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In this paper, a novel methodology for enhanced classification of functional near-
infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and
rest; mental rotation (MR) and rest] brain–computer interface (BCI) is presented. First,
fNIRS signals corresponding to MI and MR are acquired from the motor and prefrontal
cortex, respectively, afterward, filtered to remove physiological noises. Then, the signals
are modeled using the general linear model, the coefficients of which are adaptively
estimated using the least squares technique. Subsequently, multiple feature combinations
of estimated coefficients were used for classification. The best classification accuracies
achieved for five subjects, for MI versus rest are 79.5, 83.7, 82.6, 81.4, and 84.1%
whereas those for MR versus rest are 85.5, 85.2, 87.8, 83.7, and 84.8%, respectively,
using support vector machine. These results are compared with the best classification
accuracies obtained using the conventional hemodynamic response. By means of the
proposed methodology, the average classification accuracy obtained was significantly
higher (p<0.05). These results serve to demonstrate the feasibility of developing a
high-classification-performance fNIRS-BCI.

Keywords: functional near-infrared spectroscopy, brain–computer interface, general linear model, least squares
estimation, adaptive estimation, support vector machine

INTRODUCTION

A brain–computer interface (BCI) system bypasses the peripheral nervous system and pro-
vides means of communication for patients suffering from motor disabilities or in a persis-
tent vegetative state using devices, such as robotic arms or other prostheses (Wolpaw et al.,
2002). The brain signals are acquired either invasively or non-invasively. Although the qual-
ity of brain signals acquired using invasive methods is better than those using non-invasive
methods, their acquisition entails extensive surgical risk (Wester et al., 2009). With non-invasive
methods, on the other hand, there is no such risk. Non-invasive techniques include electroen-
cephalography (EEG) (Wolpaw et al., 2002; Pfurtscheller et al., 2003; Salvaris and Sepulveda,
2010; Cong et al., 2011, 2015; Jin et al., 2011, 2014, 2015; Choi, 2013; Chen et al., 2015),
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functional magnetic resonance imaging (fMRI) (Enzinger et al.,
2008; Sorger et al., 2009), and functional near-infrared spec-
troscopy (fNIRS) (Ferrari et al., 1985; Kato et al., 1993; Coyle et al.,
2004, 2007; Naito et al., 2007; Naseer and Hong, 2013; Naseer
et al., 2014; Noori et al., 2017). Over the course of the past decade,
fNIRS-based BCI systems have been the focus of considerable
research interest and discussion due to their portability, affordable
cost and better temporal resolution relative to fMRI. Moreover,
compared with the EEG system, they offer better spatial resolu-
tion and a superior signal-to-noise ratio (Hu et al., 2012; Hong
et al., 2014). In general, fNIRS has evolved into a neuroimaging
technique that has contributed to ground-breaking advances in
the understanding of human brain functionality (Irani et al., 2007;
Aqil et al., 2012b; Ferrari andQuaresima, 2012;Hong andNguyen,
2014; Hong and Naseer, 2016; Hong and Santosa, 2016). fNIRS
utilizes near-infrared (NI) light within the 650–1000 nm wave-
length range to measure changes in the concentrations of oxy-
genated and deoxygenated hemoglobin [ΔcHbO(t) and ΔcHbR(t)]
according to the modified Beer–Lamberts Law (Delpy et al., 1988;
Villringer et al., 1993; Hoshi et al., 1994; Hoshi and Tamura, 1997).
Since the introduction of the principle of NI spectroscopy by
Jobsis (1977), fNIRS has been used effectively for functional and
structural brain imaging as well as for BCI purposes (Naseer and
Hong, 2015a,b; Nguyen et al., 2016; Zafar and Hong, 2017). The
first step in fNIRS-BCI is to acquire signals from a suitable mental
task. Over the past decade, the mental tasks used by fNIRS-BCI
researchers have beenmotor imagery (MI), mental rotation (MR),
mental arithmetic, music imagery, and letter padding (Zhang
et al., 2011a; Ayaz et al., 2013, 2014; Khan et al., 2014; Khan and
Hong, 2015). In this study, we used right-hand MI and MR as the
brain activity. Generation of control commands for fNIRS-based
BCI systems proceeds according to the following conventional
steps: first, acquisition of the desired signals; second, removal
of motion artifacts and physiological noises; third, extraction of
significant information (features), usually from the hemodynamic
signals’ physical properties; fourth and finally, classification of the
extracted features preparatory to generation of the desired control
commands. Researchers have devoted considerable efforts to the
improvement and enhancement of classification accuracies for
fNIRS-BCI, specifically by use of different features and classifiers
(Ayaz et al., 2013, 2014; Naseer and Hong, 2013; Naseer et al.,
2014; Noori et al., 2016; Qureshi et al., 2016; Khan and Hong,
2017). In this paper, we propose that features be extracted from
the estimated coefficients of the general linear model (GLM).

