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Intelligent agents, such as robots, have to serve a multitude of autonomous functions.

Examples are, e.g., collision avoidance, navigation and route planning, active sensing

of its environment, or the interaction and non-verbal communication with people in

the extended reach space. Here, we focus on the recognition of the action of a

human agent based on a biologically inspired visual architecture of analyzing articulated

movements. The proposed processing architecture builds upon coarsely segregated

streams of sensory processing along different pathways which separately process form

and motion information (Layher et al., 2014). Action recognition is performed in an

event-based scheme by identifying representations of characteristic pose configurations

(key poses) in an image sequence. In line with perceptual studies, key poses are

selected unsupervised utilizing a feature-driven criterion which combines extrema in

the motion energy with the horizontal and the vertical extendedness of a body shape.

Per class representations of key pose frames are learned using a deep convolutional

neural network consisting of 15 convolutional layers. The network is trained using the

energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016),

which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic

System platform (Merolla et al., 2014). After the mapping, the trained network achieves

real-time capabilities for processing input streams and classify input images at about

1,000 frames per second while the computational stages only consume about 70 mW

of energy (without spike transduction). Particularly regarding mobile robotic systems, a

low energy profile might be crucial in a variety of application scenarios. Cross-validation

results are reported for two different datasets and compared to state-of-the-art action

recognition approaches. The results demonstrate, that (I) the presented approach is on

par with other key pose based methods described in the literature, which select key

pose frames by optimizing classification accuracy, (II) compared to the training on the full

set of frames, representations trained on key pose frames result in a higher confidence

in class assignments, and (III) key pose representations show promising generalization

capabilities in a cross-dataset evaluation.
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1. INTRODUCTION

Analyzing and understanding the actions of humans is one
of the major challenges for future technical systems aiming at
visual sensory behavior analysis. Acquiring knowledge about
what a person is doing is of importance and sometimes
even crucial in a variety of scenarios. In the context of
automated surveillance systems, action analysis is an essential
ability, allowing to identify potential threads emanating from
an individual or a group of persons. In Human-Computer-
Interaction (HCI), action analysis helps in understanding the
objectives and intentions of a user and increases the potential
of a system to adapt to the specific context of an interaction
and appropriately support, guide or protect the user. Moreover,
recognizing actions in the surrounding area is an integral part
of interpreting the own situative context and environment,
and thus is in particular crucial for mobile robotic systems
which may find themselves embedded in a variety of different
situations.

In the presented work, as the first main contribution, a
feature-driven key pose selection method is proposed, which
is driven by combining two features in the biological motion
input, namely extrema in the temporal motion energy signal and
the relative extent of a subject’s pose. Such temporally defined
features (from the motion stream) help to automatically select
key pose representations. The use of these dynamic features
has been motivated by psychophysical investigations (Thirkettle
et al., 2009) which demonstrate that humans select specific
poses in a continuous sequence of video input based on such
criteria. We first show how such key poses define events within
articulated motion sequences and how these can be reliably and
automatically detected. The proposed processing architecture
builds upon coarsely segregated streams of sensory processing
along different pathways which separately process form and
motion information (Giese and Poggio, 2003). An interaction
between the two processing streams enables an automatic
selection of characteristic poses during learning (Layher et al.,
2014). To use such recognition functionality in an autonomous
neurobiologically inspired recognition system various
constraints need to be satisfied. Such neurobiological systems
need to implement the underlying processes along the processing
and recognition cascade which defines the parts of their cognitive
functionality.

As the second key contribution, we employ here an energy
efficient deep convolutional neural network (Eedn; Esser et al.,
2016) to realize the key pose learning and classification, which
achieves a computationally efficient solution using a sparse
and energy efficient implementation based on neuromorphic
hardware. This allows us to establish a cascaded hierarchy of
representations with an increasing complexity for key pose
form and motion patterns. After their establishment, key pose
representations allow an assignment of a given input image
to a specific action category. We use an offline training
scheme that utilizes a deep convolutional neural network with
15 convolutional layers. The trained network runs on IBM’s
TrueNorth chip (Merolla et al., 2014; Akopyan et al., 2015). This
solution renders it possible to approach faster than real-time

capabilities for processing input streams and classify articulated
still images at about 1, 000 frames per second while the
computational stages consume only about 70 mW of energy.
We present cross-validation results on an action recognition
dataset consisting of 14 actions and 22 subjects and about 29, 000
key pose frames, which show a recall rate for the presented
approach of about 88%, as well as a comparison to state-of-the-
art action recognition approaches on a second dataset. To show
the generalization capabilities of the proposed key pose based
approach, we additionally present the results of a cross-dataset
evaluation, where the training and the testing of the network was
performed on two completely separate datasets with overlapping
classes.

2. RELATED WORK

The proposed key pose based action recognition approach is
motivated and inspired by recent evidences about the learning
mechanisms and representations involved in the processing
of articulated motion sequences, as well as hardware and
software developments from various fields of visual sciences.
For instance, empirical studies indicate, that special kinds of
events within a motion sequence facilitate the recognition
of an action. Additional evidences from psychophysics,
as well as neurophysiology suggest that both, form and
motion information contribute to the representation of an
action. Modeling efforts propose functional mechanisms
for the processing of biological motion and show how
such processing principles can be transfered to technical
domains. Deep convolutional networks make it possible to learn
hierarchical object representations, which show an impressive
recognition performance and enable the implementation
of fast and energy efficient classification architectures,
particularly in combination with neuromorphic hardware
platforms. In the following sections, we will briefly introduce
related work and results from different scientific fields, all
contributing to a better understanding of action representation
and the development of efficient action recognition
approaches.

2.1. Articulated and Biological Motion
Starting with the pioneering work of Johansson (1973),
perceptual sciences gained more and more insights about how
biological motion might be represented in the human brain
and what the characteristic properties of an articulated motion
sequence are. In psychophysical experiments, humans show
a remarkable performance in recognizing biological motions,
even when the presented motion is reduced to a set of points
moving coherently with body joints (point light stimuli; PLS).
In a detection task, subjects were capable of recognizing a
walking motion within about 200 ms (Johansson, 1976). These
stimuli, however, are not free of – at least configurational –
form information and the discussion about the contributions
of form and motion in biological motion representation is
still ongoing (Garcia and Grossman, 2008). Some studies
indicate a stronger importance of motion cues (Mather and
Murdoch, 1994), others emphasize the role of configurational
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form information (Lange and Lappe, 2006). Even less is known
about the specific nature and characteristic of the visual cues
which facilitate the recognition of a biological motion sequence.
In Casile and Giese (2005), a statistical analysis as well as
the results of psychophysical experiments indicate that local
opponent motion in horizontal direction is one of the critical
features for the recognition of PLS. Thurman and Grossman
(2008) conclude, that there are specific moments in an action
performance which are “more perceptually salient” compared
to others. Their results emphasize the importance of dynamic
cues in moments when the distance between opposing limbs is
the lowest (corresponding to local opponent motion; maxima
in the motion energy). On the contrary, more recent findings
by Thirkettle et al. (2009) indicate, that moments of a large
horizontal body extension (co-occurring with minima in the
motion energy) facilitate the recognition of a biological motion
in a PLS.

In neurophysiology, functional imaging studies (Grossman
et al., 2000), as well as single-cell recordings (Oram and Perrett,
1994) indicate the existence of specialized mechanisms for the
processing of biological motion in the superior temporal sulcus
(STS). STS has been suggested to be a point of convergence of
the separate dorsal “where” and the ventral “what” pathways
(Boussaoud et al., 1990; Felleman and Van Essen, 1991),
containing cells which integrate form and motion information
of biological objects (Oram and Perrett, 1996) and selectively
respond to, e.g., object manipulation, face, limb and whole
body motion (Puce and Perrett, 2003). Besides the evidence
that both form and motion information contribute to the
registration of biological motion, action specific cells in STS
are reported to respond to static images of articulated bodies
which in parallel evoke activities in the medio temporal (MT)
and medial superior temporal (MST) areas of the dorsal stream
(implied motion), although there is no motion present in
the input signal (Kourtzi and Kanwisher, 2000; Jellema and
Perrett, 2003). In line with the psychophysical studies, these
results indicate that poses with a specific feature characteristic
(here, articulation) facilitate the recognition of a human motion
sequence.

Complementarymodeling efforts in the field of computational
neuroscience suggest potential mechanisms which might explain
the underlying neural processing and learning principles. In
Giese and Poggio (2003) a model for the recognition of
biological movements is proposed, which processes visual
input along two separate form and motion pathways and
temporally integrates the responses of prototypical motion and
form patterns (snapshots) cells via asymmetric connections
in both pathways. Layher et al. (2014) extended this model
by incorporating an interaction between the two pathways,
realizing the automatic and unsupervised learning of key
poses by modulating the learning of the form prototypes
using a motion energy based signal derived in the motion
pathway. In addition, a feedback mechanism is proposed in
this extended model architecture which (I) realizes sequence
selectivity by temporal association learning and (II) gives a
potential explanation for the activities in MT/MST observed

for static images of articulated poses in neurophysiological
studies.

2.2. Action Recognition in Image
Sequences
In computer vision, the term vision-based action recognition
summarizes approaches to assign an action label to each frame or
a collection of frames of an image sequence. Over the last decades,
numerous vision-based action recognition approaches have been
developed and different taxonomies have been proposed to
classify them by different aspects of their processing principles.
In Poppe (2010), action recognition methods are separated
by the nature of the image representation they rely on, as
well as the kind of the employed classification scheme. Image
representations are divided into global representations, which use
a holistic representation of the body in the region of interest (ROI;
most often the bounding box around a body silhouette in the
image space), and local representations, which describe image
and motion characteristics in a spatial or spatio-temporal local
neighborhood. Prominent examples for the use of whole body
representations are motion history images (MHI) (Bobick and
Davis, 2001), or the application of histograms of oriented gradients
(HOG) (Dalal and Triggs, 2005; Thurau and Hlavác, 2008).
Local representations are, e.g., employed in Dollar et al. (2005),
where motion and form based descriptors are derived in the

local neighborhood (cuboids) of spatio-temporal interest points.

