
ORIGINAL RESEARCH
published: 21 March 2017

doi: 10.3389/fnbot.2017.00014

Frontiers in Neurorobotics | www.frontiersin.org 1 March 2017 | Volume 11 | Article 14

Edited by:

Shuai Li,

Hong Kong Polytechnic University,

Hong Kong

Reviewed by:

Paolo Arena,

University of Catania, Italy

Patrick Henaff,

University of Lorraine, France

*Correspondence:

Timo Nachstedt

timo.nachstedt@

phys.uni-goettingen.de

Received: 18 October 2016

Accepted: 24 February 2017

Published: 21 March 2017

Citation:

Nachstedt T, Tetzlaff C and

Manoonpong P (2017) Fast

Dynamical Coupling Enhances

Frequency Adaptation of Oscillators

for Robotic Locomotion Control.

Front. Neurorobot. 11:14.

doi: 10.3389/fnbot.2017.00014

Fast Dynamical Coupling Enhances
Frequency Adaptation of Oscillators
for Robotic Locomotion Control
Timo Nachstedt 1, 2*, Christian Tetzlaff 2, 3 and Poramate Manoonpong 4

1 Third Institute of Physics, Universität Göttingen, Göttingen, Germany, 2 Bernstein Center for Computational Neuroscience,

Göttingen, Germany, 3Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 4 Embodied AI and

Neurorobotics Lab, Centre for BioRobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark,

Odense, Denmark

Rhythmic neural signals serve as basis of many brain processes, in particular

of locomotion control and generation of rhythmic movements. It has been found

that specific neural circuits, named central pattern generators (CPGs), are able

to autonomously produce such rhythmic activities. In order to tune, shape and

coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external

signals. Nonlinear oscillators are a standard model of CPGs and are used in various

robotic applications. A special class of nonlinear oscillators are adaptive frequency

oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an

external periodic signal and to keep this learned frequency once the external signal

vanishes. AFOs have been successfully used, for instance, for resonant tuning of

robotic locomotion control. However, the choice of parameters for a standard AFO is

characterized by a trade-off between the speed of the adaptation and its precision and,

additionally, is strongly dependent on the range of frequencies the AFO is confronted

with. As a result, AFOs are typically tuned such that they require a comparably long

time for their adaptation. To overcome the problem, here, we improve the standard AFO

by introducing a novel adaptation mechanism based on dynamical coupling strengths.

The dynamical adaptation mechanism enhances both the speed and precision of the

frequency adaptation. In contrast to standard AFOs, in this system, the interplay of

dynamics on short and long time scales enables fast as well as precise adaptation of the

oscillator for a wide range of frequencies. Amongst others, a very natural implementation

of this mechanism is in terms of neural networks. The proposed system enables robotic

applications which require fast retuning of locomotion control in order to react to

environmental changes or conditions.

Keywords: adaptive frequency oscillator, central pattern generator, neural networks, resonance tuning,

locomotion control

1. INTRODUCTION

Rhythmic processes are of central importance for many aspects of biological life (Winfree, 1967;
Barkai and Leibler, 2000; Goldbeter et al., 2012). Examples include the cardiac rhythm, various
circadian rhythms and, in particular, all forms of biological locomotion like walking, flying or
swimming. The latter are controlled by specific neural circuits, so called central pattern generators
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(CPGs) (Hooper, 2001; Marder and Bucher, 2001). Theoretical
models of CPGs range from detailed biophysical models
(Hellgren and Grillner, 1992) to pure mathematical oscillators
(Matsuoka, 1985). In general, CPGs can be described as nonlinear
oscillators which have been used in numerous applications for
different variants of robotic control problems (Nakamura et al.,
2007; Ijspeert, 2008; Pinto et al., 2012; Nassour et al., 2014; Santos
et al., 2017). For instance, compared to purely reflexive control
schemes (Foth and Bässler, 1985; Cruse et al., 1995), oscillator-
controlled robots enable more stable and robust locomotion
(Kimura et al., 2001; Righetti and Ijspeert, 2008).

CPGs do not require any external input or feedback to
produce basic rhythmic activity. However, they still require
feedback signals to adapt and tune their produced activity,
for instance its frequency. For the theoretical concept of
nonlinear oscillators, a universal mechanism to adapt the
intrinsic frequency of an oscillator according to the frequency of
an external periodic signal, which is coupled to the oscillator, was
formulated by Righetti et al. (2006). This frequency adaptation
schema is applicable to many different types of oscillators.
In contrast to the well-known phenomenon of entrainment,
which is a purely reactive mechanism with only transient effect
on the oscillatory system (Buchli et al., 2006), the frequency
adaptation schema modifies the intrinsic frequency of the
system permanently. Oscillators with this schema are commonly
called adaptive frequency oscillators (AFOs). Several applications
of AFOs have been proposed including adaptive control of
compliant robots (Righetti et al., 2009), pendulum swing-up
problems (Spong, 1995; Furuta, 2003), understanding, simulation
and support of human locomotion (Ronsse et al., 2011a; Tropea
et al., 2015; Santos et al., 2017), mimicking of fish swimming
(Wang et al., 2013), frequency analysis of an input signal (Buchli
et al., 2008), and construction of limit cycles of arbitrary shape
(Righetti et al., 2009). However, all of these applications suffer
from significantly long adaptation times.

For a given oscillatory system, the dynamics of a standard
AFO is determined by only two parameters: the strength of the
coupling of the external signal to the oscillator and the learning
rate of the parameter determining the intrinsic frequency of the
system. Here, we show that, when choosing these two parameters,
one has to make a compromise between speed and precision of
the resulting adaption dynamics. Furthermore, we demonstrate
that the optimal parameters for a certain balance of speed and
precision strongly depend on the initial intrinsic frequency of the
oscillator and on the target frequency, i.e., the frequency of the
external signal. As a result, situation-specific fine-tuning of the
parameters is necessary.

In contrast, we propose an extension of the standard
frequency adaptation mechanism which provides both fast as
well as precise adaptation for a wide range of initial intrinsic
and target frequencies without the need for parameter fine
tuning. In the following, we call this mechanism “Adaptation
through Fast Dynamical Coupling” (AFDC). It is based on
dynamically adapting the coupling strength of the external signal.
If the difference between the current intrinsic frequency and the
target frequency is high, the coupling strength is increased in
order to accelerate the adaptation. If the difference between the

current intrinsic frequency and the target frequency becomes
small, the coupling strength is reduced to increase the precision
of the adaptation. This process is autonomous and can be
integrated into the dynamical equations of the system. Neither
the current intrinsic nor the target frequency need to be explicitly
available as the mechanism solely relies on signal correlations.
We compare the adaptation processes obtained by regular AFOs
with those obtained with the new AFDCmechanism by means of
quantitative measures of speed and precision of the adaptation.
We find that the AFDCmechanism clearly outperforms standard
AFOs within the tested frequency interval covering two orders of
magnitudes.