The GLM methodology was first employed by Abdelnour and
Huppert (2009) in a fNIRS-based BCI study. Since that time,
multipleGLM-based fNIRS studies have been performed for noise
removal and brain mapping (Hu et al., 2010; Zhang et al., 2011b,
2012; Aqil et al., 2012a; Kamran and Hong, 2013). Abdelnour
and Huppert (2009) have proposed the use of filter coefficients
obtained by Kalman filtering as the features for classification.
They assumed that different brain activities will produce different
filter coefficients, using which different signals can be classified.
Similarly, recursive least square estimation (Aqil et al., 2012a),
and wavelet transform (Khoa and Nakagawa, 2008; Abibullaev
et al., 2011; Abibullaev and An, 2012) have also been used for
brain mapping using GLM. In this study, GLM is used with least
square to estimate filter coefficient values. Afterward these values

are used to extract features. To the best of our knowledge, this is
the first work that uses filter coefficient values to extract statis-
tical features that can be used for classification. In the proposed
methodology, signals are acquired from the left motor cortex of
the brain for right-hand MI (clenching of the right hand) and
rest tasks, whereas MR (rotation of rectangular box) and rest
signals are acquired from the prefrontal cortex; these signals are
filtered to remove physiological noises and the GLM coefficients
are extracted using the least squares estimation (LSE) technique;
the feature values of these coefficients are then fed to support
vector machine (SVM) for classification. The motivation of using
GLM-based features for fNIRS data came from Abdelnour and
Huppert (2009). They showed promising results using beta (β)
values extracted from GLM as features. In this study, authors have
used GLM with least square to estimate β values. Afterward β val-
ues are used to extract features in order to calculate classification
accuracies.

MATERIALS AND METHODS

Experimental Procedure
Subjects
A total of 10 subjects participated in the experiments. Five subjects
performed MI (right-hand clenching) versus rest, whereas the
other five performed MR (rotation of rectangular box) versus
rest. The reason for introducing two different experiments was to
establish generalization of the proposed methodology. The sub-
jects were each seated on a comfortable chair in front of a display
screen and asked to restrict their body movements as much as
possible during the experiment. Verbal consentwas obtained from
all of the subjects after explaining the experimental paradigm
in detail. The subjects had little or no previous experience of
fNIRS recording. This work was approved by the Institutional
Review Board of Pusan National University. All experiments were
conducted in accordancewith the ethical standards encoded in the
latest Declaration of Helsinki. The complete details of the baseline
system (conventional methodology) can be found in Naseer et al.
(2016a,b).

Motor Imagery
The first 20 s was the rest period, required in order to set up the
baseline condition; it was followed by 20 s of a right-hand MI task
(clenching of the right hand), followed by another 20 s rest period
that allowed the signals to return to their baseline values before
the start of the next trial. This pattern was repeated 11 times; the
total duration of experiment for each subject, therefore, was 440 s.
During the MI task, the subjects were asked to imagine clenching
of their right hand with a self-paced frequency of around 1Hz;
during the rest period, they were asked to relax.

