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We investigate the relation between grip force and grip stiffness for the human hand with
and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue
is particularly relevant for variable-stiffness robotic systems, which can independently
control the two parameters, but for which no clear methods exist to design or efficiently
exploit them. Subjects were asked in one task to produce different levels of force, and
stiffness was measured. As expected, this task reveals a linear coupling between force
and stiffness. In a second task, subjects were then asked to additionally decouple stiffness
from force at these force levels by using cocontraction. Wemeasured the electromyogram
from relevant groups of muscles and analyzed the possibility to predict stiffness and force.
Optical tracking was used for avoiding wrist movements. We found that subjects were
able to decouple grip stiffness from force when using cocontraction on average by about
20% of the maximum measured stiffness over all force levels, while this ability increased
with the applied force. This result contradicts the force–stiffness behavior of most variable-
stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the
index finger and discovered that intrinsic hand muscles predominate our prediction of
stiffness, but not of force. EMG activity and grip force allowed to explain 72±12% of the
measured variance in stiffness by simple linear regression, while only 33±18% variance
in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of
these muscles allow for a robust and reliable regression of stiffness, which can be used
to continuously teleoperate compliance of modern robotic hands.

Keywords: grip stiffness, cocontraction, grip force, intrinsic hand muscles, interosseus muscles, electromyogra-
phy, soft robotics, variable-stiffness actuators

1. INTRODUCTION

Stiffness is an important property for the interaction of any biological or mechanical system with
its environment. A soft system (low stiffness) will yield to external perturbation forces, while a stiff
system will withstand them. For example, when brushing one’s teeth, the grip on the toothbrush
needs to be soft enough for following the shape of the jaw without hurting the gum, but firm enough
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(high stiffness) for keeping the handle within a stable pose without
losing it and for guiding the head of the toothbrush in the desired
direction.

Stiffness is defined as a ratio of a force change to a cor-
responding displacement. However, additional criteria need to
be fulfilled for a force–displacement relation to be considered
stiffness (Latash and Zatsiorsky, 1993). These criteria are resis-
tance, passivity, and elasticity: the direction of the force change
opposes the direction of the displacement (resistance of the system
against deformation); for the force change, no external energy
is supplied (passivity); the force change is only dependent on
the displacement and has a conservative nature (elasticity). The
elasticity criterion also ensures that the reaction is instantaneous,
since otherwise, the force change would not only depend on the
displacement but also on the time.

A resistive response to perturbations can also be provided by
the human body via reflexes, which are involuntary contractions
of muscles that involve the travel of nervous signals from sensory
receptors via the central nervous system to the muscles. Despite
being sometimes called “reflexive stiffness,” this kind of response
falls outside of our definition of stiffness, because the contraction
of themuscle consumes energy and the travel of the nervous signal
introduces a delay. Our definition of stiffness also excludes force
changes due to acceleration (inertial forces) and velocity (damping
forces). Conclusively, the stiffness we measure is not a quasi-
stiffness, reflexive stiffness, nor apparent stiffness [see also Latash
and Zatsiorsky (1993)].

In biomechanics and neuroscience, our definition of stiffness
is commonly referred to by using the terms static, intrinsic, or a-
reflexive stiffness and is close to the stiffness ofmechanical springs.
It is a combination of passive stiffness stemming from the mus-
cles, tendons, surrounding tissue, and ligaments and short-range
stiffness originating from the crossbridges.

It has been shown that (a) the stiffness of a muscle increases
linearly with increasing muscle force (Zajac, 1989; Shadmehr and
Arbib, 1992) and the stiffness of a grip increases linearly with
grip force (Höppner et al., 2011; Van Doren, 1998); (b) the slope
of the linear force–stiffness curve can be modulated by changing
the posture of the limb (kinematics) (Höppner et al., 2013); and
(c) by simultaneously contracting flexor and extensor muscles
(cocontraction), stiffness can be varied without changing posture
when no force is applied to the environment (zero net force)
(Osu et al., 2002). In this article, we investigate the open question
whether (d) cocontraction can be used to decouple stiffness from
its linear increase with force while external forces are applied and
kinematics are kept constant.

Each of the stiffness modulation methods has different advan-
tages: while changing kinematics is energy efficient, external
force modulation and cocontraction allow for posture mainte-
nance. Among thesemethods, we choose to investigate cocontrac-
tion as stiffness modulation mechanism, because it raises open
biomechanical questions and its results can be directly applied
to variable-stiffness actuators in robots. By using a perturbation
device that can measure human grip stiffness related to grip
force (Höppner et al., 2011, 2013), we can investigate the human
mechanism of cocontraction. The device is able to measure an
almost exact representation of pure stiffness—which is captured

by the terms passivity, resistance, and elasticity—imposing that it
is able to refrain from measuring influences from active feedback
or damping and inertia. For this, the device measures forces at
two static positions (see Figure 5), so that the acceleration and
velocity are zero during the measurements, and accomplishes
the transition between the two positions fast enough to exclude
the possibility of reflexes. Furthermore, we use EMG—since it
possibly allows measuring muscle states continuously and is thus
highly relevant for teleoperation in robotics—to investigate the
possibility to regress force and stiffness from the measurement
of muscular activity from relevant intrinsic and extrinsic hand
muscles. Note that unlike with reflexes, the metabolic energy
cost for maintaining the static muscle tension does not affect the
passivity criterion, because it is only used to establish the state
of the system prior to the perturbation and is not affected by the
displacement-related force change.

1.1. Stiffness in Robots
Actively controlled compliant robotic systems (Albu-Schäffer and
Hirzinger, 2002) are able to mimic an apparent stiffness, which
makes them suitable for human–robot interaction. However,
similar to the human reflex, they reach their limits at high-
frequency impacts (Hogan, 1984). Thus, these systems have
been extended recently by further adding an intrinsic elastic-
ity (Vanderborght et al., 2013; Grebenstein, 2014; Wolf et al.,
2016) by the use of non-linear springs—variable-stiffness actua-
tors (VSA)—which is a concept copied from the flexibility found
in biological limbs: through cocontraction, we can increase the
stiffness and damping characteristics of our limbs, thus influenc-
ing the energy exchange characteristics with our environment.
Besides (a) allowing to compensate high-frequency impacts and
increasing system robustness, VSAs offer valuable properties such
as (b) enriching dynamic capabilities by allowing to frequently
store energy in reversal points or (c) embodying the desired
behavior of a task into the mechanical structure of the robot
(Visser et al., 2011). One of their main characterizing properties is
their torque–stiffness diagram (Wolf et al., 2015, 2016), showing
the basic coupling between torque and stiffness and how it varies
with pretensioning of the joint—which is similar to themechanism
of cocontraction found in humans. However, biomechanics is
essentially lacking similar diagrams for the human locomotor
system, which might be used by robotic engineers as a template.
Hence, heuristic methods have been used for setting properties of
VSAs rather than clear design guidelines; e.g., most of the VSAs
have a rather limited performance in decoupling stiffness from
torque for the higher torques. This article is trying to close this
gap in biomechanics and to find an answer to the main question:
Can stiffness be significantly decoupled from its linear increase
with force with cocontraction during posture maintenance?

1.2. Cocontraction
Cocontraction is the simultaneous activation of at least two antag-
onisticmuscles acting on a joint (Gribble et al., 2003). See Figure 1
as an example of how cocontraction of antagonisticmuscles affects
the force and stiffness measured at an end-effector: it depicts a
diagram of the force and stiffness at the fingertip of a simplified
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FIGURE 1 | The expected influence of cocontraction on the Cartesian net force f and stiffness k at the fingertip (exemplary). The theoretically achievable
force–stiffness range of an antagonistic system consisting of a set of joints actuated by two flexor and two extensor muscles (assumption: linear dependence
between force and stiffness of a single muscle). The field is defined by the vector sum of the single muscle curves. Uniform cocontraction leads to an increase in force
and stiffness along a line pointing in the direction of maximum stiffness (green), and isometric cocontraction leads to an increase in stiffness, but not in Cartesian net
force (blue).

finger actuated by two flexor and two extensor muscles. The red
and black arrows denote the linear force–stiffness relations of
single a-reflexive muscles with the arrow’s tips pointing to the
muscle’s maximum force and stiffness. Although activating flexor
(black arrows) and extensor (red arrows) muscles will contribute
to stiffness in a positive way, the flexor muscle activation will
increase the applied force and extensor muscle activation will
decrease the applied force. Assuming a linear relation between
force and stiffness, the reachable force–stiffness range of an
antagonistic setup is defined by the vector sum of the single
force–stiffness relations of the single antagonistic muscles [similar
to the quadrilateral region of two antagonist muscles defined
in the study by Kearney and Hunter (1990)]. If humans were
able to activate all muscles independently, they would be able to
reach the entire area by cocontraction. However, it is well known
that due to neural and mechanical synergies, they are not able
to independently activate them (De Luca and Mambrito, 1987;
Milner, 2002).