2. RESULTS

2.1. Standard Adaptive Frequency
Oscillator
In very general terms, an oscillator is an autonomous dynamical
system with at least one limit cycle attractor (Buchli et al., 2006).
Naturally, every two-dimensional oscillatory system (x, y) can be
expressed as a system of two equations ẋ(t) = gx(x(t), y(t), θ)
and ẏ(t) = gy(x(t), y(t), θ) where the functions gx and gy
define the dynamics of the system. We require that these two
functions do not only depend on the state variables x and y
but also explicitly on a variable θ which determines the intrinsic
oscillation frequency f of the system. The function f (θ) may be of
an arbitrary shape and in many cases is not explicitly known. We
only assume it to be monotonic. The system can be transformed
into an adaptive frequency oscillator (AFO) by coupling it to an
external signal F(t):

ẋ(t) = gx(x(t), y(t), θ(t))+ ǫF(t)

ẏ(t) = gy(x(t), y(t), θ(t)).
(1)

Here, ǫ denotes the coupling strength. Furthermore, additional
dynamics of the θ-variable are introduced (Righetti et al., 2006):

θ̇(t) = ±ηF(t)
y(t)

√

x(t)2 + y(t)2
. (2)

with a learning rate η. The sign on the right-hand side depends
on the direction of oscillation of the actual oscillatory system in
the phase space. Note that in the original publication (Righetti
et al., 2006), always η = ǫ is chosen as it emerges naturally
when deriving the adaptation rule from analyzing the effect of the
periodic external signal F on the phase velocity of the oscillator
(Righetti et al., 2006). Apart from this, however, there is no a
priori reason why this choice should provide optimal adaptation
results. It has been shown that, using this rule, a wide range of
oscillators can adapt their intrinsic frequencies to the frequency
of basically any external periodic signal F(t). In this contribution,
we consider the Hopf oscillator (Figure 1A), which possesses
a harmonic limit cycle, and the Van der Pol oscillator (Van
der Pol, 1920) (Figure 1B), which, depending on the choice of
parameters, exhibits highly non-harmonic oscillations.

For analyzing a given adaptation process, we start with an
oscillator with an initial frequency variable θ0 corresponding to
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FIGURE 1 | Adaptation of two standard adaptive frequency oscillators. The upper panels show the time course of the frequency determining parameter θ . The

time during which the external signal is applied to the system is indicated by the yellow shaded area. The dashed horizontal lines indicate the values θ0 and θext

corresponding to the initial intrinsic frequency f0 and the target frequency fext of the external signal, respectively. The panels below show the oscillating state variables

x and y and the external signal F at different short time windows during the adaptation process. In both cases, the initial intrinsic frequency of the oscillator is f0 = 4.0

and the external signal is a sine wave with unit amplitude and frequency fext = 2.0. (A) Adaptive frequency Hopf oscillator with µ = 1.0 and ǫ = η =1.0 (see

Methods). The initial value of the parameter θ is given by θ0 = 2π f0 ≈ 25.1. Accordingly, the value corresponding to the frequency of the external signal is

θext = 2π fext ≈ 12.6. The external signal is applied for 100 ≤ t < 700. (B) Adaptive frequency Van der Pol oscillator with µ = 100.0 and ǫ = η = 0.7 (see Methods).

The values of the parameter θ corresponding to f0 and fext are θ0 ≈ 34.8 and θext ≈ 22.0 (see Methods). The external signal is applied for 100 ≤ t < 500.

an initial intrinsic frequency f0 = f (θ0). Here, the function f (θ) is
not explicitly known but can be numerically approximated. We
denote the target frequency, i.e., the frequency of the external
signal, by fext. Furthermore, we define the target value θext as
the value of θ such that fext = f (θext) for the given oscillator.
The frequency variable θ is not modified by the adaptation rule
(Equation 2) as long as the external signal F is zero (t < 100
in Figure 1A). After the onset of the external signal, θ is slowly
adapted toward the target value θext (100 < t < 700 in
Figure 1A). The adaptation rate increases as θ gets closer to θext.
The final adaptation phase is typically characterized by a small θ-
overshoot before it converges toward a quasi-constant state with
only small periodic fluctuations (600 < t < 700 in Figure 1A).
Now, when removing the external signal, i.e., setting F = 0, the
oscillator maintains oscillations at the adapted frequency (t >

700 in Figure 1A). Note that it is not guaranteed that the finally
reached value of θ corresponds exactly to θext. In contrast, in
some cases significant deviations can be observed (Figure 1B).
As it turns out, reducing this deviation is only possible when
accepting longer adaptation times.

2.1.1. Speed vs. Precision Trade-Off
In many applications, for instance in robotic systems, it is usually
desired to have systems that are able to adapt to new situations or
circumstances quickly. In contrast, AFOs with the usual choice
of parameters require many periods of oscillations to complete a
given adaptation process. The convergence time of the adaptation
process, i.e., the time between the onset of the external signal
and the quasi-convergence of the frequency parameter θ of the
oscillator, can be adjusted by manipulating the coupling strength

ǫ in Equation (1) or the learning rate η in Equation (2) (Figure 2).
However, increasing ǫ or η does not only increase the speed of
the frequency adaptation but also increases the general influence
of the external signal on the oscillatory system. As a result, the
dynamics of the parameter θ , once it has converged to a quasi-
stable state, is affected as well (Figure 3). On the one hand, high
learning rates η lead to increased fluctuations of the parameter
θ in the finally reached state. On the other hand, higher values
of ǫ result in a higher offset of the finally reached mean value θ̄

from the value θext. Therefore, shorter convergence times in the
standard AFO systems go hand in hand with a loss of precision.
Naturally, this trade-off complicates real-world applications of
the mechanism.

