
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performance (measured as cumulative positioning error) on an
inverse kinematic learning task.

2. TASK DESCRIPTION AND
METHODOLOGY

Despite advances in humanoid robot control, there are still chal-
lenges regarding generalization and autonomous learning of new
tasks. One of these tasks is robust object reaching. Although this
task is actively being studied, e.g., Tamosiunaite et al. (2009), van
der Wal (2012), and Stahlhut et al. (2015), due to its number of
applications for industrial and domestic robots, it is still challeng-
ing andmany aspects remain to be studied such as self-calibration,
adaptation, learning of speed, and force control.

Evidence from both child development research (Thelen et al.,
1993) and adult novel sensorimotor task learning (Franklin et al.,
2007) suggests that learning to reach does not require visual
feedback, but seems to be useful for fine correction at the end of a
reaching movement. Moreover, in early infancy, motor programs
for reaching are not explicitly planned ahead of a movement
(trajectory planning), which points at a trial-and-error learn-
ing paradigm. Reinforcement learning methods are particularly
suitable for this type of learning.

Actor-Critic architectures are powerful TD-learning methods
that model phasic changes in dopamine neuron activity (Suri,
2002). The Critic guides the learning of action sequences gener-
ated by the Actor in order to maximize the accumulated reward.
The dual memory structure, one for the Critic and one for the
Actor, allows storing the learned policy explicitly, which signif-
icantly reduce the computation of action selection of large state
and action spaces when compared to other TD learning methods
(Sutton and Barto, 1998, p. 153). Moreover, Actor-Critic meth-
ods are thought to be consistent with biological evidence (Suri,
2002). This is due to the fact that the reward prediction signal
of TD learning resembles the dopamine neuron activity in the
striatum. Also, the Actor typically connects a high-dimensional
sensory input to a smaller action space, which resembles its neural
equivalent, i.e., projections from the striatum to the basal ganglia
output nuclei (Suri, 2002).

2.1. Experimental Setup
Here, the problem of autonomous learning or inverse kinematics
of a single robot arm is addressed. The robot’s objective is to move
the geometrical center of its end-effector toward a target as pre-
cisely and as quickly as possible. Arm movements are controlled
using motor commands relative to the current joint position, but
no inverse or direct model of the arm dynamics is provided to the
agent.

Because our main interest lies in the effects of punishment and
nociception on the learning of motor skills, a number of simpli-
fications are made. A simplified 2-degrees-of-freedom model of
a NAO robot arm is used, i.e., restricted to only one shoulder
and one elbow joint. The link lengths are 105mm for the upper
arm, and 113.7mm in total for the lower arm and hand.2 The
shoulder joint is limited to the range [−18, 76] degrees and the

2http://doc.aldebaran.com/2-1/family/nao_h25/links_h25.html.

elbow joint is limited to the range [−88.5,−2] degrees.3 The robot
is able to precisely perceive the target’s position in an egocentric
reference frame, i.e., exteroception. It can also precisely perceive
the absolute angular position of its joints, i.e., proprioception. It
can perceive when the joints are at or close to their upper or
lower limits, i.e., interoception (nociception). Nociceptive input
is maximal when a joint is at the mechanical limit and decreases
exponentially as the joint moves away from the limit. Nociception
is perceived only when the current joint position is within the
upper or the lower 10% of its mechanical range. Reaching is
considered successful when the robot’s hand is at most 10mm
away from the target.

To compare different learning conditions a unique training,
test and validation set for all conditions was used of sample size
1,000, 100, and 1,000, respectively. Each sample consists of a target
in Cartesian coordinates and an initial joints configuration in
degrees (see Figure 1). Samples are randomly generated and the
resulting end-effector positions are at least twice the reaching
threshold of 10mm apart. Training, test, and validation samples
are always presented in the same order. A complete presenta-
tion of the training set is termed “epoch.” Before any learning
is performed, the agent is tested on the test set, and after each
epoch afterward. The test set is used to determine a winning set
of hyperparameters for all conditions used, whereas the validation
set is used for a detailed comparison between conditions.