In literature, it remains unclear what the notion cocontraction
exactly means. Sometimes it refers to a uniform scaling of all mus-
cular activations between their minimum and maximum values,
resulting in an increase of force and stiffness along the direction
pointing to the maximum stiffness (green arrow in Figure 1).
Contrarily, an isometric cocontraction will increase stiffness only
and keep the applied force constant (blue arrows)—similar to the
notion pretension used for VSAs in robotics. Since we focus on
robotics, we will ask subjects for an isometric cocontraction only
and will give them a visual feedback about the applied force and
stiffness. Furthermore, by referring to the notation cocontraction,
we mean the simultaneous contraction of flexor and extensor
muscles of thumb and index finger, which results in stable pinch
grip force but increased pinch grip stiffness. A simultaneous con-
traction of all flexor muscles of thumb and index finger opposing
each other in a pinch is not considered as cocontraction in this
article.

Moreover, by referring to the notation decoupling, we naturally
imply an increase of stiffness from its usual coupling to force.

We will refrain from analyzing the possibility to decrease stiffness
from its normal coupling to force—since it is expected to be
impossible.

Different studies simulated, measured, and analyzed the role
of cocontraction for the human locomotor system. Hogan (1984)
analyzed the role of joint stiffening caused by cocontraction of
an antagonistic setup for maintaining joint position (when no
external torque is applied) in a simulation study in compari-
son to active control, asking, when do we need cocontraction
and when does an actively controlled reflexive stiffness suffice?
Similarly, Akazawa et al. (1983) investigated changes in stretch
reflex gain and stiffness of the long thumb flexor muscles in a
force-control and a constant-load position control task. Gribble
et al. (2003) explored the relationship between cocontraction and
the target size in a pointing task. Osu et al. (2002) investigated
short- and long-term changes in cocontraction when interacting
in known andunknown environments. Selen et al. (2005) analyzed
in a simulation study whether cocontraction leads to more joint
stability or larger fluctuations in the paradoxical situation that
both stability and motor noise increase with muscle activation.
Grebenstein et al. (2011) hypothesized about criteria for joint
stiffening by observing examples from sports.

Cocontraction increases the stiffness of arm joints, at least in
the absence of external forces (Osu et al., 2002). It is a successful
strategy to stably maintain a position when internal models of
the environment are imprecise, when external perturbations are
expected but not predictable, or when perturbation frequencies
are too high for the central nervous system to react (Akazawa
et al., 1983; Hogan, 1984; Osu et al., 2002). Cocontraction can also
be a successful strategy for decreasing trajectory variability and
improving endpoint accuracy during multijoint arm movements
(Gribble et al., 2003). The ability of cocontraction to stabilize a
limb “. . .highly depends on levels of motor noise and sources, and
on muscular architecture and skeletal properties. . .” (Selen et al.,
2005).

Cocontraction probably also plays an important role for the
absorption of impact energy (Grebenstein et al., 2011). In case of
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known impact energy, humans adapt joint stiffness to dissipate
the impact energy over a broad range of joint motion inside
the joint limits to avoid damage to the muscles. For unknown
impacts, humans use a strategy of maximum cocontraction to
dissipate as much energy as possible using their muscles knowing
that reaching joint limits causes substantially more irreversible
injuries.

However, the influence of cocontracting extrinsic and intrinsic
antagonistic pairs of hand muscles on decoupling grip stiffness
from its usual increase with grip force remains an open ques-
tion. The investigation of the effect of cocontraction on stiffness
is rather limited, and existing studies investigated the usage of
cocontraction at zero net force only, i.e., no forces are applied
to the environment. The usage of forces is highly relevant for
interacting with the environment and the manipulation of objects
and possibly the ability to alter stiffness at this force, too.

From VSAs in robotics, we know about their limited ability to
decouple stiffness and torque for the higher torques. Is this true
for human locomotor system, as well? Is the ability of decoupling
force and stiffness using cocontraction limited to the lower force
ranges, e.g., to zero net force, since intrinsic stiffness increaseswith
force anyway?Or arewe able to considerably decouple the two also
for the higher forces? To address this question, this studywill focus
on human’s ability to decouple stiffness from its linear increase
with force using cocontraction.

Two ways of forcing subjects to cocontract are acknowledged,
either by (a) the application of unstable force fields (Akazawa et al.,
1983) or by (b) presenting a visual feedback about the applied
muscular activity from relevant muscle groups (Osu and Gomi,
1999; Osu et al., 2002; Shin et al., 2009). Using unstable force
fields seems to force subjects to increase cocontraction in a natural
way but is probably limited to the production of zero net force,
which means that no forces are applied by the finger or limb.
On the other hand, forcing subjects to produce cocontraction
based on measured electromyography (EMG) is an unnatural task,
but allows to command different combinations of contraction
and cocontraction including those leading to non-zero net force.
However, so far it has been used only to investigate different levels
of cocontraction at zero net force.

In this study, we will use a completely different approach (c)
and present visual feedback of the applied force and stiffness of
each prior trial to a participant, allowing him or her to learn how
to modulate stiffness over the course of multiple trials.

2. MATERIALS AND METHODS

We measured stiffness in subject experiments with and without
voluntary cocontraction using a device that applies a fast posi-
tion perturbation to a thumb–index finger grip. We used optical
tracking to observe and prevent changes in kinematics and elec-
tromyography to analyze and investigate the regression of force
and stiffness from muscular activity.

2.1. Device Description
The grip perturbator we used in this experiment is presented in
Figure 2. A spring (orange) is preloaded by an electromagnet
(blue) fixed to a frame (black) that holds a moving part (brown).

FIGURE 2 | Cross-sectional view of the grip perturbator.

The grip force is measured with a load cell (white). Releasing
the spring causes the device to elongate by 7.5mm within a
few milliseconds (see perturbation force profile in Figure 5).
Amendments since our previous study (Höppner et al., 2013)
concern an improved guiding of the gripping force to the small
load cell and allows for a smaller grip length. In addition, three
markers for optical tracking and two small fans were attached to
reduce the heating caused by the electromagnet. The perturbator
weighs 165 g, and its length varies between 54 and 61.5mm. The
spring force is 140N when loaded and 100N when unloaded, i.e.,
considerably higher than the pinch grip force, ensuring identical
experimental conditions independent of how firmly the pertur-
bator is held. The load cell is a KM10 (ME-Messsysteme GmbH)
force sensor with a nominal sensitivity of 1mV/V and a nominal
range of 100N. The accuracy of the analog signal provided by
the measurement amplifier GSV-11H (ME-Messsysteme GmbH)
is 0.1N.

2.1.1. Electromyography
Keeping in mind a possible application in telerobotics, we use
non-invasive surface electrodes rather than invasive needle elec-
trodes. The surface electrodes Delsys Trigno Wireless System have
an internal amplification of 1 kV/V and provide an analog signal
at 4 kHz with a constant delay of 48ms. These electrodes complies
with the requirements put forth by the Medical Device Directive
93/42/EEC, and we comply with its intended use. The EMG elec-
trodes were attached in accordance with the recommendations of
the SENIAM project (Hermens et al., 2000). Before the experi-
ment, the subjects were asked to wash their arm with water; no
soap was used. For an optimal EMG signal, the respective part
of the skin was again moistened with water. As a result of earlier
prestudies, we have chosen in total six muscles to be relevant for
our experimental procedure: two extrinsic index flexor muscles
(FDP and FDS), two extrinsic index extensor muscles (EIP and
ED), and two interossei muscles in the hand (FDI and SDI; see
Table 1). Please note that even if SDI inserts at the middle fin-
ger, we found a strong influence on our measurements and thus
decided to include it.

Within the earlier prestudies, which were conducted without
any tests for significance and thus not published, we analyzed in
a force task the influence of index finger stiffness only. We found
similar stiffness values and force–stiffness relations as measured
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TABLE 1 | Investigated muscles and their function (Schünke et al., 2005).