Mental Rotation
Similar to MI task in MR task the first 20 s was the rest period,
required in order to set up the baseline condition; it was followed
by 10 s of object rotation (rotation of rectangular box), followed
by another 20 s rest period that allowed the signals to return to
their baseline values before the start of the next trial. This pattern
was repeated 10 times; the total duration of experiment for each
subject, therefore, was 330 s. During the MR task, the subjects
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were asked to imagine rotation of a rectangular box; during the
rest period, they were asked to relax.

Signal Acquisition
In order to acquire fNIRS signals from the right motor cortex
of the brain, a multi-channel continuous-wave imaging system
(dynamic near-infrared optical tomography; twowavelengths: 760
and 830 nm; NIRx Medical Technologies, NY, USA) with a sam-
pling rate of 1.81Hz was employed. The acquired signals’ light
intensities were first converted to ΔcHbO(t) and ΔcHbR(t) using the
modified Beer–Lamberts Law[

ΔcHbO(t)
ΔcHbR(t)

]
=

1
l × d

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1 [
ΔA(t, λ1)
ΔA(t, λ2)

]
(1)

where ΔA(t; λj) (j= 1, 2) is the unit-less absorbance (optical den-
sity) variation of a light emitter of wavelength λj, aHbX(λj) is the
extinction coefficient of HbX (HbO and HbR) in μM−1mm−1, d
is the unit-less differential path length factor, and l is the distance
(in millimeters) between the emitter and detector. As shown
in Figure 1A, four emitters and five detectors were positioned
over the left motor cortex of the brain for right-hand MI task.
Figure 1B shows eight emitters and three detectors placed on
prefrontal cortex of the brain region in order to acquire signals
for MR, the distance between each emitter–detector pair was of
3 cm. This emitter–detector distance is in accordance with the
literature (McCormick et al., 1992; Gratton et al., 2006). In order
to remove physiological noises (heartbeat, respiration) from the
obtained signals, the Butterworth filter of order fourwas usedwith
a cut-off frequency of 0.6Hz; for removal of low-oscillationMayer
waves, a high-pass filter with a cut-off frequency of 0.01Hz was
used (Naseer and Hong, 2015a,b).

Methodology
General Linear Model
The GLM has been very widely utilized by researchers of fNIRS-
BCI systems in order to identify brain-activation patterns for
multiple cognitive tasks (Abdelnour and Huppert, 2009; Hu et al.,
2010; Zhang et al., 2011b, 2012; Aqil et al., 2012a; Kamran and
Hong, 2013). The GLM-based methods were developed initially
for fMRI-based functional brain mapping. To analyze fMRI data,
GLM methodology has been developed to explain the timeline
blood oxygenation level dependent signal. Currently, they are
frequently used in fNIRS studies. The GLM defines measured
data in the form of a linear combination of several variables and
an error term. The observation of hemodynamic changes can be
expressed as

y = Gβ + e (2)

where the y vector represents the measured data (in fNIRS, the
vector is the observed time-series of the hemodynamic response),
G is the design matrix obtained by convolving the canonical
hemodynamic response with the experimental box-car function
(Ye et al., 2009), β is the set of coefficients for the functional
response that wewant to estimate, and e is the error term. The vital
part of themodel function of aGLM is the box-car function,which
reflects the temporal structures of the experimental paradigm and
is convolved with the canonical hemodynamic response function

FIGURE 1 | Optode placement and channel location. (A) 12-channel with 4
detectors and 5 emitters on the left motor cortex and (B) 12-channel with 8
detectors and 3 emitters on the prefrontal cortex of brain region.

(Ye et al., 2009). As physiological noises had already been removed
using the Butterworth filter, only one explanatory variable (the
design matrix) was used to extract the β values.