We compared four learning conditions. The first condition,
reward only (R), and our baseline consisted of an agent trained
using the target and current joint position information as state
space, and it received only a binary reward once the desired goal
state was reached. The second condition, reward+ punishment
(R+ P), used the same state space of the reward only condition
but extended the binary reward by incorporating a punishment
term directly derived from the perceived nociception. The third
condition, reward+ nociception (R+N), used the same binary
reward as the reward only condition but extended the state space
by including one nociceptive unit per joint. Finally, the fourth
condition, reward+ punishment+ nociception (R+ P+N), used
the state space of the reward+ nociception condition and the
reward and punishment of the reward+ punishment condition.

2.2. Continuous Actor-Critic Learning
Automaton (CACLA)
CACLA (van Hasselt and Wiering, 2007) is a model-free rein-
forcement learning algorithm with Actor-Critic architecture. This
algorithm was designed to work with large and continuous state
and action space, thus an excellent alternative to learn the prob-
lem described in Section 2.1. These characteristics are obtained
through the use of function approximation techniques such as
feed-forward multilayer perceptron neural networks (MLP) that
allow, for example, generalization, see van der Wal (2012).

Actor-Critic methods are on-policy temporal-difference (TD)-
learning methods that have two memory structures, i.e., a dedi-
cated memory for policies and another for value functions. The
Actor represents the policy and this is denoted as A(s). The Critic
provides a state-value function V(s). The Critic evaluates the

3http://doc.aldebaran.com/2-1/family/nao_h25/joints_h25.html.
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FIGURE 1 | (A) Top view of the NAO robot facing left. The left arm is depicted in different positions and a blue line is superimposed to indicate the boundaries of
the end-effector workspace. (B) Depiction of the target and end-effector coordinates of the randomly generated training set. Blue dots represent targets, whereas
red asterisks represent end-effector initial positions. (C) The histograms show the initial distance between the end-effector and the corresponding target.

outcome of the selected action against its existing value estimate
(expectation) and generates a TD error to the extent that it differs,
see equation (1). The TD error is then used to update both
the Actor and the Critic. If the error is positive, the selected

action should be strengthened, whereas a negative error indicates
the opposite (Sutton and Barto, 1998, p. 152). The TD error is
defined as:

δt = rt + γV(st+1) − V(st) (1)
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where rt is the reward received at time t, γ is the discount factor
of future rewards, V(st+1) is the expected reward at the state st+1,
and V(st) is the expected reward for state st.

Action selection is based on the current policy but in order
to discover new and better policies, i.e., to learn, exploration
is required. We use Gaussian exploration, where the performed
action is sampled from a Gaussian distribution centered at the
Actor’s outputA(st). So the probability of selecting action a at time
t is:

pt(st, a) =
1√
2πσ

e−(a − A(st))2/2σ2

(2)

where π denotes the mathematical constant and σ denotes the
SD and is here also called exploration rate. Finally, the per-
formed action determined by equation (2) and called a*, see
Figure 2 for a graphical representation of our implementation of
CACLA.

CACLAdiffers from conventional Actor-Critic systems (Sutton
andBarto, 1998, p. 152) in that themagnitude of theActor’s update
is independent of the size of the TD error. The Actor is instead
updated toward the explored action only when the sign of the TD
error is positive. This idea originates from the fact that punishing
or moving away from an action that does not lead to a higher
reward does not guarantee a better solution (van Hasselt and
Wiering, 2007). Thus, the Actor is only updated toward actions
that improve agent performance instead of pulling the weights
around without a destination. To control how strongly actions
will be reinforced, a derived algorithm called CACLA+ var is
used (van Hasselt and Wiering, 2007). CACLA+ var keeps a
running average of the TD error’s variance, so actions leading

Exteroceptive

Units

Proprioceptive

Units

backpropbackprop

Nociceptive

Units

Exploration

FIGURE 2 | The neural architecture used for inverse kinematics
learning. For clarity, only one connection weight is shown (arrow between
neuron layers). The hidden layers for both the Actor (left-hand side) and the
Critic (right-hand side) are independently tuned. Solid units and connection
weights in black correspond to the baseline, i.e., the reward only condition,
and are extended by the other 3 conditions. The punishment feedback given
to the critic and depicted in red is only used for the reward+punishment, and
reward+punishment+ nociception conditions. Blue dashed units and blue
dashed connection weights are only considered under the reward+
nociception, and reward+punishment+ nociception conditions. During
training a* is performed. a* is determined based on the exploration of action a
as described in equation (2). The Critic is trained every time step based on the
TD error δ, while the actor is trained only if the TD error is positive.

to unusually higher rewards are reinforced proportionally
higher:

vart+1 = (1 − β)vart + βδ2
t (3a)

number of updates = ⌈δt/
√
vart ⌉ (3b)

CACLA+ var requires two additional parameters to be tuned,
i.e., var0, which should be comparable to the typical value of δ, this
is important to avoid high reinforcement rates early in learning
when the agent behaviors are mostly random, and β.