2.1.2. Quantitative Adaptation Quality Measures
In order to quantitatively capture the trade-off between speed and
precision, we introduce three measures characterizing the quality
of a given adaptation process (Figure 3). As already discussed,
in many applications fast adaptation is desired. This is captured
by the convergence time 1 which measures the time interval
between the onset of the external signal and the last deviation
of the intrinsic frequency f of the system (determined by θ) of
more than 5% (10% for the Van der Pol oscillator) from the
finally reached mean value f̄ . The precision of the adaptation, in
turn, is reflected by two measures. First, the intrinsic frequency
to which the system converges should be as close as possible
to the frequency of the external signal. This is measured by the
frequency offset δ which is given by the offset of the finally
reachedmean value of the intrinsic frequency from the frequency
of the external signal. Second, the fluctuations of the intrinsic
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FIGURE 2 | Influence of the coupling strength ǫ and the learning rate η

on the speed of adaptation of standard adaptive frequency oscillators.

The yellow shaded area indicates the time during which the external signal is

applied. In all cases, the initial intrinsic frequency of the oscillator is f0 = 4.0

and the frequency of the external unit sine-wave signal is fext = 2.0. For the

adaptive Hopf oscillator, we choose µ = 1.0. For the adaptive van-der-Pol

oscillator, we choose µ = 100.0 (see Methods).

frequency around its mean value should be low as otherwise
the value of the intrinsic frequency when switching off the
external signal depends on the exact point of time of this event.
The magnitude of these fluctuations is measured by σ which
equals the standard deviation of the intrinsic frequency f in the
converged state.

To allow interpretation of these measures independently
from the chosen internal and external frequencies, we introduce
relative measures scaled by the frequency fext or the cycle
duration f−1

ext of the external signal, respectively: 1̃ = 1/f−1
ext ,

δ̃ = δ/fext and σ̃ = σ/fext. In addition, we define a quality index
Q combining these three relative measures into a single scalar
value:

Q = max

(

1−
1̃

1̃max

−
|δ̃|

δ̃max

−
σ̃

σ̃max
, 0

)

. (3)

Here, 1̃max, δ̃max, and σ̃max are the maximum values of the
respective measures which we allow for a reasonably good
adaptation process. Accordingly, aQ value close to 1 corresponds
to a very fast as well as very precise adaptation process. A value of
Q = 0, in contrast, indicates that 1̃ > 1̃max, δ̃ > δ̃max, σ̃ > σ̃max

or the weighted sum (Equation 3) of the individual measures is
larger than 1. In the following, if not stated otherwise, we use
1̃max = 100, δ̃max = 0.05 and σ̃max = 0.05.

2.1.3. Finding Optimal Parameters
For an easy application of an adaptive oscillator in a given
setup, no fine tuning of the system parameters for the specific
application context should be necessary. It is therefore necessary
to find a system which is able to adapt its intrinsic frequency
to a wide range of external frequencies without the need for
any parameter adaptation other than the one of the frequency
determining parameter θ . It turns out, however, that already
for the comparable simple case of the harmonic Hopf oscillator,
the range of frequencies for which a given set of parameters

FIGURE 3 | Quantitative measures to capture the quality of an

adaptation process. Shown is the time course of the intrinsic frequency of

an adaptive frequency oscillator during the adaptation to an external periodic

signal with high coupling constant ǫ and high learning rate η. The yellow

shaded area indicates the time during which the external signal is applied. The

inset shows a close up of the data in the indicated area. We introduce three

measures to quantify the quality of a given frequency adaption process. The

convergence time 1 is the time interval between the onset of the external

signal at time t0 and the last deviation of the intrinsic frequency of the

oscillator of more than 5% (orange horizontal lines) from the finally reached

average intrinsic frequency f̄ . The frequency offset δ measures the difference

between the final average intrinsic frequency f̄ and the target frequency of the

external signal fext. In order to also capture the periodic fluctuations of the

intrinsic frequency from the average value f̄ , we additionally introduce the final

frequency fluctuation σ given by the standard deviation of the oscillations of

the intrinsic frequency f in the finally reached state (area shaded in light red in

the inset). The shown time course of the intrinsic frequency is taken from an

adaptive frequency Hopf oscillator with µ = 1.0, ǫ = 5.0, η = 5.0, and

f0 = 2.0 adapting to an external unit sine-wave signal with frequency

fext = 1.0.

allows fast as well as precise adaptations is very limited
(Figure 4). Higher values of ǫ and η increase the intervals of
initial intrinsic frequencies f0 and external frequencies fext for
which fast adaptation is achieved (left column in Figure 4).
In contrast, small frequency offsets δ̃ are achieved only for
small values of the coupling strength ǫ (second column in
Figure 4) and small values of the learning rate η enable small
fluctuations as measured by σ (third column in Figure 4). The
compilation of these observations is reflected by only small
intervals of initial intrinsic and external frequencies for which
the quality index Q attains non-zero values (right column in
Figure 4).

Trying to find parameters that allow fast and precise
adaptation for a range of initial intrinsic and external target
frequencies spanning two orders of magnitudes reveals that
actually no ǫ-η-combination allows for an average adaptation
quality index 〈Q〉 higher than approximately 0.12 (Figure 5). We
conclude that a standard AFOwith a fixed set of parameters is not
capable to provide fast as well as precise adaptation over a wide
range of frequencies.

Frontiers in Neurorobotics | www.frontiersin.org 4 March 2017 | Volume 11 | Article 14

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Nachstedt et al. Adaptation through Fast Dynamical Coupling

FIGURE 4 | Adaptation quality measures of the adaptive frequency

Hopf oscillator in the (f0, fext) frequency space for different values of

the coupling strength ǫ and the learning rate η. For every given

(ǫ, η)-parameter pair, from left to right, the relative convergence time 1̃, the

relative final frequency offset δ̃, the final relative frequency fluctuation σ̃ , and

the combined quality measure Q are shown in the plane spanned by the initial

intrinsic frequency f0 and the frequency of the external unit sine-wave signal

fext. As the convergence time is defined as the time difference between the

onset of the external signal and the last point of time of more than 5%

deviation of the intrinsic frequency from the final average, for high values of σ̃ ,

the convergence time cannot be reasonably determined, i.e., takes very high

values. For the same reason, even on the diagonal f0 = fext, high

convergence times are measured for low values of fext.

2.2. Fast Dynamical Coupling Mechanism
As discussed, no fixed value pair for the coupling strength ǫ and
the learning rate η suffices for fast and precise adaptation over a
wider range of initial intrinsic and external target frequencies. In
order to obtain a systemwithout the requirement for application-
specific fine-tuning, the down- or up-scaling of coupling strength
and learning rate has to be accomplished in a self-organized
manner. Here, we propose such a system. Instead of coupling the
external signal F(t) directly to the oscillator, we now use a filtered
signal P(t):

ẋ(t) = fx(x(t), y(t), θ(t))+ P(t)

ẏ(t) = fy(x(t), y(t), θ(t)).
(4)

FIGURE 5 | Average combined quality measure 〈Q〉 for different

parameter values of the frequency adaptive Hopf oscillator. For every

parameter pair of coupling strength ǫ and learning rate η, the average

adaption quality measure 〈Q〉 over the logarithmically sampled space of initial

intrinsic frequencies f0 and frequencies of the external signal fext is shown

(0.1 < f0, fext < 10). The red circles indicate the four cases shown in Figure 4.