Muscle Abbreviation Function

M. flexor digitorum
superficialis

FDS Wrist flexion; flexion of the
metacarpophalangeal and the proximal
interphalangeal joints of index, middle,
ring, and little finger

M. flexor digitorum
profundus

FDP Wrist flexion; flexion of the
metacarpophalangeal, the proximal
interphalangeal, and the distal
interphalangeal joints of index, middle,
ring, and little finger

M. extensor
digitorum

ED Extension of the metacarpophalangeal,
the proximal interphalangeal, and the
distal interphalangeal joints of index,
middle, ring, and little finger

M. extensor indicis
proprius

EIP Extension of the metacarpophalangeal,
proximal interphalangeal, and distal
interphalangeal joints of the index finger

Mm. interossei
dorsales I/II

FDI/SDI Flexion of the metacarpophalangeal
joints of the index and middle finger;
extension and abduction of the
proximal and the distal interphalangeal
joints of the index and middle finger

in a pinch grasp. Since we found the index finger predominating
the measured grip stiffness, we concluded the thumb to be much
stiffer than the index finger. Thus, within this study, we refrained
from measuring EMG of corresponding muscles of the thumb
(flexor pollicis longus, extensor pollicis brevis, and extensor pol-
licis longus).

Furthermore, we tested measuring the adductor pollicis mus-
cle as well. Due to strong sweating and large movement of the
underlying skin for the pinch grip, the electrodes took off very
rapidly, which makes it impossible for us to measure this muscle.
The electrodes were placed close to the six corresponding muscles
(see Figure 4) by the subjects using palpation and visual feedback
of the EMG signal.

2.1.2. Optical Tracking
The positions of arm and fingers were continuously monitored
through optical tracking and corrected where necessary, so as to
prevent variations from kinematics. The optical tracking system
is a Vicon Motion Capture System consisting of 8 MX3+ cam-
eras and an MX Ultranet controller. The cameras were arranged
at distances between 0.5 and 1m around the forearm position
(for all subjects the same). The cameras have an optimal reso-
lution of 659 (horizontal)× 494 (vertical) pixels at 242 frames
per second, and we used them at a frequency of 400Hz. After
positioning the EMGsensors,marker sets for tracking the position
and orientation of wrist and forearm and single markers to track
the positions of the distal phalanx of index finger and thumb
were positioned (see Figure 4). The optical tracking system was
calibrated using the orientation of the table. The idea of the optical
tracking system was to give the subject and the experimenter a
feedback about variations in kinematics during the experiment
to constrain it and correct when necessary, rather than using
the measured optical tracking data to identify influences and
their significance. We decided to use optical tracking rather than

different cuffs to constrain the kinematics since it offers more
possibilities for the subjects to choose a relaxed initial posture and
avoids occupying suitable EMG positions. Furthermore, there is
no risk that the subjects apply wrist torque against the cuff, the
influence of which on the EMG signal we would not be able to
quantify.

2.1.3. Graphical User Interface
In addition, subjects saw a graphical representation of the mea-
sured data on a screen (seeFigure 3). For controlling the force, two
red dashed lines and one red solid line representing the required
force level and the measured force were depicted. Directly after
each perturbation, the measured stiffness and force were visually
presented to the subject as a dot in a force–stiffness graph. This
procedure allows the subject and the experimenter to check the
subject’s performance in the preceding trial. Furthermore, the
following kinematic information was presented to the subjects:
the planar positions of forearm, wrist, perturbator, thumb, and
index finger; the orientation of the longitudinal perturbator axis
(roll axis) in reference to the table plane; and the angular distances
of wrist and forearm in reference to their initial orientations. The
subjects were asked to keep the positions of the perturbator, the
wrist, and the forearm within tolerance ranges, depicted as circles
with a radius of 15mm around the initial captured positions. They
were furthermore asked to keep the orientations of the wrist and
the forearm (displayed as angular distances in Figure 3) close
to the initially detected ones and the roll axis of the perturbator
parallel to the table plane. Note that for a successful perturbation,
the force was controlled automatically to be kept within a certain
force range; despite that, the positions were just visually inspected
by the experimenter and not constrained to avoid fast fatigue of
the subjects. As soon as the release button for valid perturbation
conditions was pressed by the experimenter, the perturbation was
applied after a random interval between 0.5 and 2.5 s.

The measurement setup consisted of a host computer running
Linux, a real-time target computer running QNX, and a Windows
computer. The real-time computer runs a MATLAB/Simulink
model to control the electromagnet, to read out the force sensor
at 10 kHz, and to read out the EMG sensors. The marker positions
were recorded with the Windows computer and transferred to
the Linux host using the DLR communication protocol arDNet
(Bäuml and Hirzinger, 2008). A triggered recording of the Vicon
data was started at 250ms before each perturbation and lasted for
1 s. Measured force signals were calibrated before each trial since
the output of the force sensor was marginally influenced by the
heating of the electromagnet.

2.2. Experimental Procedure
A total of 10 healthy subjects, ninemale and one female (S3), seven
right and three left-handed (S5, S7, S9), age 22–27 years, and all
initially fully naive to the experiment, performed the two exper-
imental protocols, with and without isometric cocontraction, as
described below. For all subjects and experiments, the right hand
was used, be they right or left handed, which is restricted by
the design of the perturbator with its fans and optical markers.
To further assist the subjects in holding their wrist and arm
orientation stable during the measurements, a vacuum cushion
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FIGURE 3 | Graphical representation of measured pose and force data, which were presented to the subjects (representative). (Top left) Applied force
(red solid line) and goal force level (red dashed lines). All previously measured perturbations were depicted as blue dots showing the applied force and stiffness, while
the very last was highlighted in red. The estimation of the basic stiffness curve achieved in task 1 was depicted as a diagonal black dashed line. (Bottom left) The last
perturbation was depicted for visual inspection for artifacts. Furthermore, the detected mean forces before and after perturbation as well as its beginning were
shown. (Top right) The roll axis of the perturbator and its radial deflection in reference to the table plane (similar to an attitude indicator in an airplane). (Bottom right)
The position of perturbator, index, thumb, wrist, and forearm depicted as dots in a plane parallel to the table. In addition, a circle with a radius of 15mm was plotted,
which indicates a tolerance around each initial measured position. If all dots were inside each circle, a text “Posture correct” was shown in green; otherwise a
comment “CAUTION!! Correct posture!” was shown in red.

FIGURE 4 | Measurement setup. The perturbator was held by the subject
between index finger and thumb, while middle finger, ring finger, and pinky
had to be flexed. 6 EMG electrodes were placed to corresponding flexor and
extensor muscles on the hand (FDI and SDI) and forearm (FDP, FDS, EIP, and
ED). The forearm was placed in a vacuum cushion to assist subjects with
holding their wrist and arm position stable. The positions of index finger,
thumb, perturbator, wrist, and forearm and the orientations of perturbator,
wrist, and forearm were tracked with an optical tracking system.

was used, which was adjusted to each subject. Subjects were seated
in all experimental conditions.

The whole procedure lasted between 90 and 120min per par-
ticipant. No subject had a history of neurological disorder or

neuromuscular injury affecting the CNS or the muscles. All sub-
jects participated voluntarily and gave written consent to the
procedures, which were conducted in partial accordance with the
principles of the Helsinki agreement (non-conformity concerns
the point B-16 of the 59th World Medical Association Declaration
of Helsinki, Seoul, October 2008: no physician supervised the
experiments). Approval was received from the works council of
the GermanAerospace Center, as well as its institutional board for
data privacy ASDA; the collection and processing of experimental
data were approved by both committees.

At first, subjects were asked to lay their arm relaxed on the
table to measure the EMG base noise level for 5 s (see Appendix).
Furthermore, the initial poses of wrist, forearm, and perturbator
and the positions of index finger and thumb were measured in
this relaxed pose. Second, subjects were asked to fulfill maximum
voluntary contraction (MVC), i.e., to grip as strongly as they were
able to, three times for 5 s each, while themaximum grip force and
corresponding EMG levels were measured. The MVC was used to
set the prescribed force levels in the following two main tasks.

2.2.1. Task 1—Force Task without Voluntary
Cocontraction
In task 1, subjects were asked to stably hold six different visually
presented force levels using the vertical red lines (15, 25, 35, 45,
55, and 65% of MVC) within a range of ±5% of MVC without
using any kind of voluntary cocontraction. The force levels were
given to them in a randomized order four times each, leading to
a total of 24 perturbations. The perturbation is a small and fast

Frontiers in Neurorobotics | www.frontiersin.org May 2017 | Volume 11 | Article 176

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Höppner et al. Key Insights into Hand Biomechanics

displacement of 7.5mm of the pinch grip, and force is measured
to calculate stiffness using its difference before and after pertur-
bation. Since active response is not our scope, the measurement
is finished within 40ms. This procedure is similar to the one in
our previous studies (Höppner et al., 2011, 2013), except that wrist
and finger positions were measured and constrained, and EMG
wasmeasured. This force task is considered to deliver information
about the subject’s basic stiffness and its dependency on force.