Then, the Actor’s policy update can be expressed in pseudo-
code as:

ALGORITHM 1 | Actor’s update.

1: if δt >0 then
2: for i:= 1 to ⌈δt/

√vart ⌉ step 1 do
3: θA

i,t+1 = θA
i,t + α (a∗

t − A(st)) ∂A(st)
∂θA

i,t
4: end for
5: end if

where θAi,t is the ith item of the parameter vector of the Actor at
time t, st is the state vector at time t and α is the learning rate for
the Actor’s function approximator. Unlike the Actor, the Critic is
updated every time step as follows:

θVi,t+1 = θVi,t + ηδt
∂V(st)
∂θVi,t

(4)

where θVi,t is the ith item of the parameter vector of the Critic
at time t, and η is the learning rate for the Critic’s function
approximator.

2.3. Reward Function
The reward function consists of two parts, i.e., a rewarding com-
ponent depending on the end-effector position and a punishing
component depending on the joints’ position, which are additively
combined into a single scalar value after every step. The rewarding
component is computed as follows:

r+t =

{
R , if dt ≤ 1.00 cm
0 , otherwise

(5)

where R is the highest reward value, and dt the distance from the
end-effector to the target at time t.

Joint positions close to the lower or upper limit are considered
harmful and a punishment signal is used to signal this. The
amount each joint contributes to the total punishment per time
step is computed as follows:

r−t = − P
dof ×


0 , if Jmin

i + mi < ji < Jmax
i − mi

e
−0.5

(
ji−Jmin

i
mi

)2

, if Jmin
i + mi ≥ ji

e
−0.5

( ji−Jmax
i

mi

)2

, if ji ≥ Jmax
i − mi

(6)
where P is the maximum magnitude of punishment, dof the total
number of degrees of freedom, ji the absolute angular position
of the ith joint at time t. Jmin

i and Jmax
i are the minimum and the

maximum possible angular position of the ith joint and mi is the
margin of safety for a safety factor of 0.1 for the ith joint.
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2.4. Neural Architecture
We use two MLPs, one for the Actor and one for the Critic (see
Figure 2). Both share the same input layer. The output layer
for the Actor has two units, one per degree of freedom of the
robot arm. The Critic has a single output unit. The rest of the
layout is determined separately. The input layer is divided into
three perceptual modalities. First, there are two exteroceptive
units which encode the Cartesian coordinates of the target in a
2-dimensional task space relative to the robot. Second, there are
two proprioceptive units that encode the angular position of each
of the joints of the robot’s arm, i.e., the absolute joint value of the
shoulder and elbow joint. Finally, there are two nociceptive units
associated with each robot joint, with an activation almost iden-
tical to the function of punishment, see equation (6). However,
here nociceptive signals triggered bymovements toward the lower
limit of a joint are negative and positive formovements toward the
upper limit.

All input values are scaled to the range [−1, 1]. The squashing
function for the output units is linear, and for all other units,
a custom hyperbolic tangent as defined by LeCun et al. (1998,
2012) is used.Weight initialization is also performed as defined by
LeCun et al. (1998, 2012). Bias unitswith value−1 are always used.
Momentum and learning rate decay are not used. Both networks,
the one for the Actor and the one for the Critic, are trained using
back-propagation.

The activation of each nociceptive unit, see equation (7), is
computed in a similar way as the punishment signal, see equation
(6). The only two differences are that nociceptive units are able
to discriminate between the upper and lower range of each joint,
and the magnitude of the activation of each unit is not limited
by the maximum punishment value and is not affected by the
number of degrees of freedom of the arm. We chose an expo-
nentially decaying function tomodel nociception and punishment
as a simplification of the model for phasic mechanical cutaneous
pain suggested by Kawaji and colleagues (Akayama et al., 2006;
Matsunaga et al., 2008, 2012).

nt =


0 , if Jmin

i + mi < ji < Jmax
i − mi

−e
−0.5

(
ji−Jmin

i
mi

)2

, if Jmin
i + mi ≥ ji

e
−0.5

( ji−Jmax
i

mi

)2

, if ji ≥ Jmax
i − mi

(7)