In each case, the external signal is a sine-wave with unit amplitude.

Accordingly, also the adaptation of θ is based on P(t):

θ̇(t) = ±ηP(t)
y(t)

√

x(t)2 + y(t)2
. (5)

P(t) is given by a weighted difference of the external signal F(t)
and the oscillator variable x(t):

P(t) = ǫ(t)F(t)− β(t)x(t) (6)

with the adaptive coupling strengths ǫ(t) and β(t). Following
the discussion of the quality measures introduced before, for an
optimal adaptation process, the dynamics of ǫ(t) and β(t) has
to fulfill two requirements: as long as the difference between the
intrinsic frequency f and the target frequency fext of the external
signal is high, P(t) should basically be an amplified version of
F(t) in order to accelerate the adaptation process. In contrast,
when f is already close to fext, P(t) is supposed to attain values
close to zero such as to reduce the influence of the external signal
to a minimum. Both of these requirements can be fulfilled by
adapting β(t) and ǫ(t) according to a combination of correlation-
based growth and a passive decay toward a low resting value. For
β(t), we propose the following dynamics:

τ β̇(t) = β0 − β(t)+ κP(t)x(t) (7)

with time constant τ and correlation learning rate κ . The value
of β scales the subtraction of the system variable x from the
external signal F(t) in Equation (6). The product of P and x
(averaged over time) is large if the difference between the intrinsic
frequency f and the external target frequency fext is low. At this
stage, the influence of the external signal on the oscillator should
be reduced, i.e., the amplitude of P should be decreased, as done
by increasing β . The proposed dynamics for ǫ(t) are very similar:

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t). (8)
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FIGURE 6 | Adaptation of two oscillators with the AFDC mechanism. The upper-most panels show the time course of the frequency determining parameter θ .

The time during which the external signal is applied to the system is indicated by the yellow shaded area. The dashed horizontal lines indicate the initial value θ0 and

the value θext corresponding to the exact frequency of the external signal. The second panels from the top show the time course of the adaptive coupling strengths β

and ǫ. The third panels from the top show the time course of the filtered external signal P. The panels on the bottom show the oscillating state variables x and y and

the external signal F at different short time windows during the adaptation process. In both cases, the initial intrinsic frequency of the oscillator is f0 = 4.0 and the

external signal is a sine wave with unit amplitude and frequency fext = 2.0. (A) Hopf oscillator with AFDC mechanism with µ = 1.0, η = 0.5, κ = 5.0, τ = 2.0,

β0 = 0.0 and ǫ0 = 0.01. The initial value of the parameter θ is given by θ0 = 2π f0 ≈ 25.1, the value corresponding to the frequency of the external signal is

θext = 2π fext ≈ 12.6. The external signal is applied for 5 ≤ t < 30. (B) Van der Pol oscillator with AFDC mechanism with µ = 100.0, η = 2.0, κ = 5.0, τ = 15.0,

β0 = 0.0 and ǫ0 = 0.01. The values of the parameter θ corresponding to f0 and fext are determined to be θ0 ≈ 34.8 and θext ≈ 22.0 (see Methods). The external

signal is applied for 5 ≤ t < 150.

The value of ǫ scales the influence of the external signal F on
the filtered signal P (Equation 6). If the averaged product of F
and P is large, this implies that the subtraction of x in Equation
(6) cannot cancel the addition of F, i.e., the internal frequency of
the oscillator is different from the target frequency of the external
signal. Thus, an increase of ǫ is desired to increase the influence of
the signal on the system and to herewith increase the adaptation
speed. However, as for β(t) ≈ 0, the last term of Equation
(8) can be approximated by κF(t)2ǫ(t), without adaptation of
β(t), the value of ǫ(t) would not return to ǫ0 as long as the
external signal is present and therefore would not allow precise
adaptation. Only the interplay of the dynamics of ǫ(t), which
detects the onset of an external signal with a frequency different
from the intrinsic frequency of the oscillator, and of β(t), which
detects when the adaptation is nearly completed, allows fast as
well as precise adaptation. In the following, we call the described
mechanism “Adaptation through Fast Dynamical Coupling”
(AFDC).

The process of frequency adaptation supported by the AFDC
mechanism can be separated into several stages (Figure 6) as
qualitatively described in the following: Before the onset of an
external signal (F = 0), the average product of P and F is zero
and the adaptive coupling constants β and ǫ converge toward

their resting values β0/(1 + κ x̄2) and ǫ0. Here, x̄2 is the mean
over time of the squared signal x2. As soon as the external signal

is applied, the average product of P and F gets positive (Equation
6). As a result of this, ǫ starts to increase (Equation 8). A higher
value of ǫ, in turn, increases the average product of P and F. This
establishes a positive feedback loop that leads to a fast increase
of the amplitude of P. The high amplitude of P results in a large
influence of the external signal on the oscillator (Equation 4) as
well as in a fast adaptation of the frequency determining variable
θ toward the frequency of F (Equation 5). As a consequence of
both of these effects, the oscillator follows the external frequency
implying a positive correlation between P and x. This correlation
leads to an increase of β (Equation 7). Higher values of β decrease
the amplitude of P (Equation 6) and, as such, also the average
product between P and x. This is a negative feedback loop. Note
that a decrease of the amplitude of P also reduces the average
product of P and F and therefore breaks the positive feedback
loop between ǫ and the average product of P and F (Equation
8) yielding a decline of both β and ǫ to their respective resting
values. At this point, switching off the external signal does not
significantly change the system dynamics as the influence of the
external signal has already been reduced to a minimum.

In summary, the described interplay of the dynamics of the
two adaptive coupling constants β and ǫ scales up the magnitude
of the external signal as long as adaptation of θ is needed and
reduces it once the value corresponding to the frequency of the
external signal is reached.
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FIGURE 7 | Adaptation quality measures for the Hopf oscillator with

AFDC mechanism in the f0-fext-frequency space for different

parameter values. For each of the given parameter tuples (η, κ, τ ), from left

to right, the relative convergence time 1̃, the relative final frequency offset δ̃,

the final relative frequency fluctuation σ̃ , and the combined quality measure Q

for the given parameter values of η, κ, and τ are shown in the plane spanned

by the initial intrinsic frequency f0 and the frequency of the external unit

sine-wave signal fext.