Least Squares Estimation
Least squares estimation is used to estimate the β values from the
GLM. The time-course values predicted by themodel are obtained
by linear combination of the predictors

ŷ = Gβ (3)
In order to achieve a good fit, the β values should be close to

the predicted values that are as close as possible to the measured
values y. Thus, the system of equations should be rearranged as

e = y − Gβ (4)
e = y − ŷ (5)
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Although the GLM methodology does not estimate β values,
it can be applied to minimize the sum of squared error values by
using

e′e = (y − Gβ)′(y − Gβ) → min (6)

where e′e shows the vector notation for the sum of squares. Uti-
lizing LSE, the β weights minimizing the square error values are
obtained by

β = (G−1G)
−1G′y (7)

The resulting matrix (G−1G)−1 plays an important role in the
calculation of the β values. The remaining term on the right side,
G′y, evaluates a vector containing as many elements as predictors.
Figure 2 plots the ΔcHbO(t) signals for the MI task and rest
period with their corresponding adaptively estimated β values for
subject 5.

Feature Extraction and Classification
In this study, the statistical properties of the β values were used as
the features. Signal peak (SP), signal skewness (SSk), signal mean
(SM), signal variance (SV), signal kurtosis (SK), and signal slope
(SS) were extracted from the β values obtained by LSE. The SSk
values were determined bymeasuring the asymmetry of the signal
values around the mean relative to a normal distribution:

skewness (Y) = E

[(
Y − μ

σ

)3
]

(8)

where E is the expected value of Y and σ is the SD of Y

mean =
1
N

N∑
i=1

Yi (9)

where N is the number of observations and Yi represents the β
values. The variance is calculated as follow:

variance(Y) =
∑

(Y − μ)2

N (10)

where μ is the mean value of Y. The kurtosis is computed as
follows:

kurtosis(Y) = E

[(
Y − μ

σ

)4
]

(11)

The SS is calculated using the polyfit function in MATLAB®.
The SP values, which measure the peaks of signals, were deter-
mined using MATLAB®max function. These features were calcu-
lated across all 12 channels for the MI and MR. All of the feature
values were scaled between 0 and 1 using the equation

x′ =
x − min(x)

max(x) − min(x) (12)

where x∈Rn represents the original feature values, x′ denotes the
rescaled feature values between 0 and 1,max(x) is the largest value,
and min(x) is the smallest value. After extracting the features
from the β values, SVM was used to classify the MI and MR
tasks (Naseer et al., 2016b). SVM maximizes the margins between
classes by creating hyperplanes that minimize the cost function

Minimize 1
2
||w||2 + C

∑n

i=1
ξi

Subject to zi
(
wTxi + b

)
≥ 1 − ξi, ξi ≥ 0

where wT, xi ∈R2 and b∈R1, ||w||2 =wTw, C is the trade-off
parameter between the error and the margin, ξi is the measure
of the training data, and zi is the class label for the i-th sample.
The most significant advantage of SVM is that it can be used as a
linear as well as a non-linear classifier; in fact, in this study, a third-
degree polynomial kernel function was used with C= 0.5. Ten-
fold cross-validationwas utilized to extract the classification accu-
racies for the MI and MR tasks versus rest periods. Moreover, in
order to measure classification performance, recall and precision
were calculated for both paradigms as follows:

Recall =
TP

TP+FN
(13)

Precision =
TP

TP+FP
(14)

FIGURE 2 | ΔcHbO(t) signals and their corresponding adaptively estimated β values for subject 5.
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where TP, FP, and FN denote true positive, false positive, and
false negative, respectively. These values were calculated from
confusion matrix (Fawcett, 2006).