2.5. Hyperparameter Optimization
Due to a large number of possible combinations of hyperparame-
ters, the systematic and exhaustive testing of them is impractical.
Thus, we decided to use a genetic algorithm (GA) to explore the
hyperparameter space, which helps to discover novel solutions
and to determine which hyperparameters have the greatest influ-
ence onperformance. The hyperparameters to be optimized by the
genetic algorithm along with the search space for each of them are
detailed inTable 1. Because small changes in the hyperparameters
are likely to produce little change in performance, we decided to
discretize their values and thus the search space as indicated in
Table 1.

TABLE 1 | List of hyperparameters for CACLA and MLP subject to evolu-
tionary search.

Parameter name Symbol Search space

CACLA+ var beta β {k : k +0.00025, 0.0001≤ k≤0.0251}
Initial variance var0 {k : k +0.1, 2.0≤ k≤ 7.5}
Initial iterations ⌈δ0/

√var0 ⌉ {k : k +1, 5≤ k≤ 15}
Discount factor γ {k : k +0.001, 0.60≤ k≤ 1.0}
Exploration rate σ {k : k +0.1, 0.7≤ k≤ 1.6}
Exploration rate decay κ {k : k +0.001, 0.940≤ k≤ 1.0}
Learning rate Critic η {k : k +0.0025, 0.0001≤ k≤ 0.175}
Critic MLP in→h1st Cin→h1st {k : k +5, 10≤ k≤ 50}
Critic MLP h2nd→out Ch2nd→out {k : k +5, 0≤ k≤ 25}
Learning rate Actor α {k : k +0.0025, 0.0001≤ k≤ 0.175}
Actor MLP in→h1st Ain→h1st {k : k +5, 10≤ k≤ 50}
Actor MLP h2nd→out Ah2nd→out {k : k +5, 0≤ k≤ 25}
Reward R {1, 10, 100}
Punishment P {−1, −0.1, 0}

Variables range based on Navarro-Guerrero (2016).

Regarding the GA, a small randomly initialized population
is used due to the computational cost of large populations. For
practical reasons, we chose 32 individuals per generation, which
corresponded to the number of cores we had available for par-
allel computation. The small number of individuals reduce the
exploration in the initial generation, but this can be overcome
with the use of evolutionary operators such as crossover and
mutation (Schaffer et al., 1989). Elitism is used to preserve the
best four solutions. The remaining 28 individuals are selected
using Tournament selection, recombined using a single-point
crossover, and finally mutated. Tournament selection is a sim-
ple selection method with an adaptable selection pressure, i.e.,
low when fitness distribution is high and vice versa, which also
helps prevent premature convergence (Mitchell, 1998). Single-
point crossover is also chosen due to its simplicity and efficacy
with short genome encoding (Mitchell, 1998). A normally dis-
tributed mutation was used to explore the neighborhood of tested
solutions but also allowed a certain degree of exploration. Each
gene is mutated with a 10% probability and a sigma of 6.25% of
the corresponding hyperparameter range, both percentage values
were manually tuned. Finally, to foster exploration and reduce
the likelihood of premature convergence, we only allow for test-
ing on new genotypes, thus when an already tested genotype is
produced, it is randomly mutated until an untested genotype is
found.

The fitness function for the GA consists of the total distance
between the robot’s end-effector and target on the testing set
after learning, i.e., after the last epoch. Thus, here, the lower the
fitness values the better. Equation (8) shows the mathematical
formulation of the fitness function:

D =
p∑

i=1
d(hi, ti) (8)

where p represents the total number of testing pairs, hi corre-
sponds to the initial joint positions of the arm for testing pair i, ti
corresponds to the coordinates of the target for testing pair i, and d
is the final Euclidean distance between the arm’s end-effector and
the corresponding target.
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3. EXPERIMENTAL RESULTS

Figure 3 shows an example of fitness values over time for the four
conditions tested in this work, i.e.:

• agent trained with reward only (R),
• agent trained with reward+ punishment (R+ P),
• agent trained with reward+ nociception (R+N), and
• agent trained with reward+ punishment+ nociception

(R+ P+N).