Classification approaches are separated into direct classification,

which disregard temporal relationships (e.g., using histograms

of prototype descriptors, Dollar et al., 2005) and temporal
state-space models, which explicitly model temporal transitions

between observations (e.g., by employing Hidden Markov models

(HMMs) Yamato et al., 1992, or dynamic time warping (DTW)

Chaaraoui et al., 2013). For further taxonomies and an exhaustive

overview of computer vision action recognition approaches we

refer to the excellent reviews in Gavrila (1999); Aggarwal and

Ryoo (2011); Weinland et al. (2011).
The proposed approach uses motion and form based

feature properties to extract key pose frames. The identified

key pose frames are used to learn class specific key pose

representations using a deep convolutional neural network

(DCNN). Classification is either performed framewise or by

temporal integration through majority voting. Thus, following

the taxonomy of Poppe (2010), the approach can be classified as
using global representations together with a direct classification
scheme. Key pose frames are considered as temporal events
within an action sequence. This kind of action representation
and classification is inherently invariant against variations in
(recording and execution) speed. We do not argue that modeling
temporal relationships between such events is not necessary in
general. The very simple temporal integration schemewas chosen
to focus on an analysis of the importance of key poses in the
context of action representation and recognition. Because of the
relevance to the presented approach, we will briefly compare
specifically key pose base action recognition approaches in the
following.
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2.3. Key Pose Based Action Recognition
Key pose based action recognition approaches differ in their
understanding of the concept of key poses. Some take a
phenomenological perspective and define key poses as events
which possess a specific feature characteristic giving rise to
their peculiarity. There is no a priori knowledge available
about whether, when and how often such feature-driven events
occur within an observed action sequence, neither during the
establishment of the key pose representations during training,
nor while trying to recognize an action sequence. Others regard
key pose selection as the result of a statistical analysis, favoring
poses which are easy to separate among different classes or
maximally capture the characteristics of an action sequence.
The majority of approaches rely on such statistical properties
and either consider the intra- or the inter-class distribution of
image-based pose descriptors to identify key poses in action
sequences.

Intra-Class Based Approaches
Approaches which evaluate intra-class properties of the feature
distributions regard key poses as the most representative
poses of an action and measures of centrality are exploited
on agglomerations in pose feature spaces to identify the
poses which are most common to an action sequence. In
Chaaraoui et al. (2013), a contour based descriptor following
(Dedeoğlu et al., 2006) is used. Key poses are selected by
repetitive k-means clustering of the pose descriptors and
evaluating the resulting clusters using a compactness metric.
A sequence of nearest neighbor key poses is derived for each
test sequence and dynamic time warping (DTW) is applied
to account for different temporal scales. The class of the
closest matching temporal sequence of key poses from the
training set is used as the final recognition result. Based on
histograms of oriented gradients (HOG) and histograms of
weighted optical flow (HOWOF) descriptors, Cao et al. (2012)
adapt a local linear embedding (LLE) strategy to establish
a manifold model which reduces descriptor dimensionality,
while preserving the local relationship between the descriptors.
Key poses are identified by interpreting the data points (i.e.,
descriptors/poses) on the manifold as an adjacent graph and
applying a PageRank (Brin and Page, 1998) based procedure to
determine the vertices of the graph with the highest centrality, or
relevance.

In all, key pose selection based on an intra-class analysis
of the feature distribution has the advantage of capturing the
characteristics of one action in isolation, independent of other
classes in a dataset. Thus, key poses are not dataset specific and
– in principle – can also be shared among different actions.
However, most intra-class distribution based approaches build
upon measures of centrality (i.e., as a part of cluster algorithms)
and thus key poses are dominated by frequent poses of an action.
Because they are part of transitions between others, frequent
poses tend to occur in different classes and thus do not help
in separating them. Infrequent poses, on the other hand, are
not captured very well, but are intuitively more likely to be
discriminative. The authors’ are not aware of an intra-class
distribution based method which tries to identify key poses based

on their infrequency or abnormality (e.g., by evaluating cluster
sizes and distances).

Inter-Class Based Approaches
Approaches based on inter-class distribution, on the other hand,
consider highly discriminative poses as key poses to separate
different action appearances. Discriminability is here defined
as resulting in either the best classification performance or in
maximum dissimilarities between the extracted pose descriptors
of different classes. To maximize the classification performance,
Weinland and Boyer (2008) propose a method of identifying
a vocabulary of highly discriminative pose exemplars. In each
iteration of the forward selection of key poses, one exemplar
at a time is added to the set of key poses by independently
evaluating the classification performance of the currently selected
set of poses in union with one of the remaining exemplars in
the training set. The pose exemplar, which increases classification
performance the most is then added to the final key pose set.
The procedure is repeated until a predefined number of key
poses is reached. Classification is performed based on a distance
metric obtained by either silhouette-to-silhouette or silhouette-
to-edge matching. Liu et al. (2013) combine the output of
the early stages of an HMAX inspired processing architecture
(Riesenhuber and Poggio, 1999) with a center-surround feature
map obtained by subtracting several layers of a Gaussian pyramid
and a wavelet laplacian pyramid feature map into framewise
pose descriptors. The linearized feature descriptors are projected
into a low-dimensional subspace derived by principal component
analysis (PCA). Key poses are selected by employing an adaptive
boosting technique (AdaBoost; Freund and Schapire, 1995) to
select the most discriminative feature descriptors (i.e., poses).
A test action sequence is matched to the thus reduced number
of exemplars per action by applying an adapted local naive
Bayes nearest neighbor classification scheme (LNBNN; McCann
and Lowe, 2012). Each descriptor of a test sequence is assigned
to its k nearest neighbors and a classwise voting is updated
by the distance of a descriptor to the respective neighbor
weighted by the relative number of classes per descriptor. In
Baysal et al. (2010), noise reduced edges of an image are
chained into a contour segmented network (CSN) by using
orientation and closeness properties and transformed into a 2-
adjacent segment descriptor (k-AS; Ferrari et al., 2008). The
most characteristic descriptors are determined by identifying k
candidate key poses per class using the k-medoids clustering
algorithm and selecting the most distinctive ones among the set
of all classes using a similarity measure on the 2-AS descriptors.
Classification is performed by assigning each frame to the class
of the key pose with the highest similarity and sequence-wide
majority voting. Cheema et al. (2011) follow the same key
pose extraction scheme, but instead of selecting only the most
distinctive ones, key pose candidates are weighted by the number
of false and correct assignments to an action class. A weighted
voting scheme is then used to classify a given test sequence.
Thus, although key poses with large weights have an increased
influence on the final class assignment, all key poses take part
in the classification process. Zhao and Elgammal (2008) use an
information theoretic approach to select key frames within action
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sequences. They propose to describe the local neighborhood of
spatiotemporal interest points using an intensity gradient based
descriptor (Dollar et al., 2005). The extracted descriptors are
then clustered, resulting in a codebook of prototypical descriptors
(visual words). The pose prototypes are used to estimate the
discriminatory power of a frame by calculating a measure based
on the conditional entropy given the visual words detected in
a frame. The frames with the highest discriminatory power are
marked as key frames. Chi-square distances of histogram based
spatiotemporal representations are used to compare key frames
from the test and training datasets and majority voting is used to
assign an action class to a test sequence.

For a given pose descriptor and/or classification architecture,
inter-class based key pose selection methods in principle
minimize the recognition error, either for the recognition of the
key poses (e.g., Baysal et al., 2010; Liu et al., 2013) or for the
action classification (e.g., Weinland and Boyer, 2008). But, on the
other hand, key poses obtained by inter-class analysis inherently
do not cover the most characteristic poses of an action, but the
ones which are themost distinctive within a specific set of actions.
Applying this class of algorithms on two different sets of actions
sharing one common action might result in a different selection
of key poses for the same action. Thus, once extracted, key
pose representations do not necessarily generalize over different
datasets/domains and, in addition, sharing of key poses between
different classes is not intended.

Feature-Driven Approaches
Feature-driven key pose selection methods do not rely on the
distribution of features or descriptors at all and define a key pose
as a pose which co-occurs with a specific characteristic of an
image or feature. Commonly employed features, such as extrema
in a motion energy based signal, are often correlated with pose
properties such as the degree of articulation or the extendedness.
Compared to statistical methods, this is a more pose centered
perspective, since parameters of the pose itself are used to select
a key pose instead of parameters describing the relationship or
differences between poses.