RESULTS

Multiple feature combinations were used in order to extract sig-
nificant classification accuracies for proposed and conventional
methodologies. The classification accuracies obtained for the five
subjects using the proposed method for MI versus rest were 79.5,
83.7, 82.6, 81.4, and 84.1% using SM and SSk, whereas those for
MR versus rest were and 85.5, 85.2, 87.8, 83.7, and 84.8% using
SP and SSk. To establish the superiority of the proposed method
over the previous methods, the classification accuracies using the
conventional hemodynamic response feature also were calculated.
Figures 3A,B provides a schematic of the conventional and pro-
posed methodology for fNIRS-based BCI study. Furthermore, the
classification accuracies obtained for the five subjects using the
conventional method forMI versus rest were 60.4, 78.9, 70.4, 68.9,
and 54.4% using SMand SP, whereas those forMR versus rest were
and 66.7, 73.0, 72.2, 68.5, and 63.3% using SM and SP. Tables 1
and 2 list the classification accuracies, precisions, and recalls of all
subjects using the proposed methodology and the conventional
method, for all possible two-feature combinations for MI versus
rest task, respectively. Tables 3 and 4 list the classification accu-
racies, precisions, and recalls of all subjects using the proposed
methodology and the conventional method, for all possible two-
feature combinations for MR versus rest task, respectively. The
results show that in MI task the optimal feature combinations that
yielded best classification accuracies were “SM and SSk” and “SM

FIGURE 3 | Schematic of (A) proposed and (B) conventional methodology.
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TABLE 2 | Classification performances of conventional methodology for motor imagery versus rest task across all feature combinations.

Feature
combinations

S1 S2 S3 S4 S5

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Signal peak (SP) and
signal skewness (SSk)

49.9 48.7 58.1 54.1 59.3 56.8 52.2 54.2 53.5 53.2 51.9 71.7 48.7 47.9 43.9

Signal mean (SM)
and SSk

57.0 52.3 28.8 64.8 64.1 58.1 65.9 63.7 59.6 69.3 63.2 74.7 62.2 59.8 71.7

Signal slope (SS)
and SSk

55.2 51.7 30.8 53.7 51.7 49.7 64.4 65.2 61.4 52.2 50.7 57.6 53.7 51.2 49.7

Signal kurtosis (SK)
and SSk

40.4 52.2 36.4 55.6 54.3 61.6 60.7 56.7 51.0 61.9 57.6 34.8 43.0 41.7 36.5

Signal variance (SV)
and SSk

53.3 51.3 39.4 58.5 57.6 54.5 57.0 53.4 71.7 61.5 58.1 41.9 61.9 60.4 55.1

SP and SK 47.8 46.9 43.4 63.7 62.1 60.6 64.8 63.7 53.4 77.0 73.4 66.7 40.7 37.1 32.5
SM and SK 54.8 52.5 32.3 71.9 69.8 64.5 63.0 62.2 58.6 71.9 68.3 59.1 54.8 52.7 49.1
SS and SK 58.9 56.7 48.9 45.2 44.2 21.2 60.7 56.3 55.2 53.0 52.4 32.8 51.1 48.3 43.1
SV and SK 53.7 53.4 32.7 57.0 52.3 22.2 60.4 57.5 54.8 65.2 63.1 57.3 62.2 59.7 63.4
SM and SP 60.4 58.7 64.1 78.9 75.6 69.8 70.4 69.1 65.7 68.9 67.5 59.8 54.4 54.2 49.7
SM and SV 59.6 57.9 56.3 71.1 68.7 63.5 73.0 72.5 69.1 73.0 71.4 68.3 51.9 48.7 46.5
SS and SP 69.6 67.4 58.6 55.9 50.9 57.1 65.2 64.1 59.7 70.0 67.7 65.4 58.1 57.3 63.1
SS and SV 45.6 42.7 20.7 61.1 59.3 53.4 62.2 58.3 55.9 53.7 51.3 27.3 56.3 55.1 46.9
SV and SP 67.4 65.1 59.8 69.6 67.4 56.1 68.1 68.7 61.2 69.6 69.7 55.8 54.1 63.7 59.3
SM and SS 60.4 59.5 33.3 64.8 63.5 59.7 64.1 62.3 58.7 65.6 63.2 59.1 64.8 61.9 58.2

TABLE 3 | Classification performances of proposed methodology for mental rotation versus rest task across all feature combinations.