The population per condition and per generation is 32 indi-
viduals. Evolution is carried out for 50 generations after which
convergence was observed for all tested conditions. The following
subsections show the results for the best solution to each con-
dition, which are validated by training them 10 times with dif-
ferent initializations. The reported behavioral results correspond
to the average behavior of the 10 different initializations after
learning and are tested on the validation set. The raw data can be
downloaded from a dedicated page for Supplementary Material
(Navarro-Guerrero et al., 2017).

At a macroscopic level, i.e., at the evolutionary level, all solu-
tions are comparable both in terms of convergence speed as well
as in the quality of the best solution. Nevertheless, there are
differences in terms of the mean fitness, see Table 2. Particu-
larly, solutions for conditions trained with punishment, when
compared to conditions trained without punishment, have worse
fitness values. This could indicate that the conditions with pun-
ishment are more difficult to learn and thus require more finely
tuned hyperparameters.

Table 2 presents the best hyperparameters for all tested
conditions and the corresponding fitness value. The hyperpa-
rameter values obtained for most parameters are well within
the ranges defined in Table 1. The only exception were for
CACLA+ var beta in the reward only and reward+ nociception
conditions, and the learning rate for the Critic in reward only
condition.

3.1. Effect on Positioning Error
Figure 4 shows the average performance of the best individual
for each condition over 20 epochs. The average is obtained by

FIGURE 3 | A representative example of all four conditions of the
fitness distribution over generations; the results for each particular
condition can be found in the Supplementary Material Navarro-Guerrero et al.,
2017. The fitness is directly computed from the total distance to the target on
the testing set once learning has been concluded, thus the lower the value
the better.

TABLE 2 | Summary of best hyperparameters and fitness values at generation number 50.

Parameter name Symbol R R+P R+N R+P+N

CACLA+ var beta β 0.0251* 0.01685 0.0001* 0.0156
Initial variance var0 5.1 4.4 4.7 4.3
Initial iterations ⌈δ0/

√var0 ⌉ 10 10 11 10
Discount factor γ 0.836 0.887 0.715 0.868
Exploration rate σ 1.4 1.2 1.3 0.9
Exploration rate decay κ 1 1 1 1
Learning rate Critic η 0.0001* 0.0276 0.0601 0.0076
Critic MLP in→ h1st Cin→h1st 35 35 25 30
Critic MLP hsecond→ out Ch2nd→out 10 15 10 15
Learning rate Actor α 0.0426 0.1151 0.0226 0.0751
Actor MLP in→ h1st Ain→h1st 30 30 30 30
Actor MLP hsecond→ out Ah2nd→out 15 15 10 10
Reward R 10 10 10 10
Punishment P N.A. −0.1 N.A. −0.1
Avg. fitness (SD) 6.253625 (±5.480689) 8.939111 (±6.389975) 4.765209 (±5.280052) 8.864413 (±6.943758)
Best fitness 1.504085 1.550623 1.425379 1.377808

The fitness is the total reaching distance, in meters, on the testing set, thus the smaller the better.
N.A., not applicable.
The star (*) indicates values that reached their maximum or minimum allowed value.
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training 10 randomly initialized networks with the best-evolved
hyperparameters of the corresponding conditions and tested on
the validation set.

All conditions but reward+ punishment have a similar conver-
gence pattern, i.e., they reduce the positioning error sharply dur-
ing the first 10 epochs and it is further reduced thereafter but at a
much lower rate. The reward+ nociception condition consistently
reaches a lowermean value than all other conditions. Additionally,
in contrast to all other conditions, reward+ nociception shows a
much smaller oscillatory behavior after convergence. Also inter-
esting is the fact that the reward+ punishment condition shows a
slower convergence speed.

A two-way ANOVA of the average performance on the valida-
tion set of the best 4 individuals for each condition tested with
10 different random initializations provides additional evidence
for a difference between the tested conditions. Post-processing
this ANOVA with a pairwise comparison (“Tukey-Kramer”), the

FIGURE 4 | Mean positioning error of the best individuals of each
condition. All conditions but reward+punishment converge fast and reach
small positioning error in a small number of epochs.

difference between conditions is narrowed down to reward only,
our baseline, and the reward+ nociception condition, see Table 3.
The use of nociceptive units leads to improvements in the total
positioning error when compared to agents trained in the reward
only conditionwhile the use of punishment seems to have no effect
on performance.