Lv and Nevatia (2007) select key poses in sequences of
3D-joint positions by automatically locating extrema of the
motion energy within temporal windows. Motion energy in their
approach is determined by calculating the sum over the L2 norm
of the motion vectors of the joints between two temporally
adjacent timesteps. 3D motion capturing data is used to render
2D projections of the key poses from different view angles. Single
frames of an action sequence are matched to the silhouettes of
the resulting 2D key pose representations using an extension
of the Pyramid Match Kernel algorithm (PMK; Grauman and
Darrell, 2005). Transitions between key poses are modeled using
action graph models. Given an action sequence, the most likely
action model is determined using the Viterbi Algorithm. In Gong
et al. (2010), a key pose selection mechanism for 3D human
action representations is proposed. Per action sequence, feature
vectors (three angles for twelve joints) are projected onto the
subspace spanned by the first three eigenvectors obtained by
PCA. Several instances of an action are synchronized to derive the
mean performance (in terms of execution) of an action. Motion

energy is then defined by calculating the Euclidean distance
between two adjacent poses in the mean performance. The local
extrema of the motion energy are used to select the key poses,
which after their reconstruction in the original space are used as
the vocabulary in a bag of words approach. During recognition,
each pose within a sequence is assigned to the key pose with
the minimum Euclidean distance resulting in a histogram of
key pose occurrences per sequence. These histograms serve as
input to a support vector machine (SVM) classifier. In Ogale
et al. (2007), candidate key poses are extracted by localizing the
extrema of the mean motion magnitude in the estimated optical
flow. Redundant poses are sorted out pairwise by considering the
ratio between the intersection and the union of two registered
silhouettes. The final set of unique key poses is used to construct
a probabilistic context-free grammar (PCFG). This method uses
an inter-classmetric to reject preselected key pose candidates and
thus is not purely feature-driven.

Feature-driven key pose selection methods are independent of
the number of different actions within a dataset. Thus, retraining
is not necessary if, e.g., a new action is added to a dataset and
the sharing of key poses among different actions is in principle
possible. Naturally, there is no guarantee, that the selected poses
maximize the separability of pose or action classes.

3. MODEL/METHODS

To realize an energy efficient implementation for key pose based
action recognition, the proposed model uses a neuromorphic
deep convolutional neural network (DCNN) to selectively
learn representations of key poses which are assigned to
different action classes. In the preprocessing phase, optical
flow is calculated on the input sequences and key pose
frames are selected in an unsupervised manner. Form and
motion information is calculated for each key pose frame. The
concatenated form and motion information is then used as the
input to the DCNN. In the following, detailed information about
the image preprocessing, the key pose selection automatism and
the structure and functionality of the DCNN are presented. All
simulations were carried out using a neuromorphic computing
paradigm and mapped to the IBM TrueNorth hardware platform
(Merolla et al., 2014).

3.1. Key Pose Selection and Image
Preprocessing
During preprocessing, two elementary processing steps are
performed. First, the key pose selection is performed by
automatically analyzing simple motion and form parameters.
Second, the final input to the network is calculated by combining
the form and motion representations Iform and Imotion obtained
by simple image-based operations.

Key Pose Selection
The key pose selection process operates upon two parameters,
namely (I) local temporal extrema in the motion energy and
(II) the extendedness of a subject at a given timestep. Optical
flow is calculated using a differential method, as suggested in
the Lucas-Kanade optical flow estimation algorithm (Lucas and
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Kanade, 1981). Given an image sequence I(x, t), the optical flow
u(x, t) = (u(x, t), v(x, t)) at timestep t and position x = (x, y) is
estimated in a local neighborhood N(x) by minimizing

∑

y∈N(x)

W(x− y)2[Ix(y, t)u(x, t)+ Iy(x, t)v(x, t)+ It(y, t)]
2, (1)

where W(x − y) increases the influence of the optical flow
constraints within the center of the local neighborhood (for
details see Barron et al., 1994). The spatiotemporal derivatives
Ix, Iy and It are estimated by convolution of the image sequences
with the forth-order central difference [−1, 8, 0, −8, 1]/12
and it’s transpose in the spatial and the first-order backward
difference [−1, 1] in the temporal domain. A separable 2D kernel
with 1D coefficients of [1, 4, 6, 4, 1]/16 is used to realize the
weighted integration of the derivatives within a 5 × 5 spatial
neighborhood (N(x))1. The use of the Lucas-Kanade algorithm
is not a hard prerequisite for the proposed approach. Other
types of optical flow estimators might be applied as well (e.g.,
(Brosch and Neumann, 2016), which is capable to be executed on
neuromorphic hardware). The overall motion energy Eflo is then
calculated by integrating the speed of all estimated flow vectors
within the vector field.

Eflo(t) =
∑

x∈I(x,t)
‖u(x, t)‖2=

∑

x∈I(x,t)

√

u(x, t)2 + v(x, t)2, (2)

Motion energy is smoothed by convolving the estimated motion
energy with a Gaussian kernel, Ẽflo(t) = (Eflo ∗ Gσ )(t). In the
performed simulations, σ = 2 and σ = 4 were used dependent
on the dataset2. Potential key pose frames are then marked by
identifying the local extrema of the motion energy signal.

K
flo = {I(t), t ∈ [1, ...,T]|t is a local extremum of Ẽflo(t)}, (3)

The relative horizontal and vertical extent of a given pose at time
t is then used to reject local extrema with an extent smaller than
a predefined percentual threshold λ, as defined by:

K = K
flo ∩ K

ext. (4)

with

K
ext = {I(t), t ∈ [1, ...,T] | (Extver(t) > (1+ λ)Ext

ver
)

∨ (Extver(t) < (1− λ)Ext
ver

) (5)

∨ (Exthor(t) > (1+ λ)Ext
hor

)

∨ (Exthor(t) < (1− λ)Ext
hor

)}

In the performed simulations, values of λ = 0.1 and
λ = 0.05 were used for the two different datasets. The
percentual thresholds were determined manually with the aim
to compensate for differences in the temporal resolution of the

1In the presented simulations, the MATLAB R© implementation of the Lucas-

Kanade flow estimation algorithm was used.
2The values of σ were chosen manually to take different temporal resolutions into

account.

datasets. The horizontal and vertical extent Exthor and Extver

are derived framewise by estimating the width and the height
of the bounding box enclosing the body shape. The extent of a

neutral pose is used as the reference extent Ext
hor

and Ext
ver

,
which are derived from the width and height of the bounding
box in the first frame of a sequence. Silhouette representations,
and thus the bounding boxes of the bodies, are available for
both datasets used in the simulations. In constrained recording
scenarios, silhouettes can be extracted by background subtraction
or using the optical flow fields calculated for the selection of the
key pose frames. Figure 1A shows the motion energy signal Ẽflo

together with the extent Exthor and Extver and their reference
values. A strong correlation between the motion energy and the
extent of the pose can be seen. In Figure 1B, examples for the
horizontal and the vertical extent are displayed for a neutral
and a extended posture. While the motion energy allows an
identification of temporal anchor points in a motion sequence,
the extent helps in selecting the most characteristic ones.

Form and Motion Representations
For each selected key pose frame Ikey ∈ K, a form representation

is derived by estimating the spatial derivatives I
key
x and I

key
y

and combining them into one contour representation Icon

by concatenating the orientation selective maps (see Figure 2,
second row). The final form representation is then obtained by
applying a logarithmic transformation emphasizing low range
values and normalizing the response amplitudes, using the
transformation:

Iconlog = log(1+ 5|Icon|) (6)

Iform =
Icon
log

max(Icon
log

)
(7)

Likewise, for each key pose frame Ikey, optical flow is separated
into vertical and horizontal components and concatenated (see
Figure 2, first row). The resulting motion representation Iflo is
log-transformed and normalized. As for the contrast mapping,
the transformation is given through:

Iflolog = log(1+ 5|Iflo|)) (8)

Imotion =
Iflo
log

max(Iflo
log
)

(9)

The form representations Iform and the motion representations
Imotion are combined to an overall input representation Iinput

(Figure 2, last column). Iinput is then used as an input for the
training of the DCNN described in the following section.

3.2. Learning of Class Specific Key Pose
Representations
A neuromorphic deep convolutional neural network was used
to establish classwise representations of the preselected and
suppress wrapping key pose frames using a supervised learning
scheme. The network was implemented using the energy-
efficient deep neuromorphic networks (Eedn) framework (Esser

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Layher et al. Real-Time Neuromorphic Action Recognition

0

50

100

150

200

250

300

0
0

0.2

0.4

0.6

0.8

1

h
o

ri
z
o
n
ta

l 
&

 v
e
rt

ic
a
l

e
x
te

n
s
io

n
 [
p
x
]

Eflo    

Extver (horizontal extent)

Extver (initial horizotal extent)

Exthor (vertical extent)

Exthor (initial vertical extent)

(motion energy)

motion minima

motion maxima

rejected extrema

m
o
ti
o
n
 e

n
e
rg

y
 [
a
u
]

Exthor Exthor

E
x
tv

e
r

E
x
tv

e
r

b
o

d
y
 

p
o

s
e

s
key pose selection C key pose distribution

class

E
D
1

E
D
2

E
D
3

S
P
1

S
P
2

SP2

S
P
3

S
P
4

S
P
5

S
P
6

S
P
7

S
T
1

S
T
2

S
T
3

S
T
4

A extentB

50 100 150 200

time [frames]

0

0.05

0.1

0.15

0.2

0.25

re
la

ti
v
e
 k

e
y
 p

o
s
e
 n

u
m

b
e
r

~

FIGURE 1 | Key pose selection. For each action sequence, key pose frames are selected by identifying minima and maxima in the motion energy which co-occur

with a sufficiently increased extent of the body pose. In (A), the smoothed motion energy Ẽflo (blue) together with the horizontal (red) and vertical (green) extent of the

body pose Exthor and Extver and their reference values Ext
ver

and Ext
hor

(dashed, dash-dotted) are displayed for one of the actions used as part of the simulations

(SP2/jumping jack). At the bottom, body poses for several frames are shown. Local minima in the motion energy are marked by a circle, local maxima by a diamond.