2.2.1. Adaptation Quality in Frequency Space
The dynamics of the AFDC mechanism is mainly dominated
by three free parameters: The time scale τ of the adaptive
coupling strengths, the correlation learning rate κ and the
learning rate η of the frequency determining variable θ . While,
in general, an oscillator equipped with an AFDC mechanism
shows more tolerance with respect to large frequency ranges,
certain parameter combinations allow a faster or more precise
adaptation over a larger frequency range (Figure 7). Some
combinations (for instance η = 1.0, κ = 100.0, τ = 1.0) result in
a very good performance, as indicated by high values ofQ, for the
complete range of initial intrinsic frequencies f0 and frequencies
fext of the external signal analyzed here.

This is also reflected by the frequency space averaged quality
〈Q〉 (Figure 8). For a sufficiently high κ (κ & 3), parameters ǫ

and η can be found with an average quality value close to the
theoretical maximum of 1 corresponding to very fast adaptation
without significant frequency offset or frequency oscillations

in the finally reached state (Figure 8). A comparison of the
performance of the best found configuration of the regular
adaptive Hopf oscillator with the performance of the best found
configuration of the Hopf oscillator with AFDC mechanism
shows that the AFDC mechanism outperforms the regular AFO
mechanism in terms of all quality measures (Figure 9A). The
same holds true for the comparison of the regular adaptive Van
der Pol oscillator with the respective AFDC implementation
(Figure 9B). In contrast to a regular AFO, the AFDCmechanism
manages to provide fast and precise frequency adaptation over a
wide frequency range with a fixed set of parameters.

Note that the values of the additional parameters ǫ0 and β0

do not significantly influence the dynamics of the mechanism as
long as they are chosen reasonably low.

2.2.2. Neural Implementation
The AFDC mechanism relies on dynamically adapting the
coupling strengths ǫ and β . In terms of signal flow, ǫ can be
interpreted as a feedforward coupling from the external signal
to the filtered signal P. The value of β , in turn, determines
the strength of feedback coupling from the oscillator back
to P. A standard way to implement this kind of signal flow
between different entities is in terms of artificial neural networks.
Neural networks are composed of multiple comparably simple
computational units, the neurons, which project signals to each
other via so-called synapses. Every synapse is characterized by a
scalar value, the synaptic weight, which determines the efficacy of
the synaptic signal transmission.

There exist neuron models on many different levels of
abstraction, ranging from simple binary units to complex
biophysical plausible spiking models. Here, we restrict ourselves
to a very basic model of point-like neurons described by time-
discrete dynamics. It has been shown that already a fully
connected network of only two of these very simple neurons
suffices to autonomously produce oscillatory signals (Pasemann
et al., 2003). In every time step, each neuron sums up the
incoming outputs from other neurons as well as from itself
weighted by the respective synaptic weights. This sum is
transformed into the new neural output by means of a sigmoidal
transfer function. The weight matrix of this two neuron network
is given by a scaled rotational matrix for a rotation angle ϕ. The
value of ϕ monotonically controls the frequency of the obtained
oscillatory signal of this so-called SO(2)-oscillator.

As already shown earlier (Nachstedt et al., 2012), a neural
SO(2)-oscillator with neurons H0 and H1 can be extended by
an AFDC mechanism by introducing an additional neuron H2

into the system (Figure 10A). Now, this neural implementation
can be understood as a special implementation of the general
AFDCmechanism. The additional neuronH2 is used to calculate
the filtered external signal P by receiving synapses from both
the external input F and the output of neuron H0. The latter
takes the role of the variable x of the general oscillators discussed
above. The synaptic weight w2F of the synapse from the external
signal F to the additional neuron H2 implements the dynamics
of the ǫ coupling. The weight w20 of the synapse from the
oscillator neuron H0 to the neuron H2 takes the role of β .
Adapting the synaptic weights according to Equations (7) and (8)
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FIGURE 8 | Average combined quality measure 〈Q〉 for different values of κ in the ǫ-η-parameter space of the Hopf oscillator with AFDC mechanism.

For every parameter triple of coupling strength ǫ, frequency learning rate η and correlation learning rate κ, the average adaption quality measure 〈Q〉 over the

logarithmically sampled space of initial intrinsic frequencies f0 and frequencies of the external signal fext is shown (0.1 < f0, fext < 10). In each case, the external signal

is a sine-wave with unit amplitude. The red circles indicate the four cases shown in Figure 7. Comparing these results to the ones obtained for the standard AFO in

Figure 5, the AFDC mechanism provides significant higher quality values indicating versatility with respect to different initial intrinsic and external target frequencies.

A

B

FIGURE 9 | Comparison of the frequency space averaged adaptation

quality measures for the best found configurations of the regular

adaptive oscillators and the respective oscillators with AFDC

mechanism. Note that the averages of the relative convergence time 1̃, the

final frequency offset |δ̃| and the relative final frequency fluctuation σ̃ include

only values from (f0, fext)-frequency pairs in which the combined quality

measure Q has a nonzero value. The ratio of the number NQ>0 of

(f0, fext)-pairs for which the quality Q has a nonzero value and the total number

Ntot of frequency pairs is shown on the very right. All numbers are rounded.

See methods for the used parameter values. (A) For the Hopf oscillator, all

parameters are identical to the ones used in Figures 7, 8. (B) For the Van der

Pol oscillator, we adapt the maximal allowed values of the quality measures.

We use 1̃max = 200, δ̃max = 0.10 and σ̃max = 0.05. In addition, we calculate

δ̃ and σ̃ directly from the frequency determining variable θ and consider the

last deviation of θ of more than 10% from the finally reached mean value θ̄ to

determine the adaptation time 1. (*) Values shown as 0.00 are too small to be

resolved in the figure. For the Hopf oscillator with AFDC mechanism, we find

〈|̃δ|〉/δ̃max ≈ 5.3 · 10−7 and 〈σ̃ 〉/σ̃max ≈ 8.5 · 10−8. For the Van der Pol

oscillator with AFDC mechanism, the average normalized final frequency

fluctuation is 〈σ̃ 〉/σ̃max ≈ 2.5 · 10−3.

effectively introduces synaptic plasticity into the system (Abbott
and Nelson, 2000). In contrast to earlier publications (Nachstedt
et al., 2012), here, the weight w02 of the synapse feeding the
filtered signal P into the oscillator is simply kept constant.