The same analysis on the convergence speed, measured as the
area under the curve for all 20 epochs, is more categorical, see
Table 3. Here, both conditions trained with punishment signif-
icantly reduce the convergence speed compared to our baseline.
On the other hand, the use of nociceptive units partially coun-
teracts the negative effect of punishment, and when used without
punishment nociception performs as well as our baseline.

3.2. Effect on the Perceived Nociception
Figure 5 shows the perceived nociception (potential for damage)
of the best individuals for each condition over 20 epochs. The
average is obtained by training 10 randomly initialized networks
with the best-evolved hyperparameters of the corresponding con-
ditions and tested on the validation set. The mean perceived
nociception or potential for damage is computed based on the
cumulative absolute value of nociception per joint, as defined in
equation (7), and per time step for all samples on the validation
set after learning. The maximum number of steps is limited to
10. Thus, the maximum perceived nociception per sample in the
validation set is 20.

Nociception was measured in all conditions; however,
it is only used as input for the reward+ nociception, and
reward+ punishment+ nociception conditions. Nociception
and punishment were only used for learning and have no
influence on the hyperparameter optimization. Nevertheless, the
reward+ nociception condition consistently reduce the potential
for damage as shown in Figure 5. Similarly, as for the results of
positioning error, the larger reduction on measured nociception
occurs before the 10th epoch, after which the reduction is smaller
and an oscillatory behavior for all conditions is observed.

When observing the average potential for damage after learning,
the use of nociceptive units seems to reduce the total potential

TABLE 3 |Pairwise comparison for the average positioning error and convergence speed using “Tukey-Kramer” for a 95% confidence interval on a two-way
ANOVA.

Group 1 Group 2 Lower Mean diff. Upper p-Value Mean diff (%)

Performance R R+P −0.0121 0.0028 0.0177 0.9627 7.18
R R+N −0.0027 0.0122 0.0271 0.1523 31.28
R R+P+N −0.0114 0.0036 0.0185 0.9278 9.23

R+P R+N −0.0055 0.0094 0.0243 0.3681 25.97
R+P R+P+N −0.0142 0.0008 0.0157 0.9992 2.21
R+N R+P+N −0.0236 −0.0086 0.0063 0.4442 −32.09

Speed R R+P −0.7232 −0.5180 −0.3129 0.0000 −44.29
R R+N −0.1879 0.0173 0.2224 0.9964 1.48
R R+P+N −0.4286 −0.2234 −0.0183 0.0264 −19.10

R+P R+N 0.3302 0.5353 0.7405 0.0000 31.72
R+P R+P+N 0.0894 0.2946 0.4997 0.0013 17.46
R+N R+P+N −0.4459 −0.2407 −0.0356 0.0137 −20.89

Here, we analyze the average performance and convergence speed on the validation set of the best 4 hyperparameter sets for each condition. All hyperparameter sets were tested
with 10 different randomly initialized networks. A positive percentage indicates the effect size in which Group 2 improves upon Group 1, whereas a negative percentage indicates the
effect size in which Group 2 is worse than Group 1.
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for damage. However, unlike for positioning error, the reduc-
tion of nociception is not as large (% difference) or reliable (p-
value), see Table 4. By contrast, punishment seems to have a
negative effect on the potential for damage when compared to our
baseline and a significant negative effect when compared to the
reward+ nociception condition.

Again, if we consider the average cumulative absolute value of
perceived nociception during learning, punishment significantly
increase the potential for damage by almost 50%. Similarly, as for
the positioning error, nociception units can partially counteract
the negative effect of punishment, while performing similarly to
our baseline.

3.3. Effect on Positioning Speed
Figure 6 shows the average positioning speed of the best individ-
uals for each condition over 20 epochs. The average is obtained by

FIGURE 5 | Average measured nociception for both joints, for all
samples in the validation set and for the best individuals of each
condition. All four conditions show an oscillatory convergent behavior. The
condition trained with reward and nociceptive units converges to a smaller
value than all other conditions.

training 10 randomly initialized networks with the best-evolved
hyperparameters of the corresponding conditions and tested on
the validation set.

Figure 6 shows that the condition trained with nociceptive
units effectively and consistently reduce the number of steps
needed to position the robot’s arm, even though the hyperparam-
eter optimization procedure only attempted to reduce the total
positioning error, see Table 5. Similarly, as for the previous two
metrics, the gains on positioning speed are larger until the 10th
epoch. In contrast to the previous metrics, here all conditions
show a marked oscillatory behavior, see Figure 6.