A linear fit between force and stiffness was calculated from the
measured perturbations and plotted as the basic stiffness curve in
the force–stiffness graph (black dashed line in Figure 3 top left).

2.2.2. Task 2—Force Task with Isometric
Cocontraction
In task 2, subjects were asked to produce a force using the red
vertical lines and to further decouple stiffness from force by using
isometric cocontraction. Before task 2, subjects had the possibility
to learn how to increase grip stiffness voluntarily by cocontraction
using 10 to 20 trials that were not recorded. After this learning
procedure, subjects were asked to reach 5 different force levels
(15, 25, 35, 45, and 55% of MVC) given to them in a randomized
order within a range of ±5% of MVC 15 times each and use
cocontraction to produce higher stiffness at a similar force than
in task 1, leading to 75 perturbations. In other words, they had
to keep the red solid line between the two red dashed lines and
always produce stiffness higher than the black dashed line in
Figure 3. After each set of 25 perturbations, the subjects paused
for 5min. During these breaks, again the EMG base noise was
recorded for 5 s to detect strong deviations. After all perturbations,
the subjects were asked to produce three times the MVC level
for 5 s again. Note that this method does not allow commanding
certain cocontraction levels. It is unfeasible to require subjects
reaching a force–stiffness combination twice and can be probably
only achieved after days of learning, if possible at all. This method
only allows commanding the force, and the cocontraction level
depends on the subject’s effort.

2.3. Data Processing
From the measured force data and the known position pertur-
bation, we calculated the grip stiffness. We found out from the
optical tracking data how the perturbation length is distributed
to thumb and index finger. We evaluated whether and how well
stiffness and force values could be predicted from EMG data
and howEMG–force and EMG–stiffness relationships vary within
and across subjects. We analyzed whether and how much vol-
untary cocontraction and the grip force before the perturbation
influenced stiffness, EMG values, and kinematics.

2.3.1. Determination of Force and Stiffness
The methods to define the two time windows TbP before and TaP
after the perturbation are similar to the one introduced in our
previous study (Höppner et al., 2013) [see Figure 5 adapted from
the study by Höppner et al. (2013)], which is performed offline.

The force signals f were first filtered using a 21-point moving
average filter. We defined the start of the perturbation tpert as the
end of the first time interval TbP lasting 10ms. TbP is the last time
interval before tpeak (the peak after the perturbation/maximum

FIGURE 5 | Example for typical perturbation profile of a performed
force task without cocontraction. Force profile before, during, and after
perturbation starting at t= 0. In addition, the time windows TbP and TaP and
the mean of force for six force levels are depicted (mean force ETbP (f)
subtracted). The length of TaP and ttrust were found to be optimal at 18.33
and 33.3ms, respectively [adapted from the study by Höppner et al. (2013)].

of the force signal), which has a standard deviation (SD) below
5 · 10−4 N. This number was empirically determined and led to
stable results. The force before the perturbation was calculated
using TbP. Assuming that neuromuscular feedback does not have
any measurable influence within 40ms (Höppner et al., 2013), the
time ttrust, which starts after perturbation and within which one
can ignore effects of fast reflex responses, was allowed to vary
between tpert ≤ ttrust ≤ tpert + 40ms and the duration TaP between
5 and 20ms so as to minimize the objective function

Z =
1

nsub

nsub∑
i=1

 1
nlevel

nlevel∑
j=1

(
ẽ(ktask1ij)

+
1

ntrial

ntrial∑
k=1

(
ẽTaP( ftask1ijk) + ẽTaP( ftask2ijk)

)))
(1)

using all trials ntrial, levels nlevel, and subjects nsub. The operator
ẽ(·) ≥ 0 denotes the coefficient of standard error we introduced
recently (Höppner et al., 2013), which combines the coefficient of
variation and the standard error (SE), and which has no unit. The
SE compensates the SD σ(·) for sample size n assessing low sample
sizes with a higher SE; the coefficient of variation is a normalized
measure of the SD and compensates for the sample mean µ(·).
Since the objective function equation (1) mixes data sets of differ-
ent size (force and stiffness) and from different dimensions (time
window length and number of repetitions), we had to compensate
the SD σ(·) for both. The minimum of this cost function mini-
mizes the variation of resulting stiffness values k measured under
exactly the same conditions (which is true for task 1, only) and the
oscillations in force within time interval TaP of both tasks. Since
subjects cannot produce the exact same cocontraction level twice
(see section Experimental Procedure), and thus, the experimental
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conditions between perturbations in task 2 cannot be trusted
to be identical, the part of the objective function that accounts
for variations in measured stiffness considers task 1, only. The
stiffness k of each trial was calculated using

k =
ETaP( f) − ETbP( f)

xaP − xbP
, (2)

where ETbP(·) and ETaP(·) denote the average over time intervals
TbP and TaP before and after perturbation. Note that the dis-
placement xaP − xbP was for all experimental conditions constant
(see section Device Description). The length of the second time
interval TaP and its end ttrust were found to be optimal under
named constraints at 18.3 and 33.3ms, respectively.

For investigating intrasubject and intersubject variability, force
and stiffness were normalized subjectwise by their maximum
values and divided by their SDs.

The influence of both tasks on the stiffness was analyzed statis-
tically, as explained in the paragraphMethods for Testing Statistical
Significance below.

2.3.2. Evaluation of Optical Tracking Data
Since the optical tracking data were sometimes subject to artifacts,
we detected the beginning of the perturbation within these data
for each trial manually and synchronized the data sets from the
real time and windows machine manually. For determining finger
and thumb displacement caused by the perturbation, we applied
the same time windows as for estimating stiffness from force.
Furthermore, themeasurements of the single markers at the index
finger and thumb were not stable and sometimes flipped. Thus,
we implemented a procedure that allocates these two markers
according to their distance from the perturbator.

In addition, these twomarker positions sometimes switched for
a few milliseconds to unreasonably high values or to exact zero,
which we detected automatically and discarded as missing infor-
mation. For evaluating the kinematics, we used two main metrics,
the SD of the distance to describe the variation in position and,
if available, the SD in angular distance to describe the variation
in orientation (see section Appendix). While the distance was
calculated using the Euclidean norm, we calculated the angular
distance between two rotation matrices R1 and R2 according to
the study by Stillfried et al. (2014):

angdist := arccos
(

trace(R2 · R1
−1) − 1

2

)
. (3)

Since the kinematic position was controlled to be kept stable
and not commanded per se, we refrained from analyzing the
influence of kinematics on stiffness and from drawing wrong
conclusions. Thus, its remaining influence is still part of the
measurement noise.

2.3.3. Processing of the EMG Data
The oversampled EMG signal (analog card sampling inside the
real-time target computer rate 10 kHz; sampling rate of the EMG
signal provided by the Delsys TrignoWireless EMG system 4 kHz)
was filtered offline using a delay-free second-order Butterworth
bandpass filter between 25 and 450Hz. The produced muscular

activity was evaluated using the average rectified value (ARV)
over a time frame of 200ms before the perturbation. From the
relaxation task, a steady time window of about 500ms was chosen
manually (identical for all electrodes within a task), representing
the EMG base noise level. The base noise of each electrode was
subtracted from the EMG data subjectwise. EMG data were nor-
malized by their maximum values and divided by their SDs for
each electrode and each subject.

2.3.4. Regression of Force and Stiffness from
EMG and Evaluation of Its Intrasubject and
Intersubject Variability
We built regression models of force and stiffness from EMG
using fi = β1 + β · EMG and ki = β1 + β · EMG + βn · fi.
A clear focus is set on intersubject regression, since it allows
for a subject-independent measurement of force and stiffness
from muscular activity for teleoperating compliance of modern
robotic hands. We divided all force and stiffness data of each
subject by their SDs, since they are expected to vary considerably
between subjects. The regressed models are cross-validated; for
intrasubject regression, we predicted each trial subjectwise by
building a model regressed from all other trials (leave-one-trial-
out; see section Appendix), while for intersubject regression, we
predicted all trials of one subject with a model regressed from
all other subjects (leave-one-subject-out). As a measure of each
model fitness, the cross-validated coefficient of determination
R2 was used. For calculating the intrasubject R2 cross-validated
values the number of required models equals the number of
perturbations per subject (leave-one-trial-out) and for the
intersubject R2 cross-validated values the number of required
models equals the number of subjects (leave-one-subject-out)
were used. Since we expected a non-linear dependency between
measured EMG and force, we tested if taking the square root
(Hogan, 1984) or square (Shin et al., 2009) of all EMG data
improves the quality of the linear fits in force and stiffness.