Feature
combinations

S1 S2 S3 S4 S5

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Signal peak (SP) and
signal skewness (SSk)

85.5 91.3 87.8 85.2 82.8 93.9 87.8 97.3 83.3 83.7 77.7 97.2 84.8 85.0 91.6

Signal mean (SM)
and SSk

84.1 89.4 87.0 77.0 85.0 81.4 77.0 83.3 96.2 82.4 96.1 82.4 88.5 96.7 87.4

Signal slope (SS)
and SSk

82.6 78.9 94.0 80.7 95.6 79.6 71.5 77.8 95.9 80.0 96.1 78.6 78.1 81.7 85.0

Signal kurtosis (SK)
and SSk

77.0 76.7 87.3 80.0 91.7 80.9 65.4 85.6 87.2 77.8 87.2 80.9 77.0 72.2 91.5

Signal variance (SV)
and SSk

85.6 90.6 88.1 72.2 68.9 86.7 62.9 68.3 88.3 78.5 88.3 81.1 75.2 70.6 90.1

SP and SK 82.6 96.7 80.9 72.2 62.2 94.1 68.4 93.3 70.6 76.7 70.6 92.7 80.4 85.0 85.5
SM and SK 80.0 90.6 81.5 73.0 67.8 89.1 76.0 95.0 70.6 74.4 70.6 88.8 72.6 74.4 82.7
SS and SK 83.3 92.8 83.9 69.3 65.6 84.9 74.0 83.3 78.3 75.2 78.3 83.4 81.5 79.4 91.7
SV and SK 83.3 92.7 84.6 53.0 37.2 82.7 60.9 83.9 78.9 74.4 78.9 82.1 64.1 50.6 91.9
SM and SP 75.6 91.1 76.6 72.2 62.2 94.1 70.5 72.2 51.1 63.7 51.1 90.2 80.7 84.4 86.4
SM and SV 80.0 91.7 80.9 66.7 50.6 98.9 70.5 61.1 64.4 71.1 64.4 89.2 79.6 82.2 86.5
SS and SP 81.5 76.7 94.5 75.9 61.1 96.7 68.4 66.7 58.3 67.8 58.3 89.7 87.4 90.6 90.6
SS and SV 79.6 73.9 94.3 73.0 74.4 83.2 65.4 44.4 60.0 67.4 60.0 87.1 83.3 93.9 83.3
SV and SP 74.1 75.0 84.4 69.6 62.8 88.3 67.4 57.8 52.2 65.2 52.2 92.2 79.6 75.0 93.1
SM and SS 75.6 66.7 95.2 80.4 77.2 92.1 68.4 71.7 54.4 66.7 54.4 92.5 80.7 82.2 88.1
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.5 and SP” for beta values and conventional hemodynamic response,

respectively. In MR task, the optimal feature-combination that
yielded best classification accuracies were “SP and SSk” and “SM
and SP” for beta values and conventional hemodynamic response,
respectively. In order to ensure that the data are normally dis-
tributed Kolmogorov–Smirnov method was applied, the signifi-
cant value was found to be greater than 0.05 which shows normal
distribution of the data. These high classification accuracies of
the proposed method relative to the conventional method were
statistically verified by a statistical significance test (the Student’s
t-test): the p-values obtained by performing t-test on the subject-
wise accuracy scores was less than 0.05, which confirmed the
statistical significance of the proposed methodology’s superior
performance for both tasks.