Overall, the effect size for the positioning speed is small for
both, after learning and during learning. When observing the
positioning speed after learning and similarly as for the poten-
tial for damage, here nociceptive units also seem to improve
performance. Although the effect is more reliable than the one
seen in the reduction of the potential for damage, the actual
effect is smaller. By contrast and similar to what was seen for the
potential for damage, punishment seems to have a detrimental

FIGURE 6 | Average number of steps needed to position the robot’s
arm for the best individuals of each condition.

TABLE 4 | Pairwise comparison for nociception using “Tukey-Kramer” for a 95% confidence interval on a two-way ANOVA.

Group 1 Group 2 Lower Mean diff. Upper p-Value Mean diff (%)

After learning R R+P −2.4641 −0.9040 0.6560 0.4443 −22.90
R R+N −0.6973 0.8627 2.4228 0.4863 21.85
R R+P+N −2.2731 −0.7131 0.8470 0.6431 −18.07

R+P R+N 0.2068 1.7668 3.3268 0.0190 36.42
R+P R+P+N −1.3691 0.1910 1.7510 0.9892 3.93
R+N R+P+N −3.1358 −1.5758 −0.0158 0.0466 −51.08

During learning R R+P −58.5381 −47.5636 −36.5891 0.0000 −49.86
R R+N −8.0196 2.9549 13.9294 0.9003 3.10
R R+P+N −36.5662 −25.5917 −14.6172 0.0000 −26.82

R+P R+N 39.5440 50.5185 61.4930 0.0000 35.34
R+P R+P+N 10.9973 21.9718 32.9463 0.0000 15.37
R+N R+P+N −39.5212 −28.5466 −17.5721 0.0000 −30.88

Here, we analyze the average perceived nociception on the validation set of the best 4 hyperparameter sets for each condition, both after learning as well as the cumulative absolute
value during learning. All hyperparameter sets were tested with 10 different randomly initialized networks. A positive percentage indicates the effect size in which Group 2 improves upon
Group 1, whereas a negative percentage indicates the effect size in which Group 2 is worse than Group 1.
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TABLE 5 | Pairwise comparison for positioning speed using “Tukey-Kramer” for a 95% confidence interval on a two-way ANOVA.

Group 1 Group 2 Lower Mean diff. Upper p-Value Mean diff (%)

After learning R R+P −0.5872 −0.2549 0.0774 0.1992 −3.04
R R+N −0.0417 0.2906 0.6230 0.1109 3.47
R R+P+N −0.3855 −0.0532 0.2791 0.9765 −0.63

R+P R+N 0.2132 0.5455 0.8779 0.0001 6.31
R+P R+P+N −0.1306 0.2017 0.5340 0.4022 2.34
R+N R+P+N −0.6762 −0.3438 −0.0115 0.0393 −4.25

During learning R R+P −8.2838 −6.0490 −3.8143 0.0000 −3.45
R R+N 0.3106 2.5453 4.7801 0.0180 1.45
R R+P+N −4.0134 −1.7786 0.4561 0.1717 −1.01

R+P R+N 6.3596 8.5944 10.8291 0.0000 4.74
R+P R+P+N 2.0356 4.2704 6.5051 0.0000 2.35
R+N R+P+N −6.5587 −4.3240 −2.0892 0.0000 −2.50

Here, we analyze the average positioning speed and the cumulative number of steps needed during learning on the validation set of the best 4 hyperparameter sets for each condition.
All hyperparameter sets were tested with 10 different randomly initialized networks. A positive percentage indicates the effect size in which Group 2 improves upon Group 1, whereas a
negative percentage indicates the effect size in which Group 2 is worse than Group 1.

effect on the positioning speed when compared to the baseline
condition (reward only). Punishment is significantly detrimental
when compared to the best performing condition on this metric,
i.e., reward+ nociception.

When observing the cumulative effect, nociception units once
again counteract the negative effect of punishment. However, for
thismetric, nociceptive units perform significantly better than our
baseline but the effect size is rather small.

4. DISCUSSION

The results shown in Section 3 indicate that the use of nociceptive
units can improve learning performance and behavioral perfor-
mance. This improvement is observable across different evalua-
tion metrics, i.e., positioning error, the potential for damage, and
positioning speed. This result is noteworthy if we consider that the
algorithms were only optimized to reduce positioning error.