Extrema which are rejected as a key pose frame because of an insufficient extent are additionally marked with ×. (B) Shows an example for the horizontal and vertical

extent of a neutral and a highly articulated body pose. The first frame of each action sequence is defined to be the neutral pose. (C) Shows the relative number of

identified key poses per action sequence for the uulmMAD dataset used for the simulations (see Section 4.1). Written informed consent for the publication of the

exemplary images was obtained from the displayed subject.

et al., 2016), which adapts and extends the training and
network functions of the MatConvNet toolbox (Vedaldi and
Lenc, 2015). In the following for readers’ convenience, we
will briefly recapitulate and summarize key aspects of the
framework and its extensions presented in Esser et al. (2016).
In the framework, the weights established through learning
match the representation scheme and processing principles used
in neuromorphic computing paradigms. The structure of the
DCNN follows one of the network parameter sets presented
by Esser et al. (2016), which show a close to state-of-the-art
classification performance on a variety of image datasets and
allow the trained network to be run on a single IBM TrueNorth
chip (Merolla et al., 2014).

A deep convolutional neural network is typically organized in
a feedforward cascade of layers composed of artificial neurons
(LeCun et al., 2010), which process the output of the proceeding
layer (afferent synaptic connections) and propagate the result to
the subsequent one (efferent synaptic connections). Following
the definition in Esser et al. (2016), an artificial cell j in a DCNN
calculates a weighted sum over the input to that cell, as defined by:

sj =
∑

xy

∑

f

inxyfwxyfj, (10)

where inxyf are the signals in the input field of cell j at locations
(xy) in the spatial and (f ) in the feature domain and, wxyfj the
respective synaptic weights. In the following, we will use the
linear index i to denote locations in the (xyf ) space-feature cube.
Normalizing the weighted sum over a set of input samples (batch

normalization) allows to accelerate the training of the network by
standardizing sj as defined through:

s̃j =
sj − µj

σj + ǫ
+ bj, (11)

with s̃j the standardized weighted sum, µj the mean and σj the
standard deviation of s calculated over the number of training
examples within a batch (Ioffe and Szegedy, 2015). bj is a
bias term, allowing to shift the activation function φ(•), and
ǫ guarantees numerical stability. The output activation of the
artificial neuron is calculated by applying an activation function
on the standardized filter response:

rj = φ(s̃j). (12)

Weight adaptation is performed through gradient descent by
applying error backpropagation with momentum (Rumelhart
et al., 1986). In the forward phase, an input pattern is propagated
through the network until the activations of the cells in the output
layer are obtained. In the backward phase, the target values of
an input pattern are used to calculate the cross entropy C given
the current and the desired response of the output layer cell
activations, as defined by:

C = −
M

∑

j=1

vj ln(rj) = −
M

∑

j=1

vj ln(φ(s̃j)), (13)

withM denoting the number of cells in the output layer. Here, vj
is the one-hot encoded target value (or teaching signal) of a cell
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FIGURE 2 | Input generation. Each frame of an action sequence is transformed into a combined motion and form representation. In the top row, the estimated

optical flow is displayed in the second column (direction γ color-encoded) for two consecutive frames (first column). The optical flow field is then separated into

horizontal and vertical components (third column) and their absolute value is log transformed (forth column) and normalized (fifth column). Form representations

(bottom row) are derived framewise by estimating the horizontal and vertical derivatives Ix and Iy (second column, gradient orientation with polarity β color-encoded).

The resulting contrast images are then log-transformed and normalized. The form and motion representations are combined into a single feature map Iinput which is

then fed into the convolutional neural network. Image sizes are increased for a better visibility. Written informed consent for the publication of exemplary images was

obtained from the shown subject.

j with activation rj. A softmax function is employed as activation
function in the output layer, as defined through:

φ(s̃j) =
es̃j

∑M
k=1 e

s̃k
. (14)

The cross entropy error E(t) = C is then propagated backwards
through the network and the synaptic weight adaptation is
calculated for all cells in the output and hidden layers by applying
the chain rule. The strength of weight adaptation 1wij is given
through:

1wij(t) = −η
∂E(t)

∂wij
+ α1wij(t − 1) = −ηδjini + α1wij(t − 1),

(15)

with δj =
{

(rj − vj) if j is a neuron in the output layer

φ′(s̃j)
∑

k δkwjk if j is a neuron in a hidden layer,

(16)

which includes a momentum term for smoothing instantaneous
weight changes. Here, k is the index of cells in the layer
succeeding cell j, t describes the current training step, or iteration,
and η denotes the learning rate. The momentum factor 0 ≤ α ≤
1 helps the network to handle local minima and flat plateaus on
the error surface. After the backward pass, weights are finally
adapted by:

wij(t + 1) = wij(t)+ 1wij(t). (17)

To ensure the compatibility to neuromorphic processing
principles, a binary activation function φ(s̃j) is applied in the
hidden layers (for details see Section 3.3).

Within a convolutional layer, weights wij of a cell j are shared
over multiple input fields, which are arranged as a regular grid in

the source layer. The calculation of the weighted sum during the
forward, as well as the integration of the error derivative during
the backward pass can be formulated as a convolution with the
input from the source, or the error signal from the succeeding
layer. The weights wij act as the filter (or convolution) kernel, s̃j
as the filter response and rj as the output of an artificial cell. The
size and stride of a filter allow to adjust the size and the overlap
of the input fields to a filter in the source layer. A small stride
results in an increased overlap and thus a large number of output
values. The number of features defines how many different filters
are employed in a layer. The weight matrices of the cells within a
layer can be separated into groups of filters, which define the set
of input features from the source layer covered by a filter3.

It is a common practice to construct deep neural networks
by employing convolutional layers for feature extraction in
the lower layers and connect them with (one or more) fully
connected layers (equivalent toMultilayer Perceptrons/MLPs) on
top for classification purposes. In contrast, the proposed network
follows the strategy of global average pooling (gap) proposed
in Lin et al. (2013) and applied in Esser et al. (2016). In the
final convolutional layer of the network, one feature map is
generated for each category of the classification problem. Instead
of a full connectivity, the average value of each class-associated
feature map is propagated to the output (softmax) layer. Due
to their association to classes, the feature maps can directly be
interpreted as confidence maps. Following the softmax layer, the
cross-entropy error is calculated using one-hot encoded target
values vj and propagated back through the network (according
to Equation 16). Networks using parameter-free global average
pooling layers in combination with softmax are less prone to
overfitting (compared to MLPs) and increase the robustness to
spatial translations (for details see Lin et al., 2013).

3In Figure 3, the weightmatrices in the convolutional layer 5 have a dimensionality

of 3 × 3 × 8, since they receive input from 256 feature maps in layer 4 which are

separated into 32 groups of filters, each receiving input from 8 feature maps.
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FIGURE 3 | Deep convolutional neural network structure. The implemented DCNN follows the structure proposed in Esser et al. (2016) and employs three

different convolutional layer types (layers 1–15). Spatial layers (SPAT; colored in blue) perform a linear filtering operation by convolution. Pooling layers (POOL; colored

in red) decrease the spatial dimensionality while increasing the invariance and diminishing the chance of overfitting. Network-in-network layers (NIN; colored in green)

perform a parametric cross channel integration (Lin et al., 2013). The proposed network consists of a data (or input) layer, 15 convolutional layers and a prediction and

softmax layer on top. Each of the cells in the last convolutional layer (layer 15) is associated with one class of the classification problem. In the prediction layer, the

average class-associated activations are derived (global average pooling/gap) and fed into the softmax layer (i.e., one per class), where the cross-entropy error is

calculated and propagated backwards through the network. The parameters used for the convolutional layers of the network are given in the central rows of the table.

In the last row, the number of artificial cells per layer is listed. The cell count in the prediction and softmax layer depends on the number of categories of the

classification task (i.e., the number of actions in the dataset).

The employed network consists of 15 convolutional layers,
which implement three different types of convolutional
operations. Spatial layers (SPAT) perform a standard convolution
operation, pooling layers (POOL) reduce the spatial dimensions
by applying a convolution with a large stride (Springenberg
et al., 2014), network-in-network layers (NIN) are realized by
convolutional layers with a size of 1x1 and a stride of 1 and act as
cross channel integration layers (Lin et al., 2013). The network
structure is summarized in Figure 3. Each of the cells in the last
convolutional layer (layer 15) is assigned to one class. During
learning, activities in this layer are averaged per feature map and
fed into the softmax layer. For recognition, the average output
of the cell populations associated to the individual classes are
used as prediction values and serve as the final output rclassc of the
network (prediction layer in Figure 3).

3.3. Neuromorphic Implementation
Processing actual spikes in hardware, the execution of a DCNN
on a neuromorphic platform poses several constraints on the
activity and weight representation schemes. Since the processing
architecture of the TrueNorth neuromorphic platform is based
on event-based representations, the gradual activations need to
be mapped onto a spike-based mechanism. To be in conformity
with these processing principles, Esser et al. (2016) employ a
binary activation function, as defined by:

φ(s̃j) =
{

1 if s̃j ≥ 0

0 otherwise,
(18)

and ternary synaptic weights (wxyf ∈ {−1, 0, 1}). For the
backpropagation of the error signal, the derivative of the binary

activation is approximated linearly in the range of [0, 1], as given
through:

∂φ(s̃j)

∂ s̃j
≈ max(0, 1−

∣

∣s̃j
∣

∣). (19)

During training, a copy of the model weights is held in a
shadow network, which allows gradual weight adaptation.Weight
updates are performed on values in the shadow network using
high precision values. For the forward and backward pass, the
hidden weights wh

ij in the shadow network are clipped to [−1, 1]

and mapped to the ternary values using rounding and hysteresis,
following:

wij(t) =























−1 ifwh
ij(t) ≤ −0.5− h

0 ifwh
ij(t) ≥ −0.5+ h ∧ wh

ij(t) ≤ 0.5− h

1 ifwh
ij(t) ≥ 0.5+ h

wij(t − 1) otherwise

(20)
(for details refer to Esser et al., 2016). The hidden weights wh

ij

allow the synaptic connection strengths to switch between the
ternary values based on small changes in the error gradients
obtained during backpropagation, while the hysteresis factor h
prevents them from oscillating. The parameters for the training
of the network were chosen according to Esser et al. (2016),
using a momentum factor of α = 0.9 and a learning rate of
η = 20 (reduced by a factor of 0.1 after 2/3 and 5/6 of the total
training iterations). The hysteresis factor h was set to 0.1. The
mapping of the training network on the TrueNorth platform was
performed by the Eedn framework. Training was carried out on
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Nvidia GPUs, testing was performed on the IBMTrueNorthNS1e
board.