The adaptation of the intrinsic oscillation frequency by
modifying the parameter ϕ and hereby the synaptic weights
of the neural SO(2)-oscillator is a long-lasting change. The
discussed plasticity of the synaptic weights w20 and w2F , in
contrast, has a transient character. The combination of these
two different kinds of dynamics results in a fast and precise
adaptive neural oscillator (Figure 10B) (Nachstedt et al., 2012).
This shows that the AFDC mechanism can be easily integrated
into existing neural control schemes, for instance, in robotic
applications. In addition, the successful implementation of
the AFDC mechanism in a time-discrete system shows that
the concept can be generalized to this class of dynamical
systems.

2.2.3. Closed-Loop Locomotion Control
In addition to the open-loop scenarios studied so far, the AFDC
mechanism also allows to apply adaptive oscillators in closed-
loop scenarios where fast adaptation toward a specific frequency
is required. A classical problem of robotic locomotion control
is the task to find the optimal frequency to drive the legs of
a walking machine. For animals, it has been found that the
frequency during locomotion is tightly related to the resonant
frequency of the free swinging leg (Holt et al., 1990). This way,
animals are able to maintain energy efficiency during locomotion
(Ahlborn and Blake, 2002). Furthermore, it has been proposed
that animals actively modify the resonant frequency of their legs
in order to optimize for different walking speeds (Ahlborn and
Blake, 2002).

Given that CPGs control locomotion, adaptation of CPGs
toward a system’s resonant frequency to optimize locomotion has
been repeatedly investigated and modeled (Verdaasdonk et al.,
2006, 2009). A simplistic model of this control problem is given
by a mathematical pendulum which is driven by a torque signal
according to the output of an oscillator (Nachstedt et al., 2012).
The most energy-efficient control is achieved if the pendulum is
driven at its resonant frequency determined by its physical length
l and its massm as well as the current amplitude of its oscillation.
Here, a neural SO(2)-oscillator with AFDC mechanism is used
to control the torque applied to the pendulum. The control loop
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A

B

FIGURE 10 | Neural implementation of the AFDC mechanism. (A) The

neurons H0 and H1 are fully connected by the synapses w00, w01, w10, and

w11 and form a neural SO(2)-oscillator. The neuron H2 calculates the signal P

which is the weighted difference between the external signal F and the activity

value of H0. Accordingly, the weight w2F corresponds to the coupling strength

ǫ and the weight w20 represents the variable β of the AFDC mechanism. The

weight w02 can either be fixed at a positive value or adapted with similar

dynamics as w20 and w2F . (B) Example adaptation of the neural oscillator. It

is initialized with an intrinsic frequency of f0 = 0.04 corresponding to a value of

ϕ0 = 0.25 of the internal frequency determining variable. At time step t = 100,

an external signal with a frequency of fext = 0.02 is applied until time step

t = 1, 000 (yellow shaded area). For 1, 000 < t < 1, 900, the frequency of the

external signal is changed to fext = 0.04 (green shaded area). For t ≥ 1, 900,

there is no external signal. Shown from top to bottom are the activities oi of

the neurons Hi (i ∈ {1, 2, 3}), the external signal F, the synaptic weights w20

and w2F and the frequency determining variable ϕ of the SO(2)-oscillator.

is closed by feeding the current position of the pendulum as
external signal back to the oscillator (Figure 11A).

In this closed-loop system, the current frequency of the
pendulum is completely determined by the current frequency of
the driving neural oscillator. The observed oscillation frequencies
of the pendulum and the neural oscillator are therefore always
identical. Still, it is possible to adapt the intrinsic frequency of
the neural oscillator to the target frequency given by the resonant
frequency of the pendulum. The information about the difference
between the intrinsic frequency of the oscillator and the resonant
frequency of the pendulum is encoded in the phase relation
between the internal oscillation and the feedback signal received
as external signal by the oscillator. In particular, driving the

A

B

FIGURE 11 | Closed-loop pendulum control using a neural

SO(2)-oscillator with AFDC mechanism. Energy-efficient control is realized

if the pendulum is driven at its resonant frequency. (A) The output o1 of

neuron H1 controls the torque M driving the pendulum with length l and mass

m. The current angular displacement λ is converted into the external signal F

which is fed back to the adaptive oscillator. The neural network is updated

with a frequency of 25Hz. (B) Simulation of the system with varying pendulum

length l. The initial length of the pendulum is l0 = 0.2m. At t = 30 s, the length

is changed to l1 = 0.4m. At t = 50 s, the original length l0 is restored. At

t = 70 s, the feedback connection from the pendulum to the oscillator is cut to

demonstrate that the oscillator has indeed learned the correct frequency to

drive the pendulum. Shown are the current angular displacement λ of the

pendulum, the outputs o0, o1, and o2 of the three neurons, the synaptic

weights w2F and w20 of the plastic synapses of the AFDC mechanism, and

the intrinsic frequency of the oscillator and the resonant frequency of the

undamped and undriven pendulum (target frequency for the oscillator). The

resonant frequency of the pendulum does not only depend on the current

physical properties of the pendulum but also on the current amplitude of its

oscillations.

pendulum at its resonant frequency is characterized by a phase
shift of π/2 between the applied torque and the current angular
position of the pendulum. In the neural SO(2)-oscillator, the
same phase shift is found between the outputs of the neurons
H0 and H1. Therefore, when using the output of H1 to control
the torque applied to the pendulum, at resonant frequency, the
current angular position of the pendulum is exactly in phase with
the output of neuronH0. This corresponds to the converged state
of the AFDC mechanism. If, in turn, the oscillation frequency
of the neural SO(2)-oscillator is different from the resonant
frequency of the pendulum, the output of H0 and the angular
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position of the pendulum are not in phase. The respective phase
difference encodes the information about the difference between
the intrinsic frequency of the neural oscillator and the resonant
frequency of the pendulum and allows the adaptation of the
former into the direction of the latter.

In our simulation, we first let the neural SO(2)-oscillator
with AFDC mechanism adapt its intrinsic frequency toward the
pendulum’s resonant frequency (0 s < t < 30 s in Figure 11B).
We then simulate a change of the physical properties of the
driven system by abruptly changing the length l of the pendulum.
Accordingly, the neural oscillator readapts its intrinsic frequency
to the new resonant frequency of the pendulum (30 s < t <

50 s in Figure 11B). Afterwards, we change the length l back
to its original value. Finally, we cut the feedback connection
from the pendulum to the oscillator (t > 70 s in Figure 11B)
demonstrating that the oscillator has actually learned the proper
frequency to drive the pendulum.