2.3.5. Methods for Testing Statistical Significance
For significance testing, we first performed a multivariate two-
way repeated-measure MANOVA to reveal whether there are
significant influences of the factors task and force level and their
interaction on the obtained dependent variables stiffness, kine-
matics, and EMG values. For the single dependent variables, we
performed a univariate two-way repeated-measure ANOVA with
a post hoc Tukey’s honestly significant difference (THSD) test
to reveal significant patterns of the two factors. Moreover, for
testing significance of a correlation, we used a standard function
in MATLAB, which provides a p value based on results of a t-test
testing differences in variances. Equality of variances was tested
using a two-sample F-test. Finally, Steiger’s z-test was used to
investigate differences between correlations (Steiger, 1980).

3. RESULTS

The results of ourmeasurements are shown as force–stiffness plots
in Figure 6. The results are depicted as dots denoting the single
perturbations. For both tasks, a linear regression between force
and stiffness over all values is shown. For task 1, we additionally
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FIGURE 6 | Measured grip stiffness and its dependency on grip force. The results are depicted as dots denoting the single perturbations. For both tasks, a
linear regression between force and stiffness over all values is shown. For task 1, we additionally calculated the corresponding coefficient of determination R2

task1 as a
measure of linearity.

calculated the corresponding coefficient of determinationR2
task1 as

a measure of linearity.
The effect of force production and voluntary cocontraction on

the normalized electromyogram of each of the six electrodes is
depicted in Figure 7.

We performed a multivariate two-way repeated-measure
MANOVA—including the dependent variables stiffness, EMG,
thumb, and index finger displacements—to reveal whether there
was a significant influence of the factors task and force level. The
results showed that both factors (p≤ 0.001) and their interaction
(p≤ 0.05) have a significant influence on the obtained results.

Concerning effects of learning and fatigue, we found no signif-
icant correlation between trial number to both force and stiffness
for the experimental condition of task 1. There is a significant pos-
itive correlation for subject S6 between trial number and stiffness
and a significant negative correlation for subject S5 between trial
number and force for the experimental condition of task 2.

3.1. Ability to Cocontract and Decouple
Stiffness from Force
The linear regressions in Figure 7 show the expected increase
of activations across all electrodes from task 1 to task 2. Results
of Figure 6 reveals clearly the expected influence of volun-
tary cocontraction on stiffness. Performing a univariate two-way
repeated-measure ANOVA for the dependent variable stiffness
showed that both factors task and force level (p≤ 0.01) are sig-
nificant, but their interaction is not significant. Post hoc THSD
tests revealed a significantly larger stiffness within task 2 and—as
might be expected—an always increasing stiffness with force level
(p≤ 0.0001). Moreover, two measures for the ability to decouple
stiffness from force are given in Table 2 for the different force
levels over the pooled trials of all subjects. The stiffness values
are normalized per subject by their maximum value. The baseline
stiffness at each force level is given in the first and third row as the
mean of stiffness in task 1, ⟨k∗

task1i⟩, and its SD s(k∗
task1i), in which
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FIGURE 7 | Normalized force depending on normalized EMG of all 10 subjects for the 6 different EMG electrodes. The black dots denote the results of
task 1, and the red ones denote the results of task 2. In addition, a linear regression is depicted for both. The coefficient of determination is given for a linear fit of
each single task and both tasks together.

subjects are asked to produce simply force without cocontraction.
In the second and forth row, the mean stiffness of task 2, ⟨k∗

task2i⟩,
and its SD s(k∗

task2i) are given, in which the subjects try to increase
stiffness by cocontraction. The difference ⟨k∗

task2i−k∗
task1i⟩ and their

ratio ⟨k∗
task2i/k

∗
task1i⟩ in the fifth and sixth row are two different

measures exhibiting the average voluntary increase in stiffness
through cocontraction.

3.2. Kinematics
Beside minimizing the variation in kinematic orientation and
position during the experiments, the kinematic data reveal
insights on how the total perturbation length of 7.5mm is dis-
tributed between thumb and index finger and give an indication
of the relative stiffnesses of the two digits. Table 3 provides the
results of the finger and thumb perturbation displacements for
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all subjects with respect to the wrist frame, their average values,
and SDs in percent; all displacements are divided by the total
perturbator displacement of 7.5mm (2.5% of the data is zero and
thus deleted; see sectionData Processing). Note that we related the
thumb and index finger position before and after perturbation to
the wrist frame instead to the world coordinate frame to get rid
of forearm movements interpreted as grip displacements; anyway,
both lead to similar results (world coordinate frame related data
not listed).

Performing univariate two-way repeated-measureANOVAs for
the dependent variables thumb and index finger displacements
showed that the factor force level is significant for both variables
(p≤ 0.05), but the factor task is significant for the index finger
displacement (p≤ 0.01), only. Post hoc THSD tests revealed no
significant pattern for both factors and variables.

For details about how subjects performed in keeping the prede-
fined position, please have a look into the Appendix.

TABLE 2 | Mean difference and ratio between normalized stiffnesses of the
two tasks for the single force levels.

10% MVC 20% MVC 30% MVC 40% MVC 50% MVC

⟨k∗
task1i

⟩ 8.7% 18% 22% 35% 40%
⟨k∗

task2i
⟩ 23% 32% 42% 56% 66%

s(k∗
task1i

) ±5.7% ±7.7% ±8.7% ±16% ±15%
s(k∗

task2i
) ±12% ±14% ±16% ±17% ±16%

⟨k∗
task2i

− k∗
task1i

⟩ 15% 14% 21% 21% 26%
⟨k∗

task2i
/k∗

task1i
⟩ 5.3 2.2 2.2 1.9 1.9

The mean values in stiffness ⟨k∗
task1i

⟩ and ⟨k∗
task2i

⟩ of the two tasks and their SDs
s(k∗

task1i
) and s(k∗

task2i
) are given. In addition, mean difference in normalized stiffness

⟨k∗
task2i

− k∗
task1i

⟩ and their ratio ⟨k∗
task2i

/k∗
task1i

⟩ for all force levels in percent of MVC over
all subjects are listed. Note that the index i denotes the mean over subjects.

3.3. Regressing Force and Stiffness
from EMG
We performed an intersubject regression of stiffness and force
from EMG (see Tables 4 and 5). The results showed a large
influence of the muscular activity of FDI, SDI, and force to the
regression of stiffness, while all electrodes except EIP contributed
equally to the regression of force. The coefficient of determination
of both models highly differs between both regressions across
all subjects: 72± 12% and 33± 18% for regressing stiffness and
force, respectively. The mean correlation coefficients and their
SDs between stiffness, force, and muscular activity across all sub-
jects are listed in Table 6. By using these values, we conducted
a paired t-test on the Fisher-transformed correlation coefficients
on whether the correlation of EMG to force and stiffness sig-
nificantly differs across subjects. The results show that only for
the two intrinsic muscles in the hand, the correlation of EMG to
stiffness significantly differs in comparison to its correlation to
force (p≤ 0.001). A detailed analysis of the correlations between
force, stiffness, and muscular activities for each of the two tasks
can be found in the Appendix. Moreover, an overview on the con-
tributions from the three groups of muscles—extrinsic extensors
and flexors and interossei—can be found here.

Since literature inconsistently reports, we tested whether taking
the square root or square of EMG data improves the quality of
the linear fits of force and stiffness to EMG using Steiger’s z-test
(Steiger, 1980). The tests showed that the plain muscular activity
provides a better correlation to both force (p< 0.001) and stiffness
(p< 0.05) than taking the square of muscular activation. More-
over, no clear improvement can be found by taking the square
root in comparison with plain muscular activity. Finally, taking
the square root of muscular activity in comparison to the square
clearly improves its correlation to force (p< 0.01), but not to

TABLE 3 | Perturbation displacement of index finger and thumb.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± SD

Index xTb/aP [%] 67 63 65 85 67 56 82 63 77 71 69
s [%] ±7.7 ±8.5 ±22 ±13 ±7.4 ±10 ±8.7 ±14 ±13 ±13 ±15
Thumb xTb/aP [%] 31 33 35 28 24 38 23 29 31 28 30
s [%] ±4.3 ±8.9 ±5.8 ±8.0 ±4.0 ±8.3 ±6.3 ±11 ±15 ±7.3 ±9.7
Total xTb/aP [%] 98 96 100 112 91 94 104 93 108 98 100
s [%] ±9.9 ±4.9 ±21 ±10 ±5.3 ±13 ±10 ±6.6 ±23 ±12 ±15

Mean and SD s of index finger and thumb displacements xTb/aP
between before and after perturbation in [%]. The displacements are divided by the total perturbator displacement of

7.5mm. 2.5% of the data set was deleted.