The IBM TrueNorth chip consists of 4, 096 interconnected
neurosynaptic cores with 1 million spiking neurons and 256
million configurable synaptic connections. For the execution
of the network on the TrueNorth chip, the trained network
parameters are mapped to hardware using an abstraction of
a TrueNorth program called Corelet (Amir et al., 2013). The
platform independent Corelets translate the network parameters
into a TrueNorth specific configuration, which can be used to
program the parameters of the neurons and synaptic connection
strengths on the chip. For details on Corelets and the mapping of
the DCNN on neuromorphic hardware platforms refer to Amir
et al. (2013); Esser et al. (2016).

3.4. Temporal Integration of Framewise
Class Predictions
After the training of the DCNN, classification is either performed
framewise by directly selecting the class corresponding to the
cell population in layer 15 with the maximum average activation,
or by integrating the individual framewise classification results
using majority voting in temporal windows or over the full
sequence.

For framewise classification, a key pose frame is identified in
an input image sequence I(x, t) and preprocessed as described
in Section 3.1. The resulting input map Iinput is fed into the
DCNN and the class label c associated to the cell population in
layer 15 with the maximum average output rclassc defines the class
prediction for Iinput. The value of rclassc can directly be interpreted
as the confidence in the prediction.

In sliding window based classification, the predicted class
labels for key pose frames are collected within temporal windows
of size n [frames], which are shifted over the input sequence
I(x, t). The class with the most frequent occurrence of key pose
frames determines the class predicted for the window (majority
voting). At the moment, we do not use the confidence rclassc of
the predictions as weights for the voting. Note that it is not

guaranteed, that key pose frames occur in all temporal windows.
Windows which do not contain key poses are not used for
evaluation.

Full sequence classification follows the same principle as
sliding window based classification, but collects all key pose
frames within a sequence. Thus, the amount of temporal
information integrated in the voting process might differ
substantially from sequence to sequence.

4. DATASETS

The proposed action recognition approach was evaluated using
two different action datasets. Due to the higher number of
subjects and actions, we focused our analysis on the uulm
multiperspective action dataset (uulmMAD). In addition, we
analyzed the performance on the widely used Weizmann dataset
to allow a comparison to other approaches and to perform a
cross-dataset evaluation of overlapping classes. In the following,
we will briefly describe the main characteristics of the two
datasets.

4.1. uulmMAD
The uulm multiperspective action dataset4 (uumlMAD; Glodek
et al., 2014) consists of data from 31 subjects performing actions
from the areas of everyday life (ED), sport/fitness (SP) and
stretching (ST). Eight of the actions are repeated three times, six
actions are performed four times with varying speed. Altogether,
each action is performed either 93 or 124 times. Actions were
recorded in front of a greenscreen using three synchronized
cameras and the body posture was captured in parallel by
an inertial motion capturing system worn by the subjects. To
decrease the likelihood of similar visual appearances, the motion
capture suit was covered by additional clothes whenever possible.
Figure 4 shows the 14 actions together with a characteristic
picture, an abbreviation and a short description for each action.

4Available via https://www.uni-ulm.de/imagedb.

FIGURE 4 | uulmMAD – uulm multiperspective action dataset. The uulmMAD dataset contains 14 actions in the area of everyday activities, fitness/sports and

stretching performed by 31 subjects. Per subject, eight of the actions are repeated three times, six actions are performed four times with varying speed. Actions were

recorded by three synchronized cameras (frontal, diagonal and lateral) with a frame rate of 30Hz and an inertial motion capturing system with a sample rate of 120Hz.

Silhouettes were extracted using chromakeying. At the time we carried out the simulations, silhouettes were available for 22 subjects. In the first row exemplary

pictures are shown for all actions. The number of videos (green) and total sum of frames (blue) which were available for the evaluation are displayed in the second row.

At the bottom, an abbreviation for each action is defined and a short description is given. Written informed consent for the publication of exemplary images was

obtained from the displayed subjects.
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FIGURE 5 | Weizmann action dataset. The Weizmann dataset (Gorelick et al., 2007) is one of the most commonly used action recognition datasets and consist of

ten actions, recorded for nine subjects. Actions are performed once (occasionally twice) per subject in front of a static background. Silhouette representations are

provided for all sequences. Representative images are displayed alongside with the number of frames and sequences, a label and a short description per class.

At the time we carried out the simulations, silhouette
representations were available for all sequences of 22 subjects.
Since the silhouettes are used to calculate an estimate of
the horizontal and vertical extent of a pose, only the frontal
recordings of this subset of subjects were used within the
evaluation. Some action pairs (e.g., ED2 and ST4) in the dataset
are deliberately intended to appear visually similar and thus be
difficult to separate. In total, the sequences used for evaluation
contain 381, 194 frames, of which 28, 902 are selected by the key
pose selection procedure.

4.2. Weizmann Dataset
To allow a comparison with different action recognition
approaches, simulations were additionally carried out using a
well established action dataset. The Weizmann dataset5 (see
Figure 5; Gorelick et al., 2007) consists of ten actions performed
by nine subjects. Actions are mostly performed once per subject,
although some actions are occasionally performed twice. Actions
are captured in 25Hz from a frontoparallel perspective in front
of a uniform background.

Silhouettes are available for all subjects and sequences. In
total, the sequences contain 5, 594 frames, 1, 873 of which are
identified as key pose frames by using the procedure described
in Section 3.1.

5. RESULTS

Several simulations were carried out to evaluate the performance
of the proposed key pose based action recognition approach.
The simulations were intended to address questions related to
(I) the overall performance of the approach on different datasets
using a framewise, as well as windowed and full sequence
majority voting recognition schemes, (II) a comparison to
other action recognition methods, (III) a juxtaposition of key
pose based and full sequence learning, and (IV) cross-dataset
evaluation. Since action recognition datasets—in particular, in
case of framewise recognition—are often highly imbalanced,
we provide different types of performance measures, as well

5Available via http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.

html.

TABLE 1 | Performance measures.

Measure Abbreviation Definition

Recall RecM
1
N

∑N
i=1

tpi
tpi+fni

Informedness InfM
∑N

i=1
tpi+fpi

tpi+fni+tni+fpi
× (

tpi
tpi+fni

+ tni
fpi+tni

− 1)

Markedness MarkM
∑N

i=1
tpi+fni

tpi+fni+tni+fpi
× (

tpi
tpi+fpi

+ tni
fni+tni

− 1)

Matthews Correlation MCCM ±
√

MarkM × InfM

as classwise performance values for the most essential results.
Since the nomenclature and definition of performance measures
vary largely in the pattern recognition and machine learning
community we will briefly define and describe the reported
measures to allow a better comparability. For a comprehensive
discussion on performance measures, we refer to Sokolova and
Lapalme (2009) and the contributions of D. Powers, e.g. (Powers,
2013).

In a multiclass classification problem with N classes tpi
(true positives) are commonly defined as the number of
correct acceptances (hits) for a class Ci (i ∈ [1, ...,N]),
fni as the number of false rejections (misses), tni as the
number of correct rejections of samples of different classes Cj 6=i

and fni (false negatives) as the number of false acceptances
(false alarms). Together, these four counts constitute the
confusion matrix and allow to derive a variety of measures
describing the performance of a trained classification system.
The ones used for the evaluation of the presented results are
listed alongside with an abbreviation and their definition in
Table 1.

All multiclass performance measures are calculated using
macro averaging (M), since using micro averaging, classes with
a large number of examples would dominate the averaging.
RecM, often referred to as (average) recognition rate or
somewhat misleading as (classification) accuracy, might be the
performance measurement most frequently used in the action
recognition literature and describes the average percentage of
correctly identified positive examples per class. InfM reflects how
informed the decision of a classifier is in comparison to chance,
whereas MarkM follows the inverse concept by describing how
likely the prediction variable is marked by the true variable
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(Powers, 2013). Note, that when calculating the average per
class values of InfM and MarkM are weighted by the Biasi =

tpi+fpi
tpi+fni+tni+fpi

and the Prevalencei = tpi+fni
tpi+fni+tni+fpi

, respectively.

The Matthews Correlation Coefficient MCCM can be derived
by calculating the geometric mean of InfM and MarkM and
expresses the correlation between predicted classes and true
values.

Leave-one-subject-out cross-validation (LOSO) was
performed in all test scenarios and the resulting average
performance measures are reported together with the
corresponding standard deviations. In the following, rates
are either reported in a range of [0, 100] or [0, 1] (due to limited
space).