A more detailed comparison among the best solutions for each
condition shows that themetrics with amore substantial improve-
ment are positioning error and potential for damage, when com-
pared to conditions trained with reward only, see Section 3.1 and
Section 3.2. Our results also show that the largest improvement
in all three metrics is obtained when using nociceptive units only.
We believe that by enlarging the state space with the nociceptive
units we are effectively projecting the input vector into a higher
dimensional space, thusmagnifying the differences between input
vectors. This is analogous to the phenomenon observed in reser-
voir computing, where input vectors are transformed to a dynamic
higher dimensional space thus reducing ambiguity between simi-
lar input vectors. By contrast, punishment seems to have a negative
impact on all three metrics when compared to our baseline, the
reward only condition. The negative effect of punishment is even
largerwhen the conditions trainedwith punishment are compared
to the reward+ nociception condition. The negative impact of
punishment could also be inferred from the results of the hyper-
parameter optimization. Here we can see that the best value for
punishment converges to the smallest punishment possible, in this
case, −0.1.

We believe that the conditions that use punishment have amore
complex solution space, this can be observed with respect to the

speed of convergence for all three metrics evaluated here. This
could be supported by the twice as large mean fitness scores of
the conditions trained with punishment when compared to the
reward+ nocipcetion condition, see Table 2. Computationally, we
hypothesize that the oversimplification of punishment, i.e., being
treated as a negative reward and being conflated with reward as
a single scalar value, cf. rt in equation (1), creates ambiguity and
thus makes the problem harder. For instance, consider the case
where a high reward of 100 co-occurs with a high punishment of
−90: the resulting reward value fed into rt in equation (1) would
be 10 which is indistinguishable from a case where only a small
reward of 10 is present and no punishment.

For biological systems, Dayan and Niv (2008) argued that the
heterogeneous range of effects that aversive predictions elicit,
which greatly depend on contextual information, may be the
reason for it. This would be in agreement with existing evidence
that indicates that punishment-driven learning may be a more
complex and cognitively demanding process than reward-driven
learning (Palminteri and Pessiglione, 2017). Specifically, during
feedback receipt, punishment-driven, in comparison to reward-
driven, learning elicits a greater engagement of the prefrontal cor-
tex and thusmore attentional and cognitive resources are recruited
(Kim et al., 2015).

Furthermore, evidence suggests that there are substantial neu-
robiological differences between reward- and punishment-driven
learning (Wächter et al., 2009; Kim et al., 2015). For instance, the
striatum, the amygdala, and the medial OFC seem to be more
involved in reward-driven learning, while for punishment-driven
learning, the insula or the lateral OFC play a greater role (Wächter
et al., 2009; Kim et al., 2015).

We presented nociceptive units as a simple way of enhanc-
ing the performance of neurally implemented TD-learning algo-
rithms by increasing the state space. We showed that the use of
nociceptive units can improve the overall learned behavior, i.e.,
reduce the positioning error, reduce the potential for damage,
and increase the positioning speed. Alternatively, we showed that
punishment signals may be detrimental to the overall learned
behavior. This may be caused by the loss of predictive power of
conventional TD-learning algorithms as pointed out by Lowe and
Ziemke (2013).
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The results above shed light on the, to some extent, neglected
differential effects of reward- and punishment-driven learning
in the reinforcement learning literature. Moreover, for certain
tasks such as inverse kinematic learning, nociceptive units seem
to carry an unexpected boost in performance. Thus, we urge
further study of the effect of punishment-driven learning, the
combined effect of both types of reinforcer on behavior learning,
and the higher dimensional sensorimotor input in order to refine
biological models of learning by reinforcement with the added
benefit of potentially improving the computational effectiveness
of TD-learning methods, as shown in this work.

As future work, we aim to study the underlying mechanism(s)
that lead to the improvements caused by the use of nociceptive
units. Once identified, it would be possible to conceptualize
procedures to further increase these beneficial effects or envis-
age ways to apply the concept of nociception to non-embodied
reinforcement learning problems. This could even lead to a
universal approach of extending TD-learning algorithms, which
could resemble the feedback provided by nociceptor distributed
throughout the body.

Other more specific extensions would be to study the effect
of punishment and nociceptive units on robot pose or to fur-
ther develop our current implementation to learn the inverse
kinematics of a real humanoid robot arm.
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