3. DISCUSSION

Transferring key concepts of biological solutions for complex
control problems to robotic applications has been proven to
be a promising approach regarding the adaptivity, robustness,
versatility and agility found in biological organisms (Pfeifer
et al., 2007). One especially successful concept is the one of
using oscillators, i.e., CPGs, to control complex locomotion. As
such, the study of nonlinear oscillators, their entrainment and
adaptation properties and possible applications in robotics has
gained a lot of interest. The here presented AFDC mechanism
overcomes the demonstrated trade-off between speed and
precision inherent to regular AFOs as introduced by Righetti
et al. (2006). As a result, the AFDC mechanism allows fast
and precise adaptation to external signals for a wide range of
frequencies with a fixed set of parameters.

Since the discovery of the AFO mechanism, various different
mechanisms to improve or extend the adaptation capabilities
have been proposed. Subtracting the output of an oscillator
from the external signal, as also done in the AFDC mechanism,
was used to decompose a signal into its Fourier components
(Ronsse et al., 2011b) with the help of an array of AFOs. In
order to more reliably find the basic frequency of the external
signal, it was proposed to combine a single adaptive frequency
oscillator with a Fourier decomposition (Petric et al., 2011). The
detailed interaction between multiple AFOs has been studied
in the context of networks of self-adaptive dynamical systems
(Rodriguez and Hongler, 2014). As an alternative to adapting
the system parameters in order to modify the frequency of an
oscillator, switching between different oscillation frequencies of
an oscillator operated in the chaotic regime by dynamically
stabilizing different periods was demonstrated (Steingrube et al.,
2010).

The main novelty of the here presented mechanism is
the introduced dynamics of the adaptive coupling strengths
between the external signal and the filtered signal as well as
between the output of the oscillator and the filtered signal.
This dynamics temporally increases the influence of the signal

on the oscillator as long as it is necessary to achieve fast
adaptation and decreases it once precision is needed toward
the end of the adaptation process. Adaptive coupling strengths
have been proposed earlier as a method to increase the
synchronization in a network of phase oscillators with fixed
intrinsic frequencies (Ren and Zhao, 2007). The interaction
of the transient dynamics of the adaptive coupling strengths
on the one hand and the permanent change of intrinsic
frequency on the other hand resembles the interplay of long-
term (Wood et al., 2011) and short-term (Zucker and Regehr,
2002) plasticity in biological organisms. The interplay of long-
term and short-term plasticity in biological system has already
been shown to be highly relevant for biological motor control, in
particular for fast network reconfiguration (Nadim and Manor,
2000).

The AFDC mechanism increases the complexity of the
oscillatory system by the addition of two dynamical equations.
Their interplay is required to first scale up the influence of
the external signal and later on reduce it again. In particular,
this interplay is enabled by the weighted difference P of the
external signal F and the oscillator variable x. The correlation
of P and F determines the growth of the adaptive coupling
constant ǫ which, in turn, increases the correlation of P and
F. To counterbalance this self-enhancing dynamics, a second
dynamic variable, i.e., β , is required. To make β increase,
F and x have to be correlated which is the case once the
oscillator has attained the externally applied frequency. This
delay of the onsets of the growth processes of ǫ and β is crucial
for the AFDC mechanism and cannot be realized by a single
variable.

In this contribution, we focused on the Hopf oscillator
and the Van der Pol oscillator for the detailed analyses
of the regular AFO and the AFDC mechanism. It remains
an interesting question for future research in how far the
results obtained for these oscillators regarding the frequency-
independent choice of parameters as well as regarding the quality
measures of the adaptation process generalize to other types of
nonlinear oscillators (Rayleigh, 1877; Duffing, 1918; Fitzhugh,
1961).

As the dynamics of the coupling strengths in the AFDC
mechanism is solely correlation based, we showed that it is easy to
implement the mechanism in neural networks.We demonstrated
this by discussing the already earlier published neural time-
discrete SO(2)-oscillator with AFDC mechanism (Nachstedt
et al., 2012). This special realization of the AFDCmechanism has
already been successfully applied in different robotic applications
including self-organized control of a snake-like robot (Nachstedt
et al., 2013), adaptive control of a robot leg with compliant tarsus
(Canio et al., 2016b), and bipedal locomotion with robustness
against global loss of sensory feedback (Canio et al., 2016a).
In contrast to the neural implementation, the new general
formulation of the AFDC mechanism makes it possible to apply
the mechanism to all kinds of existing applications of regular
AFOs (Buchli et al., 2005). Additionally, it allows the usage of
adaptive oscillators in completely new scenarios where, up to
now, regular AFOs could not provide sufficiently fast as well as
precise adaptation.
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4. MATERIALS AND METHODS

4.1. Hopf Oscillator
The regular Hopf oscillator with the state variables x and y is
given by the following system of dynamical equations:

ẋ(t) =
(

µ − r(t)2
)

x(t)− θy(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θx(t)
(9)

with r(t) =
√

x(t)2 + y(t)2. The variable µ > 0 determines the
amplitude of the oscillations. Without an external signal (F(t) =
0), this system possesses an asymptotically stable and harmonic
limit cycle with an angular frequency of exactly θ .

4.1.1. Adaptive Frequency Hopf Oscillator
The Hopf oscillator can be turned into an adaptive frequency
oscillator by coupling an external signal F to the system and
introducing the dynamics described by Equation (2) to the
parameter θ . The complete system is given by

ẋ(t) =
(

µ − r(t)2
)

x(t)− θ(t)y(t)+ ǫF(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θ(t)x(t)

θ̇(t) = −ηF(t)
y(t)

√

x(t)2 + y(t)2
.

(10)

4.1.2. Hopf Oscillator with Fast Dynamical Coupling
TheHopf oscillator equipped with the AFDCmechanism is given
by the following system of differential equations:

ẋ(t) =
(

µ − r(t)2
)

x(t)− θ(t)y(t)+ P(t)

ẏ(t) =
(

µ − r(t)2
)

y(t)+ θ(t)x(t)

τ β̇(t) = β0 − β(t)+ κP(t)x(t)

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t)

θ̇(t) = −ηP(t)
y(t)

√

x(t)2 + y(t)2

(11)

with P(t) = ǫ(t)F(t)− β(t)x(t).

4.2. Van der Pol Oscillator
The Van der Pol oscillator with the state variables x and y is
defined as follows:

ẋ(t) = y(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ2x(t).
(12)

The parameter µ > 0 determines the “degree of nonlinearity”
of the system. For µ = 0, the system is harmonic. The intrinsic
frequency f depends in a nonlinear and non-trivial way on the
parameter θ . We use a Fourier transform in conjunction with
a sequence of nested intervals to determine the values of θ

corresponding to a given frequency f .