5.1. Classification Performance
The equivalent network structure (see Section 3.2) was used
to train the network on the two datasets described in Section

4. In case of the uulmMAD dataset, 28, 902 key pose frames
(per class average 2, 064.43, std 1, 097.16) were selected and
used as the training input. 576 cells in the last convolutional
layer (layer 15) of the CNN were assigned to each of the 14
classes in the dataset. The network was trained in 150, 000
iterations. Testing was performed using the preselected key pose
frames of the test subject as input. The average population
activation of the cells assigned to each class was used to infer
the final classification decision (for an exemplary activation
pattern see Figure 8). Figure 6 summarizes classification results
obtained for different temporal integration schemes of single
frame classification results. A framewise classification scheme
allows to recognize an action in an instant when the key pose
frame is presented to the network. This kind of immediate
decision might be crucial for systems which rely on decisions
in real time. Not only the processing speed, but also the time
necessary to sample and construct the action descriptors is
relevant in this context. Figure 6A summarizes the framewise

A B C

FIGURE 6 | uulmMAD classification performance. The proposed network was trained on the key pose frames extracted from the uulmMAD action recognition

dataset. (A) Shows the per class classification rates obtained by single key pose frame classification. This allows the recognition of an action in the instant a key pose

frame emerges in the input sequence. Average classwise recall (on the diagonal) ranges from 0.78 to 0.98. Some of the notable confusions between classes can be

explained by a large visual similarity (e.g., between ED2 and ST4). In (B) sequence level majority voting was applied. The final decision is made after evaluating all key

pose frames within an action sequence and determining the class with the most frequent occurrence of key poses. The resulting per class values of RecM range from

0.94 to 1.00. A sliding window based classification scheme was evaluated in (C). The best and worst per class average recall values together with the average value

of RecM are displayed for temporal window sizes from 1 to 60 frames. In addition, the percentage of windows containing one or more key pose frames (and thus allow

a classification of the action) is shown (blue line).

TABLE 2 | uulmMAD classification performance.

RecM InfM MarkM MCCM

S
in
g
le All frames 67.56± 6.06 0.703± 0.062 0.762± 0.041 0.732± 0.051

Key poses 88.65± 5.66 0.915± 0.045 0.915± 0.043 0.915± 0.044

M
a
jo
rit
y

W
in
d
o
w
e
d
* 5 [4] 89.64± 4.97 0.919± 0.041 0.920± 0.040 0.920± 0.040

10 [9] 89.98± 4.69 0.922± 0.039 0.922± 0.039 0.922± 0.039

20 [19] 90.47± 4.48 0.924± 0.038 0.924± 0.037 0.924± 0.037

Full sequence 96.73± 2.84 0.981± 0.014 0.970± 0.033 0.975± 0.021

*Size [overlap]
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classification rates per class (average RecM of 0.887, std 0.057).
Some of the confusions between classes might be explained
by similar visual appearances of the key poses (e.g., ED2 and
ST4). Accumulating the classified key poses over a sequence by
majority voting increases the classification performance (average
RecM of 0.967, std 0.028, compare Figure 6B), but requires to
analyze all frames of a sequence and is thus not well suited for
real time applications. As a compromise between classification
speed and performance, a sliding window based approach was
evaluated. In Figure 6C, the best and worst average per class
recall is displayed together with the RecM for window sizes of
n = [1, ..., 60], each with an overlap of n − 1. In addition, the
relative number of windows which contain at least one key pose
(and thus allow a classification) is shown. Table 2 summarizes
the classification performance for different single frame and
temporal integration schemes. Single frame performance is, in
addition, reported for the evaluation of not only the key pose
but the full set of frames. As can be seen, the classification
performance decreases significantly but the average recall of
RecM of 67.56 (std 6.06) indicates, that the learned key pose

representations are still rich enough to classify a majority of
the frames correctly. Note, that the relative number of correct
classifications clearly exceeds the percentage of key pose frames
in the dataset (per class average of 7.46%, std 2.19%, compare
Figure 1C).

The model was additionally trained using the Weizmann
dataset (Gorelick et al., 2007, see Section 4.2). 1, 873 frames
(per class average 187.30, std 59.51) were selected as key pose
frames utilizing the combined criterion developed in Section 3.1.
Except for the number of output features encoding each class
(806), the same network and learning parameters were applied.
As for the uulmMAD dataset, Figure 7 gives an overview over
the classification performance, by showing confusion matrices
for single key pose frame evaluation (Figure 7A), full sequence
majority voting (Figure 7B), as well as best and worst class
recall for different sized windows of temporal integration
(Figure 7C). In comparison to the results reported for the
uulmMAD dataset, the gap between the best and worst class
recall is considerably increased. This might be explained by
a different overall number of available training examples in

A B C

FIGURE 7 | Weizmann classification performance. The network was evaluated on the Weizmann dataset to allow a comparison to other approaches. As in

Figure 6, (A) shows the classifications rates for a classification of single key pose frames per class. (B) Displays classwise recognition results for a full sequence

evaluation using majority voting. Similar visual appearances might explain the increased rate of confusions for some of the classes (e.g., run and skip). In (C) the

average best and worst per class recall values and ReclM are reported for temporal window sizes between 1 and 30 frames together with the relative number of

windows which contain at least one frame classified as key pose.

TABLE 3 | Weizmann classification performance.

RecM InfM MarkM MCCM

S
in
g
le All frames 77.15± 6.46 0.810± 0.056 0.794± 0.068 0.801± 0.061

Key poses 82.15± 5.81 0.844± 0.061 0.827± 0.070 0.835± 0.065

M
a
jo
rit
y

W
in
d
o
w
e
d
* 5 [4] 83.50± 5.12 0.877± 0.043 0.860± 0.053 0.868± 0.047

10 [9] 86.40± 5.58 0.920± 0.027 0.878± 0.067 0.899± 0.044

20 [19] 90.35± 7.34 0.966± 0.023 0.898± 0.093 0.930± 0.057

Full sequence 92.22± 8.33 0.980± 0.023 0.879± 0.128 0.927± 0.079

*Size [overlap]
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the datasets (the per class average of training examples in
the uulmMAD dataset exceeds the Weizmann dataset by a
factor of 11.02), higher visual similarities between the classes
(the most prominent confusions are observed for skip, jump
and pjump), the lack of a sufficient number of descriptive
key poses, or a combination hereof. A direct relationship of
the classwise performance and the per class number of key
pose frames available for training cannot be observed. Even
though the least number of key pose frames was extracted
for the class bend, the second best recall value was achieved.
As for the uulmMAD dataset, performance measures are
reported for different single frame and temporal integration
schemes in Table 3. Again, the trained key pose representations
achieve a considerable performance even when tested per
frame on all frames of the action sequences (RecM = 77.15,
std 6.46). Table 4 compares the reported classification results
on the Weizmann dataset to state-of the art single frame
based (second block) and sequence level approaches (third
block). In particular, other key pose based action recognition
approaches are listed (first block). The direct comparison of
different classification architectures, even when evaluated on
the same dataset, is often difficult, since different evaluation
strategies may have been applied. Thus, whenever possible,
the number of considered classes (sometimes the class skip
is excluded) and the evaluation strategy is listed together
with classification performance and speed. Evaluation strategies
are either leave-one-subject-out (LOSO), leave-one-action-out

(LOAO) or leave-one-out (LOO, not specifying what is left out)
cross-validation.

On a sequence level, the classification performance of the
proposed approach is on par with almost all other key pose based
methods. Only Liu et al. (2013) achieved a noteworthy higher
performance (recall of 100). It is important to stress that the
compared methods substantially differ in their key pose selection
procedures and thus in the underlying conceptual definition of
key poses. For example, Weinland and Boyer (2008) and Liu
et al. (2013) select key poses that maximize the classification
performance in a validation subset of the dataset, whereas (Baysal
et al., 2010; Cheema et al., 2011) select and weight candidate pose
descriptors dependent on their distinctiveness with respect to the
other classes contained in the dataset. In Chaaraoui et al. (2013),
key poses are selected independently per class using clustering in
combinationwith a compactnessmetric. All the abovementioned
approaches, except the last one, rely on inter-class distributions
of pose descriptors to identify key poses, implicitly stating
that representativeness is equivalent to distinctiveness (among
a known set of classes). If the task at hand is to separate an a
priori defined set of actions, this seems to be the superior way
of defining key poses for the establishment of temporally sparse
representations of actions. On the other hand such poses always
describe differences based on comparisons and do not necessarily
capture characteristic poses of an action.

The presented approach follows a different principle. Certain
properties of image or skeleton based pose features are assumed

TABLE 4 | Weizmann comparison to other approaches.

C
a
ta
g
o
ry

# Actions Evaluation fps Temporal range

Sub-sequence Full sequence

Recall # Frames Recall

K
e
y
p
o
se

Weinland and Boyer, 2008 10 LOSO – – – 93.6

Baysal et al., 2010 9 LOO – – – 92.6

Cheema et al., 2011 9 LOO – – – 91.6

Chaaraoui et al., 2013 9 LOSO 124 – – 92.8

Liu et al., 2013 10 LOSO – – – 100

S
in
g
le
fr
a
m
e Niebles and Fei-Fei, 2007 9 LOSO – 55 1 72.8

Fathi and Mori, 2008 10 LOO 0.25–5 99.9 1 100

Schindler and van Gool, 2008 9 LOSO – 93.5 1 100

Hoai et al., 2011 10 LOSO – 87.7 1 –

F
u
ll
se

q
u
e
n
c
e

Jhuang et al., 2007 9 – 0.83 – – 98.8

Klaser et al., 2008 10 LOSO – – – 84.3

Grundmann et al., 2008 9 LOAO – – – 94.6

Ikizler and Duygulu, 2009 9 LOO – – – 100

Bregonzio et al., 2009 10 LOSO – – – 96.7

Sun and Liu, 2012 10 LOO – – – 97.8

Beaudry et al., 2016 10 LOO 51.63 – – 100

Presented approach 10 LOSO 1,000 82.2 1 92.2

Bold values indicate maximum recall/fps values per column.
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to co-occur with characteristic body configurations and thus
are used to identify key pose frames. The feature characteristic
indicating a key pose and the representations/descriptors used
for the recognition of a pose do not necessarily have a close
relationship. In doing so, we accept the fact that the selected
poses are not guaranteed to be very distinctive and some even
may occur in more than one action in exactly the same way.
Key poses are assumed to be the most representative poses of a
particular action, not in comparison, but in general. Nevertheless,
the presented results demonstrate that a feature-driven, pose
centered key pose selection mechanism is capable of achieving
the same level of performance, without loosing generality.