TABLE 4 | Intersubject regression of stiffness from force and EMG.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

EMGFDP +++ – – ++ . – – – – –
EMGFDS – – + – . ++ . ++ + +
EMGEIP – – – ++ – – – . – –
EMGED – – – – – – – – + .
EMGFDI +++ +++ +++ +++ +++ +++ +++ +++ +++ +++
EMGSDI +++ +++ +++ +++ +++ +++ +++ +++ +++ +++
Force +++ +++ +++ +++ +++ +++ +++ +++ +++ +++
R2 [%] 61 90 67 70 79 62 90 57 68 76

–, no significance; ., p≤0.05; +, p≤0.01; ++, p≤0.001; +++, p≤0.0001.
The significance of the respective coefficients and models’ coefficient of determination are listed for each subject. Note that the model is cross-validated (leave-one-subject-out).
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TABLE 5 | Intersubject regression of force from EMG.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

EMGFDP + ++ +++ + +++ +++ +++ +++ +++ +++
EMGFDS ++ ++ +++ – +++ +++ +++ +++ +++ +++
EMGEIP . – – – – – – – – –
EMGED +++ ++ +++ +++ +++ ++ +++ +++ +++ +++
EMGFDI + ++ + + +++ +++ +++ ++ +++ ++
EMGSDI +++ +++ +++ +++ +++ +++ +++ +++ +++ +++
R2 [%] 15 55 9 14 26 38 47 53 24 49

–, no significance; ., p≤0.05; +, p≤0.01; ++, p≤0.001; +++, p≤0.0001.
The significance of the respective coefficients and models’ coefficient of determination are listed for each subject. Note that the model is cross-validated (leave-one-subject-out).

TABLE 6 | Correlation between stiffness, force, and EMG.

r [ ] Stiffness Force

EMGFDP 0.53±0.25 0.32±0.31
EMGFDS 0.55±0.20 0.45±0.33
EMGEIP 0.48±0.30 0.38±0.38
EMGED 0.57±0.25 0.52±0.35
EMGFDI 0.81±0.10 0.57±0.14
EMGSDI 0.76±0.10 0.53±0.11
Force 0.65±0.19 –

Mean and SD of correlation coefficients between stiffness, force, and muscular activity
across subjects and tasks. By using these values, we conducted a paired t-test on the
Fisher-transformed correlation coefficients on whether the correlation of EMG to force and
stiffness significantly differs across subjects. The results show that only for the two intrinsic
muscles FDI and SDI, the correlation of EMG to stiffness significantly differs in comparison
to its correlation to force (p≤ 0.001).

stiffness. Conclusively, all reported results and analyses focusing
on regressing stiffness and force fromEMGuse the plainmuscular
activity.

For details about intrasubject regression, please have a look into
the Appendix.

4. DISCUSSION AND CONCLUSION

In this article, we analyzed the role of voluntary cocontraction for
decoupling grip stiffness from its natural increase with grip force.
To measure influences from cocontraction only, we minimized
effects of variabilities in kinematics by providing the subject a
visual feedback of the current hand and armposture. In a first task,
we asked subjects to apply a set of force levels several times with-
out the use of cocontraction to measure the basic force–stiffness
coupling. In a second task, we asked subjects to decouple stiffness
from force using voluntary cocontraction while holding a specific
force level. We measured EMG to investigate the possibility of
regressing stiffness and force from the measurement of muscular
activity.

4.1. Ability to Decouple Stiffness
from Force by Cocontraction
The results show that the subjects were able to increase grip
stiffness between 15 and 26% of maximum stiffness by the use
of cocontraction. By using the difference ⟨k∗

task2i − k∗
task1i⟩, the

results show an increasing ability with force (r= 0.30, p< 0.05).
Milner and Franklin reported in the study by Burdet et al. (2013)

based on results of Milner (2002) a 5-fold range in modulation of
wrist stiffness at zero net joint torque. Similarly, subjects in our
experiment were able to modulate stiffness by cocontraction in
a 5.2-fold range for the lowest force level. On average, subjects
were able to vary stiffness ⟨k∗

task2i / k
∗
task1i⟩ with cocontraction by

a 2.7± 2.2-fold range (maximum at first force level of subject S5
with a 22-fold and minimum at second force level of subject S7
with a 0.8-fold modulation in stiffness).

The results provide an overview to what extent the human is
able to decouple grip stiffness from force using cocontraction,
while probably revealing only parts of it: First, subjects in our
study had problems to stably hold the lower force levels at high
cocontraction, where effects of motor noise on hand shaking
are considerably higher (which confirms the supposition that
cocontraction is the wrong strategy to stably hold a force level).
Similarly, Kearney and Hunter (1990) reported in a study per-
formed at the human ankle that subjects had difficulties achieving
cocontractions involving high levels of muscle activations at zero
net torque. Thus, subjects in our experiments probably did not use
their full ability to decouple stiffness from force for the lower force
levels, while they did for the higher ones. Maybe the strategy we
used in our experiments of restricting subjects to exactly hold a
force level is not the optimal solution for the lower levels. A better
strategymight bemonitoring the steadiness of force as a perturba-
tion criterion, while the experimenter supervises the force range
to help subjects reaching the higher cocontraction levels for the
lower forces. Nevertheless, there is evidence suggesting that neural
mechanisms of muscle inhibition and excitation exist, which limit
the ability to produce all possible sets of cocontractions, probably
to avoid harming the muscular system (De Luca and Mambrito,
1987). On the other hand, Milner (2002) reported that subjects
were not able to voluntarily apply maximal cocontraction, but
could possibly increase it by days of training similar to the study
by Darainy et al. (2004). Furthermore, task 2 in our experiments
was performed up to forces of 55% MVC, only. As we found
in our study (Höppner et al., 2011), this constraint avoids fast
fatigue of corresponding muscles for subjects during this long-
lasting experimental procedure, but does not allow us to draw
conclusions about forces up to 100% MVC.

To have similar cocontraction ranges at all force levels, we com-
manded in a former version of the experiments a combination of
applied force and EMG similar to the work done byOsu andGomi
(1999), Osu et al. (2002), and Shin et al., 2009. We merged the
different EMG signals into one lumped signal and asked subjects
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to hold different combinations of force and summarized EMG; so
instead of commanding stiffness, we commanded an EMG level,
which should be related to cocontraction in some way. Due to the
high density of muscles in the forearm lying in different layers
and thus high cross talk of multiple muscles, subjects learned to
produce the EMG levels and simultaneously learned to reduce
the metabolic costs for producing it. This resulted in subjects
successfully solving the task without producing an increase in the
measured grip stiffness. This led to the decision for a redesign of
the experiments and to command grip stiffness per se rather than
a combined EMG level.

Anyway, similar to our results reported above, Akazawa et al.
(1983) found that the reflex responsiveness and stretch-evoked
stiffness increase linearly with cocontraction as defined in their
article. Also, the slope of this increase is steeper, the larger the
tonic force is, corresponding to our result of an increasing stiffness
modulation capability with higher force. However, please note
that Akazawa et al. (1983) only compared the cocontraction levels
of two tonic force levels achieved in the constant-load position
control task and measured reflex-affected stiffness.

Finally, it needs to be mentioned that our finding of an increas-
ing ability for decoupling force and stiffness by cocontraction is
opposing the torque–stiffness plots of existing VSA mechanisms
(as mentioned in section Introduction), which have a rather lim-
ited ability to decouple stiffness from torque, especially for the
higher torques. The force–stiffness plots we measured within this
study allow for the first time for a suitable insight and can be
helpful information for robotic engineers designing VSAs.

4.2. Finger Displacement
The evaluation of tracked kinematics show that for all experimen-
tal conditions the index finger got perturbed by about 2/3 and
the thumb by about 1/3 of the whole displacement (see Table 3).
This means that the thumb is approximately twice as stiff as the
index finger. Assuming that both, the measured intrinsic stiffness
and the force correspond to the number of attached crossbridges
[(Burdet et al., 2013), p. 41f.], this means that the thumb is also
approximately twice as strong as the index finger. This theory is
backed by the findings of Olafsdottir et al. (2005), who showed
MVC finger forces of thumb and index of 73± 18 and 33± 6.6N,
respectively. During their measurements, all digits were activated
simultaneously and the thumb opposed the other fingers. Nev-
ertheless, it remains unclear whether this ratio is dominated by
stiffer muscles or a difference in moment arms of index finger and
thumb in a pinch grip.