4.2.1. Adaptive Frequency Van der Pol Oscillator
The adaptive frequency formulation of the Van der Pol Oscillator
coupled to a time-dependent external signal F(t) requires a
positive sign in Equation (2):

ẋ(t) = y(t)+ ǫF(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ(t)2x

θ̇(t) = +ηF(t)
y(t)

√

x(t)2 + y(t)2
.

(13)

4.2.2. Van der Pol Oscillator with Fast Dynamical

Coupling
Applying the AFDC mechanism to the Van der Pol oscillator is
described by the following system of differential equations:

ẋ(t) = y(t)+ P(t)

ẏ(t) = µ
(

1− x(t)2
)

y(t)− θ(t)2x

τ β̇(t) = β0 − β(t)+ κP(t)x(t)

τ ǫ̇(t) = ǫ0 − ǫ(t)+ κF(t)P(t)

θ̇(t) = +ηP(t)
y(t)

√

x(t)2 + y(t)2

(14)

with P(t) = ǫ(t)F(t)− β(t)x(t).

4.3. Neural SO(2)-Oscillator
We use standard additive time-discrete neurons Hi, i ∈

{0, . . . ,N−1}, whereN is the number of neurons in the network.
The activation ai of neuron Hi at time t + 1 is given by the sum
of incoming presynaptic neural firing rates oj weighted by the
synaptic weights wij at time t:

ai(t + 1) =

N−1
∑

j= 0

wij(t)oj(t), i = 0, . . . ,N − 1. (15)

The activation ai of neuron Hi is transformed into its firing rate
oi by a sigmoidal transfer function:

oi(t) = tanh
(

ai(t)
)

. (16)

The pure SO(2)-network consists of N = 2 fully connected
neurons H0 and H1. The synaptic weight matrix is chosen
according to

(

w00(t) w01(t)
w10(t) w11(t)

)

= α ·

(

cosϕ(t) sinϕ(t)
− sinϕ(t) cosϕ(t)

)

(17)

with 0 < ϕ(t) < π the frequency determining parameter. The
factor α determines the amplitude as well as the nonlinearity
of the oscillations. We use α = 1.01 to obtain very harmonic
oscillations and an approximately linear relationship between ϕ

and the intrinsic frequency of the oscillator.
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4.3.1. SO(2)-Oscillator with Fast Dynamical Coupling
In order to equip the neural SO(2)-oscillator with the AFDC
mechanism, an additional neuron H2is introduced. The external
signal F(t) is fed into the neuron H2 via a synapse w2F . The
neuron H2 calculates the filtered version of the external signal
and receives signals via the synapses w20 (= β) and w2F (= ǫ)
governed by the following plasticity rules:

w20(t + 1) = w20(t)+ (β0 − w20(t)− κo2(t)o0(t))/τ

w2F(t + 1) = w2F(t)+ (ǫ0 − w2F(t)− κF(t)o2(t))/τ .
(18)

In accordance with our earlier publication (Nachstedt et al.,
2012), we simplify the frequency adaptation rule of the AFDC
mechanism and reformulate it in terms of the signals arriving at
neuron H0:

ϕ(t + 1) = φ(t)+ ηw02(t)o2(t)w01(t)o1(t). (19)

For the example adaptation process (Figure 10B), we use α =

1.01, η = 1, κ = 100, τ = 100, β0 = 0 and ǫ0 = 0.01.

4.4. Mathematical Pendulum
The angular displacement λ of a mathematical pendulum with
length l and mass m is described by the following differential
equation:

λ̈ = −
g

l
sin λ −

D

ml2
λ̇ +

M

ml2
(20)

with the gravitational acceleration g, the external torque M
evoked on the system and the damping constant D. The resonant
frequency fres of the undamped (D = 0) and undriven (M = 0)
mathematical pendulum is given by Ochs (2011):

fres =
ω0

4K(k)
(21)

with

k =
λ̇2 + 4ω2

0(sin
λ
2 )

2

4ω2
0

(22)

and ω0 =

√

g
l
. K(k) is the complete elliptic integral of the

first kind. In Equation (22), the current values of the angular
displacement λ and the angular velocity λ̇ are used to obtain the
current total energy of the system. For our simulations, we use
g = 9.81mm−2 and D = 0.005 kgm2 s−1.

4.5. Numerical Integration
The integrations of the different differential systems are carried
out using the odeint method of the scipy python package (Jones
et al., 2001). This methods relies on the LSODA algorithm
(Brown and Hindmarsh, 1989) from the FORTRAN library
odepack (Hindmarsh, 1983). The LSODA algorithm utilizes an
adaptive step size.

4.6. Frequency and Parameter Scans
For the frequency scans performed for the adaptive Hopf
oscillator (Figures 4, 5) and the adaptive Van der Pol oscillator
as well as for the respective oscillators with AFDC mechanism
(Figures 7, 8), we sample the frequency space in the range
0.1 ≤ f0, fext ≤ 10.0. We consider 21 sample values uniformly
spaced on a logarithmic axis of f0 and fext and investigate the
behavior of the oscillators for all possible 212 (f0, fext)-pairs.
For every frequency pair, in the case of the regular adaptive
oscillators, we sample 21 parameter values again uniformly
spaced on a logarithmic axes of each ǫ and η in the range 0.01 ≤

ǫ, η ≤ 100. Therefore, we investigate a total of 214 (f0, fext, ǫ, η)-
configurations for each regular adaptive oscillator. In the case
of the oscillators with AFDC mechanism, the parameters are
investigated in the ranges 0.01 ≤ η, τ ≤ 100 and 1 ≤ κ ≤

1, 000 again with 21 samples in every parameter dimension
yielding a total of 215 sampled (f0, fext, η, κ , τ )-configurations
each.

The best sampled parameter values of the frequency space
averaged combined quality measure 〈Q〉 are ǫ ≈ 15.85 and
η ≈ 15.85 for the regular adaptive Hopf oscillator and η ≈

1.58, κ ≈ 398.11 and τ ≈ 3.98 for the Hopf oscillator
with AFDC mechanism (Figure 9). For the regular adaptive
Van der Pol oscillator, we find ǫ ≈ 0.0158 and η = 1.0 to
perform best while η ≈ 0.158, κ = 100 and τ ≈ 1.585
yield the best result for the Van der Pol oscillator with AFDC
mechanism.
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