Most key pose based approaches in the literature try to
assign single frames of an image sequence to key pose frames
with a high similarity, temporally integrate the result (e.g., by
using histograms or majority voting) and perform a classification
of the action on a sequence level. The result of single frame
action recognition based on the extracted key poses (directly
linking key poses to actions) is rarely reported. Single frame
based approaches (see Table 4, second block), however, try to
perform action classification using information solely extracted
within one frame (two frames if optical flow is part of the
descriptor) and achieve impressive results. In direct comparison,
the single frame performance of the presented approach (RecM
of 82.15 for key pose evaluation and 77.15 for the classification
of all single frames, compare Table 3) cannot compete with
the other methods, which, on the contrary, utilize all frames
during learning to maximize classification performance in the
test training dataset. The presented approach, however, achieves
a single frame performance of RecM = 77.15 when evaluated
over all frames, although in case of the Weizmann dataset only
a per class average of 33.84% (std 8.63%) of all frames is used for
training.

In the third block of Table 4, selected approaches performing
action recognition on a sequence level using a variety of different
representations and classification architectures are listed. Note
that in an overall comparison, (I) due to the transfer on
neuromorphic hardware, the presented approach achieves the
highest processing speed6 while consuming a minimal amount
of energy, and (II) due to fact, that we aim at executing the
model on a single TrueNorth chip we only use input maps
with a resolution of 32 × 32 (using 4,064 of the 4,096 cores
available on one chip). This is no limitation of the employed Eedn
framework, which allows to realize models which run on systems
with more than one chip (Esser et al., 2016; Sawada et al., 2016).
An increased input resolution, as well as the use of more than
two flow direction and contour orientation maps might help in
separating classes with a high visual similarity (e.g., skip, jump,
and run).

5.2. Comparison to Full Sequence Learning
To address the question whether and how the proposed
classification architecture might benefit from using all frames (as
opposed to only key pose frames) during training, we performed

6Image preprocessing and key pose selection is not integrated in the estimated

processing time. Optical flow estimation can be performed on a second TrueNorth

chip (Brosch and Neumann, 2016).

exactly the same training and testing procedure twice on the
uulmMAD dataset. First, only key pose frames were presented
during training, while second, all frames were provided during
the training phase. Likewise, testing was performed just on
the preselected key pose frames, as well as the full set of
frames. Table 5 compares the average recall under the different
training (rows) and testing conditions (columns) for single frame
evaluation and sequence level majority voting.

In both cases, training and testing on key pose frames achieves
the highest performance. However, the observed differences
between the two training conditions could not shown to be
significant, neither when testing on key poses nor on the full
set of frames. Nevertheless, having a closer look at the activation
patterns of the network reveals some insights on the effectiveness
of the two variants of trained representations. Figure 8 shows
the average activation pattern of the 14 cell populations in layer
15 assigned to the individual classes of a network trained on
key pose frames and tested on all frames of the action SP2
(jumping jack). The displayed activation levels clearly show how

TABLE 5 | uulmMAD key pose versus all frame learning.

Train

Test Framewise Majority voting

Key poses All frames Key poses All frames

Key poses 88.65± 5.66 67.56± 6.06 96.73± 2.84 93.29± 7.05

All frames 85.84± 7.15 72.84± 8.25 95.27± 3.93 94.70± 7.03

Bold values indicate the maximum average recall for framewise and full sequence majority

voting classification schemes.

FIGURE 8 | Activation of cell populations. The activations of the cell

populations in the last convolutional layer of the DCNN assigned to the 14

classes of the uulmMAD dataset are displayed for a network trained only on

key pose frames and tested on all frames of the action SP2 (jumping jack). The

activation level of the cell population with the maximum activation (red) and the

remaining populations (blue) is encoded by color intensity. Corresponding

poses are displayed for selected frames (bottom row). Key pose frames are

marked by asterisks. The activation pattern shows how the cell population

assigned to the class SP2 selectively responds to frames in the temporal

neighborhood of the corresponding key pose frames. At the beginning and the

end of the sequence, as well as in between the occurrence of key pose

frames, different cell populations achieve the maximum average activation and

thus result in misclassifications. Written informed consent for the publication of

exemplary images was obtained from the shown subject.

Frontiers in Neurorobotics | www.frontiersin.org 15 March 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Layher et al. Real-Time Neuromorphic Action Recognition

the trained representations of the corresponding class selectively
respond within the temporal neighborhood of the key pose
frames. Frames sampled from periods without the presence of
key pose frames (at the beginning and the end of the sequence,
as well as in between key pose frames) result mostly in a large
activation of other cell populations and thus in misclassifications.
This is in line with the results shown in Table 5, which indicate
that classification performance increases under both training
conditions when testing is only performed on key pose frames.
At this point we can conclude that, compared to a training on
the full set of frames, key pose based learning of class specific
representations at least performs at an equal level. Whether
there is any benefit of training exclusively on key pose frames
next to an increased learning speed, remains, however, an open
question. Figure 9 summarizes the per class activation levels of
the cell populations which resulted in a correct classification. For
almost all classes (except ED3), the activation level is significantly
increased when training was performed on key pose frames
only. This might become a very important property in situations
where it is not an option to accept any false negatives. Applying
a threshold on the activation levels would allow to eliminate
false negatives, while key pose based training would decrease
the number of positive examples rejected by the fixed threshold.
Thus, thresholding might further increase the performance for
the key pose based training reported so far. Taken together, key
pose based learning achieves a slightly increased classification
performance with an increased selectivity of the cell populations
and thus a higher confidence of the classification decisions.

5.3. Cross-Dataset Evaluation
Learning to classify input samples and the associated
representations is conducted with the aim to robustly predict
future outputs and, thus, generalize for new input data. Here, we
evaluate such network capability by evaluating the classification
of the trained network using input data across different datasets.
More precisely, cross-dataset evaluation was performed to
evaluate how the learned representations generalize over
different datasets. The preselected key pose frames of the
uulmMAD and the Weizmann dataset were used for both

FIGURE 9 | Comparison of activation levels. The activation levels of the

cell populations which resulted in correct classifications are displayed per class

for key pose based (blue) and all frame (green) training alongside with the total

number of correct classifications under both conditions (yellow). In case of key

pose based training, activation levels are significantly increased, reflecting a

higher confidence of the classification decision. Increased confidences are

useful in situations where thresholding is applied on the activation level, e.g., to

reduce the number of false negatives.

training and testing constellations. Performance is reported for
two classes, one being one-handed wave (ED1 and wave1), which
is available in both datasets. The second class was formed by
combining the visually similar classes SP2/SP6 and jack/wave2
during evaluation into one joint class raising two hands. Training
was performed on the full set of classes in both cases. Thus,
for one-handed wave a random guess classifier would achieve
a recall of either 7.14 (uulmMAD) or 10.00 (Weizmann). In
case of the combined class raising two hands, the recall chance
level increases to 14.29 (uulmMAD) and 20.00 (Weizmann),
respectively. Table 6 shows the result for one-handed wave for
the two testing (row) and training (column) setups alongside
with exemplary pictures of the classes from both datasets.
When training was performed on the Weizmann dataset, the
recall performance for examples from the uulmMAD dataset
is still considerable (loss of 24.07). Training on the uulmMAD
and testing on the Weizmann dataset results in an increased
performance loss, but still achieves a recall of 53.03.

In case of the combined class raising two hands, the
performance loss is below 30 for both training and testing
configurations. Table 7 shows the achieved performance in detail
for each of the four classes in isolation and their combination.
Note that when trained on the uulmMAD dataset, jumping jack
is recognized almost without any loss of performance. Vice versa,
SP2 is often confused with wave2 when training was performed
on the Weizmann dataset. This may be explained by the large
visual similarities between the classes.

The proposed approach shows promising generalization
capabilities, which might partially be explained by the class-
independent, feature-driven selection of the key pose frames.

6. CONCLUSION AND DISCUSSION

The presented work consists of two main contributions. First, a
feature-driven key pose selection mechanism is proposed, which
builds upon evidences about human action perception. The
selection mechanism does not utilize any information about
the inter- or intra-class distribution of the key poses (or key
pose descriptors) to optimize the classification accuracy. It is
demonstrated, that the classification accuracy is on par with
state-of-the-art key pose based action recognition approaches,
while only motion and form related feature characteristics
are used to select a key pose frame. Second, we propose a
biologically inspired architecture combining form and motion
information to learn hierarchical representations of key pose
frames. We expect such hierarchical feature representations to
make the recognition more robust against clutter and partial
occlusions, in comparison to holistic shape representations of
the full body configurations used in previous approaches. Form
and motion pattern representations are established employing a
neuromorphic deep convolutional neural network. The trained
network is mapped onto the IBMNeurosynaptic System platform,
which enables a computationally and energy efficient execution.

6.1. Relation to Other Work
The presented results demonstrate, that classifying actions using
a minimal amount of temporal information is in principle
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TABLE 6 | Cross-dataset evaluation one-handed wave.