DISCUSSION

In previous studies, researchers have focused their efforts on
enhancing the classification performance of multiple mental tasks
in order to generate commands effective for control of external
devices or for communication with patients suffering from amy-
otrophic lateral sclerosis, locked in syndrome, or other physical
disabilities. However, distinct BCI signals for a specific mental
task were unsuitable for classification, even when using current
advanced methods. Previously, Tai and Chau (2009); Khan and
Hong (2015); Naseer et al. (2016a); Naseer et al. (2016b) have used
features extracted directly from hemodynamic response in order
to acquire classification accuracies. In this study, a novel method-
ology that proceeds by adaptive estimation of GLM coefficients
and extraction of the classification performances ofMI versus rest
andMR versus rest task were developed and evaluated. The results
indicated enhanced classification performance as compared with
a conventional hemodynamic-response-based fNIRS-BCI. More-
over, the proposed methodology can enhance classification per-
formance if a user is not able to generate distinct brain signals
for a specific mental task. The GLM methodology has been fre-
quently employed to analyze time-series fMRI data: Abdelnour
and Huppert (2009) first used the GLM in an fNIRS study in
order to minimize physiological noises; soon thereafter, Hu et al.
(2010) developed a novel online data analysis scheme using the
GLM and Kalman estimator to reduce physiological noises for
finger-tapping experiments; Aqil et al. (2012a) presented an online
brain-imaging framework for finger-tapping tasks using GLM
and a recursive least squares estimation method; Zhang et al.
(2011b, 2012) tested multiple recursive algorithms for removal
of physiological noises and, thereby, extraction of better neuron-
related concentration changes in observed fNIRS data. All of these
studies used the GLM for the removal of physiological noises and
demonstrated brain-activation mapping for multiple cognitive
tasks. However, the GLM coefficients, as estimated using LSE,
have not been used as features for classification. The difference
in classification accuracies is possible since in the conventional
method we use statistical features obtained directly from HbO
signals; whereas in the proposed method, we use statistical fea-
tures obtained from β values. Multiple feature combinations have
been used in order to determine optimal feature combination,
which yields best classification accuracies, using proposed and
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conventional methodologies for both mental tasks. It was found
that in MI task the optimal feature-combinations that yielded
best classification accuracies were “SM and SSk” and “SM and
SP” for beta values and conventional hemodynamic response,
respectively. In MR task, the optimal feature-combination that
yielded best classification accuracy were “SP and SSk” and “SM
and SP” for beta values and conventional hemodynamic response,
respectively. The proposed method has shown improved overall
classification accuracies as compared to conventional method-
ology. This study showed that there is a significant difference
between the classification accuracies of the proposed and con-
ventional methodologies: the result is improved by an average of
18.4% for MI versus rest and 16.7% for MR versus rest using the
proposed method. Moreover, it was found that features extracted
from proposedmethodology are statistically significant from con-
ventional methodology for both paradigms.

It should be noted that in Naseer et al. (2016a), the best two-
and three-feature combinations yielded accuracies of more than
90% for a seemingly very similar classification task. In this work,
the accuracies obtained are in the range of 70%. These differences
in the accuracies might be attributed to different recording con-
ditions and different mental tasks. It is observed that the signal
quality in mental arithmetic tasks is better as compared to MI and
MR tasks. This could be attributed to user training as well. The
subjects used in Naseer et al. (2016a) were regular fNIRS-based
BCI users. All subjects in this paper had little or no experience of
fNIRS recording/BCI training. The effect of using currentmethod
on the data from Naseer et al. (2016a) can be evaluated in future
works.

This study has some limitations. The first is that only six
features were used for classification. The combination of several
other statistical features acquired from β values also should be
utilized as features, as, thereby, classification performance could
be further enhanced. The second limitation is that only SVM
was used as the classifier. The positive effects of several other
classifiers, however, have been seen. As shown in Naseer et al.
(2016b), classification accuracies acquired using artificial neural
networks (ANNs) are better than those acquired using SVM and,
therefore, ANN’s can be considered for classification in future
studies. The third limitation is that the proposed methodology

is complex as compared to conventional method since an extra
step of calculating general linear model coefficients is involved.
This will increase the computational cost as well. The fourth
limitation of this study is the fact that only two mental tasks for
each paradigm were considered, which restricts this study to a
two-class BCI problem. Certainly in any case, it can be upgraded
to a multi-class BCI problem in a further study.

In conclusion, we present a novel methodology for enhanced
classification accuracy of two-class fNIRS-based BCI. The hemo-
dynamic signals of five subjects were modeled using the GLM
and the beta values estimated by LSE were used to extract the
features for classification. The classification accuracies obtained
using the proposed methodology were significantly higher than
those obtained using conventional hemodynamic-response-based
features. These results indeed show enhanced classification per-
formance relative to the conventional methodology and represent
a step forward in the important task of making fNIRS-based BCIs
more accurate and reliable.
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