4.3. Regressing Stiffness and Force
from EMG
We built for each subject a linear model using all other subjects
and used it to estimate the stiffness/force data based on muscular
activity and force (leave-one-subject-out cross-validation). Even
if the subject is unknown, these models provide surprisingly good
results for the regression of stiffness. However, this holds for the
regression of stiffness, only, and not for force. What is the reason?
The significances of the coefficients for these two regressions show
that the two intrinsic muscles in the hand had an unexpectedly
high influence on the modeling of stiffness, while all muscles

contributed almost equally to the regression of force. Looking
into correlations between stiffness, force, and muscular activities
shows a comparatively high correlation of the intrinsic muscles
to stiffness (see Table 6). Moreover, the SDs of these correlations
are significantly less for the two intrinsic muscles than for the
extrinsic ones (p< 0.05) meaning that these muscles provide a
stable correlation across subjects. This is possibly a result of higher
signal-to-noise ratio (SNR) for the intrinsic muscles. Since the
measured surface EMG signal involves the EMG pattern from
other, deep, muscles—which we interpret as a lower SNR for the
extrinsic muscles—the correlation of forearm muscles dropped,
while the one of the intrinsic muscles in the hand did not. Sim-
ilarly, Maier and Hepp-Reymond (1995) reported for almost all
intrinsic hand muscles about “. . .high correlations to grip force
with low variability, whereas the majority of the extrinsic muscles,
with the exception of the long flexors, have lower correlations and
higher individual variability. . .” in an isometric pushing task.1
Conclusively, the possibility for a suitable regression of stiffness
as it is influenced by voluntary cocontraction across subjects is
caused by a high and stable correlation between stiffness and
intrinsic muscular EMG across all subjects.

But can we conclude from these differences for regressing force
and stiffness that the interossei predominate the decoupling of
stiffness, perhaps by having a steeper increase of stiffness with
force, while force is produced by all groups of muscles equally?
Or is it just the case that the intrinsic muscles are simultaneously
activated with muscles that we do not measure with EMG, but
which contribute to the measured stiffness?

First, we need to acknowledge that prestudies led us to the
wrong conclusion of a predominant role of the index finger on
the measured stiffness, based on which we decided to exclude
muscles activating the thumb from the EMG measurements. But
since we find the thumb to be just twice as stiff, we cannot
reason a dominating role of the index finger with certainty. Thus,
we cannot clarify plausibly if it is causality (intrinsic muscles
predominate cocontraction) or just correlation (intrinsic mus-
cles are synergistically activated) from the conducted experi-
ments. But the result can be interpreted from a biomechanical
point of view: coactivating extrinsic flexor and extensor muscles
introduces high forces on the finger joints. This may lead to
instability at—in particular—the metacarpophalangeal joint: it
could reduce the strain by an uncontrolled sideways, abduction-
like, movement. The interossei muscles, connecting the proxi-
mal and metacarpal bones at each side of the metacarpopha-
langeal joint, can be used to stabilize this movement—and appar-
ently do. A somewhat similar mechanism can be found, e.g.,
during pinch grip: extrinsic extensor muscles—namely extensor
carpi ulnaris and extensor carpi radialis longus/brevis—are acti-
vated simultaneously with flexor muscles to prevent the wrist
from moving; i.e., the intent is to contract the flexor muscles,
and the extensor muscles are activated involuntarily to provide
support.

1Please note that the authors of Maier and Hepp-Reymond (1995) asked subjects
for the production of low isometric forces, only, and not for voluntary cocontrac-
tion. Similarly, we reported an overview of correlation coefficients between force,
stiffness, and muscular activities for both tasks in the Appendix.
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Moreover, a publication from Milner et al. (1995) argues in
an opposite way: from an investigation of moment arms and
physiological cross-sectional areas of the first dorsal interosseus
and lumbricalis muscles, they revealed that these muscles must
have a predominant role for controlling the force direction at the
index finger, while the extrinsic muscles in the forearm act as
stabilizers. Hence, they concluded that extrinsic muscles should
contribute much more to finger stiffness.

It needs to be acknowledged that the SDI does neither control
index finger nor thumb and controls the movement of the middle
finger, only (see Table 1). However, due to a high influence we
measured in prestudies, we decided to include this electrode.
The performed experiments prove this initial finding with a large
influence of the gathered SDI activity on stiffness. This is possibly
caused by either a synergistic activation of this muscle or the
measurement of cross talk from other muscles, e.g., first palmar
interosseus.

Note that we investigated the use of non-linear regressionmod-
els, as well, to improve the results: Gaussian processes (Rasmussen
and Williams, 2006), linear regression with random Fourier fea-
tures (Rahimi and Recht, 2007), and neural networks. None of
these methods showed a significant improvement of model fitness
over the linear approach, which is why we neglect them in this
study. We hypothesize that the small amount of data available
(approximately 100 data points for 10 subjects) does not allow to
fully leverage the power of more expressive models.

On the basis of the results in the studies by Joyce and Rack
(1969) and Vrendenbregt and Rau (1973), Hogan (1984) reported
a linear dependency between muscle force and measured EMG
activation until 30% of maximum voluntary contraction and a
muscle force proportional to the square root of the pooled firing
rate. Contrary, Shin et al. (2009) proposed that muscle tension
follows a quadratic function of measured activation. Thus, we
tested whether applying a square or square root to our processed
EMG data would improve the fit. The results show that taking
the square root or square of muscular activity neither improves
its correlation to force nor improves its correlation to stiffness.
Moreover, the results show that taking the square even makes the
correlations worse. However, our measurements include levels of
55% of MVC only and do not allow us to draw conclusions for the
higher force levels.

All in all, the intrinsic muscles in the hand are found to
dominate our regression of stiffness and not of force, while the
experiment design does not allow us to reveal whether the stiff-
ness itself is dominated by these muscles. A good possibility to
answer this question might be the use of functional electrical

stimulation placed on respective extrinsic and intrinsic muscles
as performed for the human hand (Lauer et al., 1999) or for the
intrinsic plantar foot muscles in the study by Kelly et al. (2014),
which was not the focus of the experiments performed in this
study. Nevertheless, the result is promising: the high SNR and
high correlation to stiffness of the intrinsic hand muscles allow
for a continuous measurement of grip stiffness and to explain
on average 72± 12% of its variance without any prior knowledge
about the subject, i.e., calibration of stiffness to force and EMG
in advance. This information allows to continuously teleoperate
finger stiffness to actively impedance controlled robotic hands, as
well as hands based on VSAs (Grebenstein et al., 2011). Moreover,
it allows to continuouslymeasure a task-dependent stiffness during
activities of daily living: Leidner et al. (2015) started categorizing
CompliantManipulation Tasks into a task taxonomy, e.g., by classi-
fying tasks of contact/no contact, in-hand manipulation/external
manipulation tasks, or tasks with and without deformation of the
environment. By continuously measuring stiffness of the hand,
it will be possible to measure a task dependent stiffness during
activities of daily living, such as cutting an onion, cleaning with
a sponge or connecting a plug (Leidner et al., 2015), and to add
a meaningful range of stiffness values to the derived taxonomy
matrix.
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APPENDIX

A. Kinematics
Table A1 in Appendix lists the variation in distance of all markers
over all subjects in reference to the world coordinate frame and in
reference to each other (0.7% of the optical tracking data is zero
and thus deleted). Table A2 in Appendix does the same for the
orientation of perturbator, wrist, and forearm (0.6% of the optical
tracking data is zero and thus deleted). The marker position and
orientation of the forearm of subject S8 was controlled during the
experiment but not recorded for some unknown reason. The SDof
the horizontal orientation of the perturbator is found to be ±2.95
(see Figure 3).

The displacement of the index finger is found to be slightly
decreasing (test statistics for correlation r=− 0.17; p≤ 0.001) and
the displacement of the thumb slightly increasing (test statistics for
correlation r= 0.20; p≤ 0.001) with force over all subjects, while
there is no significant correlation to stiffness. Furthermore, there
is a slight increase of index finger and thumb displacement (test
statistics for correlation r= 0.16 and r= 0.077; p≤ 0.025) with the
number of perturbations (duration of the experiment).

B. EMG Base Noise
In the relaxing task, a mean base noise ARV of 5.8± 1.7µV over
all subjects and electrodes was measured, which is consistent with
literature (Konrad, 2005).