Test

Train
uulmMAD Weizmann Loss

uulmMAD 100 75.93 24.07

Weizmann 53.03 100 46.97

Bold values indicate the maximum recall values per column. Written informed consent for the publication of exemplary images was obtained from the shown subjects (uulmMAD).

TABLE 7 | Cross-dataset evaluation raising two hands.

Test

Train uulmMAD Weizmann Loss

SP2 SP6 Comb jack wave2 Comb Comb

uulmMAD
SP2 96.97 0.00

97.92
24.65 51.04

70.30 27.62
SP6 1.14 97.73 0.00 64.90

Weizmann
jack 95.96 0.00

79.80
100 0.00

100 20.20
wave2 31.82 31.82 0.00 100

Bold values indicate the maximum recall values per column. Written informed consent for the publication of exemplary images was obtained from the shown subjects (uulmMAD).

possible. This is in line with results from other action recognition
approaches. For example, Schindler and van Gool (2008)
reported that actions can be successfully recognized using
snippets of three or even less frames. In their work, the length
of the temporal window used for the classification of an action
sequence was systematically varied. The most important result
was that a reliable action recognition can be achieved by only
using individual snippets, i.e. up to three consecutive frames
in temporal order. The question whether there are special
“key snippets” of frames, which are particularly useful for the
recognition of an action and how theymight be defined, however,
remains open.

Inspired by evidences from perceptual studies (Thurman
and Grossman, 2008; Thirkettle et al., 2009), key poses are
potential candidates for representing such special events in
articulated motion sequences. Unlike the majority of other
approaches reported in the literature (e.g., Baysal et al., 2010;
Liu et al., 2013), the proposed key pose selection mechanism
identifies key pose frames without optimizing the inter-class
distinctiveness or classification performance of the selected key
poses. The feature-driven selection criterion proposed in this
work combines form and motion information and allows the
identification of key poses without any knowledge about other
classes. It extends a previous proposal utilizing local temporal
extrema in the motion energy as a function of time (Layher
et al., 2014) by additionally taking a measure of extendedness
of the silhouette shape into account. Given that these features
are entirely data-driven, this has two major implications. On
the one hand, the selected poses are independent of any other
class and thus are more likely to generalize over different sets
of actions. This property is appreciated and valuable in many
applications since it does not require any prior knowledge
about the distribution of classes/poses in other datasets. On
the other hand, there is no guarantee, however, that a learned

key pose representation is not part of more than one action
and thus results in ambiguous representations. This may lead
to drawbacks and deteriorations of the model performance in
terms of classification rates for rather ambiguous sequences
with similar pose articulations. We argue that, although the
proposed key pose selection criterion might not result in the best
classification performance on all action recognition datasets in
isolation, it selects key pose frames which capture the nature
of an action in general (independent of a specific dataset).
In addition, the reported results demonstrate, that there is no
substantial loss in performance when comparing the proposed
feature-driven key pose selection mechanism to performance
optimizing key pose approaches in literature. In contrast to
other action recognition approaches building upon convolutional
neural networks, the proposedmodel does not aim at establishing
representations which capture the temporal relationship between
successive frames. This can be accomplished by e.g., directly
feeding spatiotemporal input to the network and applying 3D
convolutions (e.g., Baccouche et al., 2011; Ji et al., 2013) or
by applying a multiple spatio-temporal scales neural network
(MSTNN; Jung et al., 2015). Instead, in this work, the employed
DCNN exclusively aims at identifying class specific key pose
frames as events in an image (and optical flow) stream.

The investigation reported in this work adds an important
piece to the debate of how representations for action sequence
analysis might be organized. Some previous approaches have
utilized motion and form information for the classification
of action categories. For example, Giese and Poggio (2003)
proposed that biological motion sequences representing
articulated movements of persons is subdivided into two parallel
streams in primate visual cortex. In particular, the authors argue
that motion patterns are represented in a hierarchy and these are
paralleled by regular temporal sampling of static frames from the
same input sequence. This model architecture has been extended
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in Layher et al. (2014) suggesting that instead of representing
sequences of static frames only key poses need to be selected.
As a candidate criterion, the motion energy is calculated over
time and local energy minima depict reversal points of bodily
articulation. Such reversals, in turn, most likely coincide with
extremal articulations and thus can be utilized to select a key
pose in such articulation sequences. While these models focus
on cortical architecture of visual dorsal and ventral streams,
other computer vision approaches also consider combinations of
motion and form information for action recognition. While the
proposal of Jhuang et al. (2007) builds on a hierarchy of cascaded
form and motion representations, the approach of Schindler
and van Gool (2008) also utilized two parallel streams of motion
and form processing. Both streams generate feature vectors of
equal length which are subsequently concatenated including
a weighting of the relative strength of their contribution. An
evaluation of the relative weights showed that a fusion with 70%
motion against a 30% form feature concatenation yielded the
best performance on the Weizmann dataset. On the contrary,
Schindler et al. (2008) demonstrated that emotion categories can
be classified using static images only which are processed by a
multi-scale bank of filters with subsequent pooling operation
and dimension reduction. Our findings add new insights to the
investigation of utilizing form/shape and motion information in
biological/articulatedmotion analysis for action recognition. Our
findings highlight that key poses defined by events of temporal
extrema in motion energy and dynamic object silhouette features
reliably reflect a high information content regarding the whole
action sequence. In other words, key poses can be detected by
an entirely feature-driven approach (without utilizing any a
priori model of actions in the sequence) and that the associated
temporal events contain a high proportion of the information
about the main components of the action sequence.

We successfully trained a DCNN of 15 convolutional layers
on the key pose frames used as input, which were assigned
to different action classes. The network was trained using the
energy-efficient deep neuromorphic networks (Eedn) framework
(Esser et al., 2016) and executed on a TrueNorth NS1e board
(Merolla et al., 2014). The results show that action recognition
can be performed on mobile robotic platforms under real-
time constraints while consuming a minimal amount of energy.
The reduced energy consumption and the high performance
in classification rate (compare Table 4) makes such a model
architecture a valuable candidate for applications in mobile or
remote control scenarios in which autonomy in energy supply
and external control are constraints of core importance. The
automatic selection of key pose information for the classification
mechanism is a key step to make use of the demonstrated
parameters.

Although some classes contained examples with highly similar
visual appearances, the network shows an impressive single frame
recognition performance when tested on key frames. Even when
tested on the full set of frames, recognition performance is
still significantly above chance level. Using a simple temporal
integration scheme, we show that the results are on par
with competing key pose based action recognition approaches
(Table 4). Cross-dataset evaluation of classes with the same/a
similar visual appearance in both datasets shows how the learned

representations generalize over the different datasets (training
was performed on the full set of classes).

6.2. Shortcomings and Possible Further
Improvements
Currently, the optical flow estimation and the key pose selection
are performed prior to the training and the classification of input
sequences. To realize a complete neuromorphic implementation
of the presented approach, optical flow can be estimated as well
on neuromorphic hardware following the principles described in
Brosch and Neumann (2016). A neuromorphic implementation
of localizing the local extrema in the motion energy and the
extendedness of a person’s silhouette could be realized on top of
the flow estimation process. In addition, dynamic vision sensors
(e.g., iniLabs DVS128) are an option to directly feed a network
similar to the proposed one with spike-based sensory streams.
First attempts to realize an action recognition system using such
sparse asynchronous data streams have already shown promising
results (Tschechne et al., 2014).

The presented approach does not make use of any temporal
relationship between the identified events (key poses) in an
action sequence. Thus, the reversed, or scrambled presentation
of images (and optical flow) of a sequence would result in an
assignment to an action class, although, the visual appearance
of the sequence is totally different. A modeling or learning of
the temporal relationships between the key pose frames, e.g.,
their temporal order, would help in reducing ambiguities and
thus increase sequence-wide or windowed classification rates.
In case of the proposed approach, this could be achieved by
employing, e.g., long short-term memory cells (LSTM; Hochreiter
and Schmidhuber, 1997), which are candidates to realize the
learning of temporal relationships without loosing the invariance
against changes in speed. The simple majority voting based
integration scheme was chosen, because of hardware limitations
and to focus on an analysis of the importance of key poses in the
context of action representation and recognition.

We also did not apply a weighted majority voting scheme
using the confidences of the frame-wise predictions or apply
thresholding on the predictions. Both strategies might further
increase the classification performance but again would weaken
the focus on the analysis of key pose base representations of
action sequences.

The proposed architecture of a deep convolutional neural
network (DCNN) as depicted in Figure 3 builds increasingly
more complex feature representations through learning from
initial simple features. It would be interesting to investigate the
feature selectivities of the feature representations that have been
established by the learning. Such a study would potentially shed
light about the structure of the feature compositions (and their
hierarchical organization) which lead to the selectivity of the key
poses in relation to the action sequences to be classified. Some
approaches analyzing the low-, intermediate-, and higher-level
feature representations have recently been proposed in the
literature (Zeiler and Fergus, 2014; Güçlü and van Gerven, 2015;
Mahendran and Vedaldi, 2016). Such approaches have so far
investigated CNNs for static inputs only. For that reason, some
principles might also be useful for the analysis of key pose
representations. In addition, the consideration of short-term
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spatio-temporal feature representations will help to extend the
scope of the overall study of visualizing internal representations
after learning. We expect necessary major efforts to carefully
develop an extended set of tools which is beyond the scope of
the modeling investigation presented here.

Overall, the presented results show, that the learned key pose
representations allow the classification of actions using aminimal
amount of temporal information. By implementing the proposed
DCNN on the TrueNorth chip, we show that real-time action
recognition relying on the proposed principles is possible while
consuming a minimal amount of energy, as reported for the
runtime environments of the IBM Neurosynaptic System (Esser
et al., 2016).
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