C. Correlations between Force, Stiffness,
and Muscular Activities for Both Tasks
Figure A1 in Appendix shows the mean correlation coefficients
between force, stiffness, and the single muscle activations and
their SDs across subjects for the two tasks. Maier and Hepp-
Reymond (1995) reported for almost all intrinsic hand muscles
about “. . .high correlations to grip force with low variability,

TABLE A1 | SDs s in distance between all tracked markers.

s [mm] Thumb Index Pert. Wrist Forearm World

Thumb – ±0.72 ±0.72 ±1.7 ±3.8 ±3.9
Index ±0.72 – ±1.2 ±1.4 ±2.9 ±2.8
Pert. ±0.72 ±1.2 – ±2.3 ±3.4 ±3.4
Wrist ±1.7 ±1.4 ±2.3 – ±2.3 ±2.7
Forearm ±3.8 ±2.9 ±3.4 ±2.3 – ±2.2
World ±3.9 ±2.8 ±3.4 ±2.7 ±2.2 –

SDs in distance over all subjects for the single tracked markers index finger, thumb,
perturbator, wrist, and forearm inside TbP in [mm] in reference to each other and to the
world coordinate system. 0.7% of the data set was deleted.

TABLE A2 | SDs s in angular distance between all tracked markers.

s [◦◦◦] Pert. Wrist Forearm World

Pert. – ±3.5 ±3.0 ±3.3
Wrist ±3.5 – ±3.2 ±3.2
Forearm ±3.0 ±3.3 – ±1.4
World ±3.3 ±3.2 ±1.4 –

SDs in angular distance over all subjects for the single tracked markers perturbator, wrist,
and forearm inside TbP in [

◦ ] in reference to each other and to the world coordinate system.
0.6% of the data set was deleted.

whereas the majority of the extrinsic muscles, with the exception
of the long flexors, have lower correlations and higher interindi-
vidual variability. . .” high correlations in an isometric pushing
task.We can confirm a good correlation to force in a pure pushing
task. Moreover, the low intersubject variability for the intrinsic
muscles in comparison to the extrinsic is obvious as well in all our
experimental conditions for both force and stiffness.

Differences regarding mean values between the two tasks and
between correlations to force and stiffness are clearly visible.
While the correlations are similar for the condition of the iso-
metric pushing task 1, they differ for the condition of task 2
and the usage of voluntary cocontraction. Moreover, the strong
correlation of the intrinsic muscles to stiffness (but not force)
across both experimental conditions can be seen.

D. Regressing Stiffness and Force
from EMG
For regressing force and stiffness from the measured muscular
activity, we normalized the force and stiffness values and divided
them by their SD subjectwise (see section Data Processing).
Figure A2 in Appendix shows for each subject the mean and SD
across all values for both force and stiffness.

Tables A3 and A4 in Appendix list the results of an intra-
subject regression of stiffness and force from EMG (leave-one-
trial-out cross-validation). Similar to the results of the intersubject
regression, a dominant role of FDI and SDI can be seen for the
regression of stiffness, while all muscles contribute equally to the
regression of force. Thereby, the coefficient of determinations
are 78± 10% and 62± 14% for regressing stiffness and force,
respectively. Naturally, the intrasubject regression provides a bet-
ter fit in comparison to the intersubject regression. Again, the
regression of stiffness frommuscular activity performs better than
the regression of force.

Moreover, Figure A3 in Appendix shows plots of measured
and predicted stiffness and force data using intrasubject regres-
sion for both tasks. These plots show how much of the inde-
pendence of force and stiffness can be extracted from the EMG
signals. If the predicted force–stiffness points cover the same
area as the measured force–stiffness points, their independence
is completely retained after the prediction from EMG. If the
predicted points lie on a line, their independence is completely
lost and the information content of the EMG signal is reduced
to one.

E. Contributions of Muscle Groups to
the Regression of Force and Stiffness
Besides the influence from each single muscle and electrode,
it is of interest how the muscle groups—extrinsic flexors,
extrinsic extensors, and intrinsic interossei, with two electrodes
each—contribute to the regression of stiffness and force from
EMG. Moreover, it is of interest how much the information of
force adds to the regression of stiffness. The results of a linear
regression on intrasubject and intersubject variability of stiffness
and force from EMG (and force) are plotted in Figure A4 in
Appendix. As a measure of each model fitness, the cross-validated
coefficient of determination R2 is used. For calculating the intra-
subject R2 cross-validated values the number of required models
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FIGURE A1 | Correlation between force, stiffness, and muscle activations. Mean correlation coefficients between force, stiffness, and the single muscle
activations and their SDs across subjects for the two tasks. The SDs across 10 subjects are depicted as error bars. The diagrams on the top, middle, and below
show the results of task 1, task 2, and for both tasks, respectively. Note that the results of the diagram are redundant to the information provided in Table 6.

FIGURE A2 | Mean and SD in force and stiffness for each subject. The bar depicts the mean and the error bar the corresponding SD for both force and
stiffness for each subject across all values.
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equals the number of perturbations per subject (leave-one-trial-
out) and for the intersubject R2 cross-validated values the number
of required models equals the number of subjects (leave-one-
subject-out). This analysis provide 4 interesting results: (a) Using

TABLE A3 | Intrasubject regression of stiffness from force and EMG.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

EMGFDP +++ – . – +++ – + – ++ –
EMGFDS + – – – – – – – ++ –
EMGEIP – – . – – – . – ++ .
EMGED – – – – – – – . + +
EMGFDI – +++ + ++ +++ +++ +++ – +++ +
EMGSDI . +++ – – ++ + ++ + ++ –
Force +++ +++ +++ + – – +++ – – +
R2 [%] 76 89 68 73 88 67 89 61 83 83

–, no significance; ., p≤0.05; +, p≤0.01; ++, p≤0.001; +++, p≤0.0001.
The significance of the respective coefficients and models’ coefficient of determination
are listed for each subject. Note that for calculating the coefficients of determination the
model is cross-validated (leave-one-trial-out).

muscular activity of the intrinsic muscles in the hand to regress
stiffness provides a considerably better fit than using EMG of
any extrinsic muscle group, which is true for both intrasubject
and intersubject regression. (b) Using the intrinsic muscle, EMG
works considerably better than just using force for the regression
of stiffness. What’s more, it seems that adding additional state
information, namely, the measured grip force, does not add much
to the regression of stiffness as it is decoupled from force. (c)
Similar to the analysis of correlation coefficients in Figure A1
in Appendix, the SD of the intrinsic muscles to regress stiffness
across subjects is comparably low, which is why these muscles
allow for a suitable intersubject regression, as well. (d) The regres-
sion of force from EMG works totally differently, i.e., there is no
dominating role of the intrinsic muscles. If at all, the extrinsic
extensors seem to dominate here. But for an adequate intrasubject
regression of force from EMG, the information of all muscles is
necessary. While the regression of stiffness is found to be working
for intersubject regressions as well, an intersubject regression of
force from EMG is not.

TABLE A4 | Intrasubject regression of force from EMG.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

EMGFDP +++ +++ – ++ – – – – + .
EMGFDS ++ – + +++ +++ . – ++ – +
EMGEIP – – +++ +++ + + + + +++ +
EMGED – +++ + +++ + +++ – +++ +++ ++
EMGFDI + – ++ ++ – – – ++ – .
EMGSDI . ++ . – – – – – – –
R2 [%] 64 65 46 77 44 70 47 85 56 66

–, no significance; ., p≤0.05; +, p≤0.01; ++, p≤0.001; +++, p≤0.0001.
The significance of the respective coefficients and models’ coefficient of determination are listed for each subject. Note that for calculating the coefficients of determination the model
is cross-validated (leave-one-trial-out).
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FIGURE A3 | Independence of predicted data of intrasubject regression. Results of multiple linear regression of stiffness k(f,EMG) and force f (EMG) and their
coefficients of determination R2 in comparison to the measured values for both tasks. If the predicted values are located more or less on a line, the two regression
models are most likely not linear independent, and the content of information of the respective EMG signals reduces to one.
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FIGURE A4 | Mean of intrasubject and intersubject coefficients of determination R2 for different linear models between stiffness, force, and EMG and
results of performed statistical testing. Mean leave-one-out cross-validated coefficient of determination R2 for intrasubject (left; leave-one-trial-out) and
intersubject (right; leave-one-subject-out) stiffness and force over all subjects for regressing stiffness from EMG or force, from EMG and force, and for regressing
force from EMG using different muscle groups. The SDs over 10 subjects are depicted as error bars.
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